1
|
Safari H, Hajian M, Tanhaeivash N, Razi M, Drevet JR, Nasr-Esfahani MH. Consequences of vitamin D deficiency or overdosage on follicular development and steroidogenesis in Normo and hypo calcemic mouse models. Sci Rep 2025; 15:14278. [PMID: 40274992 PMCID: PMC12022079 DOI: 10.1038/s41598-025-99437-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 04/21/2025] [Indexed: 04/26/2025] Open
Abstract
Vitamin D deficiency (VDD) is a widespread situation, linked to patients' dietary habits and/or geographical origins. On the other hand, hypervitaminosis D (VDO) is also a worldwide problem, mainly associated with uncontrolled self-administration. In this study, we investigated the effects of VDD and VDO on sex steroid production and ovarian histology in mice. In addition to addressing the rarely explored situation of VDO, the originality of our approach is to disconnect VDD/VDO situations from the well-known calciotrophic effect of vitamin D (VitD). Our data indicate that VDD led to a significant decrease in serum LH and FSH levels, independently of serum calcium levels. VDD was also associated with increased testosterone and reduced oestradiol levels. VDO animals showed increased LH and reduced testosterone levels. Hormonal changes in the VDO animal groups were correlated with a lower accumulation of transcripts of steroidogenic genes such as CYP11A1 and 3ß-HSD, whereas these transcripts were higher in the VDD groups. CYP19A1 transcripts were lower in VDD animals than in controls. This study highlights the complex interaction between vitamin D status, the regulation of reproductive hormones and, consequently, reproductive performance. It underlines the need for caution when oral vitamin D supplementation is chosen as a therapeutic action to boost female reproductive performance, as VDO can be as detrimental as VDD.
Collapse
Affiliation(s)
- Hengameh Safari
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Nima Tanhaeivash
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mazdak Razi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Joël R Drevet
- Faculty of Medicine, GReD Institute, EVALSEM, Université Clermont Auvergne, CRBC, Clermont-Ferrand, 63000, France
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
2
|
Mitani T. Functional expression mechanisms of food-derived components based on target proteins. Biosci Biotechnol Biochem 2025; 89:523-532. [PMID: 39805718 DOI: 10.1093/bbb/zbaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025]
Abstract
Food-derived polyphenols and some alkaloids have reported bioactivities related to the prevention of systemic metabolic disorders such as obesity, glucose intolerance, and dyslipidemia. For food-derived components to exert their functions in vivo, it is essential to interact with biological factors such as proteins, lipids, and nucleic acids. However, it is still unclear whether bioactive components in foods express functions related to their target factors. In this review, I introduce the target proteins in which food-derived components express functions in cells.
Collapse
Affiliation(s)
- Takakazu Mitani
- Division of Food Science and Biotechnology, Graduated School of Science and Technology, Shinshu University, Nagano, Japan
- Department of Agricultural and Life Sciences, Faculty of Agriculture, Shinshu University, Nagano, Japan
| |
Collapse
|
3
|
Stumpff F, Manneck D. Prebiotics as modulators of colonic calcium and magnesium uptake. Acta Physiol (Oxf) 2025; 241:e14262. [PMID: 39803707 PMCID: PMC11726438 DOI: 10.1111/apha.14262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/23/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
Ca2+ and Mg2+ are essential nutrients, and deficiency can cause serious health problems. Thus, lack of Ca2+ and Mg2+ can lead to osteoporosis, with incidence rising both in absolute and age-specific terms, while Mg2+ deficiency is associated with type II diabetes. Prevention via vitamin D or estrogen is controversial, and the bioavailability of Ca2+ and Mg2+ from supplements is significantly lower than that from milk products. Problems are likely to increase as populations age and the number of people on vegan diets surges. Developing new therapeutic strategies requires a better understanding of the molecular mechanisms involved in absorption by intestinal epithelia. The vitamin-D dependent, active pathway for the uptake of Ca2+ from the upper small intestine involving TRPV6 is highly efficient but only accounts for about 20% of total uptake. Instead, most Ca2+ uptake is thought to occur via passive paracellular diffusion across the ileum, although sufficiently high luminal concentrations are difficult to achieve.. Interestingly, colon and caecum also have a considerable capacity for the active absorption of Ca2+ and Mg2+, the molecular mechanisms of which are unclear. Intriguingly, stimulating fermentation by prebiotics enhances colonic absorption, which can rise from ~10% to ~30% of the total. Notably, fermentation releases protons, which inhibits channels highly selective for Ca2+ and Mg2+ (TRPV6 and TRPM6/TRPM7). Conversely, the non-selective cation channel TRPV3 is stimulated by both intracellular acidification and by numerous herbal compounds. Spicy, fiber-rich food, as traditionally consumed in many cultures, might enhance the uptake of Ca2+ and Mg2+ via this pathway.
Collapse
Affiliation(s)
- Friederike Stumpff
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| | - David Manneck
- Institute for Molecular MedicineHealth and Medical University PotsdamPotsdamGermany
| |
Collapse
|
4
|
Ghaderi Nik M, Mahdavi R, Ghazi S, Gholami K. Efficacy of dietary supplementation with 1α-hydroxycholecalciferol on performance, eggshell quality, serum metabolites, jejunal morphology and bone characteristics of laying hens at the late stage of production. Poult Sci 2025; 104:104618. [PMID: 39637655 PMCID: PMC11665307 DOI: 10.1016/j.psj.2024.104618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/25/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024] Open
Abstract
The present study evaluated the effects of 1α-hydroxycholecalciferol (1αOHD3) supplementation on performance, egg quality, gut morphology, serum metabolites, and bone characteristics of Lohman LSL-Lite laying hens. A total of 180 birds (110 weeks of age) were allocated according to a completely randomized design with five treatments. Each treatment had six replicates containing six hens each. The treatments consisted of basal diet with 2000 IU/kg vitamin D3, basal diet supplemented with 1.5, 3, 4.5, and 6 μg/kg of 1αOHD3. Results showed that dietary supplementation with 1αOHD3 increased the egg production (linear P = 0.002 and quadratic P = 0.009) and gross revenue (linear P = 0.042) whilst it decreased the abnormal eggs (linear P = 0.004 and quadratic P = 0.009) in aged laying hens. Similarly, it linearly and quadratically increased the shell thickness and eggshell strength (P < 0.001). Egg mass (linear P = 0.075) showed a tendency to increase with increasing dietary 1αOHD3 supplementation levels. The egg quality parameters, including Haugh unit, relative weight of albumen, yolk and eggshell were not affected by the treatments (P > 0.05). Furthermore, 1αOHD3 supplementation increased the serum levels of calcium (linear P = 0.003 and quadratic P = 0.011), albumin (linear P = 0.016 and quadratic P = 0.033), vitamin D (linear and quadratic P < 0.001), alanine aminotransferase activity (linear P = 0.02) whilst the addition of 1αOHD3 decreased alkaline phosphatase activity (linear P = 0.003 and quadratic P = 0.011), without affecting the serum levels of phosphorus and aspartate aminotransferase activity (P > 0.05) in laying hens. In addition, the linear tendency to increase was observed (linear P = 0.062) in total protein. Dietary supplementation of 1αOHD3 increased the tibia diameter (linear P = 0.053), tibia calcium (linear P = 0.004 and quadratic P = 0.014) and tibia strength (linear and quadratic P < 0.001). The addition of 1αOHD3 did not affect the phosphorus and ash of the tibia (P > 0.05). Linear and quadratic responses were found for crypt depth (linear and quadratic P = 0.001) and villus height to crypt depth ratio (linear P = 0.004 and quadratic P = 0.010). The experimental treatments did not affect the jejunal villus height, villus width and villus surface area in aged laying hens (P > 0.05). Our findings suggest that the inclusion of 1αOHD3 is beneficial, as it enhances egg production, profitability, eggshell thickness, and tibia quality while reducing the incidence of abnormal eggs during the later phase of egg production.
Collapse
Affiliation(s)
- Maryam Ghaderi Nik
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Reza Mahdavi
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
| | - Shahab Ghazi
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Kourosh Gholami
- Department of Animal Science, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| |
Collapse
|
5
|
Nishiura T, Yamanaka H, Mori R, Kato S, Nakane M, Kotoura S, Masuyama R. Adult Chicken Bone-Derived Components Reverse the Impaired Calcium Homeostasis and Bone Mass in Mice Lacking 1,25(OH) 2D 3-VDR Signaling. J Nutr Sci Vitaminol (Tokyo) 2025; 71:81-92. [PMID: 40024752 DOI: 10.3177/jnsv.71.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Female adult chickens, known as laying hens, possess a distinctive bone structure in the intracortical region, which is responsible for storing calcium. Given the cyclical nature of calcium storage and demand during the egg-laying cycle, the medullary bone of laying hens plays a crucial role in maintaining calcium homeostasis. In this study, we examined the potential of orally administered components derived from adult chicken bones to improve calcium homeostasis and bone mass in mice. Samples from adult chickens and young chickens without egg-laying experience were prepared by pressing meat parts, including bones, and administered to wild type (WT) and vitamin D receptor knockout (VDRKO) mice respectively. The phenotypes observed in VDRKO mice, such as severe reductions in serum calcium concentration and bone mass, were normalized in mice fed the adult chicken bone-containing diet to the same extent as in WT mice. These effects were not observed in mice fed a young chicken bone-containing diet. The adult chicken bone-containing diet increased apparent calcium absorption in VDRKO mice compared to other dietary groups. To determine the effects on bone metabolism, osteoclasts activity was evaluated by histological measurements and the quantification of serum osteoclast marker, and it was restored by the adult chicken bone-containing diet. In addition, the treatment of adult chicken bone-derived components increased osteoclasts differentiation in vitro from cultured bone marrow macrophage. These results show that adult chicken bone-derived components improve calcium and bone homeostasis in mice lacking vitamin D action through combined effects that target calcium metabolism and bone turnover.
Collapse
Affiliation(s)
- Tamao Nishiura
- Graduate School of Gastronomy Management, Ritsumeikan University
- Marudai Food Co., Ltd
| | - Hitoki Yamanaka
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University
| | - Risako Mori
- Research Organization of Science and Technology, Ritsumeikan University
| | - Shigeaki Kato
- Health Sciences Research Center, Iryo Sosei University
- Research Institute of Innovative Medicine, Tokiwa Foundation
| | | | | | - Ritsuko Masuyama
- Graduate School of Gastronomy Management, Ritsumeikan University
| |
Collapse
|
6
|
Skv M, Abraham SM, Eshwari O, Golla K, Jhelum P, Maity S, Komal P. Tremendous Fidelity of Vitamin D3 in Age-related Neurological Disorders. Mol Neurobiol 2024; 61:7211-7238. [PMID: 38372958 DOI: 10.1007/s12035-024-03989-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
Vitamin D3 (VD) is a secosteroid hormone and shows a pleiotropic effect in brain-related disorders where it regulates redox imbalance, inflammation, apoptosis, energy production, and growth factor synthesis. Vitamin D3's active metabolic form, 1,25-dihydroxy Vitamin D3 (1,25(OH)2D3 or calcitriol), is a known regulator of several genes involved in neuroplasticity, neuroprotection, neurotropism, and neuroinflammation. Multiple studies suggest that VD deficiency can be proposed as a risk factor for the development of several age-related neurological disorders. The evidence for low serum levels of 25-hydroxy Vitamin D3 (25(OH)D3 or calcidiol), the major circulating form of VD, is associated with an increased risk of Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), dementia, and cognitive impairment. Despite decades of evidence on low VD association with neurological disorders, the precise molecular mechanism behind its beneficial effect remains controversial. Here, we will be delving into the neurobiological importance of VD and discuss its benefits in different neuropsychiatric disorders. The focus will be on AD, PD, and HD as they share some common clinical, pathological, and epidemiological features. The central focus will be on the different attributes of VD in the aspect of its anti-oxidative, anti-inflammatory, anti-apoptotic, anti-cholinesterase activity, and psychotropic effect in different neurodegenerative diseases.
Collapse
Affiliation(s)
- Manjari Skv
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Sharon Mariam Abraham
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Omalur Eshwari
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Kishore Golla
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Priya Jhelum
- Centre for Research in Neuroscience and Brain Program, The Research Instituteof the, McGill University Health Centre , Montreal, QC, Canada
| | - Shuvadeep Maity
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India
| | - Pragya Komal
- Department of Biological Sciences, Birla Institute of Technology and Science-Pilani (BITS-Pilani) Hyderabad campus, Shameerpet-Mandal, Hyderabad, Telangana, India.
| |
Collapse
|
7
|
Doms S, Verlinden L, Janssens I, Vanhevel J, Eerlings R, Houtman R, Kato S, Mathieu C, Decallonne B, Carmeliet G, Verstuyf A. Coactivator-independent vitamin D receptor signaling causes severe rickets in mice, that is not prevented by a diet high in calcium, phosphate, and lactose. Bone Res 2024; 12:44. [PMID: 39164247 PMCID: PMC11335873 DOI: 10.1038/s41413-024-00343-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/26/2024] [Accepted: 05/12/2024] [Indexed: 08/22/2024] Open
Abstract
The vitamin D receptor (VDR) plays a critical role in the regulation of mineral and bone homeostasis. Upon binding of 1α,25-dihydroxyvitamin D3 to the VDR, the activation function 2 (AF2) domain repositions and recruits coactivators for the assembly of the transcriptional machinery required for gene transcription. In contrast to coactivator-induced transcriptional activation, the functional effects of coactivator-independent VDR signaling remain unclear. In humans, mutations in the AF2 domain are associated with hereditary vitamin D-resistant rickets, a genetic disorder characterized by impaired bone mineralization and growth. In the present study, we used mice with a systemic or conditional deletion of the VDR-AF2 domain (VdrΔAF2) to study coactivator-independent VDR signaling. We confirm that ligand-induced transcriptional activation was disabled because the mutant VDRΔAF2 protein was unable to interact with coactivators. Systemic VdrΔAF2 mice developed short, undermineralized bones with dysmorphic growth plates, a bone phenotype that was more pronounced than that of systemic Vdr knockout (Vdr-/-) mice. Interestingly, a rescue diet that is high in calcium, phosphate, and lactose, normalized this phenotype in Vdr-/-, but not in VdrΔAF2 mice. However, osteoblast- and osteoclast-specific VdrΔAF2 mice did not recapitulate this bone phenotype indicating coactivator-independent VDR effects are more important in other organs. In addition, RNA-sequencing analysis of duodenum and kidney revealed a decreased expression of VDR target genes in systemic VdrΔAF2 mice, which was not observed in Vdr-/- mice. These genes could provide new insights in the compensatory (re)absorption of minerals that are crucial for bone homeostasis. In summary, coactivator-independent VDR effects contribute to mineral and bone homeostasis.
Collapse
Affiliation(s)
- Stefanie Doms
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Lieve Verlinden
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Iris Janssens
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Justine Vanhevel
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Roy Eerlings
- Department of Cellular and Molecular Medicine, Laboratory of Molecular Endocrinology, KU Leuven, Leuven, Belgium
- Institute of Applied Microbiology, RWTH Aachen University, Aachen, Germany
| | | | - Shigeaki Kato
- Health Sciences Research Center, Iryo Sosei University, Iwaki, Fukuchima, Japan
- Research Institute of Innovative Medicine, Tokiwa Foundation, Iwaki, Fukuchima, Japan
| | - Chantal Mathieu
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Brigitte Decallonne
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Geert Carmeliet
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Annemieke Verstuyf
- Department of Chronic diseases and metabolism, Laboratory of Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
8
|
Olszewska AM, Zmijewski MA. Genomic and non-genomic action of vitamin D on ion channels - Targeting mitochondria. Mitochondrion 2024; 77:101891. [PMID: 38692383 DOI: 10.1016/j.mito.2024.101891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Recent studies revealed that mitochondria are not only a place of vitamin D3 metabolism but also direct or indirect targets of its activities. This review summarizes current knowledge on the regulation of ion channels from plasma and mitochondrial membranes by the active form of vitamin D3 (1,25(OH)2D3). 1,25(OH)2D3, is a naturally occurring hormone with pleiotropic activities; implicated in the modulation of cell differentiation, and proliferation and in the prevention of various diseases, including cancer. Many experimental data indicate that 1,25(OH)2D3 deficiency induces ionic remodeling and 1,25(OH)2D3 regulates the activity of multiple ion channels. There are two main theories on how 1,25(OH)2D3 can modify the function of ion channels. First, describes the involvement of genomic pathways of response to 1,25(OH)2D3 in the regulation of the expression of the genes encoding channels, their auxiliary subunits, or additional regulators. Interestingly, intracellular ion channels, like mitochondrial, are encoded by the same genes as plasma membrane channels. Therefore, the comprehensive genomic regulation of the channels from these two different cellular compartments we analyzed using a bioinformatic approach. The second theory explores non-genomic pathways of vitamin D3 activities. It was shown, that 1,25(OH)2D3 indirectly regulates enzymes that impact ion channels, change membrane physical properties, or directly bind to channel proteins. In this article, the involvement of genomic and non-genomic pathways regulated by 1,25(OH)2D3 in the modulation of the levels and activity of plasma membrane and mitochondrial ion channels was investigated by an extensive review of the literature and analysis of the transcriptomic data using bioinformatics.
Collapse
Affiliation(s)
- A M Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland
| | - M A Zmijewski
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland.
| |
Collapse
|
9
|
Uga M, Kaneko I, Shiozaki Y, Koike M, Tsugawa N, Jurutka PW, Miyamoto KI, Segawa H. The Role of Intestinal Cytochrome P450s in Vitamin D Metabolism. Biomolecules 2024; 14:717. [PMID: 38927120 PMCID: PMC11201832 DOI: 10.3390/biom14060717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/08/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Vitamin D hydroxylation in the liver/kidney results in conversion to its physiologically active form of 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. 1,25(OH)2D3 controls gene expression through the nuclear vitamin D receptor (VDR) mainly expressed in intestinal epithelial cells. Cytochrome P450 (CYP) 24A1 is a catabolic enzyme expressed in the kidneys. Interestingly, a recently identified mutation in another CYP enzyme, CYP3A4 (gain-of-function), caused type III vitamin D-dependent rickets. CYP3A are also expressed in the intestine, but their hydroxylation activities towards vitamin D substrates are unknown. We evaluated CYP3A or CYP24A1 activities on vitamin D action in cultured cells. In addition, we examined the expression level and regulation of CYP enzymes in intestines from mice. The expression of CYP3A or CYP24A1 significantly reduced 1,25(OH)2D3-VDRE activity. Moreover, in mice, Cyp24a1 mRNA was significantly induced by 1,25(OH)2D3 in the intestine, but a mature form (approximately 55 kDa protein) was also expressed in mitochondria and induced by 1,25(OH)2D3, and this mitochondrial enzyme appears to hydroxylate 25OHD3 to 24,25(OH)2D3. Thus, CYP3A or CYP24A1 could locally attenuate 25OHD3 or 1,25(OH)2D3 action, and we suggest the small intestine is both a vitamin D target tissue, as well as a newly recognized vitamin D-metabolizing tissue.
Collapse
Affiliation(s)
- Minori Uga
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Ichiro Kaneko
- Research Institute for Food and Nutritional Sciences, School of Human Science and Environment, University of Hyogo, Hyogo 670-0092, Japan
| | - Yuji Shiozaki
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Megumi Koike
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| | - Naoko Tsugawa
- Faculty of Nutrition, Kobe Gakuin University, Hyogo 651-2180, Japan
| | - Peter W. Jurutka
- Mathematical and Natural Sciences, Arizona State University, Glendale, AZ 85306, USA
- College of Medicine, The University of Arizona, Phoenix, AZ 85004, USA
| | - Ken-Ichi Miyamoto
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
- Graduate School of Agriculture, Ryukoku University, Shiga 520-2194, Japan
| | - Hiroko Segawa
- Department of Applied Nutrition, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan
| |
Collapse
|
10
|
Vieira-Neto A, Lean IJ, Santos JEP. Periparturient Mineral Metabolism: Implications to Health and Productivity. Animals (Basel) 2024; 14:1232. [PMID: 38672379 PMCID: PMC11047658 DOI: 10.3390/ani14081232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Mineral metabolism, in particular Ca, and to a lesser extent phosphorus (P) and magnesium (Mg), is altered with the onset of lactation because of extensive irreversible loss to synthesize colostrum and milk. The transient reduction in the concentration of Ca in blood, particularly when it lasts days, increases the risk of mineral-related disorders such as hypocalcemia and, to a lesser extent, hypophosphatemia. Although the incidence of clinical hypocalcemia can be reduced by prepartum dietary interventions, subclinical hypocalcemia remains prevalent, affecting up to 60% of the dairy cows in the first 3 d postpartum. More importantly, strong associations exist between hypocalcemia and increased susceptibility to other peripartum diseases and impaired reproductive performance. Mechanistic experiments have demonstrated the role of Ca on innate immune response in dairy cows, which presumably predisposes them to other diseases. Hypocalcemia is not related to inadequate Ca intake as prepartum diets marginal to deficient in Ca reduce the risk of the disease. Therefore, the understanding of how Ca homeostasis is regulated, in particular how calciotropic hormones such as parathyroid hormone and 1,25-dihydroxyvitamin D3, affect blood Ca concentrations, gastrointestinal Ca absorption, bone remodeling, and renal excretion of Ca become critical to develop novel strategies to prevent mineral imbalances either by nutritional or pharmacological interventions. A common method to reduce the risk of hypocalcemia is the manipulation of the prepartum dietary cation-anion difference. Feeding acidogenic diets not only improves Ca homeostasis and reduces hypocalcemia, but also reduces the risk of uterine diseases and improves productive performance. Feeding diets that induce a negative Ca balance in the last weeks of gestation also reduce the risk of clinical hypocalcemia, and recent work shows that the incorporation of mineral sequestering agents, presumably by reducing the absorption of P and Ca prepartum, increases blood Ca at calving, although benefits to production and health remain to be shown. Alternative strategies to minimize subclinical hypocalcemia with the use of vitamin D metabolites either fed prepartum or as a pharmacological agent administered immediately after calving have shown promising results in reducing hypocalcemia and altering immune cell function, which might prove efficacious to prevent diseases in early lactation. This review summarizes the current understanding of Ca homeostasis around parturition, the limited knowledge of the exact mechanisms for gastrointestinal Ca absorption in bovine, the implications of hypocalcemia on the health of dairy cows, and discusses the methods to minimize the risk of hypocalcemia and their impacts on productive performance and health in dairy cows.
Collapse
Affiliation(s)
- Achilles Vieira-Neto
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
| | - Ian J. Lean
- Scibus, Camden, NSW 2570, Australia;
- Faculty of Veterinary Science, The University of Sydney, Camden, NSW 2570, Australia
| | - José Eduardo P. Santos
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA;
- DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
11
|
Liu W, Deng W, Hu L, Zou H. Advances in TRPV6 inhibitors for tumors by targeted therapies: Macromolecular proteins, synthetic small molecule compounds, and natural compounds. Eur J Med Chem 2024; 270:116379. [PMID: 38588625 DOI: 10.1016/j.ejmech.2024.116379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/30/2024] [Accepted: 03/31/2024] [Indexed: 04/10/2024]
Abstract
TRPV6, a Ca2+-selective member of the transient receptor potential vanilloid (TRPV) family, plays a key role in extracellular calcium transport, calcium ion reuptake, and maintenance of a local low calcium environment. An increasing number of studies have shown that TRPV6 is involved in the regulation of various diseases. Notably, overexpression of TRPV6 is closely related to the occurrence of various cancers. Research confirmed that knocking down TRPV6 could effectively reduce the proliferation and invasiveness of tumors by mainly mediating the calcium signaling pathway. Hence, TRPV6 has become a promising new drug target for numerous tumor treatments. However, the development of TRPV6 inhibitors is still in the early stage, and the existing TRPV6 inhibitors have poor selectivity and off-target effects. In this review, we focus on summarizing and describing the structure characters, and mechanisms of existing TRPV6 inhibitors to provide new ideas and directions for the development of novel TRPV6 inhibitors.
Collapse
Affiliation(s)
- Weikang Liu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Wenwen Deng
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China
| | - Liqing Hu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China.
| | - Hui Zou
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, School of Medicine, Hunan Normal University, Changsha 410013, China.
| |
Collapse
|
12
|
Verlinden L, Li S, Veldurthy V, Carmeliet G, Christakos S. Relationship of the bone phenotype of the Klotho mutant mouse model of accelerated aging to changes in skeletal architecture that occur with chronological aging. Front Endocrinol (Lausanne) 2024; 15:1310466. [PMID: 38352710 PMCID: PMC10861770 DOI: 10.3389/fendo.2024.1310466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction Due to the relatively long life span of rodent models, in order to expediate the identification of novel therapeutics of age related diseases, mouse models of accelerated aging have been developed. In this study we examined skeletal changes in the male and female Klotho mutant (kl/kl) mice and in male and female chronically aged mice to determine whether the accelerated aging bone phenotype of the kl/kl mouse reflects changes in skeletal architecture that occur with chronological aging. Methods 2, 6 and 20-23 month old C57BL/6 mice were obtained from the National Institute of Aging aged rodent colony and wildtype and kl/kl mice were generated as previously described by M. Kuro-o. Microcomputed tomography analysis was performed ex vivo to examine trabecular and cortical parameters from the proximal metaphyseal and mid-diaphyseal areas, respectively. Serum calcium and phosphate were analyzed using a colorimetric assay. The expression of duodenal Trpv6, which codes for TRPV6, a vitamin D regulated epithelial calcium channel whose expression reflects intestinal calcium absorptive efficiency, was analyzed by quantitative real-time PCR. Results and discussion Trabecular bone volume (BV/TV) and trabecular number decreased continuously with age in males and females. In contrast to aging mice, an increase in trabecular bone volume and trabecular number was observed in both male and female kl/kl mice. Cortical thickness decreased with advancing age and also decreased in male and female kl/kl mice. Serum calcium and phosphate levels were significantly increased in kl/kl mice but did not change with age. Aging resulted in a decline in Trpv6 expression. In the kl/kl mice duodenal Trpv6 was significantly increased. Our findings reflect differences in bone architecture as well as differences in calcium and phosphate homeostasis and expression of Trpv6 between the kl/kl mutant mouse model of accelerated aging and chronological aging. Although the Klotho deficient mouse has provided a new understanding of the regulation of mineral homeostasis and bone metabolism, our findings suggest that changes in bone architecture in the kl/kl mouse reflect in part systemic disturbances that differ from pathophysiological changes that occur with age including dysregulation of calcium homeostasis that contributes to age related bone loss.
Collapse
Affiliation(s)
- Lieve Verlinden
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Shanshan Li
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, United States
| | - Vaishali Veldurthy
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, United States
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, New Jersey Medical School, Rutgers, the State University of New Jersey, Newark, NJ, United States
| |
Collapse
|
13
|
Ferrer-Mayorga G, Muñoz A, González-Sancho JM. Vitamin D and colorectal cancer. FELDMAN AND PIKE'S VITAMIN D 2024:859-899. [DOI: 10.1016/b978-0-323-91338-6.00039-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Liesegang A, Burger B, de Vries de Heekelingen T, Schroeter-Vogt C, Hatt JM, Kowalewski MP, Clauss M. Rabbits (Oryctolagus cuniculus) increase caecal calcium absorption at increasing dietary calcium levels. J Anim Physiol Anim Nutr (Berl) 2024; 108:185-193. [PMID: 37664966 DOI: 10.1111/jpn.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/18/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
Hindgut fermenting herbivores from different vertebrate taxa, including tortoises, and among mammals some afrotheria, perissodactyla incl. equids, several rodents as well as lagomorphs absorb more calcium (Ca) from the digesta than they require, and excrete the surplus via urine. Both proximate and ultimate causes are elusive. It was suggested that this mechanism might ensure phosphorus availability for the hindgut microbiome by removing potentially complex-building Ca from the digesta. Here we use Ussing chamber experiments to show that rabbits (Oryctolagus cuniculus) maintained on four different diets (six animals/diet) increase active Ca absorption at increasing Ca levels. This contradicts the common assumption that at higher dietary levels, where passive uptake should be more prevalent, active transport can relax and hence supports the deliberate removal hypothesis. In the rabbits, this absorption was distinctively higher in the caecum than in the duodenum, which is unexpected in mammals. Additional quantification of the presence of two proteins involved in active Ca absorption (calbindin-D9K CB; vitamin D receptor, VDR) showed higher presence with higher dietary Ca. However, their detailed distribution across the intestinal tract and the diet groups suggests that other factors not investigated in this study must play major roles in Ca absorption in rabbits. Investigating strategies of herbivores to mitigate potential negative effects of Ca in the digesta on microbial activity and growth might represent a promising area of future research.
Collapse
Affiliation(s)
- Annette Liesegang
- Institute of Animal Nutrition and Dietetics, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Bettina Burger
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | | | - Jean-Michel Hatt
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Rana R, Baker JT, Sorsby M, Jagga S, Venkat S, Almardini S, Liu ES. Impaired 1,25-dihydroxyvitamin D3 action underlies enthesopathy development in the Hyp mouse model of X-linked hypophosphatemia. JCI Insight 2023; 8:e163259. [PMID: 37490334 PMCID: PMC10544216 DOI: 10.1172/jci.insight.163259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/20/2023] [Indexed: 07/27/2023] Open
Abstract
X-linked hypophosphatemia (XLH) is characterized by high serum fibroblast growth factor 23 (FGF23) levels, resulting in impaired 1,25-dihydroxyvitamin D3 (1,25D) production. Adults with XLH develop a painful mineralization of the tendon-bone attachment site (enthesis), called enthesopathy. Treatment of mice with XLH (Hyp) with 1,25D or an anti-FGF23 Ab, both of which increase 1,25D signaling, prevents enthesopathy. Therefore, we undertook studies to determine a role for impaired 1,25D action in enthesopathy development. Entheses from mice lacking vitamin D 1α-hydroxylase (Cyp27b1) (C-/-) had a similar enthesopathy to Hyp mice, whereas deletion of Fgf23 in Hyp mice prevented enthesopathy, and deletion of both Cyp27b1 and Fgf23 in mice resulted in enthesopathy, demonstrating that the impaired 1,25D action due to high FGF23 levels underlies XLH enthesopathy development. Like Hyp mice, enthesopathy in C-/- mice was observed by P14 and was prevented, but not reversed, with 1,25D therapy. Deletion of the vitamin D receptor in scleraxis-expressing cells resulted in enthesopathy, indicating that 1,25D acted directly on enthesis cells to regulate enthesopathy development. These results show that 1,25D signaling was necessary for normal postnatal enthesis maturation and played a role in XLH enthesopathy development. Optimizing 1,25D replacement in pediatric patients with XLH is necessary to prevent enthesopathy.
Collapse
Affiliation(s)
- Rakshya Rana
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Jiana T. Baker
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Melissa Sorsby
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Supriya Jagga
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Shreya Venkat
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Shaza Almardini
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Eva S. Liu
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Jiang H, Chanpaisaeng K, Christakos S, Fleet JC. Intestinal Vitamin D Receptor Is Dispensable for Maintaining Adult Bone Mass in Mice With Adequate Calcium Intake. Endocrinology 2023; 164:bqad051. [PMID: 36960562 PMCID: PMC10282920 DOI: 10.1210/endocr/bqad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 03/25/2023]
Abstract
1,25-Dihydroxyvitamin D3 (1,25(OH)2D3)-mediated intestinal calcium (Ca) absorption supplies Ca for proper bone mineralization during growth. We tested whether vitamin D receptor (VDR)-mediated 1,25(OH)2D3 signaling is critical for adult Ca absorption and bone by using mice with inducible Vdr gene knockout in the whole intestine (villin-CreERT2+/- × Vdrf/f, WIK) or in the large intestine (Cdx2-CreERT2+/- ×Vdrf/f, LIK). At 4-month-old, Vdr alleles were recombined (0.05 mg tamoxifen/g BW, intraperitoneally [i.p.], 5 days) and mice were fed diets with either 0.5% (adequate) or 0.2% (low) Ca. Ca absorption was examined after 2 weeks while serum 1,25(OH)2D3, bone mass, and bone microarchitecture were examined after 16 weeks. Intestinal and renal gene expression was measured at both time points (n = 12/genotype/diet/time point). On the 0.5% Ca diet, all phenotypes in WIK and LIK mice were similar to the controls. Control mice adapted to the 0.2% low-Ca diet by increasing renal Cyp27b1 mRNA (3-fold), serum 1,25(OH)2D3 level (1.9-fold), and Ca absorption in the duodenum (Dd, + 131%) and proximal colon (PCo, + 28.9%), which prevented bone loss. In WIK mice, low-Ca diet increased serum 1,25(OH)2D3 (4.4-fold) but Ca absorption remained unaltered in the Dd and PCo. Consequently, significant bone loss occurred in WIK mice (e.g., cortical thickness, Ct.Th, -33.7%). LIK mice adapted to the low-Ca diet in the Dd but not the PCo, and the effect on bone phenotypes was milder (e.g., Ct.Th, -13.1%). Our data suggest intestinal VDR in adult mice prevents bone loss under low Ca intake but is dispensable under adequate calcium intake.
Collapse
Affiliation(s)
- Heng Jiang
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, TX 78723, USA
| | - Krittikan Chanpaisaeng
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, Pathum Thani 12120, Thailand
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - James C Fleet
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, TX 78723, USA
| |
Collapse
|
17
|
Flores-Aldama L, Bustos D, Cabezas-Bratesco D, Gonzalez W, Brauchi SE. Intracellular Helix-Loop-Helix Domain Modulates Inactivation Kinetics of Mammalian TRPV5 and TRPV6 Channels. Int J Mol Sci 2023; 24:4470. [PMID: 36901904 PMCID: PMC10003196 DOI: 10.3390/ijms24054470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/10/2023] [Accepted: 02/17/2023] [Indexed: 03/12/2023] Open
Abstract
TRPV5 and TRPV6 are calcium-selective ion channels expressed at the apical membrane of epithelial cells. Important for systemic calcium (Ca2+) homeostasis, these channels are considered gatekeepers of this cation transcellular transport. Intracellular Ca2+ exerts a negative control over the activity of these channels by promoting inactivation. TRPV5 and TRPV6 inactivation has been divided into fast and slow phases based on their kinetics. While slow inactivation is common to both channels, fast inactivation is characteristic of TRPV6. It has been proposed that the fast phase depends on Ca2+ binding and that the slow phase depends on the binding of the Ca2+/Calmodulin complex to the internal gate of the channels. Here, by means of structural analyses, site-directed mutagenesis, electrophysiology, and molecular dynamic simulations, we identified a specific set of amino acids and interactions that determine the inactivation kinetics of mammalian TRPV5 and TRPV6 channels. We propose that the association between the intracellular helix-loop-helix (HLH) domain and the TRP domain helix (TDh) favors the faster inactivation kinetics observed in mammalian TRPV6 channels.
Collapse
Affiliation(s)
- Lisandra Flores-Aldama
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile
- Department of Neuroscience, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave. #5505, Madison, WI 53705, USA
| | - Daniel Bustos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile
- Laboratorio de Bioinformática y Química Computacional (LBQC), Departamento de Medicina Traslacional, Facultad de Medicina, Universidad Católica del Maule, Talca 3460000, Chile
| | - Deny Cabezas-Bratesco
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile
| | - Wendy Gonzalez
- Center for Bioinformatics and Molecular Simulations (CBSM), University of Talca, Talca 3460000, Chile
- Millennium Nucleus of Ion Channel-associated Diseases (MiNICAD), Valdivia 5110566, Chile
| | - Sebastian E. Brauchi
- Instituto de Fisiología, Facultad de Medicina, Universidad Austral de Chile, Valdivia 5110566, Chile
- Millennium Nucleus of Ion Channel-associated Diseases (MiNICAD), Valdivia 5110566, Chile
| |
Collapse
|
18
|
Meena AS, Shukla PK, Rao R, Canelas C, Pierre JF, Rao R. TRPV6 deficiency attenuates stress and corticosterone-mediated exacerbation of alcohol-induced gut barrier dysfunction and systemic inflammation. Front Immunol 2023; 14:1093584. [PMID: 36817471 PMCID: PMC9929865 DOI: 10.3389/fimmu.2023.1093584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction Chronic stress is co-morbid with alcohol use disorder that feedback on one another, thus impeding recovery from both disorders. Stress and the stress hormone corticosterone aggravate alcohol-induced intestinal permeability and liver damage. However, the mechanisms involved in compounding tissue injury by stress/corticosterone and alcohol are poorly defined. Here we explored the involvement of the TRPV6 channel in stress (or corticosterone) 3and alcohol-induced intestinal epithelial permeability, microbiota dysbiosis, and systemic inflammation. Methods Chronic alcohol feeding was performed on adult wild-type and Trpv6-/- mice with or without corticosterone treatment or chronic restraint stress (CRS). The barrier function was determined by evaluating inulin permeability in vivo and assessing tight junction (TJ) and adherens junction (AJ) integrity by immunofluorescence microscopy. The gut microbiota composition was evaluated by 16S rRNA sequencing and metagenomic analyses. Systemic responses were assessed by evaluating endotoxemia, systemic inflammation, and liver damage. Results Corticosterone and CRS disrupted TJ and AJ, increased intestinal mucosal permeability, and caused endotoxemia, systemic inflammation, and liver damage in wild-type but not Trpv6-/- mice. Corticosterone and CRS synergistically potentiated the alcohol-induced breakdown of intestinal epithelial junctions, mucosal barrier impairment, endotoxemia, systemic inflammation, and liver damage in wild-type but not Trpv6-/- mice. TRPV6 deficiency also blocked the effects of CRS and CRS-mediated potentiation of alcohol-induced dysbiosis of gut microbiota. Conclusions These findings indicate an essential role of TRPV6 in stress, corticosterone, and alcohol-induced intestinal permeability, microbiota dysbiosis, endotoxemia, systemic inflammation, and liver injury. This study identifies TRPV6 as a potential therapeutic target for developing treatment strategies for stress and alcohol-associated comorbidity.
Collapse
Affiliation(s)
- Avtar S. Meena
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Pradeep K. Shukla
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Rupa Rao
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Cherie Canelas
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joseph F. Pierre
- Department of Pediatrics, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - RadhaKrishna Rao
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
- Memphis Veterans Affairs Medical Center, Memphis, TN, United States
| |
Collapse
|
19
|
Expression of phosphate and calcium transporters and their regulators in parotid glands of mice. Pflugers Arch 2023; 475:203-216. [PMID: 36274099 PMCID: PMC9849193 DOI: 10.1007/s00424-022-02764-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 02/01/2023]
Abstract
The concentration of inorganic phosphate (Pi) in plasma is under hormonal control, with deviations from normal values promptly corrected to avoid hyper- or hypophosphatemia. Major regulators include parathyroid hormone (PTH), fibroblast growth factor 23 (FGF-23), and active vitamin D3 (calcitriol). This control is achieved by mechanisms largely dependent on regulating intestinal absorption and renal excretion, whose combined actions stabilise plasma Pi levels at around 1-2 mM. Instead, Pi concentrations up to 13 and 40 mM have been measured in saliva from humans and ruminants, respectively, suggesting that salivary glands have the capacity to concentrate Pi. Here we analysed the transcriptome of parotid glands, ileum, and kidneys of mice, to investigate their potential differences regarding the expression of genes responsible for epithelial transport of Pi as well as their known regulators. Given that Pi and Ca2+ homeostasis are tightly connected, the expression of genes involved in Ca2+ homeostasis was also included. In addition, we studied the effect of vitamin D3 treatment on the expression of Pi and Ca2+ regulating genes in the three major salivary glands. We found that parotid glands are equipped preferentially with Slc20 rather than with Slc34 Na+/Pi cotransporters, are suited to transport Ca2+ through the transcellular and paracellular route and are potential targets for PTH and vitamin D3 regulation.
Collapse
|
20
|
Zhang Y, Zhang J, Xia Y, Sun J. Bacterial translocation and barrier dysfunction enhance colonic tumorigenesis. Neoplasia 2023; 35:100847. [PMID: 36334333 PMCID: PMC9640348 DOI: 10.1016/j.neo.2022.100847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/17/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022]
Abstract
In the development of colon cancer, the intestinal dysbiosis and disruption of barrier function are common manifestations. In the current study, we hypothesized that host factors, e.g., vitamin D receptor deficiency or adenomatous polyposis coli (APC) mutation, contribute to the enhanced dysbiosis and disrupted barrier in the pathogenesis of colorectal cancer (CRC). Using the human CRC database, we found enhanced tumor-invading bacteria and reduced colonic VDR expression, which was correlated with a reduction of Claudin-10 mRNA and protein. In the colon of VDRΔIEC mice, deletion of intestinal epithelial VDR led to lower protein of tight junction protein Claudin-10. Lacking VDR and a reduction of Claudin-10 are associated with an increased number of tumors in the mice without myeloid VDR. Intestinal permeability was significantly increased in the mice with myeloid VDR conditional deletion. Further, mice with conditional colonic APC mutation showed reduced mucus layer, enhanced bacteria in tumors, and loss of Claudin-10. Our data from human samples and colon cancer models provided solid evidence- on the host factor regulation of bacterial translocation and dysfunction on barriers in colonic tumorigenesis. Studies on the host factor regulation of microbiome and barriers could be potentially applied to risk assessment, early detection, and prevention of colon cancer.
Collapse
Affiliation(s)
- Yongguo Zhang
- Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jilei Zhang
- Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jun Sun
- Department of Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, USA; UIC Cancer Center, University of Illinois Chicago, Chicago, IL, USA; Department of Microbiology/Immunology, College of Medicine, University of Illinois Chicago, Chicago, IL, USA; Jesse Brown VA Medical Center Chicago, IL (537), USA.
| |
Collapse
|
21
|
Liu R, Lu Y, Peng X, Jia J, Ruan Y, Shi S, Shu T, Li T, Jin X, Zhai G, He J, Lou Q, Yin Z. Enhanced insulin activity achieved in VDRa/b ablation zebrafish. Front Endocrinol (Lausanne) 2023; 14:1054665. [PMID: 36864841 PMCID: PMC9972578 DOI: 10.3389/fendo.2023.1054665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
INTRODUCTION 1α,25-dihydroxyvitamin D3 (1α,25[OH]2VD3) is a hormone known for its key roles in calcium absorption and nutrient metabolism. In teleost fishes, 1α,25(OH)2VD3 insufficiency causes impaired glucose metabolism and lipid oxidation. However, the cascade and mechanisms of 1α,25(OH)2VD3 and the vitamin d receptor (VDR) signaling are unclear. RESULTS In this study, two genes (vdra and vdrb) encoding paralogs of VDRs were genetically knocked out in zebrafish. Growth retardation and accumulated visceral adipose tissue have been observed in vdra -/-;vdrb -/- deficient line. In the liver elevated accumulation of triglycerides and suppressed lipid oxidation were detected. Morover significantly elevated 1α,25(OH)2VD3 levels were detected in vdra-/-;vdrb-/- zebrafish due to cyp24a1 transcription repression. Furthermore VDRs ablation Enhanced insulin signaling including elevated insulin/insra trancriptional levels, glycolysis, lipogenesis and promoted AKT/mTOR activity. DISCUSSION In conclusion, our present studies provides a zebrafish model with an elevated 1α,25(OH)2VD3 levels in vivo. The 1α,25(OH)2VD3/VDRs signaling promote lipid oxidation activity. However 1α,25(OH)2VD3 activity of regulation of glucose homeostasis through Insulin/Insr was independent of nuclear VDRs in teleosts.
Collapse
Affiliation(s)
- Ruolan Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Lu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xuyan Peng
- The Laboratory of Ophthalmology and Vision Science, Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zheng Zhou, China
| | - Jingyi Jia
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yonglin Ruan
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shengchi Shi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tingting Shu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Tianhui Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xia Jin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Gang Zhai
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Jiangyan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Qiyong Lou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- *Correspondence: Qiyong Lou,
| | - Zhan Yin
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
22
|
Walker V, Vuister GW. Biochemistry and pathophysiology of the Transient Potential Receptor Vanilloid 6 (TRPV6) calcium channel. Adv Clin Chem 2023; 113:43-100. [PMID: 36858649 DOI: 10.1016/bs.acc.2022.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
TRPV6 is a Transient Receptor Potential Vanilloid (TRPV) cation channel with high selectivity for Ca2+ ions. First identified in 1999 in a search for the gene which mediates intestinal Ca2+ absorption, its far more extensive repertoire as a guardian of intracellular Ca2+ has since become apparent. Studies on TRPV6-deficient mice demonstrated additional important roles in placental Ca2+ transport, fetal bone development and male fertility. The first reports of inherited deficiency in newborn babies appeared in 2018, revealing its physiological importance in humans. There is currently strong evidence that TRPV6 also contributes to the pathogenesis of some common cancers. The recently reported association of TRPV6 deficiency with non-alcoholic chronic pancreatitis suggests a role in normal pancreatic function. Over time and with greater awareness of TRPV6, other disease-associations are likely to emerge. Powerful analytical tools have provided invaluable insights into the structure and operation of TRPV6. Its roles in Ca2+ signaling and carcinogenesis, and the use of channel inhibitors in cancer treatment are being intensively investigated. This review first briefly describes the biochemistry and physiology of the channel, and analytical methods used to investigate these. The focus subsequently shifts to the clinical disorders associated with abnormal expression and the underlying pathophysiology. The aims of this review are to increase awareness of this channel, and to draw together findings from a wide range of sources which may help to formulate new ideas for further studies.
Collapse
Affiliation(s)
- Valerie Walker
- Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton, United Kingdom.
| | - Geerten W Vuister
- Department of Molecular and Cell Biology, Leicester Institute of Structural and Chemical Biology, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
23
|
Salles J, Chanet A, Guillet C, Vaes AMM, Brouwer-Brolsma EM, Rocher C, Giraudet C, Patrac V, Meugnier E, Montaurier C, Denis P, Le Bacquer O, Blot A, Jourdan M, Luiking Y, Furber M, Van Dijk M, Tardif N, Yves Boirie Y, Walrand S. Vitamin D status modulates mitochondrial oxidative capacities in skeletal muscle: role in sarcopenia. Commun Biol 2022; 5:1288. [PMID: 36434267 PMCID: PMC9700804 DOI: 10.1038/s42003-022-04246-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 11/10/2022] [Indexed: 11/27/2022] Open
Abstract
Skeletal muscle mitochondrial function is the biggest component of whole-body energy output. Mitochondrial energy production during exercise is impaired in vitamin D-deficient subjects. In cultured myotubes, loss of vitamin D receptor (VDR) function decreases mitochondrial respiration rate and ATP production from oxidative phosphorylation. We aimed to examine the effects of vitamin D deficiency and supplementation on whole-body energy expenditure and muscle mitochondrial function in old rats, old mice, and human subjects. To gain further insight into the mechanisms involved, we used C2C12 and human muscle cells and transgenic mice with muscle-specific VDR tamoxifen-inducible deficiency. We observed that in vivo and in vitro vitamin D fluctuations changed mitochondrial biogenesis and oxidative activity in skeletal muscle. Vitamin D supplementation initiated in older people improved muscle mass and strength. We hypothesize that vitamin D supplementation is likely to help prevent not only sarcopenia but also sarcopenic obesity in vitamin D-deficient subjects.
Collapse
Affiliation(s)
- Jérôme Salles
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Audrey Chanet
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Christelle Guillet
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Anouk MM. Vaes
- grid.4818.50000 0001 0791 5666Wageningen University, Human Nutrition, Wageningen, the Netherlands
| | - Elske M. Brouwer-Brolsma
- grid.4818.50000 0001 0791 5666Wageningen University, Human Nutrition, Wageningen, the Netherlands
| | - Christophe Rocher
- grid.412041.20000 0001 2106 639XLaboratoire de Biogenèse Membranaire - UMR 5200 CNRS, Université de Bordeaux, 33140 Villenave d’Ornon, France
| | - Christophe Giraudet
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Véronique Patrac
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Emmanuelle Meugnier
- Univ Lyon, CarMeN Laboratory, INSERM, INRAE, INSA Lyon, Université Claude Bernard Lyon 1, 69310 Pierre-Bénite, France
| | - Christophe Montaurier
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Philippe Denis
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Olivier Le Bacquer
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France
| | - Adeline Blot
- grid.411163.00000 0004 0639 4151CHU Clermont-Ferrand, Centre de Recherche en Nutrition Humaine Auvergne, 63000 Clermont-Ferrand, France
| | - Marion Jourdan
- grid.468395.50000 0004 4675 6663Specialized Nutrition, Danone Nutricia Research, P.O. Box 80141, 3584 CT Utrecht, the Netherlands
| | - Yvette Luiking
- grid.468395.50000 0004 4675 6663Specialized Nutrition, Danone Nutricia Research, P.O. Box 80141, 3584 CT Utrecht, the Netherlands
| | - Matthew Furber
- grid.468395.50000 0004 4675 6663Specialized Nutrition, Danone Nutricia Research, P.O. Box 80141, 3584 CT Utrecht, the Netherlands
| | - Miriam Van Dijk
- grid.468395.50000 0004 4675 6663Specialized Nutrition, Danone Nutricia Research, P.O. Box 80141, 3584 CT Utrecht, the Netherlands
| | - Nicolas Tardif
- grid.24381.3c0000 0000 9241 5705Division of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Huddinge, Sweden
| | - Y. Yves Boirie
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France ,grid.411163.00000 0004 0639 4151CHU Clermont-Ferrand, Service Nutrition Clinique, 63000 Clermont-Ferrand, France
| | - Stéphane Walrand
- grid.494717.80000000115480420Université Clermont Auvergne, INRAE, UNH, CRNH Auvergne, 63000 Clermont-Ferrand, France ,grid.411163.00000 0004 0639 4151CHU Clermont-Ferrand, Service Nutrition Clinique, 63000 Clermont-Ferrand, France
| |
Collapse
|
24
|
Zhao M, Ahn DU, Li S, Liu W, Yi S, Huang X. Effects of phosvitin phosphopeptide-Ca complex prepared by efficient enzymatic hydrolysis on calcium absorption and bone deposition of mice. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2022.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
25
|
Chen X, An Z, Wei L, Zhang J, Li J, Wang Z, Gao C, Wei D. Vitamin D 3 Metabolic Enzymes in Plateau Zokor ( Myospalax baileyi) and Plateau Pika ( Ochotona curzoniae): Expression and Response to Hypoxia. Animals (Basel) 2022; 12:ani12182371. [PMID: 36139230 PMCID: PMC9495108 DOI: 10.3390/ani12182371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/02/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Vitamin D3 (D3) is produced endogenously from 7-dehydrocholesterol by irradiation and is an important secosteroid for the absorption of calcium and phosphate. Lithocholic acid (LCA) increases intestinal paracellular calcium absorption in a vitamin D receptor-dependent manner in vitamin D-deficient rats. The plateau zokor (Myospalax baileyi), a strictly subterranean species, and plateau pika are endemic to the Qinghai-Tibet Plateau. To verify whether the zokors were deficient in D3 and reveal the effects of hypoxia on D3 metabolism in the zokors and pikas, we measured the levels of 25(OH)D3, calcium, and LCA, and quantified the expression levels of D3 metabolism-related genes. The results showed an undetectable serum level of 25(OH)D3 and a significantly higher concentration of LCA in the serum of plateau zokor, but its calcium concentration was within the normal range compared with that of plateau pika and Sprague-Dawley rats. With increasing altitude, the serum 25(OH)D3 levels in plateau pika decreased significantly, and the mRNA and protein levels of CYP2R1 (in the liver) and CYP27B1 (in the kidney) in plateau pika decreased significantly. Our results indicate that plateau zokors were deficient in D3 and abundant in LCA, which might be a substitution of D3 in the zokor. Furthermore, hypoxia suppresses the metabolism of D3 by down-regulating the expression of CYP2R1 and CYP27B1 in plateau pika.
Collapse
Affiliation(s)
- Xiaoqi Chen
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Zhifang An
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Linna Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jiayu Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Jimei Li
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Zhijie Wang
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Conghui Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Dengbang Wei
- Research Center for High Altitude Medicine, Qinghai University, Xining 810016, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
- Correspondence: ; Tel.: +86-971-531-0695
| |
Collapse
|
26
|
Kogel A, Fecher-Trost C, Wissenbach U, Flockerzi V, Schaefer M. Ca2+ transport via TRPV6 is regulated by rapid internalization of the channel. Cell Calcium 2022; 106:102634. [DOI: 10.1016/j.ceca.2022.102634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022]
|
27
|
Lütke-Dörhoff M, Schulz J, Westendarp H, Visscher C, Wilkens MR. Dietary supplementation of 25-hydroxycholecalciferol as an alternative to cholecalciferol in swine diets: A review. J Anim Physiol Anim Nutr (Berl) 2022; 106:1288-1305. [PMID: 36045590 DOI: 10.1111/jpn.13768] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 12/01/2022]
Abstract
25-hydroxycholecalciferol (25-OHD3 ) formed via hepatic hydroxylation from vitamin D, cholecalciferol, represents the precursor of the biologically active vitamin D hormone, 1,25-dihydroxyvitamin D. Due to a higher absorption rate and the omission of one hydroxylation, dietary supplementation of 25-OHD3 instead of vitamin D3 is considered to be more efficient as plasma concentrations of 25-OHD3 are increased more pronounced. The present review summarises studies investigating potential beneficial effects on mineral homeostasis, bone metabolism, health status and performance in sows, piglets and fattening pigs. Results are inconsistent. While most studies could not demonstrate any or only a slight impact of partial or total replacement of vitamin D3 by 25-OHD3 , some experiments indicated that 25-OHD3 might alter physiological processes when animals are challenged, for example, by a restricted mineral supply.
Collapse
Affiliation(s)
- Michael Lütke-Dörhoff
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany.,Department of Animal Nutrition, Faculty of Agricultural Sciences and Landscape Architecture, Hochschule Osnabrück, Osnabrück, Germany
| | - Jochen Schulz
- Institute for Animal Hygiene, Animal Welfare and Farm Animal Behaviour, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Heiner Westendarp
- Department of Animal Nutrition, Faculty of Agricultural Sciences and Landscape Architecture, Hochschule Osnabrück, Osnabrück, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, Hanover, Germany
| | - Mirja R Wilkens
- Institute of Animal Nutrition, Nutrition Diseases and Dietetics, Faculty of Veterinary Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
28
|
Phummisutthigoon S, Lertsuwan K, Panupinthu N, Aeimlapa R, Teerapornpuntakit J, Chankamngoen W, Thongbunchoo J, Charoenphandhu N, Wongdee K. Fe3+ opposes the 1,25(OH)2D3-induced calcium transport across intestinal epithelium-like Caco-2 monolayer in the presence or absence of ascorbic acid. PLoS One 2022; 17:e0273267. [PMID: 36040915 PMCID: PMC9426938 DOI: 10.1371/journal.pone.0273267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/05/2022] [Indexed: 01/01/2023] Open
Abstract
Although iron is an essential element for hemoglobin and cytochrome synthesis, excessive intestinal iron absorption-as seen in dietary iron supplementation and hereditary disease called thalassemia-could interfere with transepithelial transport of calcium across the intestinal mucosa. The underlying cellular mechanism of iron-induced decrease in intestinal calcium absorption remains elusive, but it has been hypothesized that excess iron probably negates the actions of 1,25-dihydroxyvitamin D [1,25(OH)2D3]. Herein, we exposed the 1,25(OH)2D3-treated epithelium-like Caco-2 monolayer to FeCl3 to demonstrate the inhibitory effect of ferric ion on 1,25(OH)2D3-induced transepithelial calcium transport. We found that a 24-h exposure to FeCl3 on the apical side significantly decreased calcium transport, while increasing the transepithelial resistance (TER) in 1,25(OH)2D3-treated monolayer. The inhibitory action of FeCl3 was considered rapid since 60-min exposure was sufficient to block the 1,25(OH)2D3-induced decrease in TER and increase in calcium flux. Interestingly, FeCl3 did not affect the baseline calcium transport in the absence of 1,25(OH)2D3 treatment. Furthermore, although ascorbic acid is often administered to maximize calcium solubility and to enhance intestinal calcium absorption, it apparently had no effect on calcium transport across the FeCl3- and 1,25(OH)2D3-treated Caco-2 monolayer. In conclusion, apical exposure to ferric ion appeared to negate the 1,25(OH)2D3-stimulated calcium transport across the intestinal epithelium. The present finding has, therefore, provided important information for development of calcium and iron supplement products and treatment protocol for specific groups of individuals, such as thalassemia patients and pregnant women.
Collapse
Affiliation(s)
- Sukpapohn Phummisutthigoon
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Kornkamon Lertsuwan
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Nattapon Panupinthu
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ratchaneevan Aeimlapa
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Wasutorn Chankamngoen
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Graduate Program in Molecular Medicine, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jirawan Thongbunchoo
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Narattaphol Charoenphandhu
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
- The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand
| | - Kannikar Wongdee
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, Thailand
- Faculty of Allied Health Sciences, Burapha University, Chonburi, Thailand
| |
Collapse
|
29
|
Fleet JC. Vitamin D-Mediated Regulation of Intestinal Calcium Absorption. Nutrients 2022; 14:3351. [PMID: 36014856 PMCID: PMC9416674 DOI: 10.3390/nu14163351] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/27/2022] Open
Abstract
Vitamin D is a critical regulator of calcium and bone homeostasis. While vitamin D has multiple effects on bone and calcium metabolism, the regulation of intestinal calcium (Ca) absorption efficiency is a critical function for vitamin D. This is necessary for optimal bone mineralization during growth, the protection of bone in adults, and the prevention of osteoporosis. Intestinal Ca absorption is regulated by 1,25 dihydroxyvitamin D (1,25(OH)2 D), a hormone that activates gene transcription following binding to the intestinal vitamin D receptor (VDR). When dietary Ca intake is low, Ca absorption follows a vitamin-D-regulated, saturable pathway, but when dietary Ca intake is high, Ca absorption is predominately through a paracellular diffusion pathway. Deletion of genes that mediate vitamin D action (i.e., VDR) or production (CYP27B1) eliminates basal Ca absorption and prevents the adaptation of mice to low-Ca diets. Various physiologic or disease states modify vitamin-D-regulated intestinal absorption of Ca (enhanced during late pregnancy, reduced due to menopause and aging).
Collapse
Affiliation(s)
- James C Fleet
- Department of Nutritional Sciences, University of Texas, Austin, TX 78723, USA
| |
Collapse
|
30
|
Aita R, Aldea D, Hassan S, Hur J, Pellon-Cardenas O, Cohen E, Chen L, Shroyer N, Christakos S, Verzi MP, Fleet JC. Genomic analysis of 1,25-dihydroxyvitamin D 3 action in mouse intestine reveals compartment and segment-specific gene regulatory effects. J Biol Chem 2022; 298:102213. [PMID: 35779631 PMCID: PMC9358460 DOI: 10.1016/j.jbc.2022.102213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 01/01/2023] Open
Abstract
1,25-dihydroxyvitamin D (VD) regulates intestinal calcium absorption in the small intestine (SI) and also reduces risk of colonic inflammation and cancer. However, the intestine compartment-specific target genes of VD signaling are unknown. Here, we examined VD action across three functional compartments of the intestine using RNA-seq to measure VD-induced changes in gene expression and Chromatin Immunoprecipitation with next generation sequencing to measure vitamin D receptor (VDR) genomic binding. We found that VD regulated the expression of 55 shared transcripts in the SI crypt, SI villi, and in the colon, including Cyp24a1, S100g, Trpv6, and Slc30a10. Other VD-regulated transcripts were unique to the SI crypt (162 up, 210 down), villi (199 up, 63 down), or colon (102 up, 28 down), but this did not correlate with mRNA levels of the VDR. Furthermore, bioinformatic analysis identified unique VD-regulated biological functions in each compartment. VDR-binding sites were found in 70% of upregulated genes from the colon and SI villi but were less common in upregulated genes from the SI crypt and among downregulated genes, suggesting some transcript-level VD effects are likely indirect. Consistent with this, we show that VD regulated the expression of other transcription factors and their downstream targets. Finally, we demonstrate that compartment-specific VD-mediated gene expression was associated with compartment-specific VDR-binding sites (<30% of targets) and enrichment of intestinal transcription factor-binding motifs within VDR-binding peaks. Taken together, our data reveal unique spatial patterns of VD action in the intestine and suggest novel mechanisms that could account for compartment-specific functions of this hormone.
Collapse
Affiliation(s)
- Rohit Aita
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA
| | - Dennis Aldea
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA
| | - Sohaib Hassan
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA
| | - Joseph Hur
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA
| | - Oscar Pellon-Cardenas
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA
| | - Evan Cohen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA
| | - Lei Chen
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA
| | - Noah Shroyer
- Department of Medicine, Section of Gastroenterology and Hepatology, Baylor College of Medicine, Houston, Texas, USA
| | - Sylvia Christakos
- Department of Microbiology, Biochemistry, and Molecular Genetics, Rutgers, The State University of New Jersey, New Jersey Medical School, Newark, New Jersey, USA.
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers Cancer Institute of New Jersey, Institute of Food, Nutrition, and Health, EOHSI, Rutgers University, New Jersey, USA.
| | - James C Fleet
- Department of Nutritional Science, University of Texas, Austin, Texas, USA.
| |
Collapse
|
31
|
TRPV6 channel mediates alcohol-induced gut barrier dysfunction and systemic response. Cell Rep 2022; 39:110937. [PMID: 35705057 PMCID: PMC9250449 DOI: 10.1016/j.celrep.2022.110937] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 02/20/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
Intestinal epithelial tight junction disruption is a primary contributing factor in alcohol-associated endotoxemia, systemic inflammation, and multiple organ damage. Ethanol and acetaldehyde disrupt tight junctions by elevating intracellular Ca2+. Here we identify TRPV6, a Ca2+-permeable channel, as responsible for alcohol-induced elevation of intracellular Ca2+, intestinal barrier dysfunction, and systemic inflammation. Ethanol and acetaldehyde elicit TRPV6 ionic currents in Caco-2 cells. Studies in Caco-2 cell monolayers and mouse intestinal organoids show that TRPV6 deficiency or inhibition attenuates ethanol- and acetaldehyde-induced Ca2+ influx, tight junction disruption, and barrier dysfunction. Moreover, Trpv6−/− mice are resistant to alcohol-induced intestinal barrier dysfunction. Photoaffinity labeling of 3-azibutanol identifies a histidine as a potential alcohol-binding site in TRPV6. The substitution of this histidine, and a nearby arginine, reduces ethanol-activated currents. Our findings reveal that TRPV6 is required for alcohol-induced gut barrier dysfunction and inflammation. Molecules that decrease TRPV6 function have the potential to attenuate alcohol-associated tissue injury. Meena et al. show that the mechanism of alcohol-induced gut permeability, endotoxemia, and systemic inflammation requires the TRPV6 channel. They show that ethanol activates TRPV6, induces calcium influx, and disrupts intestinal epithelial tight junctions. Furthermore, specific histidine and arginine residues at the N terminus fine-tune the alcohol-induced activation of TRPV6.
Collapse
|
32
|
Gombash SE, Lee PW, Sawdai E, Lovett-Racke AE. Vitamin D as a Risk Factor for Multiple Sclerosis: Immunoregulatory or Neuroprotective? Front Neurol 2022; 13:796933. [PMID: 35651353 PMCID: PMC9149265 DOI: 10.3389/fneur.2022.796933] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/13/2022] [Indexed: 12/18/2022] Open
Abstract
Vitamin D insufficiency during childhood has been linked to the development of multiple sclerosis (MS), typically an adult-onset inflammatory demyelinating disease of the central nervous system (CNS). Since vitamin D was known to have immunoregulatory properties on both innate and adaptive immunity, it was hypothesized that low vitamin D resulted in aberrant immune responses and the development of MS. However, vitamin D receptors are present on many cell types, including neurons, oligodendrocytes, astrocytes and microglia, and vitamin D has profound effects on development and function of the CNS. This leads to the possibility that low vitamin D may alter the CNS in a manner that makes it vulnerable to inflammation and the development of MS. This review analysis the role of vitamin D in the immune and nervous system, and how vitamin D insufficiency in children may contribute to the development of MS.
Collapse
Affiliation(s)
- Sara E Gombash
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States
| | - Priscilla W Lee
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Elizabeth Sawdai
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Amy E Lovett-Racke
- Department of Neuroscience, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
33
|
Beggs MR, Bhullar H, Dimke H, Alexander RT. The contribution of regulated colonic calcium absorption to the maintenance of calcium homeostasis. J Steroid Biochem Mol Biol 2022; 220:106098. [PMID: 35339651 DOI: 10.1016/j.jsbmb.2022.106098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/05/2022] [Accepted: 03/20/2022] [Indexed: 11/20/2022]
Abstract
Calcium absorption and secretion can occur along the length of the small and large intestine. To date, the focus of research into intestinal calcium absorption has been the small intestine, the site contributing the majority of intestinal calcium absorption. However, evidence that the colon contributes as much as 10% of enteral calcium transport has been available for decades. Transcellular calcium absorption and bidirectional paracellular calcium flux contributing to either net absorption or secretion have been observed in the colon, depending on the physiological state. Moreover, the calcium transport pathways contributing to colonic absorption or secretion are regulated by a variety of hormones, including calcitriol, plasma calcium and dietary factors, including prebiotics. Herein we review historical and recent research highlighting the role of colonic calcium transport in overall maintenance of calcium balance, and suggest these data are consistent with the colon being a site of significant regulated transepithelial calcium transport.
Collapse
Affiliation(s)
- Megan R Beggs
- Department of Physiology, University of Alberta, Canada; Women's and Children's Health Institute, Alberta, Canada
| | | | - Henrik Dimke
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Demark; Department of Nephrology, Odense University Hospital, Denmark
| | - R Todd Alexander
- Department of Physiology, University of Alberta, Canada; Women's and Children's Health Institute, Alberta, Canada; Department of Paediatrics, University of Alberta, Canada.
| |
Collapse
|
34
|
Khattar V, Wang L, Peng JB. Calcium selective channel TRPV6: Structure, function, and implications in health and disease. Gene 2022; 817:146192. [PMID: 35031425 PMCID: PMC8950124 DOI: 10.1016/j.gene.2022.146192] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 12/20/2021] [Accepted: 01/07/2022] [Indexed: 12/14/2022]
Abstract
Calcium-selective channel TRPV6 (Transient Receptor Potential channel family, Vanilloid subfamily member 6) belongs to the TRP family of cation channels and plays critical roles in transcellular calcium (Ca2+) transport, reuptake of Ca2+ into cells, and maintaining a local low Ca2+ environment for certain biological processes. Recent crystal and cryo-electron microscopy-based structures of TRPV6 have revealed mechanistic insights on how the protein achieves Ca2+ selectivity, permeation, and inactivation by calmodulin. The TRPV6 protein is expressed in a range of epithelial tissues such as the intestine, kidney, placenta, epididymis, and exocrine glands such as the pancreas, prostate and salivary, sweat, and mammary glands. The TRPV6 gene is a direct transcriptional target of the active form of vitamin D and is efficiently regulated to meet the body's need for Ca2+ demand. In addition, TRPV6 is also regulated by the level of dietary Ca2+ and under physiological conditions such as pregnancy and lactation. Genetic models of loss of function in TRPV6 display hypercalciuria, decreased bone marrow density, deficient weight gain, reduced fertility, and in some cases alopecia. The models also reveal that the channel plays an indispensable role in maintaining maternal-fetal Ca2+ transport and low Ca2+ environment in the epididymal lumen that is critical for male fertility. Most recently, loss of function mutations in TRPV6 gene is linked to transient neonatal hyperparathyroidism and early onset chronic pancreatitis. TRPV6 is overexpressed in a wide range of human malignancies and its upregulation is strongly correlated to tumor aggressiveness, metastasis, and poor survival in selected cancers. This review summarizes the current state of knowledge on the expression, structure, biophysical properties, function, polymorphisms, and regulation of TRPV6. The aberrant expression, polymorphisms, and dysfunction of this protein linked to human diseases are also discussed.
Collapse
Affiliation(s)
- Vinayak Khattar
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lingyun Wang
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ji-Bin Peng
- Division of Nephrology, Department of Medicine, Nephrology Research and Training Center, Department of Urology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
35
|
Elimination of Vitamin D Signaling Causes Increased Mortality in a Model of Overactivation of the Insulin Receptor: Role of Lipid Metabolism. Nutrients 2022; 14:nu14071516. [PMID: 35406129 PMCID: PMC9002971 DOI: 10.3390/nu14071516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/01/2022] [Accepted: 04/03/2022] [Indexed: 11/17/2022] Open
Abstract
Vitamin D (VD) deficiency has been associated with cancer and diabetes. Insulin signaling through the insulin receptor (IR) stimulates cellular responses by activating the PI3K/AKT pathway. PTEN is a tumor suppressor and a negative regulator of the pathway. Its absence enhances insulin signaling leading to hypoglycemia, a dangerous complication found after insulin overdose. We analyzed the effect of VD signaling in a model of overactivation of the IR. We generated inducible double KO (DKO) mice for the VD receptor (VDR) and PTEN. DKO mice showed severe hypoglycemia, lower total cholesterol and increased mortality. No macroscopic tumors were detected. Analysis of the glucose metabolism did not show clear differences that would explain the increased mortality. Glucose supplementation, either systemically or directly into the brain, did not enhance DKO survival. Lipidic liver metabolism was altered as there was a delay in the activation of genes related to β-oxidation and a decrease in lipogenesis in DKO mice. High-fat diet administration in DKO significantly improved its life span. Lack of vitamin D signaling increases mortality in a model of overactivation of the IR by impairing lipid metabolism. Clinically, these results reveal the importance of adequate Vitamin D levels in T1D patients.
Collapse
|
36
|
Fleet JC. Vitamin D and Gut Health. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:155-167. [PMID: 36107318 PMCID: PMC10614168 DOI: 10.1007/978-3-031-11836-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Vitamin D is a conditionally required nutrient that can either be obtained from skin synthesis following UVB exposure from the diet. Once in the body, it is metabolized to produce the endocrine hormone, 1,25 dihydroxyvitamin D (1,25(OH)2D), that regulates gene expression in target tissues by interacting with a ligand-activated transcription factor, the vitamin D receptor (VDR). The first, and most responsive, vitamin D target tissue is the intestine. The classical intestinal role for vitamin D is the control of calcium metabolism through the regulation of intestinal calcium absorption. However, studies clearly show that other functions of the intestine are regulated by the molecular actions of 1,25(OH)2 D that are mediated through the VDR. This includes enhancing gut barrier function, regulation of intestinal stem cells, suppression of colon carcinogenesis, and inhibiting intestinal inflammation. While research demonstrates that there are both classical, calcium-regulating and non-calcium regulating roles for vitamin D in the intestine, the challenge facing biomedical researchers is how to translate these findings in ways that optimize human intestinal health.
Collapse
Affiliation(s)
- James C Fleet
- Department of Nutritional Sciences, Dell Pediatric Research Institute, University of Texas, Austin, TX, USA.
| |
Collapse
|
37
|
Christakos S. Vitamin D: A Critical Regulator of Intestinal Physiology. JBMR Plus 2021; 5:e10554. [PMID: 34950825 PMCID: PMC8674771 DOI: 10.1002/jbm4.10554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 01/01/2023] Open
Abstract
Calcium is required for the functioning of numerous biological processes and is essential for skeletal health. The major source of new calcium is from the diet. The central role of vitamin D in the maintenance of calcium homeostasis is to increase the absorption of ingested calcium from the intestine. The critical importance of vitamin D in this process is noted in the causal link between vitamin D deficiency and rickets, as well as in studies using genetically modified mice including mice deficient in the vitamin D receptor (Vdr null mice) or in the cytochrome P‐450 enzyme, 25‐hydroxyvitamin D3‐1α‐ hydroxylase (CYP27B1) that converts 25‐hydroxyvitamin D3 to the hormonally active form of vitamin D, 1,25‐dihydroxyvitamin D3 [1,25(OH)2D3] (Cyp27b1 null mice). When these mice are fed diets with high calcium and lactose, rickets is prevented. The studies using mouse models provide supporting evidence indicating that the major physiological function of 1,25(OH)2D3/VDR is intestinal calcium absorption. This review summarizes what is known about mechanisms involved in vitamin D‐regulated intestinal calcium absorption. Recent studies suggest that vitamin D does not affect a single entity, but that a complex network of calcium‐regulating components is involved in the process of 1,25(OH)2D3‐mediated active intestinal calcium absorption. In addition, numerous 1,25(OH)2D3 actions in the intestine have been described independent of calcium absorption. Although the translatability to humans requires further definition, an overview is presented that provides compelling evidence from the laboratory of 1,25(OH)2D3 intestinal effects, which include the regulation of adhesion molecules to enhance barrier function, the regulation of intestinal stem cell function, cellular homeostasis of other divalent cations, the regulation of drug metabolizing enzymes, and anti‐inflammatory effects. © 2021 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Sylvia Christakos
- Department of Microbiology, Biochemistry and Molecular Genetics Rutgers, the State University of New Jersey, New Jersey Medical School Newark NJ USA
| |
Collapse
|
38
|
Verlinden L, Carmeliet G. Integrated View on the Role of Vitamin D Actions on Bone and Growth Plate Homeostasis. JBMR Plus 2021; 5:e10577. [PMID: 34950832 PMCID: PMC8674772 DOI: 10.1002/jbm4.10577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/22/2021] [Accepted: 10/31/2021] [Indexed: 12/12/2022] Open
Abstract
1,25(OH)2D3, the biologically active form of vitamin D3, is a major regulator of mineral and bone homeostasis and exerts its actions through binding to the vitamin D receptor (VDR), a ligand‐activated transcription factor that can directly modulate gene expression in vitamin D‐target tissues such as the intestine, kidney, and bone. Inactivating VDR mutations or vitamin D deficiency during development results in rickets, hypocalcemia, secondary hyperparathyroidism, and hypophosphatemia, pointing to the critical role of 1,25(OH)2D3‐induced signaling in the maintenance of mineral homeostasis and skeletal health. 1,25(OH)2D3 is a potent stimulator of VDR‐mediated intestinal calcium absorption, thus increasing the availability of calcium required for proper bone mineralization. However, when intestinal calcium absorption is impaired, renal calcium reabsorption is increased and calcium is mobilized from the bone to preserve normocalcemia. Multiple cell types within bone express the VDR, thereby allowing 1,25(OH)2D3 to directly affect bone homeostasis. In this review, we will discuss different transgenic mouse models with either Vdr deletion or overexpression in chondrocytes, osteoblasts, osteocytes, or osteoclasts to delineate the direct effects of 1,25(OH)2D3 on bone homeostasis. We will address the bone cell type–specific effects of 1,25(OH)2D3 in conditions of a positive calcium balance, where the amount of (re)absorbed calcium equals or exceeds fecal and renal calcium losses, as well as during a negative calcium balance, due to selective Vdr knockdown in the intestine or triggered by a low calcium diet. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Lieve Verlinden
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism KU Leuven Leuven Belgium
| | - Geert Carmeliet
- Clinical and Experimental Endocrinology, Department of Chronic Diseases and Metabolism KU Leuven Leuven Belgium
| |
Collapse
|
39
|
Bikle DD. Ligand-Independent Actions of the Vitamin D Receptor: More Questions Than Answers. JBMR Plus 2021; 5:e10578. [PMID: 34950833 PMCID: PMC8674770 DOI: 10.1002/jbm4.10578] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 12/19/2022] Open
Abstract
Our predominant understanding of the actions of vitamin D involve binding of its ligand, 1,25(OH)D, to the vitamin D receptor (VDR), which for its genomic actions binds to discrete regions of its target genes called vitamin D response elements. However, chromatin immunoprecipitation‐sequencing (ChIP‐seq) studies have observed that the VDR can bind to many sites in the genome without its ligand. The number of such sites and how much they coincide with sites that also bind the liganded VDR vary from cell to cell, with the keratinocyte from the skin having the greatest overlap and the intestinal epithelial cell having the least. What is the purpose of the unliganded VDR? In this review, I will focus on two clear examples in which the unliganded VDR plays a role. The best example is that of hair follicle cycling. Hair follicle cycling does not need 1,25(OH)2D, and Vdr lacking the ability to bind 1,25(OH)2D can restore hair follicle cycling in mice otherwise lacking Vdr. This is not true for other functions of VDR such as intestinal calcium transport. Tumor formation in the skin after UVB radiation or the application of chemical carcinogens also appears to be at least partially independent of 1,25(OH)2D in that Vdr null mice develop such tumors after these challenges, but mice lacking Cyp27b1, the enzyme producing 1,25(OH)2D, do not. Examples in other tissues emerge when studies comparing Vdr null and Cyp27b1 null mice are compared, demonstrating a more severe phenotype with respect to bone mineral homeostasis in the Cyp27b1 null mouse, suggesting a repressor function for VDR. This review will examine potential mechanisms for these ligand‐independent actions of VDR, but as the title indicates, there are more questions than answers with respect to this role of VDR. © 2021 The Author. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Daniel D Bikle
- Departments of Medicine and Dermatology University of California San Francisco, San Francisco VA Health Center San Francisco CA USA
| |
Collapse
|
40
|
Zhang J, Zhang Y, Xia Y, Sun J. Imbalance of the intestinal virome and altered viral-bacterial interactions caused by a conditional deletion of the vitamin D receptor. Gut Microbes 2021; 13:1957408. [PMID: 34375154 PMCID: PMC8366551 DOI: 10.1080/19490976.2021.1957408] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Vitamin D receptor (VDR) deficiency is associated with cancer, infection, and chronic inflammation. Prior research has demonstrated VDR regulation of bacteria; however, little is known regarding VDR and viruses. We hypothesize that VDR deficiency impacts on the intestinal virome and viral-bacterial interactions. We specifically deleted VDR from intestinal epithelial cells (VDRΔIEC), Paneth cells (VDRΔPC), and myeloid cells (VDRΔLyz) in mice. Feces were collected for shotgun metagenomic sequencing and metabolite profiling. To test the functional changes, we evaluated pattern recognition receptors (PRRs) and analyzed microbial metabolites. Vibrio phages, Lactobacillus phages, and Escherichia coli typing phages were significantly enriched in all three conditional VDR-knockout mice. In the VDRΔLyz mice, the levels of eight more virus species (2 enriched, 6 depleted) were significantly changed. Altered virus species were primarily observed in female VDRΔLyz (2 enriched, 3 depleted) versus male VDRΔLyz (1 enriched, 1 depleted). Altered alpha and beta diversity (family to species) were found in VDRΔLyz. In VDRΔIEC mice, bovine viral diarrhea virus 1 was significantly enriched. A significant correlation between viral and bacterial alterations was found in conditional VDR knockout mice. There was a positive correlation between Vibrio phage JSF5 and Cutibacterium acnes in VDRΔPC and VDRΔLyz mice. Also, there were more altered viral species in female conditional VDR knockout mice. Notably, there were significant changes in PRRs: upregulated TLR3, TLR7, and NOD2 in VDRΔLyz mice and increased CLEC4L expression in VDRΔIEC and VDRΔPC mice. Furthermore, we identified metabolites related to virus infection: decreased glucose in VDRΔIEC mice, increased ribulose/xylulose and xylose in VDRΔLyz mice, and increased long-chain fatty acids in VDRΔIEC and VDRΔLyz female mice. Tissue-specific deletion of VDR changes the virome and functionally changes viral receptors, which leads to dysbiosis, metabolic dysfunction, and infection risk. This study helps to elucidate VDR regulating the virome in a tissue-specific and sex-specific manner.
Collapse
Affiliation(s)
- Jilei Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yongguo Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Yinglin Xia
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA,CONTACT Yinglin Xia Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 734 CSB, MC716, Chicago, IL, 60612, USA
| | - Jun Sun
- Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, USA,Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA,Department of Medicine, University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA,Jesse Brown VA Medical Center Chicago, IL, USA,Jun Sun Division of Gastroenterology and Hepatology Department of Medicine, University of Illinois at Chicago, 840 S Wood Street, Room 704 CSB, MC716Chicago, IL, 60612, USA
| |
Collapse
|
41
|
Pike JW, Meyer MB. New Approaches to Assess Mechanisms of Action of Selective Vitamin D Analogues. Int J Mol Sci 2021; 22:ijms222212352. [PMID: 34830234 PMCID: PMC8619157 DOI: 10.3390/ijms222212352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/05/2021] [Accepted: 11/11/2021] [Indexed: 12/28/2022] Open
Abstract
Recent studies of transcription have revealed an advanced set of overarching principles that govern vitamin D action on a genome-wide scale. These tenets of vitamin D transcription have emerged as a result of the application of now well-established techniques of chromatin immunoprecipitation coupled to next-generation DNA sequencing that have now been linked directly to CRISPR-Cas9 genomic editing in culture cells and in mouse tissues in vivo. Accordingly, these techniques have established that the vitamin D hormone modulates sets of cell-type specific genes via an initial action that involves rapid binding of the VDR-ligand complex to multiple enhancer elements at open chromatin sites that drive the expression of individual genes. Importantly, a sequential set of downstream events follows this initial binding that results in rapid histone acetylation at these sites, the recruitment of additional histone modifiers across the gene locus, and in many cases, the appearance of H3K36me3 and RNA polymerase II across gene bodies. The measured recruitment of these factors and/or activities and their presence at specific regions in the gene locus correlate with the emerging presence of cognate transcripts, thereby highlighting sequential molecular events that occur during activation of most genes both in vitro and in vivo. These features provide a novel approach to the study of vitamin D analogs and their actions in vivo and suggest that they can be used for synthetic compound evaluation and to select for novel tissue- and gene-specific features. This may be particularly useful for ligand activation of nuclear receptors given the targeting of these factors directly to genetic sites in the nucleus.
Collapse
Affiliation(s)
- John Wesley Pike
- Correspondence: ; Tel.: +1-(608)-262-8229; Fax: +1-(608)-263-7609
| | | |
Collapse
|
42
|
Irsik DL, Bollag WB, Isales CM. Renal Contributions to Age-Related Changes in Mineral Metabolism. JBMR Plus 2021; 5:e10517. [PMID: 34693188 PMCID: PMC8520061 DOI: 10.1002/jbm4.10517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/28/2021] [Accepted: 05/09/2021] [Indexed: 11/10/2022] Open
Abstract
Aging results in a general decline in function in most systems. This is particularly true with respect to the skeleton and renal systems, impacting mineral homeostasis. Calcium and phosphate regulation requires tight coordination among the intestine, bone, parathyroid gland, and kidney. The role of the intestine is to absorb calcium and phosphate from the diet. The bone stores or releases calcium and phosphate depending on the body's needs. In response to low plasma ionized calcium concentration, the parathyroid gland produces parathyroid hormone, which modulates bone turnover. The kidney reabsorbs or excretes the minerals and serves as the final regulator of plasma concentration. Many hormones are involved in this process in addition to parathyroid hormone, including fibroblast growth factor 23 produced by the bone and calcitriol synthesized by the kidney. Sclerostin, calcitonin, osteoprotegerin, and receptor activator of nuclear factor‐κB ligand also contribute to tissue‐specific regulation. Changes in the function of organs due to aging or disease can perturb this balance. During aging, the intestine cannot absorb calcium efficiently due to decreased expression of key proteins. In the bone, the balance between bone formation and bone resorption tends toward the latter in older individuals. The kidney may not filter blood as efficiently in the later decades of life, and the expression of certain proteins necessary for mineral homeostasis declines with age. These changes often lead to dysregulation of organismal mineral homeostasis. This review will focus on how mineral homeostasis is impacted by aging with a particular emphasis on the kidney's role in this process. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Debra L Irsik
- Charlie Norwood VA Medical Center Augusta GA USA.,Department of Neuroscience and Regenerative Medicine Augusta University Augusta GA USA
| | - Wendy B Bollag
- Charlie Norwood VA Medical Center Augusta GA USA.,Department of Physiology Augusta University Augusta GA USA
| | - Carlos M Isales
- Department of Neuroscience and Regenerative Medicine Augusta University Augusta GA USA.,Division of Endocrinology, Department of Medicine Augusta University Augusta GA USA
| |
Collapse
|
43
|
Gáll Z, Székely O. Role of Vitamin D in Cognitive Dysfunction: New Molecular Concepts and Discrepancies between Animal and Human Findings. Nutrients 2021; 13:nu13113672. [PMID: 34835929 PMCID: PMC8620681 DOI: 10.3390/nu13113672] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/12/2022] Open
Abstract
PURPOSE OF REVIEW increasing evidence suggests that besides the several metabolic, endocrine, and immune functions of 1alpha,25-dihydroxyvitamin D (1,25(OH)2D), the neuronal effects of 1,25(OH)2D should also be considered an essential contributor to the development of cognition in the early years and its maintenance in aging. The developmental disabilities induced by vitamin D deficiency (VDD) include neurological disorders (e.g., attention deficit hyperactivity disorder, autism spectrum disorder, schizophrenia) characterized by cognitive dysfunction. On the other hand, VDD has frequently been associated with dementia of aging and neurodegenerative diseases (e.g., Alzheimer's, Parkinson's disease). RECENT FINDINGS various cells (i.e., neurons, astrocytes, and microglia) within the central nervous system (CNS) express vitamin D receptors (VDR). Moreover, some of them are capable of synthesizing and catabolizing 1,25(OH)2D via 25-hydroxyvitamin D 1alpha-hydroxylase (CYP27B1) and 25-hydroxyvitamin D 24-hydroxylase (CYP24A1) enzymes, respectively. Both 1,25(OH)2D and 25-hydroxyvitamin D were determined from different areas of the brain and their uneven distribution suggests that vitamin D signaling might have a paracrine or autocrine nature in the CNS. Although both cholecalciferol and 25-hydroxyvitamin D pass the blood-brain barrier, the influence of supplementation has not yet demonstrated to have a direct impact on neuronal functions. So, this review summarizes the existing evidence for the action of vitamin D on cognitive function in animal models and humans and discusses the possible pitfalls of therapeutic clinical translation.
Collapse
Affiliation(s)
- Zsolt Gáll
- Department of Pharmacology and Clinical Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, 540142 Târgu Mureș, Romania
- Correspondence:
| | - Orsolya Székely
- Department of Nephrology/Internal Medicine, Mures County Clinical Hospital, 540103 Târgu Mureș, Romania;
| |
Collapse
|
44
|
Zimpel R, Marinho MN, Almeida KV, Ruiz AR, Perdomo MC, Poindexter MB, Vieira-Neto A, Arshad U, Husnain A, Nelson CD, Santos JEP. Prepartum level of dietary cation-anion difference fed to nulliparous cows: Acid-base balance, mineral metabolism, and health responses. J Dairy Sci 2021; 104:12580-12599. [PMID: 34593226 DOI: 10.3168/jds.2021-20486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 07/18/2021] [Indexed: 11/19/2022]
Abstract
Objectives were to determine the effects of 3 different levels of dietary cation-anion difference (DCAD) fed during the last 22 d of gestation to pregnant nulliparous cows on pre- and postpartum acid-base balance, mineral metabolism, and health responses. In all, 132 pregnant nulliparous Holstein cows were enrolled at 250 (248-253) d of gestation, blocked by genomic merit of energy-corrected milk yield, and assigned randomly to diets varying in DCAD: +200 (P200, n = 43), -50 (N50, n = 45), or -150 (N150, n = 44) mEq/kg of dry matter. Dietary treatments were fed until calving, after which cows received the same lactation diet for the first 100 d postpartum. Urine and blood were sampled throughout the prepartum period and in the first weeks postpartum, and urine was assessed for pH, whereas blood was analyzed for gases, measures of acid-base balance, minerals, and metabolites. Calcium (Ca) and magnesium (Mg) retention and phosphorus (P) digestibility were evaluated in the last week of gestation and first week of lactation. Incidence of diseases was evaluated for the first 100 d postpartum. Data are presented in sequence as P200, N50, N150 (LSM ± SEM). Reducing the DCAD reduced urine (8.17 vs. 6.50 vs. 5.51 ± 0.11) and blood pH (7.442 vs. 7.431 vs. 7.410 ± 0.004) and induced a state of compensated metabolic acidosis with a reduction in blood HCO3- (28.4 vs. 26.7 vs. 24.9 ± 0.3 mM) and partial pressure of CO2 (41.8 vs. 40.1 vs. 39.1 ± 0.4 mmHg) prepartum. Reducing the DCAD linearly increased blood ionized Ca (iCa; 1.224 vs. 1.243 vs. 1.259 ± 0.008 mM) and serum total Ca (tCa; 2.50 vs. 2.53 vs. 2.56 ± 0.02 mM) prepartum, blood iCa on the day of calving, and serum Mg in the first days postpartum. Reducing the DCAD linearly increased the apparent absorption of Ca (12.9 vs. 19.0 vs. 20.9 ± 1.4 g/d) and Mg (7.0 vs. 9.9 vs. 10.4 ± 1.4 g/d) prepartum, but apparent retention of both Ca (13.9 g/d) and Mg (3.4 g/d) did not differ with treatment. Treatment did not affect digestibility of P pre- or postpartum or retention of Ca or Mg postpartum. Treatment did not affect the incidence or prevalence of subclinical hypocalcemia, hepatic composition, or the prevalence of fatty liver. Reducing the DCAD had a quadratic effect on incidence of fever (46.5 vs. 17.6 vs. 33.9 ± 7.0%), uterine diseases (36.3 vs. 25.6 vs. 46.0 ± 7.3%), and morbidity (41.4 vs. 28.1 vs. 55.6 ± 7.3%). Feeding a diet with -50 mEq/kg of dry matter promoted moderate changes in acid-base balance, altered mineral metabolism, and benefited health of nulliparous cows; however, further reducing the DCAD to -150 mEq/kg negated the benefits to health.
Collapse
Affiliation(s)
- R Zimpel
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - M Nehme Marinho
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - K V Almeida
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A Revilla Ruiz
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - M C Perdomo
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - M B Poindexter
- Department of Animal Sciences, University of Florida, Gainesville 32611
| | - A Vieira-Neto
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - U Arshad
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - A Husnain
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - C D Nelson
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611
| | - J E P Santos
- Department of Animal Sciences, University of Florida, Gainesville 32611; DH Barron Reproductive and Perinatal Biology Research Program, University of Florida, Gainesville 32611.
| |
Collapse
|
45
|
Li Y, Huang J, Wang J, Ma M, Lu Y, Wang R, Guo H. Lactoferrin Is a Potential Activator of the Vitamin D Receptor in Its Regulation of Osteogenic Activities in C57BL/6J Mice and MC3T3-E1 Cells. J Nutr 2021; 151:2105-2113. [PMID: 33982113 DOI: 10.1093/jn/nxab105] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/11/2021] [Accepted: 03/19/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Lactoferrin (LF) has been shown to promote bone anabolism, and the vitamin D receptor (VDR) mediates the effects of vitamin D on bone. We hypothesized that LF improves bone health by increasing VDR expression. OBJECTIVES We sought to determine the role of VDR activation in LF-induced osteogenic activity in vivo and in vitro and the underlying molecular mechanisms. METHODS Sixty male C57BL/6J mice (aged 4 wk) were randomly assigned into 6 groups and fed vitamin D-deficient (VDD; 0 IU/kg) or vitamin D-normal diet (VDN; 1000 IU cholecalciferol/kg) and administered placebo or LF (100 or 1000 mg/kg body weight) by gavage for 24 wk. Trabecular bone structure was analyzed using micro-CT, and VDR expression was assessed by immunohistochemistry. In vitro, MC3T3-E1 cells were treated with 100 μg LF/mL to evaluate its effect on VDR expression. Finally, the direct recruitment of LF to the Vdr promoter was confirmed by chromatin immunoprecipitation assay. In addition, cells were transfected with pGL3-basic Vdr vector for monitoring Vdr promoter activation using luciferase assays. RESULTS LF supplementation at 100 and 1000 mg/kg revealed an ∼6.5% (P < 0.05) increase in bone mineral density in mice on VDD diet and exhibited an enhanced expression of VDR in bone compared with control. This increased expression of VDR was also observed in the bone of mice on the VDN diet, but the effect was more pronounced in VDD diet. In vitro, compared with the control group, Vdr mRNA expression was 18 times greater (P < 0.05) and peaked at 2 h posttreatment of LF. By cotransfection of the pGL3-basic Vdr vector, LF induced luciferase activity by 30% (P < 0.05) in MC3T3-E1 cells. CONCLUSIONS In vivo and in vitro, LF, a potential activator of VDR, promotes osteogenesis. This suggests that dairy products, which are rich in LF, may serve as a functional food to improve bone health.
Collapse
Affiliation(s)
- Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jiaqiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing, China
| | - Jingxuan Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengjuan Ma
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Yao Lu
- Beijing Laboratory of Food Quality and Safety, China Agricultural University, Beijing, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Huiyuan Guo
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- Key Laboratory of Functional Dairy, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
46
|
Sprague SM, Martin KJ, Coyne DW. Phosphate Balance and CKD-Mineral Bone Disease. Kidney Int Rep 2021; 6:2049-2058. [PMID: 34386654 PMCID: PMC8343779 DOI: 10.1016/j.ekir.2021.05.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/10/2021] [Indexed: 12/29/2022] Open
Abstract
Chronic kidney disease-mineral bone disorder (CKD-MBD) is a common comorbidity in patients with CKD. Characterized by laboratory abnormalities, bone abnormality, and vascular calcification, CKD-MBD encompasses a group of mineral and hormone disturbances that are strongly associated with increased cardiovascular (CV) morbidity and mortality. Abnormal serum phosphate concentrations are an independent risk factor for CV morbidity and mortality, and overall mortality. Phosphate retention plays a central role in initiating and driving many other disturbances in CKD-MBD (e.g., increased parathyroid hormone and fibroblast growth factor 23 concentrations, hypocalcemia, low vitamin D) that are also linked to increased CV risk. Thus, effective phosphate control is a logical therapeutic target for CKD-MBD treatment. Current phosphate management strategies (dietary restrictions, dialysis, phosphate binders) are insufficient to consistently achieve and maintain target phosphate concentrations in patients on dialysis. Phosphate binders reduce available phosphate for intestinal absorption but do not impair the dominant phosphate absorption pathway. Novel therapies that consider new mechanistic understandings of intestinal phosphate absorption are needed. One such therapy is tenapanor, a targeted sodium-hydrogen exchanger isoform 3 inhibitor that has been shown to reduce serum phosphate concentrations in multiple clinical trials. Tenapanor has a novel mechanism of action that reduces intestinal phosphate absorption in the primary paracellular phosphate absorption pathway.
Collapse
Affiliation(s)
- Stuart M. Sprague
- Division of Nephrology and Hypertension, NorthShore University Health System, Evanston, IL, USA
| | | | - Daniel W. Coyne
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
47
|
Tang PK, Geddes RF, Jepson RE, Elliott J. A feline-focused review of chronic kidney disease-mineral and bone disorders - Part 1: Physiology of calcium handling. Vet J 2021; 275:105719. [PMID: 34311095 DOI: 10.1016/j.tvjl.2021.105719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 06/03/2021] [Accepted: 07/21/2021] [Indexed: 01/01/2023]
Abstract
Mineral derangements are a common consequence of chronic kidney disease (CKD). Despite the well-established role of phosphorus in the pathophysiology of CKD, the implications of calcium disturbances associated with CKD remain equivocal. Calcium plays an essential role in numerous physiological functions in the body and is a fundamental structural component of bone. An understanding of calcium metabolism is required to understand the potential adverse clinical implications and outcomes secondary to the (mal)adaptation of calcium-regulating hormones in CKD. The first part of this two-part review covers the physiology of calcium homeostasis (kidneys, intestines and bones) and details the intimate relationships between calcium-regulating hormones (parathyroid hormone, calcitriol, fibroblast growth factor 23, α-Klotho and calcitonin) and the role of the calcium-sensing receptor.
Collapse
Affiliation(s)
- Pak-Kan Tang
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK.
| | - Rebecca F Geddes
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - Rosanne E Jepson
- Department of Clinical Science and Services, Royal Veterinary College, University of London, London, UK
| | - Jonathan Elliott
- Department of Comparative Biomedical Sciences, Royal Veterinary College, University of London, London, UK
| |
Collapse
|
48
|
Ono-Ohmachi A, Ishida Y, Morita Y, Kato K, Yamanaka H, Masuyama R. Bone mass protective potential mediated by bovine milk basic protein requires normal calcium homeostasis in mice. Nutrition 2021; 91-92:111409. [PMID: 34388585 DOI: 10.1016/j.nut.2021.111409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/21/2021] [Accepted: 06/25/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES Milk provide protective effects against bone loss caused by an impaired calcium balance. Although the effects of some elements have previously been confirmed, the involvement of milk basic protein (MBP) in bone mineral metabolism remains poorly characterized. Moreover, the importance of mineral nutrition sufficiency to establish the effect of MBP must be evaluated. METHODS First, to evaluate the physiological conditions required for MBP activity, we examined the bone and mineral phenotypes of mice that suffer from insufficient calcium absorption due to a lack of intestinal vitamin D signaling. Second, to determine whether vitamin D signaling affects the effect of MBP on bone resorption, in vitro osteoclastogenesis were assessed using bone marrow cells. RESULTS In mice with systemic vitamin D receptor (Vdr) inactivation, dietary MBP supplementation was unable to normalize hypercalcemia and hyperparathyroidism and failed to rescue bone mineralization impairments. In contrast, calcium and bone homeostasis responded to MBP supplementation when Vdr inactivation was restricted to the intestines. Hyperparathyroidism in intestine-specific Vdr knockout mice was also improved by MBP supplementation, along with a decrease in bone resorption in response to the level of serum tartrate-resistant acid phosphatase 5b. These results corresponded with a reduction in tartrate-resistant acid phosphatase-stained osteoclast numbers and the eroded surface on the tibia. MBP treatment dose-dependently suppressed osteoclastogenesis in cultured bone marrow macrophages regardless of vitamin D activity. These effects of MBP were blunted when parathyroid hormone was added to the culture medium, which is in line with the in vivo phenotype observed with systemic Vdr inactivation and suggests that severe hyperparathyroidism limits MBP activity in the bone. CONCLUSIONS Therefore, adaptive calcium homeostasis is an essential requirement when MBP exerts protective effects through the inhibition of bone resorption.
Collapse
Affiliation(s)
- Aiko Ono-Ohmachi
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Saitama, Japan; Department of Quality Assurance, Bean Stalk Snow Co., Ltd., Tokyo, Japan
| | - Yuko Ishida
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Saitama, Japan
| | - Yoshikazu Morita
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Saitama, Japan
| | - Ken Kato
- Milk Science Research Institute, Megmilk Snow Brand Co., Ltd., Saitama, Japan
| | - Hitoki Yamanaka
- Research Center for Support to Advanced Science, Shinshu University, Nagano, Japan
| | - Ritsuko Masuyama
- Department of Molecular Bone Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan; Ritsumeikan University, Graduate school of Gastronomy Management, Shiga, Japan
| |
Collapse
|
49
|
Warren MF, Livingston KA. Implications of Vitamin D Research in Chickens can Advance Human Nutrition and Perspectives for the Future. Curr Dev Nutr 2021; 5:nzab018. [PMID: 33977215 PMCID: PMC7929256 DOI: 10.1093/cdn/nzab018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/09/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
The risk of vitamin D insufficiency in humans is a global problem that requires improving ways to increase vitamin D intake. Supplements are a primary means for increasing vitamin D intake, but without a clear consensus on what constitutes vitamin D sufficiency, there is toxicity risk with taking supplements. Chickens have been used in many vitamin-D-related research studies, especially studies involving vitamin D supplementation. Our state-of-the-art review evaluates vitamin D metabolism and how the different hydroxylated forms are synthesized. We provide an overview of how vitamin D is absorbed, transported, excreted, and what tissues in the body store vitamin D metabolites. We also discuss a number of studies involving vitamin D supplementation with broilers and laying hens. Vitamin D deficiency and toxicity are also described and how they can be caused. The vitamin D receptor (VDR) is important for vitamin D metabolism; however, there is much more to understand about VDR in chickens. Potential research aims involving vitamin D and chickens should explore VDR mechanisms that could lead to newer insights into VDR. Utilizing chickens in future research to help elucidate vitamin D mechanisms has great potential to advance human nutrition. Finding ways to increase vitamin D intake will be necessary because the coronavirus disease 2019 (COVID-19) pandemic is leading to increased risk of vitamin D deficiency in many populations. Chickens can provide a dual purpose with addressing pandemic-caused vitamin D deficiency: 1) vitamin D supplementation gives chickens added-value with the possibility of leading to vitamin-D-enriched meat and egg products; and 2) using chickens in research provides data for translational research. We believe expanding vitamin-D-related research in chickens to include more nutritional aims in vitamin D status has great implications for developing better strategies to improve human health.
Collapse
Affiliation(s)
- Matthew F Warren
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Kimberly A Livingston
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC, USA
- Elanco Animal Health, Greenfield, IN, USA
| |
Collapse
|
50
|
Hossain S, Liu Z, Wood RJ. Association between histone deacetylase activity and vitamin D-dependent gene expressions in relation to sulforaphane in human colorectal cancer cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:1833-1843. [PMID: 32964464 DOI: 10.1002/jsfa.10797] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 05/28/2020] [Accepted: 09/23/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND It is relatively unknown as to how dietary bioactive compound sulforaphane (SFN) and vitamin D regulate gene expression in colorectal cancer. We hypothesized that a combination of SFN with vitamin D would prove beneficial in colorectal cancer. A combinatorial chemo-preventive strategy was employed to investigate the impact of SFN on chromatin remodeling in colorectal carcinoma. To understand the epigenetics-mediated changes in gene expression in response to SFN and vitamin D, Caco-2 cells were exposed for 24 h to vitamin D (100 nmol L-1 ) either alone or in combination with SFN and trichostatin A (20 and 1 μmol L-1 , respectively) at 70% confluency (proliferating) and after 13 days post-confluency (fully differentiated). Changes to VDR, CYP24A1, CYP27B1 and TRPV6 gene expressions were quantified using real-time PCR-based assays. Histone deacetylase (HDAC) inhibitor activity was assessed using HDAC I/II assay that measured global changes in acetylation status. RESULTS In differentiated Caco-2 cells, none of the genes had significant changes from D alone group. D + SFN (P = 0.99) demonstrated an opposing effect from D alone and decreased VDR expression. However, in proliferating Caco-2 cells, D + SFN (P < 0.04) increased VDR expression and decreased CYP27B1 (P < 0.01) more than D alone (P = 0.38 and 0.07, respectively). Although statistically significant, D + SFN (P = 0.01) effect on HDAC inhibitor activity was less than trichostatin A alone group (P < 0.0004) or SFN alone group (P < 0.0014). CONCLUSIONS The data suggest that colon cancer cells respond to dietary components differently under different conditions. The effect of vitamin D and SFN is selective and gene-specific in the complex multistep process of colorectal carcinogenesis in vitro. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Zhenhua Liu
- Department of Nutrition, University of Massachusetts, Amherst, MA, USA
| | - Richard J Wood
- Department of Nutrition, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|