1
|
Du M, Zeng F, Wang Y, Li Y, Chen G, Jiang J, Wang Q. Assembly and Functionality of 2D Protein Arrays. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416485. [PMID: 40089855 PMCID: PMC12005781 DOI: 10.1002/advs.202416485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/16/2025] [Indexed: 03/17/2025]
Abstract
Among the unique classes of 2D nanomaterials, 2D protein arrays garner increasing attention due to their remarkable structural stability, exceptional physiochemical properties, and tunable electronic and mechanical attributes. The interest in mimicking and surpassing the precise architecture and advanced functionality of natural protein systems drives the field of 2D protein assembly toward the development of sophisticated functional materials. Recent advancements deepen the understanding of the fundamental principles governing 2D protein self-assembly, accelerating the creation of novel functional biomaterials. These developments encompass biological, chemical, and templated strategies, facilitating the self-organization of proteins into highly ordered and intricate 2D patterns. Consequently, these 2D protein arrays create new opportunities for integrating diverse components, from small molecules to nanoparticles, thereby enhancing the performance and versatility of materials in various applications. This review comprehensively assesses the current state of 2D protein nanotechnology, highlighting the latest methodologies for directing protein assembly into precise 2D architectures. The transformative potential of 2D protein assemblies in designing next-generation biomaterials, particularly in areas such as biomedicine, catalysis, photosystems, and membrane filtration is also emphasized.
Collapse
Affiliation(s)
- Mingming Du
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Fanmeng Zeng
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - YueFei Wang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Ying Li
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Guangcun Chen
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Jiang Jiang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
| | - Qiangbin Wang
- CAS Key Laboratory of Nano‐Bio InterfaceDivision of Nanobiomedicine and i‐LabSuzhou Institute of Nano‐Tech and Nano‐BionicsChinese Academy of SciencesSuzhou215123China
- School of Physical Science and TechnologyShanghaiTech UniversityShanghai201210China
- College of Materials Sciences and Opto‐Electronic TechnologyUniversity of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
2
|
Sleytr UB, Pum D. S-layers: from a serendipitous discovery to a toolkit for nanobiotechnology. Q Rev Biophys 2025; 58:e4. [PMID: 39819733 DOI: 10.1017/s0033583524000106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Prokaryotic microorganisms, comprising Bacteria and Archaea, exhibit a fascinating diversity of cell envelope structures reflecting their adaptations that contribute to their resilience and survival in diverse environments. Among these adaptations, surface layers (S-layers) composed of monomolecular protein or glycoprotein lattices are one of the most observed envelope components. They are the most abundant cellular proteins and represent the simplest biological membranes that have developed during evolution. S-layers provide organisms with a great variety of selective advantages, including acting as an antifouling layer, protective coating, molecular sieve, ion trap, structure involved in cell and molecular adhesion, surface recognition and virulence factor for pathogens. In Archaea that possess S-layers as the exclusive cell wall component, the (glyco)protein lattices function as a cell shape-determining/maintaining scaffold. The wealth of information available on the structure, chemistry, genetics and in vivo and in vitro morphogenesis has revealed a broad application potential for S-layers as patterning elements in a molecular construction kit for bio- and nanotechnology, synthetic biology, biomimetics, biomedicine and diagnostics. In this review, we try to describe the scientifically exciting early days of S-layer research with a special focus on the 'Vienna-S-Layer-Group'. Our presentation is intended to illustrate how our curiosity and joy of discovery motivated us to explore this new structure and to make the scientific community aware of its relevance in the realm of prokaryotes, and moreover, how we developed concepts for exploiting this unique self-assembly structure. We hope that our presentation, with its many personal notes, is also of interest from the perspective of the history of S-layer research.
Collapse
Affiliation(s)
- Uwe B Sleytr
- Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Dietmar Pum
- Institute of Synthetic Bioarchitectures, Department of Bionanosciences, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
3
|
Sogues A, Fioravanti A, Jonckheere W, Pardon E, Steyaert J, Remaut H. Structure and function of the EA1 surface layer of Bacillus anthracis. Nat Commun 2023; 14:7051. [PMID: 37923757 PMCID: PMC10624894 DOI: 10.1038/s41467-023-42826-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
The Gram-positive spore-forming bacterium Bacillus anthracis is the causative agent of anthrax, a deadly disease mostly affecting wildlife and livestock, as well as representing a bioterrorism threat. Its cell surface is covered by the mutually exclusive S-layers Sap and EA1, found in early and late growth phases, respectively. Here we report the nanobody-based structural characterization of EA1 and its native lattice contacts. The EA1 assembly domain consists of 6 immunoglobulin-like domains, where three calcium-binding sites structure interdomain contacts that allow monomers to adopt their assembly-competent conformation. Nanobody-induced depolymerization of EA1 S-layers results in surface defects, membrane blebbing and cell lysis under hypotonic conditions, indicating that S-layers provide additional mechanical stability to the cell wall. Taken together, we report a complete model of the EA1 S-layer and present a set of nanobodies that may have therapeutic potential against Bacillus anthracis.
Collapse
Affiliation(s)
- Adrià Sogues
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium.
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Wim Jonckheere
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussels, Belgium.
- Structural Biology Brussels, Vrije Universiteit Brussel, VUB, Pleinlaan 2, 1050, Brussels, Belgium.
| |
Collapse
|
4
|
Qing R, Xue M, Zhao J, Wu L, Breitwieser A, Smorodina E, Schubert T, Azzellino G, Jin D, Kong J, Palacios T, Sleytr UB, Zhang S. Scalable biomimetic sensing system with membrane receptor dual-monolayer probe and graphene transistor arrays. SCIENCE ADVANCES 2023; 9:eadf1402. [PMID: 37478177 PMCID: PMC10361598 DOI: 10.1126/sciadv.adf1402] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 06/20/2023] [Indexed: 07/23/2023]
Abstract
Affinity-based biosensing can enable point-of-care diagnostics and continuous health monitoring, which commonly follows bottom-up approaches and is inherently constrained by bioprobes' intrinsic properties, batch-to-batch consistency, and stability in biofluids. We present a biomimetic top-down platform to circumvent such difficulties by combining a "dual-monolayer" biorecognition construct with graphene-based field-effect-transistor arrays. The construct adopts redesigned water-soluble membrane receptors as specific sensing units, positioned by two-dimensional crystalline S-layer proteins as dense antifouling linkers guiding their orientations. Hundreds of transistors provide statistical significance from transduced signals. System feasibility was demonstrated with rSbpA-ZZ/CXCR4QTY-Fc combination. Nature-like specific interactions were achieved toward CXCL12 ligand and HIV coat glycoprotein in physiologically relevant concentrations, without notable sensitivity loss in 100% human serum. The construct is regeneratable by acidic buffer, allowing device reuse and functional tuning. The modular and generalizable architecture behaves similarly to natural systems but gives electrical outputs, which enables fabrication of multiplex sensors with tailored receptor panels for designated diagnostic purposes.
Collapse
Affiliation(s)
- Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- MIT Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
- The David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Mantian Xue
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Jiayuan Zhao
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lidong Wu
- Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Andreas Breitwieser
- Department of Bionanosciences (DBNS), BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Eva Smorodina
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Giovanni Azzellino
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - David Jin
- Avalon GloboCare Corp., Freehold, NJ 07728, USA
| | - Jing Kong
- Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tomás Palacios
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Uwe B. Sleytr
- Department of Bionanosciences (DBNS), BOKU-University of Natural Resources and Life Sciences, Vienna, Austria
| | - Shuguang Zhang
- MIT Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Tang J, Zhang G, Li F, Zeng R, Song J, Abbas G, Cui M, Zhang W, Zhang XE, Wang DB. Two-Dimensional Protein Nanoarray as a Carrier of Sensing Elements for Gold-Based Immunosensing Systems. Anal Chem 2022; 94:9355-9362. [PMID: 35729689 DOI: 10.1021/acs.analchem.2c01190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Homogeneous and high-density immobilization of proteins on gold-based sensing surface without the loss of protein activity is of great significance for high-performance immunosensing but remains challenging. To realize more sensitive immunosensing, an improved method for protein immobilization on the gold surface is urgently required. Here, we propose a biological and mild approach by combining a genetically encoded SpyTag-SpyCatcher interaction system with a redesigned S-layer of bacteria. This method allows proteins of interest to be covalently linked with the S-layer in a biological manner and arranged orderly in a two-dimensional nanoarray on the gold surface. The activity of African swine fever virus proteins was significantly preserved after immobilization. In addition, our S-layer-based immobilization method exhibited an eightfold increase in detection sensitivity compared with the conventional chemical cross-linking for protein immobilization during serological tests. Together, our S-layer-based immobilization method provides an innovative approach for building a quality gold-based biosensing interface and should greatly contribute to the high-sensitivity sensing for a deeper understanding of pathogen infection and host immunity.
Collapse
Affiliation(s)
- Jingya Tang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guimin Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Rongyu Zeng
- TECON Pharmaceutical (Suzhou) Co., Ltd, Suzhou 215000, China
| | - Jin Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Ghulam Abbas
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengmeng Cui
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Zhang
- Institutional Center for Shared Technologies and Facilities of Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.,Faculty of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dian-Bing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Abstract
The exquisite organization exhibited by hybrid biomolecular–inorganic materials in nature has inspired the development of synthetic analogues for numerous applications. Nevertheless, a mechanistic picture of the energetic controls and response dynamics leading to organization is lacking. Here, we pair high-speed atomic force microscopy with machine learning and Monte Carlo simulations to analyze the rotational dynamics of rod-like proteins on a crystal lattice, simultaneously quantifying the orientational energy landscape and transition probabilities between energetically favorable orientations. Although rotations largely follow Brownian diffusion, proteins often make large jumps in orientation, thus rapidly overcoming barriers that usually inhibit rotation. Moreover, the rotational dynamics can be tuned via protein size and solution chemistry, providing tools for controlling biomolecular assembly at inorganic interfaces. Assembly of biomolecules at solid–water interfaces requires molecules to traverse complex orientation-dependent energy landscapes through processes that are poorly understood, largely due to the dearth of in situ single-molecule measurements and statistical analyses of the rotational dynamics that define directional selection. Emerging capabilities in high-speed atomic force microscopy and machine learning have allowed us to directly determine the orientational energy landscape and observe and quantify the rotational dynamics for protein nanorods on the surface of muscovite mica under a variety of conditions. Comparisons with kinetic Monte Carlo simulations show that the transition rates between adjacent orientation-specific energetic minima can largely be understood through traditional models of in-plane Brownian rotation across a biased energy landscape, with resulting transition rates that are exponential in the energy barriers between states. However, transitions between more distant angular states are decoupled from barrier height, with jump-size distributions showing a power law decay that is characteristic of a nonclassical Levy-flight random walk, indicating that large jumps are enabled by alternative modes of motion via activated states. The findings provide insights into the dynamics of biomolecules at solid–liquid interfaces that lead to self-assembly, epitaxial matching, and other orientationally anisotropic outcomes and define a general procedure for exploring such dynamics with implications for hybrid biomolecular–inorganic materials design.
Collapse
|
7
|
Wei J, Xu L, Wu WH, Sun F, Zhang WB. Genetically engineered materials: Proteins and beyond. Sci China Chem 2022; 65:486-496. [PMID: 35154293 PMCID: PMC8815391 DOI: 10.1007/s11426-021-1183-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/21/2021] [Indexed: 02/01/2023]
Abstract
Information-rich molecules provide opportunities for evolution. Genetically engineered materials are superior in that their properties are coded within genetic sequences and could be fine-tuned. In this review, we elaborate the concept of genetically engineered materials (GEMs) using examples ranging from engineered protein materials to engineered living materials. Protein-based materials are the materials of choice by nature. Recent progress in protein engineering has led to opportunities to tune their sequences for optimal material performance. Proteins also play a central role in living materials where they act in concert with other biological components as well as nonbiological cofactors, giving rise to living features. While the existing GEMs are often limited to those constructed by building blocks of biological origin, being genetically engineerable does not preclude nonbiologic or synthetic materials, the latter of which have yet to be fully explored.
![]()
Collapse
Affiliation(s)
- Jingjing Wei
- College of Chemical and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000 China
| | - Lianjie Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Wen-Hao Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| | - Fei Sun
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Wen-Bin Zhang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Polymer Chemistry & Physics of Ministry of Education, Center for Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 China
| |
Collapse
|
8
|
Misra CS, Sounderajan S, Apte SK. Metal removal by metallothionein and an acid phosphatase PhoN, surface-displayed on the cells of the extremophile, Deinococcus radiodurans. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126477. [PMID: 34323731 DOI: 10.1016/j.jhazmat.2021.126477] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/31/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The utility of surface layer proteins (Hpi and SlpA) of the radiation resistant bacterium, Deinococcus radiodurans, was investigated for surface display and bioremediation of cadmium and uranium. The smtA gene, from Synechococcus elongatus (encoding the metal binding metallothionein protein), was cloned and over-expressed in D. radiodurans, either as such or as a chimeric gene fused with hpi ORF (Hpi-SmtA), or fused to the nucleotide sequence encoding the SLH domain of the SlpA protein (SLH-SmtA). The expressed fusion proteins localized to the deinococcal cell surface, while the SmtA protein localized to the cytoplasm. Recombinant cells surface-displaying the SLH-SmtA or Hpi-SmtA fusion proteins respectively removed 1.5-3 times more cadmium than those expressing only cytosolic SmtA. The deinococcal Hpi protein layer per se also contributed to U binding, by conferring substantial negative charge to deinococcal cell surface. The ORF of an acid phosphatase, PhoN was fused with the hpi or SLH domain DNA sequence and purified. Isolated Hpi-PhoN and SLH-PhoN, immobilized on deinococcal peptidoglycan showed efficient uranium precipitation (446 and 160 mg U/g biomass used respectively). The study demonstrates effective exploitation of the deinococcal S layer protein components for (a) cell surface-based sequestration of cadmium, and (b) cell-free preparations for uranium remediation.
Collapse
Affiliation(s)
- Chitra Seetharam Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400094, India.
| | - Suvarna Sounderajan
- Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400094, India
| | - Shree Kumar Apte
- School of Biosciences, UM-DAE-Centre for Excellence in Basic Sciences, Vidyanagari, Kalina, Mumbai 400098, India.
| |
Collapse
|
9
|
Abstract
Bacterial surface layers (S-layers) have been observed as the outermost cell envelope component in a wide range of bacteria and most archaea. S-layers are monomolecular lattices composed of a single protein or glycoprotein species and have either oblique, square or hexagonal lattice symmetry with unit cell dimensions ranging from 3 to 30 nm. They are generally 5 to 10 nm thick (up to 70 nm in archaea) and represent highly porous protein lattices (30–70% porosity) with pores of uniform size and morphology in the range of 2 to 8 nm. Since S-layers can be considered as one of the simplest protein lattices found in nature and the constituent units are probably the most abundantly expressed proteins on earth, it seems justified to briefly review the different S-layer lattice types, the need for lattice imperfections and the discussion of S-layers from the perspective of an isoporous protein network in the ultrafiltration region. Finally, basic research on S-layers laid the foundation for applications in biotechnology, synthetic biology, and biomimetics.
Collapse
|
10
|
Zhang S, Chen J, Liu J, Pyles H, Baker D, Chen CL, De Yoreo JJ. Engineering Biomolecular Self-Assembly at Solid-Liquid Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e1905784. [PMID: 32627885 DOI: 10.1002/adma.201905784] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 04/02/2020] [Accepted: 04/16/2020] [Indexed: 06/11/2023]
Abstract
Biomolecular self-assembly is a key process used by life to build functional materials from the "bottom up." In the last few decades, bioengineering and bionanotechnology have borrowed this strategy to design and synthesize numerous biomolecular and hybrid materials with diverse architectures and properties. However, engineering biomolecular self-assembly at solid-liquid interfaces into predesigned architectures lags the progress made in bulk solution both in practice and theory. Here, recent achievements in programming self-assembly of peptides, proteins, and peptoids at solid-liquid interfaces are summarized and corresponding applications are described. Recent advances in the physical understandings of self-assembly pathways obtained using in situ atomic force microscopy are also discussed. These advances will lead to novel strategies for designing biomaterials organized at and interfaced with inorganic surfaces.
Collapse
Affiliation(s)
- Shuai Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jiajun Chen
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jianli Liu
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan, Guangdong, 523830, China
| | - Harley Pyles
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Chun-Long Chen
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, USA
| | - James J De Yoreo
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98105, USA
- Physical Sciences Division, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| |
Collapse
|
11
|
A New Method for Dispersing Pristine Carbon Nanotubes Using Regularly Arranged S-Layer Proteins. NANOMATERIALS 2021; 11:nano11051346. [PMID: 34065322 PMCID: PMC8161383 DOI: 10.3390/nano11051346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/25/2023]
Abstract
Homogeneous and stable dispersions of functionalized carbon nanotubes (CNTs) in aqueous solutions are imperative for a wide range of applications, especially in life and medical sciences. Various covalent and non-covalent approaches were published to separate the bundles into individual tubes. In this context, this work demonstrates the non-covalent modification and dispersion of pristine multi-walled carbon nanotubes (MWNTs) using two S-layer proteins, namely, SbpA from Lysinibacillus sphaericus CCM2177 and SbsB from Geobacillus stearothermophilus PV72/p2. Both the S-layer proteins coated the MWNTs completely. Furthermore, it was shown that SbpA can form caps at the ends of MWNTs. Reassembly experiments involving a mixture of both S-layer proteins in the same solution showed that the MWNTs were primarily coated with SbsB, whereas SbpA formed self-assembled layers. The dispersibility of the pristine nanotubes coated with SbpA was determined by zeta potential measurements (−24.4 +/− 0.6 mV, pH = 7). Finally, the SbpA-coated MWNTs were silicified with tetramethoxysilane (TMOS) using a mild biogenic approach. As expected, the thickness of the silica layer could be controlled by the reaction time and was 6.3 +/− 1.25 nm after 5 min and 25.0 +/− 5.9 nm after 15 min. Since S-layer proteins have already demonstrated their capability to bind (bio)molecules in dense packing or to act as catalytic sites in biomineralization processes, the successful coating of pristine MWNTs has great potential in the development of new materials, such as biosensor architectures.
Collapse
|
12
|
Subramanian RH, Suzuki Y, Tallorin L, Sahu S, Thompson M, Gianneschi NC, Burkart MD, Tezcan FA. Enzyme-Directed Functionalization of Designed, Two-Dimensional Protein Lattices. Biochemistry 2021; 60:1050-1062. [PMID: 32706243 PMCID: PMC7855359 DOI: 10.1021/acs.biochem.0c00363] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The design and construction of crystalline protein arrays to selectively assemble ordered nanoscale materials have potential applications in sensing, catalysis, and medicine. Whereas numerous designs have been implemented for the bottom-up construction of protein assemblies, the generation of artificial functional materials has been relatively unexplored. Enzyme-directed post-translational modifications are responsible for the functional diversity of the proteome and, thus, could be harnessed to selectively modify artificial protein assemblies. In this study, we describe the use of phosphopantetheinyl transferases (PPTases), a class of enzymes that covalently modify proteins using coenzyme A (CoA), to site-selectively tailor the surface of designed, two-dimensional (2D) protein crystals. We demonstrate that a short peptide (ybbR) or a molecular tag (CoA) can be covalently tethered to 2D arrays to enable enzymatic functionalization using Sfp PPTase. The site-specific modification of two different protein array platforms is facilitated by PPTases to afford both small molecule- and protein-functionalized surfaces with no loss of crystalline order. This work highlights the potential for chemoenzymatic modification of large protein surfaces toward the generation of sophisticated protein platforms reminiscent of the complex landscape of cell surfaces.
Collapse
Affiliation(s)
- Rohit H. Subramanian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Yuta Suzuki
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Current address: Hakubi Center for Advanced Research, Kyoto University, Yoshida-honmachi, Sakyo-ku, Kyoto, Japan, 606-8501
| | - Lorillee Tallorin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Swagat Sahu
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - Matthew Thompson
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Chemistry of Life Processes Institute, International Institute for Nanotechnology, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Nathan C. Gianneschi
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Departments of Chemistry, Materials Science & Engineering, Biomedical Engineering, Chemistry of Life Processes Institute, International Institute for Nanotechnology, Simpson Querrey Institute, Northwestern University, Evanston, Illinois 60208, USA
| | - Michael D. Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
| | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA
- Materials Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
13
|
Lv C, Zhang X, Liu Y, Zhang T, Chen H, Zang J, Zheng B, Zhao G. Redesign of protein nanocages: the way from 0D, 1D, 2D to 3D assembly. Chem Soc Rev 2021; 50:3957-3989. [PMID: 33587075 DOI: 10.1039/d0cs01349h] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Compartmentalization is a hallmark of living systems. Through compartmentalization, ubiquitous protein nanocages such as viral capsids, ferritin, small heat shock proteins, and DNA-binding proteins from starved cells fulfill a variety of functions, while their shell-like structures hold great promise for various applications in the field of nanomedicine and nanotechnology. However, the number and structure of natural protein nanocages are limited, and these natural protein nanocages may not be suited for a given application, which might impede their further application as nanovehicles, biotemplates or building blocks. To overcome these shortcomings, different strategies have been developed by scientists to construct artificial protein nanocages, and 1D, 2D and 3D protein arrays with protein nanocages as building blocks through genetic and chemical modification to rival the size and functionality of natural protein nanocages. This review outlines the recent advances in the field of the design and construction of artificial protein nanocages and their assemblies with higher order, summarizes the strategies for creating the assembly of protein nanocages from zero-dimension to three dimensions, and introduces their corresponding applications in the preparation of nanomaterials, electrochemistry, and drug delivery. The review will highlight the roles of both the inter-subunit/intermolecular interactions at the key interface and the protein symmetry in constructing and controlling protein nanocage assemblies with different dimensions.
Collapse
Affiliation(s)
- Chenyan Lv
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Zhang W, Mo S, Liu M, Liu L, Yu L, Wang C. Rationally Designed Protein Building Blocks for Programmable Hierarchical Architectures. Front Chem 2020; 8:587975. [PMID: 33195088 PMCID: PMC7658299 DOI: 10.3389/fchem.2020.587975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/05/2020] [Indexed: 01/23/2023] Open
Abstract
Diverse natural/artificial proteins have been used as building blocks to construct a variety of well-ordered nanoscale structures over the past couple of decades. Sophisticated protein self-assemblies have attracted great scientific interests due to their potential applications in disease diagnosis, illness treatment, biomechanics, bio-optics and bio-electronics, etc. This review outlines recent efforts directed to the creation of structurally defined protein assemblies including one-dimensional (1D) strings/rings/tubules, two-dimensional (2D) planar sheets and three-dimensional (3D) polyhedral scaffolds. We elucidate various innovative strategies for manipulating proteins to self-assemble into desired architectures. The emergent applications of protein assemblies as versatile platforms in medicine and material science with improved performances have also been discussed.
Collapse
Affiliation(s)
- Wenbo Zhang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shanshan Mo
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingwei Liu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Liu
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, United States
| | - Lanlan Yu
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenxuan Wang
- State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Department of Biophysics and Structural Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Chen H, Liu Y, Zhang T, Zhao G. Construction of three-dimensional interleaved protein hetero-superlattices in solution by cooperative electrostatic and aromatic stacking interactions. J Colloid Interface Sci 2020; 582:1-11. [PMID: 32814217 DOI: 10.1016/j.jcis.2020.08.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 07/26/2020] [Accepted: 08/04/2020] [Indexed: 12/14/2022]
Abstract
HYPOTHESIS Hierarchical assembly of naturally occurring assemblies is accurate and responsible for performing various cellular functions. However, Nature's wisdom in navigating the assembly process to desired protein assemblies by the cooperation of multiple noncovalent interactions has been underexploited for protein superstructures constructions. Owing to the chemical diversity of noncovalent interactions, it should be possible to fabricate protein assemblies with novel properties in high efficiency through the cooperation of different noncovalent interaction. EXPERIMENTS Both charged residues and aromatic residues are introduced on the exterior surface of ferritin centered at their symmetry axes, mixing of complementary variants forms ordered assemblies through the cooperation of two kinds of chemical-diverse noncovalent interactions. The assemblies were further characterized in terms of their assembly behavior, structure, size, assembly kinetics, properties and stabilities. FINDINGS We utilized both electrostatic and π-π stacking interactions between complementary nanocages to cooperatively trigger the self-assembly into predesigned interleaved hetero-superlattices which exhibit high electrolyte stability and thermal stability. The size of the hetero-superlattices can be well controlled with ranges from nanometers to micrometers in solution in response to external stimuli such as pH and salt concentration. The hetero-superlattice may have the potential applications in hybrid bio-templating, light-harvesting and compartmentalized encapsulation.
Collapse
Affiliation(s)
- Hai Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Yu Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Tuo Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China
| | - Guanghua Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing Key Laboratory of Functional Food from Plant Resources, Beijing 100083, China.
| |
Collapse
|
16
|
Assembly of a patchy protein into variable 2D lattices via tunable multiscale interactions. Nat Commun 2020; 11:3770. [PMID: 32724112 PMCID: PMC7387446 DOI: 10.1038/s41467-020-17562-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/07/2020] [Indexed: 12/24/2022] Open
Abstract
Self-assembly of molecular building blocks into higher-order structures is exploited in living systems to create functional complexity and represents a powerful strategy for constructing new materials. As nanoscale building blocks, proteins offer unique advantages, including monodispersity and atomically tunable interactions. Yet, control of protein self-assembly has been limited compared to inorganic or polymeric nanoparticles, which lack such attributes. Here, we report modular self-assembly of an engineered protein into four physicochemically distinct, precisely patterned 2D crystals via control of four classes of interactions spanning Ångström to several-nanometer length scales. We relate the resulting structures to the underlying free-energy landscape by combining in-situ atomic force microscopy observations of assembly with thermodynamic analyses of protein-protein and -surface interactions. Our results demonstrate rich phase behavior obtainable from a single, highly patchy protein when interactions acting over multiple length scales are exploited and predict unusual bulk-scale properties for protein-based materials that ensue from such control. As nanoscale building blocks, proteins offer unique advantages, including monodispersity and atomically tunable interactions, but their self-assembly is limited compared to inorganic or polymeric nanoparticles. Here, the authors show modular self-assembly of an engineered protein into four physicochemically distinct patterned 2D crystals via control of four classes of interactions.
Collapse
|
17
|
Li F, Wang D, Zhou J, Men D, Zhan XE. Design and biosynthesis of functional protein nanostructures. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1142-1158. [PMID: 32253589 DOI: 10.1007/s11427-019-1641-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 02/05/2020] [Indexed: 02/06/2023]
Abstract
Proteins are one of the major classes of biomolecules that execute biological functions for maintenance of life. Various kinds of nanostructures self-assembled from proteins have been created in nature over millions of years of evolution, including protein nanowires, layers and nanocages. These protein nanostructures can be reconstructed and equipped with desired new functions. Learning from and manipulating the self-assembly of protein nanostructures not only help to deepen our understanding of the nature of life but also offer new routes to fabricate novel nanomaterials for diverse applications. This review summarizes the recent research progress in this field, focusing on the characteristics, functionalization strategies, and applications of protein nanostructures.
Collapse
Affiliation(s)
- Feng Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Dianbing Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Zhou
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Dong Men
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xian-En Zhan
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
18
|
Manea F, Garda VG, Rad B, Ajo-Franklin CM. Programmable assembly of 2D crystalline protein arrays into covalently stacked 3D bionanomaterials. Biotechnol Bioeng 2020; 117:912-923. [PMID: 31885073 DOI: 10.1002/bit.27261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 12/31/2022]
Abstract
Rational embellishment of self-assembling two-dimensional (2D) proteins make it possible to build 3D nanomaterials with novel catalytic, optoelectronic and mechanical properties. However, introducing multiple sites of embellishment into 2D protein arrays without affecting the self-assembly is challenging, limiting the ability to program in additional functionality and new 3D configurations. Here we introduce two orthogonal covalent linkages at multiple sites in a 2D crystalline-forming protein without affecting its self-assembly. We first engineered the surface-layer protein SbsB from Geobacillus stearothermophilus pV72/p2 to display isopeptide bond-forming protein conjugation pairs, SpyTag or SnoopTag, at four positions spaced 5.7-10.5 nm apart laterally and 3 nm axially. The C-terminal and two newly-identified locations within SbsB monomer accommodated the short SpyTag or SnoopTag peptide tags without affecting the 2D lattice structure. Introducing tags at distinct locations enabled orthogonal and covalent binding of SpyCatcher- or SnoopCatcher-protein fusions to micron-sized 2D nanosheets. By introducing different types of bifunctional cross-linkers, the dual-functionalized nanosheets were programmed to self-assemble into different 3D stacks, all of which retain their nanoscale order. Thus, our work creates a modular protein platform that is easy to program to create dual-functionalized 2D and lamellar 3D nanomaterials with new catalytic, optoelectronic, and mechanical properties.
Collapse
Affiliation(s)
- Francesca Manea
- The Molecular Foundry, Molecular Biophysics and Integrated Bioimaging Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Virginia G Garda
- The Molecular Foundry, Molecular Biophysics and Integrated Bioimaging Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Behzad Rad
- The Molecular Foundry, Molecular Biophysics and Integrated Bioimaging Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Caroline M Ajo-Franklin
- The Molecular Foundry, Molecular Biophysics and Integrated Bioimaging Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California
| |
Collapse
|
19
|
Carloni LE, Bezzu CG, Bonifazi D. Patterning Porous Networks through Self-Assembly of Programmed Biomacromolecules. Chemistry 2019; 25:16179-16200. [PMID: 31491049 DOI: 10.1002/chem.201902576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 08/11/2019] [Indexed: 11/08/2022]
Abstract
Two-dimensional (2D) porous networks are of great interest for the fabrication of complex organized functional materials for potential applications in nanotechnologies and nanoelectronics. This review aims at providing an overview of bottom-up approaches towards the engineering of 2D porous networks by using biomacromolecules, with a particular focus on nucleic acids and proteins. The first part illustrates how the advancements in DNA nanotechnology allowed for the attainment of complex ordered porous two-dimensional DNA nanostructures, thanks to a biomimetic approach based on DNA molecules self-assembly through specific hydrogen-bond base pairing. The second part focuses the attention on how polypeptides and proteins structural properties could be used to engineer organized networks templating the formation of multifunctional materials. The structural organization of all examples is discussed as revealed by scanning probe microscopy or transmission electron microscopy imaging techniques.
Collapse
Affiliation(s)
- Laure-Elie Carloni
- Department of Chemistry and Namur Research College (NARC), University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
| | - C Grazia Bezzu
- Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, Wales, UK
| | - Davide Bonifazi
- Cardiff University, School of Chemistry, Park Place, Main Building, CF10 3AT, Cardiff, Wales, UK
| |
Collapse
|
20
|
Cristie‐David AS, Marsh ENG. Metal-dependent assembly of a protein nano-cage. Protein Sci 2019; 28:1620-1629. [PMID: 31278804 PMCID: PMC6699099 DOI: 10.1002/pro.3676] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 06/26/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022]
Abstract
Short, alpha-helical coiled coils provide a simple, modular method to direct the assembly of proteins into higher order structures. We previously demonstrated that by genetically fusing de novo-designed coiled coils of the appropriate oligomerization state to a natural trimeric protein, we could direct the assembly of this protein into various geometrical cages. Here, we have extended this approach by appending a coiled coil designed to trimerize in response to binding divalent transition metal ions and thereby achieve metal ion-dependent assembly of a tetrahedral protein cage. Ni2+ , Co2+ , Cu2+ , and Zn2+ ions were evaluated, with Ni2+ proving the most effective at mediating protein assembly. Characterization of the assembled protein indicated that the metal ion-protein complex formed discrete globular structures of the diameter expected for a complex containing 12 copies of the protein monomer. Protein assembly could be reversed by removing metal ions with ethylenediaminetetraacetic acid or under mildly acidic conditions.
Collapse
Affiliation(s)
| | - E. Neil G. Marsh
- Department of ChemistryUniversity of MichiganAnn ArborMichigan
- Department of Biological ChemistryUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
21
|
Mullick P, Mukherjee S, Das G, Ramesh A. Generation of a Hydroxyapatite Nanocarrier through Biomineralization Using Cell-Free Extract of Lactic Acid Bacteria for Antibiofilm Application. ACS APPLIED BIO MATERIALS 2019; 2:2927-2936. [DOI: 10.1021/acsabm.9b00293] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Priya Mullick
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Sandipan Mukherjee
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Aiyagari Ramesh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
22
|
Li J, Webster TJ, Tian B. Functionalized Nanomaterial Assembling and Biosynthesis Using the Extremophile Deinococcus radiodurans for Multifunctional Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900600. [PMID: 30925017 DOI: 10.1002/smll.201900600] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/05/2019] [Indexed: 06/09/2023]
Abstract
The development of functionalized nanomaterial biosynthesis processes is important to expand many cutting-edge nanomaterial application areas. However, unclear synthesis mechanisms and low synthesis efficiency under various chemical stresses have limited the use of these biomaterials. Deinococcus radiodurans is an extreme bacterium well known for its exceptional resistance to radiation oxidants and electrophilic agents. This extremophile, which possesses a spontaneous self-assembled surface-layer (S-layer), has been an optimal model organism to study microbial nanomaterial biotemplates and biosynthesis under various stresses. This review summarizes the S-layers from D. radiodurans as an excellent biotemplate for various pre-synthesized nanomaterials and multiple applications, and highlights recent progresses about the biosynthesis of functionalized gold nanoparticles (AuNPs), silver nanoparticles (AgNPs), as well as gold and silver bimetallic nanoparticles using D. radiodurans. Their formation mechanisms, properties, and applications are discussed and summarized to provide significant insights into the design or modification of functionalized nanomaterials via natural materials. Grand challenges and future directions to realize the multifunctional applications of these nanomaterials are highlighted for a better understanding of their biosynthesis mechanisms and functionalized modifications.
Collapse
Affiliation(s)
- Jiulong Li
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, Boston, MA, 02115, USA
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, 313 Snell Engineering Center, Boston, MA, 02115, USA
| | - Bing Tian
- Key Laboratory for Nuclear-Agricultural Sciences of Chinese Ministry of Agriculture and Zhejiang Province, Institute of Nuclear-Agricultural Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, China
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
23
|
Stel B, Gunkel I, Gu X, Russell TP, De Yoreo JJ, Lingenfelder M. Contrasting Chemistry of Block Copolymer Films Controls the Dynamics of Protein Self-Assembly at the Nanoscale. ACS NANO 2019; 13:4018-4027. [PMID: 30917283 DOI: 10.1021/acsnano.8b08013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Biological systems are able to control the assembly and positioning of proteins with nanoscale precision, as exemplified by the intricate molecular structures within cell membranes, virus capsids, and collagen matrices. Controlling the assembly of biomolecules is critical for the use of biomaterials in artificial systems such as antibacterial coatings, engineered tissue samples, and implanted medical devices. Furthermore, understanding the dynamics of protein assembly on heterogeneous templates will ultimately enable the control of protein crystallization in general. Here, we show a biomimetic, hierarchical bottom-up approach to direct the self-assembly of crystalline S-layers through nonspecific interactions with nanostructured block copolymer (BCP) thin-film templates. A comparison between physically and chemically patterned BCP substrates shows that chemical heterogeneity is required to confine the adhesion and self-assembly of S-layers to specific BCP domains. Furthermore, we show that this mechanism can be extended to direct the formation of collagen fibers along the principal direction of the underlying BCP substrate. The dynamics of protein self-assembly at the solid-liquid interface are followed using in situ high-resolution atomic force microscopy under continuous flow conditions, allowing the determination of the rate constants of the self-assembly. A pattern of alternating, chemically distinct nanoscale domains drastically increases the rate of self-assembly compared to non-patterned chemically homogeneous substrates.
Collapse
Affiliation(s)
- Bart Stel
- Max Planck-EPFL Lab for Molecular Nanoscience and Technology and Institute of Physics, EPFL , CH-1015 Lausanne , Switzerland
| | - Ilja Gunkel
- Polymer Science and Engineering Department , University of Massachusetts at Amherst , Amherst , Massachusetts 01003 , United States
| | - Xiaodan Gu
- Polymer Science and Engineering Department , University of Massachusetts at Amherst , Amherst , Massachusetts 01003 , United States
| | - Thomas P Russell
- Polymer Science and Engineering Department , University of Massachusetts at Amherst , Amherst , Massachusetts 01003 , United States
| | | | - Magalí Lingenfelder
- Max Planck-EPFL Lab for Molecular Nanoscience and Technology and Institute of Physics, EPFL , CH-1015 Lausanne , Switzerland
| |
Collapse
|
24
|
Abstract
![]()
Ordered
protein assemblies are attracting interest as next-generation
biomaterials with a remarkable range of structural and functional
properties, leading to potential applications in biocatalysis, materials
templating, drug delivery and vaccine development. This Review covers
ordered protein assemblies including protein nanowires/nanofibrils,
nanorings, nanotubes, designed two- and three-dimensional ordered
protein lattices and protein-like cages including polyhedral virus-like
cage structures. The main focus is on designed ordered protein assemblies,
in which the spatial organization of the proteins is controlled by
tailored noncovalent interactions (including metal ion binding interactions,
electrostatic interactions and ligand–receptor interactions
among others) or by careful design of modified (mutant) proteins or de novo constructs. The modification of natural protein
assemblies including bacterial S-layers and cage-like and rod-like
viruses to impart novel function, e.g. enzymatic activity, is also
considered. A diversity of structures have been created using distinct
approaches, and this Review provides a summary of the state-of-the-art
in the development of these systems, which have exceptional potential
as advanced bionanomaterials for a diversity of applications.
Collapse
Affiliation(s)
- Ian W Hamley
- Department of Chemistry , University of Reading , Whiteknights , Reading RG6 6AD , United Kingdom
| |
Collapse
|
25
|
Luo G, Yang Q, Yao B, Tian Y, Hou R, Shao A, Li M, Feng Z, Wang W. Slp-coated liposomes for drug delivery and biomedical applications: potential and challenges. Int J Nanomedicine 2019; 14:1359-1383. [PMID: 30863066 PMCID: PMC6388732 DOI: 10.2147/ijn.s189935] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Slp forms a crystalline array of proteins on the outermost envelope of bacteria and archaea with a molecular weight of 40-200 kDa. Slp can self-assemble on the surface of liposomes in a proper environment via electrostatic interactions, which could be employed to functionalize liposomes by forming Slp-coated liposomes for various applications. Among the molecular characteristics, the stability, adhesion, and immobilization of biomacromolecules are regarded as the most meaningful. Compared to plain liposomes, Slp-coated liposomes show excellent physicochemical and biological stabilities. Recently, Slp-coated liposomes were shown to specifically adhere to the gastrointestinal tract, which was attributed to the "ligand-receptor interaction" effect. Furthermore, Slp as a "bridge" can immobilize functional biomacromol-ecules on the surface of liposomes via protein fusion technology or intermolecular forces, endowing liposomes with beneficial functions. In view of these favorable features, Slp-coated liposomes are highly likely to be an ideal platform for drug delivery and biomedical uses. This review aims to provide a general framework for the structure and characteristics of Slp and the interactions between Slp and liposomes, to highlight the unique properties and drug delivery as well as the biomedical applications of the Slp-coated liposomes, and to discuss the ongoing challenges and perspectives.
Collapse
Affiliation(s)
- Gan Luo
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
- Department of Anesthesiology and Intensive Care, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingliang Yang
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Bingpeng Yao
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
- Department of Green Pharmaceutics, Jianxing Honors College, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Yangfan Tian
- Department of Pediatric Surgery, The Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ruixia Hou
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Anna Shao
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Mengting Li
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Zilin Feng
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| | - Wenxi Wang
- Department of Pharmaceutics, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China,
| |
Collapse
|
26
|
Zhang X, Gong C, Akakuru OU, Su Z, Wu A, Wei G. The design and biomedical applications of self-assembled two-dimensional organic biomaterials. Chem Soc Rev 2019; 48:5564-5595. [DOI: 10.1039/c8cs01003j] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Self-assembling 2D organic biomaterials exhibit versatile abilities for structural and functional tailoring, as well as high potential for biomedical applications.
Collapse
Affiliation(s)
- Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
- Faculty of Physics and Astronomy
- University of Jena
| | - Coucong Gong
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
| | - Ozioma Udochukwu Akakuru
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering
- Beijing University of Chemical Technology
- China
| | - Aiguo Wu
- Cixi Institute of Biomedical Engineering
- CAS Key Laboratory of Magnetic Materials and Devices, & Key Laboratory of Additive Manufacturing Materials of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- Ningbo
| | - Gang Wei
- Faculty of Production Engineering
- University of Bremen
- Bremen
- Germany
- Cixi Institute of Biomedical Engineering
| |
Collapse
|
27
|
Kuan SL, Bergamini FRG, Weil T. Functional protein nanostructures: a chemical toolbox. Chem Soc Rev 2018; 47:9069-9105. [PMID: 30452046 PMCID: PMC6289173 DOI: 10.1039/c8cs00590g] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Indexed: 01/08/2023]
Abstract
Nature has evolved an optimal synthetic factory in the form of translational and posttranslational processes by which millions of proteins with defined primary sequences and 3D structures can be built. Nature's toolkit gives rise to protein building blocks, which dictates their spatial arrangement to form functional protein nanostructures that serve a myriad of functions in cells, ranging from biocatalysis, formation of structural networks, and regulation of biochemical processes, to sensing. With the advent of chemical tools for site-selective protein modifications and recombinant engineering, there is a rapid development to develop and apply synthetic methods for creating structurally defined, functional protein nanostructures for a broad range of applications in the fields of catalysis, materials and biomedical sciences. In this review, design principles and structural features for achieving and characterizing functional protein nanostructures by synthetic approaches are summarized. The synthetic customization of protein building blocks, the design and introduction of recognition units and linkers and subsequent assembly into structurally defined protein architectures are discussed herein. Key examples of these supramolecular protein nanostructures, their unique functions and resultant impact for biomedical applications are highlighted.
Collapse
Affiliation(s)
- Seah Ling Kuan
- Max-Planck Institute for Polymer Research
,
Ackermannweg 10
, 55128 Mainz
, Germany
.
;
- Institute of Inorganic Chemistry I – Ulm University
,
Albert-Einstein-Allee 11
, 89081 Ulm
, Germany
| | - Fernando R. G. Bergamini
- Institute of Chemistry
, Federal University of Uberlândia – UFU
,
38400-902 Uberlândia
, MG
, Brazil
| | - Tanja Weil
- Max-Planck Institute for Polymer Research
,
Ackermannweg 10
, 55128 Mainz
, Germany
.
;
- Institute of Inorganic Chemistry I – Ulm University
,
Albert-Einstein-Allee 11
, 89081 Ulm
, Germany
| |
Collapse
|
28
|
Zhou K, Zang J, Chen H, Wang W, Wang H, Zhao G. On-Axis Alignment of Protein Nanocage Assemblies from 2D to 3D through the Aromatic Stacking Interactions of Amino Acid Residues. ACS NANO 2018; 12:11323-11332. [PMID: 30265511 DOI: 10.1021/acsnano.8b06091] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Aromatic-aromatic interactions between natural aromatic amino acids Phe, Tyr, and Trp play crucial roles in protein-protein recognition and protein folding. However, the function of such interactions in the preparation of different dimensional, ordered protein superstructures has not been recognized. Herein, by a combination of the directionality of the symmetry axes of protein building blocks and the strength of the aromatic-aromatic interactions coming from a group of aromatic amino acid residues, we built an engineering strategy to construct protein superlattices. Based on this strategy, substitution of single amino acid residue Glu162 around the C4 rotation axes near the outer surface of 24-mer ferritin nanocage with Phe, Tyr, and Trp, respectively, resulted in 2D and 3D protein superlattices where protein cages are aligned along the C4 axes, imposing a fixed disposition of neighboring ferritins. The self-assembly of these superlattices is reversible, which can be tuned by external stimuli (salt concentration or pH). Moreover, these superlattices can serve as biotemplates for the fabrication of 2D and 3D inorganic nanoparticle arrays.
Collapse
Affiliation(s)
- Kai Zhou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing 100083 , China
| | - Jiachen Zang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing 100083 , China
| | - Hai Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing 100083 , China
| | - Wenming Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry , Institute of Molecular Science, Shanxi University , Taiyuan 030006 , China
| | - Hongfei Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Education Ministry , Institute of Molecular Science, Shanxi University , Taiyuan 030006 , China
| | - Guanghua Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science & Nutritional Engineering , China Agricultural University, Key Laboratory of Functional Dairy, Ministry of Education , Beijing 100083 , China
| |
Collapse
|
29
|
Blackler RJ, López-Guzmán A, Hager FF, Janesch B, Martinz G, Gagnon SML, Haji-Ghassemi O, Kosma P, Messner P, Schäffer C, Evans SV. Structural basis of cell wall anchoring by SLH domains in Paenibacillus alvei. Nat Commun 2018; 9:3120. [PMID: 30087354 PMCID: PMC6081394 DOI: 10.1038/s41467-018-05471-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 06/19/2018] [Indexed: 12/20/2022] Open
Abstract
Self-assembling protein surface (S-) layers are common cell envelope structures of prokaryotes and have critical roles from structural maintenance to virulence. S-layers of Gram-positive bacteria are often attached through the interaction of S-layer homology (SLH) domain trimers with peptidoglycan-linked secondary cell wall polymers (SCWPs). Here we present an in-depth characterization of this interaction, with co-crystal structures of the three consecutive SLH domains from the Paenibacillus alvei S-layer protein SpaA with defined SCWP ligands. The most highly conserved SLH domain residue SLH-Gly29 is shown to enable a peptide backbone flip essential for SCWP binding in both biophysical and cellular experiments. Furthermore, we find that a significant domain movement mediates binding by two different sites in the SLH domain trimer, which may allow anchoring readjustment to relieve S-layer strain caused by cell growth and division. Gram-positive bacterial envelopes comprise proteinaceous surface layers (S-layers) important for survival and virulence that are often anchored to the cell wall through secondary cell wall polymers. Here the authors use a structural and biophysical approach to define the molecular mechanism of this important interaction.
Collapse
Affiliation(s)
- Ryan J Blackler
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.,Zymeworks Inc., Vancouver, BC, V6H 3V9, Canada
| | - Arturo López-Guzmán
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Fiona F Hager
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Bettina Janesch
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Gudrun Martinz
- Department of Chemistry, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Susannah M L Gagnon
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada
| | - Omid Haji-Ghassemi
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.,Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Paul Kosma
- Department of Chemistry, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Paul Messner
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria
| | - Christina Schäffer
- Department of NanoBiotechnology, NanoGlycobiology Unit, Universität für Bodenkultur Wien, 1190, Vienna, Austria.
| | - Stephen V Evans
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, V8W 3P6, Canada.
| |
Collapse
|
30
|
Farjadian F, Moghoofei M, Mirkiani S, Ghasemi A, Rabiee N, Hadifar S, Beyzavi A, Karimi M, Hamblin MR. Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: Set the bugs to work? Biotechnol Adv 2018; 36:968-985. [PMID: 29499341 PMCID: PMC5971145 DOI: 10.1016/j.biotechadv.2018.02.016] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 02/20/2018] [Accepted: 02/26/2018] [Indexed: 12/28/2022]
Abstract
Drug delivery is a rapidly growing area of research motivated by the nanotechnology revolution, the ideal of personalized medicine, and the desire to reduce the side effects of toxic anti-cancer drugs. Amongst a bewildering array of different nanostructures and nanocarriers, those examples that are fundamentally bio-inspired and derived from natural sources are particularly preferred. Delivery of vaccines is also an active area of research in this field. Bacterial cells and their components that have been used for drug delivery, include the crystalline cell-surface layer known as "S-layer", bacterial ghosts, bacterial outer membrane vesicles, and bacterial products or derivatives (e.g. spores, polymers, and magnetic nanoparticles). Considering the origin of these components from potentially pathogenic microorganisms, it is not surprising that they have been applied for vaccines and immunization. The present review critically summarizes their applications focusing on their advantages for delivery of drugs, genes, and vaccines.
Collapse
Affiliation(s)
- Fatemeh Farjadian
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soroush Mirkiani
- Biomaterials Laboratory, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Amir Ghasemi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Beyzavi
- Koch institute of MIT, 500 Main Street, Cambridge, MA, USA
| | - Mahdi Karimi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran; Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA.
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Department of Dermatology, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
31
|
Schuster B. S-Layer Protein-Based Biosensors. BIOSENSORS 2018; 8:E40. [PMID: 29641511 PMCID: PMC6023001 DOI: 10.3390/bios8020040] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 01/14/2023]
Abstract
The present paper highlights the application of bacterial surface (S-) layer proteins as versatile components for the fabrication of biosensors. One technologically relevant feature of S-layer proteins is their ability to self-assemble on many surfaces and interfaces to form a crystalline two-dimensional (2D) protein lattice. The S-layer lattice on the surface of a biosensor becomes part of the interface architecture linking the bioreceptor to the transducer interface, which may cause signal amplification. The S-layer lattice as ultrathin, highly porous structure with functional groups in a well-defined special distribution and orientation and an overall anti-fouling characteristics can significantly raise the limit in terms of variety and the ease of bioreceptor immobilization, compactness of bioreceptor molecule arrangement, sensitivity, specificity, and detection limit for many types of biosensors. The present paper discusses and summarizes examples for the successful implementation of S-layer lattices on biosensor surfaces in order to give a comprehensive overview on the application potential of these bioinspired S-layer protein-based biosensors.
Collapse
Affiliation(s)
- Bernhard Schuster
- Institute for Synthetic Bioarchitectures, Department of NanoBiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
32
|
Huber TR, McPherson EC, Keating CE, Snow CD. Installing Guest Molecules at Specific Sites within Scaffold Protein Crystals. Bioconjug Chem 2017; 29:17-22. [DOI: 10.1021/acs.bioconjchem.7b00668] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Thaddaus R. Huber
- Department of Chemical and
Biological Engineering, Colorado State University, 1301 Campus Delivery Fort Collins, Colorado 80523, United States
| | - Eli C. McPherson
- Department of Chemical and
Biological Engineering, Colorado State University, 1301 Campus Delivery Fort Collins, Colorado 80523, United States
| | - Carolyn E. Keating
- Department of Chemical and
Biological Engineering, Colorado State University, 1301 Campus Delivery Fort Collins, Colorado 80523, United States
| | - Christopher D. Snow
- Department of Chemical and
Biological Engineering, Colorado State University, 1301 Campus Delivery Fort Collins, Colorado 80523, United States
| |
Collapse
|
33
|
Physicochemical characterization and gastrointestinal adhesion of S-layer proteins-coating liposomes. Int J Pharm 2017; 529:227-237. [DOI: 10.1016/j.ijpharm.2017.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 07/01/2017] [Accepted: 07/02/2017] [Indexed: 12/20/2022]
|
34
|
Robertson EJ, Nehls EM, Zuckermann RN. Structure-Rheology Relationship in Nanosheet-Forming Peptoid Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:12146-12158. [PMID: 27794613 DOI: 10.1021/acs.langmuir.6b02736] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Peptoid nanosheets are novel protein-mimetic materials that form from the supramolecular assembly of sequence-defined peptoid polymers. The component polymer chains organize themselves via a unique mechanism at the air-water interface, in which the collapse of a compressed peptoid monolayer results in free-floating, bilayer nanosheets. To impart functionality into these bilayer materials, structural engineering of the nanosheet-forming peptoid strand is necessary. We previously synthesized a series of peptoid analogues with modifications to the hydrophobic core in order to probe the nanosheet tolerance to different packing interactions. Although many substitutions were well-tolerated, routine surface pressure measurements and monolayer collapse isotherms were insufficient to explain which molecular processes contributed to the ability or inability of these peptoid analogues to form nanosheets. Here, we show that surface dilational rheology measurements of assembled peptoid monolayers at the air-water interface provide great insight into their nanosheet-forming ability. We find that a key property required for nanosheet formation is the ability to assemble into a solidlike monolayer in which the residence time of the peptoid within the monolayer is very long and does not exchange rapidly with the subphase. These collapse-competent monolayers typically have a characteristic time of diffusion-exchange values, τD, of >5000 s. Thus, rheological measurements provide an efficient method for assessing the nanosheet-forming ability of peptoid analogues. Results from these studies can be used to guide the rational design of peptoids for assembly into functional nanosheets.
Collapse
Affiliation(s)
- Ellen J Robertson
- Molecular Foundry, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Eric Michael Nehls
- Molecular Foundry, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Ronald N Zuckermann
- Molecular Foundry, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Robertson EJ, Proulx C, Su JK, Garcia RL, Yoo S, Nehls EM, Connolly MD, Taravati L, Zuckermann RN. Molecular Engineering of the Peptoid Nanosheet Hydrophobic Core. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:11946-11957. [PMID: 27794618 DOI: 10.1021/acs.langmuir.6b02735] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The relationship between the structure of sequence-defined peptoid polymers and their ability to assemble into well-defined nanostructures is important to the creation of new bioinspired platforms with sophisticated functionality. Here, the hydrophobic N-(2-phenylethyl)glycine (Npe) monomers of the standard nanosheet-forming peptoid sequence were modified in an effort to (1) produce nanosheets from relatively short peptoids, (2) inhibit the aggregation of peptoids in bulk solution, (3) increase nanosheet stability by promoting packing interactions within the hydrophobic core, and (4) produce nanosheets with a nonaromatic hydrophobic core. Fluorescence and optical microscopy of individual nanosheets reveal that certain modifications to the hydrophobic core were well tolerated, whereas others resulted in instability or aggregation or prevented assembly. Importantly, we demonstrate that substitution at the meta and para positions of the Npe aromatic ring are well tolerated, enabling significant opportunities to tune the functional properties of peptoid nanosheets. We also found that N-aryl glycine monomers inhibit nanosheet formation, whereas branched aliphatic monomers have the ability to form nanosheets. An analysis of the crystal structures of several N,N'-disubstituted diketopiperazines (DKPs), a simple model system, revealed that the preferred solid-state packing arrangement of the hydrophobic groups can directly inform the assembly of stable peptoid nanosheets.
Collapse
Affiliation(s)
- Ellen J Robertson
- Molecular Foundry, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Caroline Proulx
- Molecular Foundry, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Jessica K Su
- Molecular Foundry, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Rita L Garcia
- Molecular Foundry, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Stan Yoo
- Molecular Foundry, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Eric M Nehls
- Molecular Foundry, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Michael D Connolly
- Molecular Foundry, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Laudann Taravati
- Molecular Foundry, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| | - Ronald N Zuckermann
- Molecular Foundry, Lawrence Berkeley National Laboratory , 1 Cyclotron Road, Berkeley, California 94720, United States
| |
Collapse
|
36
|
Varga M. Targeting at the Nanoscale: A Novel S-Layer Fusion Protein Enabling Controlled Immobilization of Biotinylated Molecules. NANOMATERIALS (BASEL, SWITZERLAND) 2016; 6:E199. [PMID: 28335327 PMCID: PMC5245738 DOI: 10.3390/nano6110199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/25/2016] [Accepted: 10/28/2016] [Indexed: 11/16/2022]
Abstract
With the aim of constructing an S-layer fusion protein that combines both excellent self-assembly and specific ligand i.e., biotin binding ability, streptavidin (aa 16-133) was fused to the S-layer protein of Sporosarcina ureae ATCC 13881 (SslA) devoid of its N-terminal 341 and C-terminal 172 amino acids. The genetically engineered chimeric protein could be successfully produced in E. coli, isolated, and purified via Ni affinity chromatography. In vitro recrystallisation experiments performed with the purified chimeric protein in solution and on a silicon wafer have demonstrated that fusion of the streptavidin domain does not interfere with the self-assembling properties of the S-layer part. The chimeric protein self-assembled into multilayers. More importantly, the streptavidin domain retained its full biotin-binding ability, a fact evidenced by experiments in which biotinylated quantum dots were coupled to the fusion protein monomers and adsorbed onto the in vitro recrystallised fusion protein template. In this way, this S-layer fusion protein can serve as a functional template for the controlled immobilization of biotinylated and biologically active molecules.
Collapse
Affiliation(s)
- Melinda Varga
- Electronics Packaging Laboratory, Department of Electrical Engineering and Information Technology, Technische Universität Dresden, Dresden 01069, Germany.
| |
Collapse
|
37
|
Luo Q, Hou C, Bai Y, Wang R, Liu J. Protein Assembly: Versatile Approaches to Construct Highly Ordered Nanostructures. Chem Rev 2016; 116:13571-13632. [PMID: 27587089 DOI: 10.1021/acs.chemrev.6b00228] [Citation(s) in RCA: 392] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nature endows life with a wide variety of sophisticated, synergistic, and highly functional protein assemblies. Following Nature's inspiration to assemble protein building blocks into exquisite nanostructures is emerging as a fascinating research field. Dictating protein assembly to obtain highly ordered nanostructures and sophisticated functions not only provides a powerful tool to understand the natural protein assembly process but also offers access to advanced biomaterials. Over the past couple of decades, the field of protein assembly has undergone unexpected and rapid developments, and various innovative strategies have been proposed. This Review outlines recent advances in the field of protein assembly and summarizes several strategies, including biotechnological strategies, chemical strategies, and combinations of these approaches, for manipulating proteins to self-assemble into desired nanostructures. The emergent applications of protein assemblies as versatile platforms to design a wide variety of attractive functional materials with improved performances have also been discussed. The goal of this Review is to highlight the importance of this highly interdisciplinary field and to promote its growth in a diverse variety of research fields ranging from nanoscience and material science to synthetic biology.
Collapse
Affiliation(s)
- Quan Luo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Chunxi Hou
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Yushi Bai
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau , Taipa, Macau SAR 999078, China
| | - Junqiu Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , 2699 Qianjin Street, Changchun 130012, P. R. China
| |
Collapse
|
38
|
Wang D, Ha Y, Gu J, Li Q, Zhang L, Yang P. 2D Protein Supramolecular Nanofilm with Exceptionally Large Area and Emergent Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7414-23. [PMID: 27337177 DOI: 10.1002/adma.201506476] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 05/02/2016] [Indexed: 05/06/2023]
Abstract
2D nanofilms assembled by pure protein with a macroscopic area and multiple functions can be directly formed at the air/water interface or at the solid surface at a timescale of several minutes. The multifunctionality of the nanofilm coating is demonstrated by both top-down and bottom-up micro-/nanoscale interfacial engineering, including surface modification, all-water-based photo/electron-beam lithography, and electroless deposition.
Collapse
Affiliation(s)
- Dehui Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Yuan Ha
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Jin Gu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Qian Li
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China
| | - Liangliang Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710062, P. R. China.
| |
Collapse
|
39
|
Zan G, Wu Q. Biomimetic and Bioinspired Synthesis of Nanomaterials/Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:2099-147. [PMID: 26729639 DOI: 10.1002/adma.201503215] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/09/2015] [Indexed: 05/13/2023]
Abstract
In recent years, due to its unparalleled advantages, the biomimetic and bioinspired synthesis of nanomaterials/nanostructures has drawn increasing interest and attention. Generally, biomimetic synthesis can be conducted either by mimicking the functions of natural materials/structures or by mimicking the biological processes that organisms employ to produce substances or materials. Biomimetic synthesis is therefore divided here into "functional biomimetic synthesis" and "process biomimetic synthesis". Process biomimetic synthesis is the focus of this review. First, the above two terms are defined and their relationship is discussed. Next different levels of biological processes that can be used for process biomimetic synthesis are compiled. Then the current progress of process biomimetic synthesis is systematically summarized and reviewed from the following five perspectives: i) elementary biomimetic system via biomass templates, ii) high-level biomimetic system via soft/hard-combined films, iii) intelligent biomimetic systems via liquid membranes, iv) living-organism biomimetic systems, and v) macromolecular bioinspired systems. Moreover, for these five biomimetic systems, the synthesis procedures, basic principles, and relationships are discussed, and the challenges that are encountered and directions for further development are considered.
Collapse
Affiliation(s)
- Guangtao Zan
- Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, P. R. China
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Qingsheng Wu
- Department of Chemistry, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, P. R. China
- School of Materials Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
40
|
Raff J, Matys S, Suhr M, Vogel M, Günther T, Pollmann K. S-Layer-Based Nanocomposites for Industrial Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:245-279. [PMID: 27677516 DOI: 10.1007/978-3-319-39196-0_11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This chapter covers the fundamental aspects of bacterial S-layers: what are S-layers, what is known about them, and what are their main features that makes them so interesting for the production of nanostructures. After a detailed introduction of the paracrystalline protein lattices formed by S-layer systems in nature the chapter explores the engineering of S-layer-based materials. How can S-layers be used to produce "industry-ready" nanoscale bio-composite materials, and which kinds of nanomaterials are possible (e.g., nanoparticle synthesis, nanoparticle immobilization, and multifunctional coatings)? What are the advantages and disadvantages of S-layer-based composite materials? Finally, the chapter highlights the potential of these innovative bacterial biomolecules for future technologies in the fields of metal filtration, catalysis, and bio-functionalization.
Collapse
Affiliation(s)
- Johannes Raff
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany.
| | - Sabine Matys
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Matthias Suhr
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Manja Vogel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Tobias Günther
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Katrin Pollmann
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| |
Collapse
|
41
|
Abe S, Ijiri H, Negishi H, Yamanaka H, Sasaki K, Hirata K, Mori H, Ueno T. Design of Enzyme-Encapsulated Protein Containers by In Vivo Crystal Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2015; 27:7951-7956. [PMID: 26503073 DOI: 10.1002/adma.201503827] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Indexed: 06/05/2023]
Abstract
Crystalline protein assemblies of polyhedra crystal (PhC) can be utilized as solid enzyme containers for long-term storage of enzymes with retention of their enzymatic activity. The enzymes can be released from the crystals at the optimum pH for the enzymatic activity by dissolution of the crystals using in vivo crystal engineering.
Collapse
Affiliation(s)
- Satoshi Abe
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, 4259-B55, Midori-ku, Yokohama, 226-8501, Japan
| | - Hiroshi Ijiri
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, 4259-B55, Midori-ku, Yokohama, 226-8501, Japan
| | - Hashiru Negishi
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, 4259-B55, Midori-ku, Yokohama, 226-8501, Japan
| | - Hiroyuki Yamanaka
- Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Katsuhito Sasaki
- Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Kunio Hirata
- SR Life Science Instrumentation Unit, RIKEN/SPring-8 Center, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Hajime Mori
- Center for Advanced Insect Research Promotion, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan
| | - Takafumi Ueno
- Department of Biomolecular Engineering, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Nagatsuta-cho, 4259-B55, Midori-ku, Yokohama, 226-8501, Japan
| |
Collapse
|
42
|
Controllable Phase Separation by Boc-Modified Lipophilic Acid as a Multifunctional Extractant. Sci Rep 2015; 5:17509. [PMID: 26627307 PMCID: PMC4667251 DOI: 10.1038/srep17509] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 10/21/2015] [Indexed: 11/29/2022] Open
Abstract
While phase separation of immiscible liquid-liquid systems has become increasingly significant in diverse areas, the irreversible nature limits their further application in controllable extraction-concentration or capture-release fields. There is a need for the development of simple, efficient and reversible methods for numerous research and industrial extraction and separation applications. We envisioned Boc-modified lipophilic acids as a simple model for such use based on the studies of the multi-phase transitions of Boc-modified supramolecular polymeric systems. Here, we demonstrate that in the presence of Boc-7-aminoheptanoic acid (Boc-7), phase separation occurs in mixtures of miscible organic solvent and water. The separation behavior was confirmed by differential colorimetric development in aqueous and organic phases using methyl orange staining assays. Component substitution experiments verified that the phase separation results from the subtle balance between the aggregation and the solvation forces of Boc-7, and is reversible by adjusting the solution pH. Owing to the intrinsic hydrophobic properties of the organic phase and the hydrogen bonding-forming ability of the carboxyl group of Boc-7, the phase separation system captures and releases Sudan Red, fluorescein, and streptavidin in a controllable manner. Consequently, a reversible and simple phase separation system can be designed as a multifunctional extractant.
Collapse
|
43
|
Wang XY, Wang DB, Zhang ZP, Bi LJ, Zhang JB, Ding W, Zhang XE. A S-Layer Protein of Bacillus anthracis as a Building Block for Functional Protein Arrays by In Vitro Self-Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:5826-5832. [PMID: 26422821 DOI: 10.1002/smll.201501413] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/28/2015] [Indexed: 06/05/2023]
Abstract
S-layer proteins create a cell-surface layer architecture in both bacteria and archaea. Because S-layer proteins self-assemble into a native-like S-layer crystalline structure in vitro, they are attractive building blocks in nanotechnology. Here, the potential use of the S-layer protein EA1 from Bacillus anthracis in constructing a functional nanostructure is investigated, and apply this nanostructure in a proof-of-principle study for serological diagnosis of anthrax. EA1 is genetically fused with methyl parathion hydrolase (MPH), to degrade methyl parathion and provide a label for signal amplification. EA1 not only serves as a nanocarrier, but also as a specific antigen to capture anthrax-specific antibodies. As results, purified EA1-MPH forms a single layer of crystalline nanostructure through self-assembly. Our chimeric nanocatalyst greatly improves enzymatic stability of MPH. When applied to the detection of anthrax-specific antibodies in serum samples, the detection of our EA1-MPH nanostructure is nearly 300 times more sensitive than that of the unassembled complex. Together, it is shown that it is possible to build a functional and highly sensitive nanosensor based on S-layer protein. In conclusion, our present study should serve as a model for the development of other multifunctional nanomaterials using S-layer proteins.
Collapse
Affiliation(s)
- Xu-Ying Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Agromicrobiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dian-Bing Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhi-Ping Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Li-Jun Bi
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ji-Bin Zhang
- State Key Laboratory of Agromicrobiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wei Ding
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xian-En Zhang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
44
|
Ucisik MH, Sleytr UB, Schuster B. Emulsomes meet S-layer proteins: an emerging targeted drug delivery system. Curr Pharm Biotechnol 2015; 16:392-405. [PMID: 25697368 PMCID: PMC4460288 DOI: 10.2174/138920101604150218112656] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/17/2014] [Accepted: 12/12/2014] [Indexed: 11/22/2022]
Abstract
Here, the use of emulsomes as a drug delivery system is reviewed and compared with other similar lipidic nanoformulations. In particular, we look at surface modification of emulsomes using S-layer proteins, which are self-assembling proteins that cover the surface of many prokaryotic organisms. It has been shown that covering emulsomes with a crystalline S-layer lattice can protect cells from oxidative stress and membrane damage. In the future, the capability to recrystallize S-layer fusion proteins on lipidic nanoformulations may allow the presentation of binding functions or homing protein domains to achieve highly specific targeted delivery of drug-loaded emulsomes. Besides the discussion on several designs and advantages of composite emulsomes, the success of emulsomes for the delivery of drugs to fight against viral and fungal infections, dermal therapy, cancer, and autoimmunity is summarized. Further research might lead to smart, biocompatible emulsomes, which are able to protect and reduce the side effects caused by the drug, but at the same time are equipped with specific targeting molecules to find the desired site of action.
Collapse
Affiliation(s)
| | | | - Bernhard Schuster
- Department of Biomedical Engineering, School of Engineering and Natural Sciences, Istanbul Medipol University, Ekinciler Cad. No.19, 34810 Beykoz, Istanbul, Turkey.
| |
Collapse
|
45
|
Rad B, Haxton TK, Shon A, Shin SH, Whitelam S, Ajo-Franklin CM. Ion-specific control of the self-assembly dynamics of a nanostructured protein lattice. ACS NANO 2015; 9:180-90. [PMID: 25494454 PMCID: PMC4310639 DOI: 10.1021/nn502992x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 12/10/2014] [Indexed: 05/22/2023]
Abstract
Self-assembling proteins offer a potential means of creating nanostructures with complex structure and function. However, using self-assembly to create nanostructures with long-range order whose size is tunable is challenging, because the kinetics and thermodynamics of protein interactions depend sensitively on solution conditions. Here we systematically investigate the impact of varying solution conditions on the self-assembly of SbpA, a surface-layer protein from Lysinibacillus sphaericus that forms two-dimensional nanosheets. Using high-throughput light scattering measurements, we mapped out diagrams that reveal the relative yield of self-assembly of nanosheets over a wide range of concentrations of SbpA and Ca(2+). These diagrams revealed a localized region of optimum yield of nanosheets at intermediate Ca(2+) concentration. Replacement of Mg(2+) or Ba(2+) for Ca(2+) indicates that Ca(2+) acts both as a specific ion that is required to induce self-assembly and as a general divalent cation. In addition, we use competitive titration experiments to find that 5 Ca(2+) bind to SbpA with an affinity of 67.1 ± 0.3 μM. Finally, we show via modeling that nanosheet assembly occurs by growth from a negligibly small critical nucleus. We also chart the dynamics of nanosheet size over a variety of conditions. Our results demonstrate control of the dynamics and size of the self-assembly of a nanostructured lattice, the constituents of which are one of a class of building blocks able to form novel hybrid nanomaterials.
Collapse
Affiliation(s)
- Behzad Rad
- Materials Sciences Division, Physical Biosciences Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8075, United States
| | - Thomas K. Haxton
- Materials Sciences Division, Physical Biosciences Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8075, United States
| | - Albert Shon
- Materials Sciences Division, Physical Biosciences Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8075, United States
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, California 94720-1462, United States
| | - Seong-Ho Shin
- Materials Sciences Division, Physical Biosciences Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8075, United States
- Department of Chemistry, UC Berkeley, Berkeley, California 94720-1460, United States
| | - Stephen Whitelam
- Materials Sciences Division, Physical Biosciences Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8075, United States
| | - Caroline M. Ajo-Franklin
- Materials Sciences Division, Physical Biosciences Division, and Synthetic Biology Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720-8075, United States
- Address correspondence to
| |
Collapse
|
46
|
Ladenhauf EM, Pum D, Wastl DS, Toca-Herrera JL, Phan NVH, Lieberzeit PA, Sleytr UB. S-layer based biomolecular imprinting. RSC Adv 2015. [DOI: 10.1039/c5ra14971a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AFM image of an S-layer protein array used for making molecular imprints.
Collapse
Affiliation(s)
- Eva M. Ladenhauf
- University of Natural Resources and Life Sciences, Vienna
- Department of Nanobiotechnology
- Institute of Biophysics
- A-1190 Vienna
- Austria
| | - Dietmar Pum
- University of Natural Resources and Life Sciences, Vienna
- Department of Nanobiotechnology
- Institute of Biophysics
- A-1190 Vienna
- Austria
| | - Daniel S. Wastl
- University of Natural Resources and Life Sciences, Vienna
- Department of Nanobiotechnology
- Institute of Biophysics
- A-1190 Vienna
- Austria
| | - Jose Luis Toca-Herrera
- University of Natural Resources and Life Sciences, Vienna
- Department of Nanobiotechnology
- Institute of Biophysics
- A-1190 Vienna
- Austria
| | - Nam V. H. Phan
- University of Vienna
- Department of Analytical Chemistry
- A-1090 Vienna
- Austria
| | | | - Uwe B. Sleytr
- University of Natural Resources and Life Sciences, Vienna
- Department of Nanobiotechnology
- Institute of Biophysics
- A-1190 Vienna
- Austria
| |
Collapse
|
47
|
Abstract
Protein crystals have been functionalized for applications in preparation of inorganic materials, asymmetric catalysis and accumulation of functional compounds.
Collapse
Affiliation(s)
- Satoshi Abe
- Department of Biomolecular Engineering
- Graduate School of Bioscience and Biotechnology
- Tokyo Institute of Technology
- Midori-ku
- Japan
| | - Takafumi Ueno
- Department of Biomolecular Engineering
- Graduate School of Bioscience and Biotechnology
- Tokyo Institute of Technology
- Midori-ku
- Japan
| |
Collapse
|
48
|
Assembly and molecular order of two-dimensional peptoid nanosheets through the oil-water interface. Proc Natl Acad Sci U S A 2014; 111:13284-9. [PMID: 25197049 DOI: 10.1073/pnas.1414843111] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptoid nanosheets are a recently discovered class of 2D nanomaterial that form from the self-assembly of a sequence-specific peptoid polymer at an air-water interface. Nanosheet formation occurs first through the assembly of a peptoid monolayer and subsequent compression into a bilayer structure. These bilayer materials span hundreds of micrometers in lateral dimensions and have the potential to be used in a variety of applications, such as in molecular sensors, artificial membranes, and as catalysts. This paper reports that the oil-water interface provides another opportunity for growth of these unique and highly ordered peptoid sheets. The monolayers formed at this interface are found through surface spectroscopic measurements to be highly ordered and electrostatic interactions between the charged moieties, namely carboxylate and ammonium residues, of the peptoid are essential in the ability of these peptoids to form ordered nanosheets at the oil-water interface. Expanding the mechanism of peptoid nanosheet formation to the oil-water interface and understanding the crucial role of electrostatic interactions between peptoid residues in nanosheet formation is essential for increasing the complexity and functionality of these nanomaterials.
Collapse
|
49
|
Sleytr UB, Schuster B, Egelseer E, Pum D. S-layers: principles and applications. FEMS Microbiol Rev 2014; 38:823-64. [PMID: 24483139 PMCID: PMC4232325 DOI: 10.1111/1574-6976.12063] [Citation(s) in RCA: 257] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 01/10/2014] [Accepted: 01/13/2014] [Indexed: 01/12/2023] Open
Abstract
Monomolecular arrays of protein or glycoprotein subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope components. S-layers are generally the most abundantly expressed proteins, have been observed in species of nearly every taxonomical group of walled bacteria, and represent an almost universal feature of archaeal envelopes. The isoporous lattices completely covering the cell surface provide organisms with various selection advantages including functioning as protective coats, molecular sieves and ion traps, as structures involved in surface recognition and cell adhesion, and as antifouling layers. S-layers are also identified to contribute to virulence when present as a structural component of pathogens. In Archaea, most of which possess S-layers as exclusive wall component, they are involved in determining cell shape and cell division. Studies on structure, chemistry, genetics, assembly, function, and evolutionary relationship of S-layers revealed considerable application potential in (nano)biotechnology, biomimetics, biomedicine, and synthetic biology.
Collapse
Affiliation(s)
- Uwe B. Sleytr
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Bernhard Schuster
- Institute of Synthetic BiologyDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Eva‐Maria Egelseer
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dietmar Pum
- Institute of BiophysicsDepartment of NanobiotechnologyUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
50
|
Abstract
Crystalline bacterial cell surface layers (S-layers) represent the outermost cell envelope component in a broad range of bacteria and archaea. They are monomolecular arrays composed of a single protein or glycoprotein species and represent the simplest biological membranes developed during evolution. They are highly porous protein mesh works with unit cell sizes in the range of 3 to 30 nm, and pore sizes of 2 to 8 nm. S-layers are usually 5 to 20 nm thick (in archaea, up to 70 nm). S-layer proteins are one of the most abundant biopolymers on earth. One of their key features, and the focus of this review, is the intrinsic capability of isolated native and recombinant S-layer proteins to form self-assembled mono- or double layers in suspension, at solid supports, the air-water interface, planar lipid films, liposomes, nanocapsules, and nanoparticles. The reassembly is entropy-driven and a fascinating example of matrix assembly following a multistage, non-classical pathway in which the process of S-layer protein folding is directly linked with assembly into extended clusters. Moreover, basic research on the structure, synthesis, genetics, assembly, and function of S-layer proteins laid the foundation for their application in novel approaches in biotechnology, biomimetics, synthetic biology, and nanotechnology.
Collapse
Affiliation(s)
- Dietmar Pum
- Institute of Biophysics, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 11, 1190 Vienna, Austria
| | | |
Collapse
|