1
|
Hall AM. Protein handling in kidney tubules. Nat Rev Nephrol 2025; 21:241-252. [PMID: 39762367 DOI: 10.1038/s41581-024-00914-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 03/23/2025]
Abstract
The kidney proximal tubule reabsorbs and degrades filtered plasma proteins to reclaim valuable nutrients and maintain body homeostasis. Defects in this process result in proteinuria, one of the most frequently used biomarkers of kidney disease. Filtered proteins enter proximal tubules via receptor-mediated endocytosis and are processed within a highly developed apical endo-lysosomal system (ELS). Proteinuria is a strong risk factor for chronic kidney disease progression and genetic disorders of the ELS cause hereditary kidney diseases, so deepening understanding of how the proximal tubule handles proteins is crucial for translational nephrology. Moreover, the ELS is both an entry point for nephrotoxins that induce tubular damage and a target for novel therapies to prevent it. Cutting-edge research techniques, such as functional intravital imaging and computational modelling, are shedding light on spatial and integrative aspects of renal tubular protein processing in vivo, how these are altered under pathological conditions and the consequences for other tubular functions. These insights have potentially important implications for understanding the origins of systemic complications arising in proteinuric states, and might lead to the development of new ways of monitoring and treating kidney diseases.
Collapse
Affiliation(s)
- Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland.
- Zurich Kidney Center, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Davidsen N, Ramhøj L, Ballegaard ASR, Rosenmai AK, Henriksen CS, Svingen T. Perfluorooctanesulfonic acid (PFOS) disrupts cadherin-16 in the developing rat thyroid gland. Curr Res Toxicol 2024; 6:100154. [PMID: 38352163 PMCID: PMC10861841 DOI: 10.1016/j.crtox.2024.100154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/01/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
Perfluorooctanesulfonic acid (PFOS) can disrupt the thyroid hormone (TH) system in rodents, potentially affecting perinatal growth and neurodevelopment. Some studies also suggest that gestational exposure to PFOS can lead to lower TH levels throughout life, indicating that PFOS may compromise thyroid gland development. To address this question, we utilized a rat thyroid gland ex vivo culture system to study direct effects of PFOS on the developing thyroid. No significant changes to follicular structure or size were observed with 1 µM or 10 µM PFOS exposure. However, the transcription factor Foxe1, together with Tpo and Lrp2, were upregulated, whereas the key transcription factor Pax8 and its downstream target gene Cdh16 were significantly downregulated at the transcript level, observed with both RT-qPCR and RNAscope. Notably, Cdh16 expression was not uniformly downregulated across Cdh16-postive cells, but instead displayed a patchy expression pattern across the thyroid gland. This is a significant change in expression pattern compared to control thyroids where Cdh16 is expressed relatively uniformly. The disrupted expression pattern was also seen at the protein level. This suggests that PFOS exposure can impact follicular growth and structure. Compromised follicle integrity, if irreversible, could help explain reduced TH synthesis postnatally. This view is supported by observed changes to Tpo and Lrp2 expression, two factors that play a role in TH synthesis.
Collapse
Affiliation(s)
- Nichlas Davidsen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Louise Ramhøj
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | | | | | | | - Terje Svingen
- National Food Institute, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
3
|
Rattner A, Heng JS, Winer BL, Goff LA, Nathans J. Normal and Sjogren's syndrome models of the murine lacrimal gland studied at single-cell resolution. Proc Natl Acad Sci U S A 2023; 120:e2311983120. [PMID: 37812717 PMCID: PMC10589653 DOI: 10.1073/pnas.2311983120] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/28/2023] [Indexed: 10/11/2023] Open
Abstract
The lacrimal gland is of central interest in ophthalmology both as the source of the aqueous component of tear fluid and as the site of autoimmune pathology in the context of Sjogren's syndrome (SjS). To provide a foundational description of mouse lacrimal gland cell types and their patterns of gene expression, we have analyzed single-cell transcriptomes from wild-type (Balb/c) mice and from two genetically based SjS models, MRL/lpr and NOD (nonobese diabetic).H2b, and defined the localization of multiple cell-type-specific protein and mRNA markers. This analysis has uncovered a previously undescribed cell type, Car6+ cells, which are located at the junction of the acini and the connecting ducts. More than a dozen secreted polypeptides that are likely to be components of tear fluid are expressed by acinar cells and show pronounced sex differences in expression. Additional examples of gene expression heterogeneity within a single cell type were identified, including a gradient of Claudin4 along the length of the ductal system and cell-to-cell heterogeneity in transcription factor expression within acinar and myoepithelial cells. The patterns of expression of channels, transporters, and pumps in acinar, Car6+, and ductal cells make strong predictions regarding the mechanisms of water and electrolyte secretion. In MRL/lpr and NOD.H2b lacrimal glands, distinctive changes in parenchymal gene expression and in immune cell subsets reveal widespread interferon responses, a T cell-dominated infiltrate in the MRL/lpr model, and a mixed B cell and T cell infiltrate in the NOD.H2b model.
Collapse
Affiliation(s)
- Amir Rattner
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Jacob S. Heng
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Briana L. Winer
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Loyal A. Goff
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Kavli Neurodiscovery Institute, Baltimore, MD21205
| | - Jeremy Nathans
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD21205
- HHMI, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Wilmer Eye Institute, Baltimore, MD21205
| |
Collapse
|
4
|
Tosatto L, Coscia F. A glance at post-translational modifications of human thyroglobulin: potential impact on function and pathogenesis. Eur Thyroid J 2022; 11:e220046. [PMID: 35544053 PMCID: PMC9254275 DOI: 10.1530/etj-22-0046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 11/08/2022] Open
Abstract
Thyroid hormones are essential for the metabolism of vertebrates and their synthesis, storage and release in the thyroid gland are orchestrated by their large protein precursor thyroglobulin (Tg). Alterations of Tg structure and localisation often correlate with major thyroid disorders. Namely, Tg is the main antigen in autoimmune thyroid diseases, and mutations in its gene are one of the causes of congenital hypothyroidism. Post-translational modifications (PTMs) are crucial for Tg surface properties and may be affected by the disease microenvironment; yet, their role in thyroid homeostasis and pathogenesis remains elusive. The advance of electron cryo-microscopy (cryo-EM) has recently enabled the structure of Tg to be revealed in the un-iodinated and iodinated states. Moreover, ad hoc proteomic analyses have lately identified new PTMs in Tg. Here, we provide an overview of the Tg cryo-EM models obtained so far, and we build a three-dimensional map of known PTMs in Tg. Based on their location, we suggest the potential implication of each PTM in hormonogenesis, interactions with cellular partners, colloid cross-linking and hormone release. In addition, several PTMs overlap with immunogenic regions and pathogenic gene mutations. Hence, our analysis reveals a possible cross-talk between PTMs and alteration of Tg function in these disorders. In perspective, multi-omics analyses from patients, interpreted with structural and functional data, may generate more robust models to correlate phenotypes with classes of Tg functional alterations. This integrative approach will likely provide more targeted strategies to restore specific Tg functions in different thyroid pathologies.
Collapse
|
5
|
Coscia F, Taler-Verčič A. Cryo-EM: A new dawn in thyroid biology. Mol Cell Endocrinol 2021; 531:111309. [PMID: 33964321 PMCID: PMC8316605 DOI: 10.1016/j.mce.2021.111309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 11/09/2022]
Abstract
The thyroid gland accumulates the rare dietary element iodine and incorporates it into iodinated thyroid hormones, utilising several tightly regulated reactions and molecular mechanisms. Thyroid hormones are essential in vertebrates and play a central role in many biological processes, such as development, thermogenesis and growth. The control of these functions is exerted through the binding of hormones to nuclear thyroid hormone receptors that rule the transcription of numerous metabolic genes. Over the last 50 years, thyroid biology has been studied extensively at the cellular and organismal levels, revealing its multiple clinical implications, yet, a complete molecular understanding is still lacking. This includes the atomic structures of crucial pathway components that would be needed to elucidate molecular mechanisms. Here we review the currently known protein structures involved in thyroid hormone synthesis, regulation, transport, and actions. We also highlight targets for future investigations that will significantly benefit from recent advances in macromolecular structure determination by electron cryo-microscopy (cryo-EM). As an example, we demonstrate how cryo-EM was crucial to obtain the structure of the large thyroid hormone precursor protein, thyroglobulin. We discuss modern cryo-EM compared to other structure determination methods and how an integrated structural and cell biological approach will help filling the molecular knowledge gap in our understanding of thyroid hormone metabolism. Together with clinical, cellular and high-throughput 'omics' studies, atomic structures of thyroid components will provide an important framework to map disease mutations and to interpret and predict thyroid phenotypes.
Collapse
Affiliation(s)
- Francesca Coscia
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK; Human Technopole, Via Cristina Belgioioso 171, 20157, Milano, Italy.
| | - Ajda Taler-Verčič
- University of Ljubljana, Faculty of Medicine, Institute of Biochemistry and Molecular Genetics, Vrazov Trg 2, 1000, Ljubljana, Slovenia
| |
Collapse
|
6
|
Lisi S, Marinò M. Prediction of heparin binding of mutated short sequences of rat thyroglobulin. J Endocrinol Invest 2021; 44:1237-1241. [PMID: 32876926 DOI: 10.1007/s40618-020-01411-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/26/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Binding of thyroglobulin (Tg) to heparin is involved in Tg transcytosis via megalin. Rat Tg (rTg) binds to heparin through an exposed carboxyl terminal region (RELPSRRLKRPLPVK, Arg2489-Lys2503) rich in positively charged residues. This region is not entirely conserved in human Tg (hTg) (Arg2489-Glu2503, REPPARALKRSLWVE), resulting in lower affinity binding. Here, we developed a score to predict to what extent secondary structure modifications affect the heparin-binding ability of rTg. METHODS We designed eight synthetic peptides, including one with the Arg2489-Lys2503 sequence of rTg (rTgP), one with the corresponding sequence of hTg (hTgP), and six "mutant" peptides, each carrying a point mutation obtained by replacing one amino acid residue of rTgP with the corresponding residue of hTgP. Heparin binding was assessed in solid-phase assays. The Bmax and the constants of dissociation (Kd) were calculated. RESULTS Using a no-fee online service, we obtained predictions of peptide secondary structures and developed a scoring system to estimate to what extent mutations are expected to modify rTg secondary structure. The score was designated as Probability of Secondary Structure Change (PSSC) and it significantly correlated with the BMax (R = 0.942, P < 0.001) and the Kds (R = - 0.744, P < 0.01) of heparin binding of hTgP and of the "mutant" peptides. CONCLUSIONS The PSSC score allows predicting to what extent point mutations are likely to affect the heparin-binding ability of short sequences of proteins: in this case rTg, regardless of whether mutations affect charge of the sequence. The secondary structure of Tg is likely to play a role in heparin binding.
Collapse
Affiliation(s)
- S Lisi
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
- Bio@SNS Laboratory, Scuola Normale Superiore, Pisa, Italy
| | - M Marinò
- Department of Clinical and Experimental Medicine, Endocrinology Unit II, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| |
Collapse
|
7
|
Santiwarangkool S, Akita H, Khalil IA, Abd Elwakil MM, Sato Y, Kusumoto K, Harashima H. A study of the endocytosis mechanism and transendothelial activity of lung-targeted GALA-modified liposomes. J Control Release 2019; 307:55-63. [PMID: 31185231 DOI: 10.1016/j.jconrel.2019.06.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 01/08/2023]
Abstract
The GALA peptide (WEAALAEALAEALAEHLAEALAEALEALAA) was originally designed to induce the destabilization of endosomal membranes based on its ability to undergo a pH-dependent conformational change from a random coil to an α-helix. We recently found that liposomes modified with GALA peptide (GALA-LPs) extensively accumulate in lung endothelial cells (ECs) after intravenous injection. However, the uptake mechanism of GALA-LPs and their ability to reach alveolar epithelium was unclear. We report herein that GALA-LPs are internalized into ECs via a clathrin-mediated pathway. Surprisingly, GALA-LPs had the ability to pass lung ECs and reach other cells through transcytosis. GALA-LPs were taken up by >70% of lung ECs, while they also accumulated in ~30% of type I alveolar epithelium (ATI). GALA-modified gold nanoparticles were detected in ECs, in the basement membrane and in other cells such as ATI, type II alveolar epithelium (ATII) and alveolar macrophages. Consistent with this result, a significant gene knockdown was achieved in lung epithelium cells using GALA-LPs encapsulating anti-podoplanin siRNA. This indicates that GALA-LPs can be used as a carrier for delivering macromolecules to parenchymal as well as to endothelial cells in the lung. Although caveolae are commonly linked to the transendothelial transport of proteins and antibodies, our data indicate that clathrin-mediated endocytosis might also participate in the transcytosis process.
Collapse
Affiliation(s)
- Sarochin Santiwarangkool
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Hidetaka Akita
- Laboratory of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan
| | - Ikramy A Khalil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Mahmoud M Abd Elwakil
- Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Yusuke Sato
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan
| | - Kenji Kusumoto
- Formulation Research Lab., Taiho Pharmaceutical Co., Ltd., 224-2, Ebisuno, Hiraishi, Kawauchi-cho, Tokushima 771-0194, Japan
| | - Hideyoshi Harashima
- Laboratory for Molecular Design of Pharmaceutics, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan; Laboratory of Innovative Nanomedicine, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan.
| |
Collapse
|
8
|
Abstract
In humans, the thyroid hormones T3 and T4 are synthesized in the thyroid gland in a process that crucially involves the iodoglycoprotein thyroglobulin. The overall structure of thyroglobulin is conserved in all vertebrates. Upon thyroglobulin delivery from thyrocytes to the follicular lumen of the thyroid gland via the secretory pathway, multiple tyrosine residues can become iodinated to form mono-iodotyrosine (MIT) and/or di-iodotyrosine (DIT); however, selective tyrosine residues lead to preferential formation of T4 and T3 at distinct sites. T4 formation involves oxidative coupling between two DIT side chains, and de novo T3 formation involves coupling between an MIT donor and a DIT acceptor. Thyroid hormone synthesis is stimulated by TSH activating its receptor (TSHR), which upregulates the activity of many thyroid gene products involved in hormonogenesis. Additionally, TSH regulates post-translational changes in thyroglobulin that selectively enhance its capacity for T3 formation - this process is important in iodide deficiency and in Graves disease. 167 different mutations, many of which are newly discovered, are now known to exist in TG (encoding human thyroglobulin) that can lead to defective thyroid hormone synthesis, resulting in congenital hypothyroidism.
Collapse
Affiliation(s)
- Cintia E Citterio
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Héctor M Targovnik
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología y Biotecnología/Cátedra de Genética, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Inmunología, Genética y Metabolismo (INIGEM), Buenos Aires, Argentina
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
9
|
Waugh DT. Fluoride Exposure Induces Inhibition of Sodium/Iodide Symporter (NIS) Contributing to Impaired Iodine Absorption and Iodine Deficiency: Molecular Mechanisms of Inhibition and Implications for Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1086. [PMID: 30917615 PMCID: PMC6466022 DOI: 10.3390/ijerph16061086] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 12/24/2022]
Abstract
The sodium iodide symporter (NIS) is the plasma membrane glycoprotein that mediates active iodide transport in the thyroid and other tissues, such as the salivary, gastric mucosa, rectal mucosa, bronchial mucosa, placenta and mammary glands. In the thyroid, NIS mediates the uptake and accumulation of iodine and its activity is crucial for the development of the central nervous system and disease prevention. Since the discovery of NIS in 1996, research has further shown that NIS functionality and iodine transport is dependent on the activity of the sodium potassium activated adenosine 5'-triphosphatase pump (Na+, K+-ATPase). In this article, I review the molecular mechanisms by which F inhibits NIS expression and functionality which in turn contributes to impaired iodide absorption, diminished iodide-concentrating ability and iodine deficiency disorders. I discuss how NIS expression and activity is inhibited by thyroglobulin (Tg), tumour necrosis factor alpha (TNF-α), transforming growth factor beta 1 (TGF-β1), interleukin 6 (IL-6) and Interleukin 1 beta (IL-1β), interferon-γ (IFN-γ), insulin like growth factor 1 (IGF-1) and phosphoinositide 3-kinase (PI3K) and how fluoride upregulates expression and activity of these biomarkers. I further describe the crucial role of prolactin and megalin in regulation of NIS expression and iodine homeostasis and the effect of fluoride in down regulating prolactin and megalin expression. Among many other issues, I discuss the potential conflict between public health policies such as water fluoridation and its contribution to iodine deficiency, neurodevelopmental and pathological disorders. Further studies are warranted to examine these associations.
Collapse
Affiliation(s)
- Declan Timothy Waugh
- EnviroManagement Services, 11 Riverview, Doherty's Rd, Bandon, Co. Cork, P72 YF10, Ireland.
| |
Collapse
|
10
|
Farebrother J, Zimmermann MB, Andersson M. Excess iodine intake: sources, assessment, and effects on thyroid function. Ann N Y Acad Sci 2019; 1446:44-65. [PMID: 30891786 DOI: 10.1111/nyas.14041] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 12/15/2022]
Abstract
Iodine is essential for thyroid hormone synthesis. High iodine intakes are well tolerated by most healthy individuals, but in some people, excess iodine intakes may precipitate hyperthyroidism, hypothyroidism, goiter, and/or thyroid autoimmunity. Individuals with preexisting thyroid disease or those previously exposed to iodine deficiency may be more susceptible to thyroid disorders due to an increase in iodine intake, in some cases at intakes only slightly above physiological needs. Thyroid dysfunction due to excess iodine intake is usually mild and transient, but iodine-induced hyperthyroidism can be life-threatening in some individuals. At the population level, excess iodine intakes may arise from consumption of overiodized salt, drinking water, animal milk rich in iodine, certain seaweeds, iodine-containing dietary supplements, and from a combination of these sources. The median urinary iodine concentration (UIC) of a population reflects the total iodine intake from all sources and can accurately identify populations with excessive iodine intakes. Our review describes the association between excess iodine intake and thyroid function. We outline potential sources of excess iodine intake and the physiological responses and consequences of excess iodine intakes. We provide guidance on choice of biomarkers to assess iodine intake, with an emphasis on the UIC and thyroglobulin.
Collapse
Affiliation(s)
- Jessica Farebrother
- Human Nutrition Laboratory, Institute of Food, Nutrition, and Health, ETH Zurich, Zurich, Switzerland.,Department of Women and Children's Health, King's College London, London, UK
| | - Michael B Zimmermann
- Human Nutrition Laboratory, Institute of Food, Nutrition, and Health, ETH Zurich, Zurich, Switzerland.,Iodine Global Network, Ottawa, Ontario, Canada
| | - Maria Andersson
- Human Nutrition Laboratory, Institute of Food, Nutrition, and Health, ETH Zurich, Zurich, Switzerland.,Iodine Global Network, Ottawa, Ontario, Canada.,Division of Gastroenterology and Nutrition, University Children's Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Bouillon R, Schuit F, Antonio L, Rastinejad F. Vitamin D Binding Protein: A Historic Overview. Front Endocrinol (Lausanne) 2019; 10:910. [PMID: 31998239 PMCID: PMC6965021 DOI: 10.3389/fendo.2019.00910] [Citation(s) in RCA: 188] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/13/2019] [Indexed: 02/06/2023] Open
Abstract
Vitamin D and all its metabolites are bound to a specific vitamin D binding protein, DBP. This protein was originally first discovered by its worldwide polymorphism and called Group-specific Component (GC). We now know that DBP and GC are the same protein and appeared early in the evolution of vertebrates. DBP is genetically the oldest member of the albuminoid family (including albumin, α-fetoprotein and afamin, all involved in transport of fatty acids or hormones). DBP has a single binding site for all vitamin D metabolites and has a high affinity for 25OHD and 1,25(OH)2D, thereby creating a large pool of circulating 25OHD, which prevents rapid vitamin D deficiency. DBP of higher vertebrates (not amphibians or reptiles) binds with very high affinity actin, thereby preventing the formation of polymeric actin fibrils in the circulation after tissue damage. Megalin is a cargo receptor and is together with cubilin needed to reabsorb DBP or the DBP-25OHD complex, thereby preventing the urinary loss of these proteins and 25OHD. The total concentrations of 25OHD and 1,25(OH)2D in DBP null mice or humans are extremely low but calcium and bone homeostasis remain normal. This is the strongest argument for claiming that the "free hormone hypothesis" also applies to the vitamin D hormone, 1,25(OH)2D. DBP also transports fatty acids, and can play a role in the immune system. DBP is genetically very polymorphic with three frequent alleles (DBP/GC 1f, 1s, and 2) but in total more than 120 different variants but its health consequences, if any, are not understood. A standardization of DBP assays is essential to further explore the role of DBP in physiology and diseases.
Collapse
Affiliation(s)
- Roger Bouillon
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- *Correspondence: Roger Bouillon
| | - Frans Schuit
- Gene Expression Unit, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Leen Antonio
- Laboratory of Clinical and Experimental Endocrinology, Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
- Department of Endocrinology, University Hospitals Leuven, Leuven, Belgium
| | - Fraydoon Rastinejad
- Nuffield Department of Medicine, Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Ohara A, Yamada F, Fukuda T, Suzuki N, Sumida K. Specific alteration of gene expression profile in rats by treatment with thyroid toxicants that inhibit thyroid hormone synthesis. J Appl Toxicol 2018; 38:1529-1537. [PMID: 30047161 DOI: 10.1002/jat.3693] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 06/07/2018] [Accepted: 06/21/2018] [Indexed: 11/10/2022]
Abstract
Transcriptomics technologies have been used for risk assessment of chemicals, mainly to predict the modes of action (MOAs) of chemicals or identify biomarkers. Transcriptomics data may also be helpful to understand MOAs of chemicals at the molecular level in more detail. As an example of the known MOAs, there are two MOAs of thyroid toxicity: inhibition of thyroid hormone synthesis ("direct" effect) and hypermetabolism of thyroid hormone by enzyme induction in liver ("indirect" effect). In the present study, global profiles of gene expression were analyzed in rats treated with chemicals acting directly on the thyroid (thyroid peroxidase inhibitors such as propylthiouracil and methimazole) and chemicals acting indirectly on the thyroid (hepatic enzyme inducers such as phenobarbital and pregnenolone-16α-carbonitrile) using microarrays. Using a subtraction method between these two types of chemicals, we identified characteristic gene expression changes on the thyroid hormone synthesis pathway by direct-acting chemicals. Based on the functions of these genes, alterations of their expression seem to indicate the results of thyroid peroxidase inhibition, and might be helpful in more accurate evaluation of MOAs for thyroid toxicity.
Collapse
Affiliation(s)
- Ayako Ohara
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Fumihiro Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Takako Fukuda
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Noriyuki Suzuki
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-ku, Osaka, 554-8558, Japan
| | - Kayo Sumida
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., 1-98, 3-Chome, Kasugade-Naka, Konohana-ku, Osaka, 554-8558, Japan
| |
Collapse
|
13
|
Carvalho DP, Dupuy C. Thyroid hormone biosynthesis and release. Mol Cell Endocrinol 2017; 458:6-15. [PMID: 28153798 DOI: 10.1016/j.mce.2017.01.038] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/07/2017] [Accepted: 01/23/2017] [Indexed: 12/31/2022]
Abstract
Thyroid hormones (TH) 3,5,3',5'- tetraiodothyronine or thyroxine (T4) and 3,5,3'- triiodothyronine (T3) contain iodine atoms as part of their structure, and their synthesis occur in the unique structures called thyroid follicles. Iodide reaches thyroid cells through the bloodstream that supplies the basolateral plasma membrane of thyrocytes, where it is avidly taken up through the sodium/iodide symporter (NIS). Thyrocytes are also specialized in the secretion of the high molecular weight protein thyroglobulin (TG) in the follicular lumen. The iodination of the tyrosyl residues of TG preceeds TH biosynthesis, which depends on the interaction of iodide, TG, hydrogen peroxide (H2O2) and thyroid peroxidase (TPO) at the apical plasma membrane of thyrocytes. Thyroid hormone biosynthesis is under the tonic control of thyrotropin (TSH), while the iodide recycling ability is very important for normal thyroid function. We discuss herein the biochemical aspects of TH biosynthesis and release, highlighting the novel molecules involved in the process.
Collapse
Affiliation(s)
- Denise P Carvalho
- Biophysics Institute of Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Corinne Dupuy
- Université Paris-Saclay, Orsay, France; UMR 8200 CNRS, Villejuif, France; Institut de Cancérologie Gustave Roussy, Villejuif, Ile-de-France, France
| |
Collapse
|
14
|
Botta R, Lisi S, Rotondo Dottore G, Vitti P, Marinò M. Binding of thyroglobulin (Tg) to the low-density lipoprotein receptor-associated protein (RAP) during the biosynthetic pathway prevents premature Tg interactions with sortilin. J Endocrinol Invest 2017; 40:991-997. [PMID: 28382504 DOI: 10.1007/s40618-017-0668-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Sortilin, a Vps10p family member, is expressed by thyroid epithelial cells (TEC), where it binds to internalized thyroglobulin (Tg) molecules. Premature binding of Tg to sortilin during biosynthesis may cause intracellular retention of Tg. Such a premature interaction may be prevented by one or more inhibitor/s. Because both sortilin and Tg bind to the low-density lipoprotein receptor-associated protein (RAP), we investigated whether RAP serves such a function. METHODS Immunofluorescence staining for sortilin, Tg, and RAP was performed in FRTL-5 cells. Co-immunoprecipitation experiments were performed in extracts from FRTL-5 or COS-7 cells, the former co-transfected with Tg and/or RAP and/or sortilin, or in thyroid extracts from RAP KO mice. RESULTS Tg and sortilin did not co-localize in FRTL-5 cells following inhibition of protein synthesis, suggesting that newly synthesized, endogenous sortilin and Tg do not interact, in confirmation of which an anti-sortilin antibody did not co-precipitate Tg in FRTL-5 cells. In contrast, Tg co-localized with RAP in FRTL-5 cells. Co-immunoprecipitation of Tg with an anti-sortilin antibody in COS-7 cells transfected with sortilin and Tg was abolished when cells were co-transfected with RAP, indicating that RAP prevents binding of Tg to sortilin during biosynthesis, in confirmation of which an anti-sortilin antibody co-precipitated Tg in thyroid extracts from RAP KO mice to a greater extent than in thyroid extracts from WT mice. CONCLUSIONS Tg does not bind prematurely to sortilin because of its interaction with RAP during protein biosynthesis. These findings add new information to the knowledge of thyroid physiology.
Collapse
Affiliation(s)
- R Botta
- Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
- DiaSorin S.p.A, Saluggia, Italy
| | - S Lisi
- Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
- Neurobiology Laboratory of Biology, Scuola Normale Superiore, Piazza Dei Cavalieri 1, Pisa, Italy
| | - G Rotondo Dottore
- Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - P Vitti
- Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - M Marinò
- Department of Clinical and Experimental Medicine, Endocrinology Units, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| |
Collapse
|
15
|
Luo Y, Akama T, Okayama A, Yoshihara A, Sue M, Oda K, Hayashi M, Ishido Y, Hirano H, Hiroi N, Katoh R, Suzuki K. A Novel Role for Flotillin-Containing Lipid Rafts in Negative-Feedback Regulation of Thyroid-Specific Gene Expression by Thyroglobulin. Thyroid 2016; 26:1630-1639. [PMID: 27676653 DOI: 10.1089/thy.2016.0187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Thyroglobulin (Tg) stored in thyroid follicles regulates follicular function in thyroid hormone (TH) synthesis by suppressing thyroid-specific gene expression in a concentration-dependent manner. Thus, Tg is an intrinsic negative-feedback regulator that can restrain the effect of thyrotropin (TSH) in the follicle. However, the underlying mechanisms by which Tg exerts its prominent autoregulatory effect following recognition by thyrocytes remains unclear. METHODS In order to identify potential proteins that recognize and interact with Tg, mass spectrometry was used to analyze immunoprecipitated Tg-bound proteins derived from Tg-treated rat thyroid FRTL-5 cells. RESULTS Flotillin 1 and flotillin 2, two homologs that are integral membrane proteins in lipid rafts, were identified as novel Tg-binding proteins with high confidence. Further studies revealed that flotillins physically interact with endocytosed Tg, and together these proteins redistribute from the cell membrane to cytoplasmic vesicles. Treatment with the lipid raft disrupter methyl-β-cyclodextrin abolished both the endocytosis and the negative-feedback effect of Tg on thyroid-specific gene expression. Meanwhile, siRNA-mediated knockdown of flotillin 1 or flotillin 2 also significantly inhibited Tg effects on gene expression. CONCLUSION Together these results indicate that flotillin-containing lipid rafts are essential for follicular Tg to be recognized by thyrocytes and exert its negative-feedback effects in the thyroid.
Collapse
Affiliation(s)
- Yuqian Luo
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 3 Department of Pathology, Faculty of Medicine, University of Yamanashi , Yamanashi, Japan
| | - Takeshi Akama
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Akiko Okayama
- 4 Advanced Medical Research Center, Yokohama City University , Yokohama, Japan
| | - Aya Yoshihara
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 5 Department of Education Planning and Development, Faculty of Medicine, Toho University , Tokyo, Japan
| | - Mariko Sue
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 6 Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University , Tokyo, Japan
| | - Kenzaburo Oda
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
- 6 Division of Diabetes, Metabolism and Endocrinology, Department of Internal Medicine, Toho University , Tokyo, Japan
| | - Moyuru Hayashi
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Yuko Ishido
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| | - Hisashi Hirano
- 3 Department of Pathology, Faculty of Medicine, University of Yamanashi , Yamanashi, Japan
| | - Naoki Hiroi
- 5 Department of Education Planning and Development, Faculty of Medicine, Toho University , Tokyo, Japan
| | - Ryohei Katoh
- 3 Department of Pathology, Faculty of Medicine, University of Yamanashi , Yamanashi, Japan
| | - Koichi Suzuki
- 1 Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University , Tokyo, Japan
- 2 Laboratory of Molecular Diagnostics, Department of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases , Tokyo, Japan
| |
Collapse
|
16
|
Lisi S, Botta R, Rotondo Dottore G, Leo M, Latrofa F, Vitti P, Marinò M. Intracellular retention of thyroglobulin in the absence of the low-density lipoprotein receptor-associated protein (RAP) is likely due to premature binding to megalin in the biosynthetic pathway. J Endocrinol Invest 2016; 39:1039-44. [PMID: 27094046 DOI: 10.1007/s40618-016-0464-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 03/30/2016] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The low-density lipoprotein receptor associated protein (RAP) is expressed by thyroid epithelial cells (TEC) in a TSH-dependent manner. In the thyroid RAP functions as a molecular chaperone for the thyroglobulin (Tg) endocytic receptor megalin/LRP2, which is retained intracellularly in RAP KO mice rather than being expressed on the apical membrane of TEC, its usual location. RAP binds also to Tg, which is also retained intracellularly in RAP KO mice, thereby suggesting a role of RAP in Tg secretion. Here we investigated whether Tg intracellular retention in the absence of RAP is due to premature Tg-megalin interactions during the biosynthetic pathway or to a direct action of RAP on Tg secretion. METHODS We performed immunoprecipitation experiments in thyroid extracts from RAP KO and WT mice. In addition, we investigated Tg secretion in COS-7 cells co-transfected with human RAP (hRAP) and mouse Tg (mTg). RESULTS An anti-megalin megalin precipitated greater amounts of Tg in thyroid extracts from RAP KO than from WT mice, suggesting increased intracellular interactions between megalin and Tg in the absence of RAP. COS-7 cells transiently transfected with hRAP, mTg or both, expressed the two proteins accordingly. RAP was found almost exclusively in cell extracts, whereas Tg was found both in extracts and media, as expected from the knowledge that RAP is ER-resident and that Tg is secreted. Regardless of whether cells were transfected with mTg alone or were co-transfected with hRAP, similar proportions of the total Tg synthesized were detected in cell extracts and media. CONCLUSIONS The intracellular retention of Tg in the absence of RAP is likely due to its premature interaction with megalin, whereas RAP does not seem to affect Tg secretion directly.
Collapse
Affiliation(s)
- S Lisi
- Department of Clinical and Experimental Medicine, Endocrinology Unit I, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
- Neurobiology Laboratory of Biology, Scuola Normale Superiore, Piazza Dei Cavalieri 1, Pisa, Italy
| | - R Botta
- Department of Clinical and Experimental Medicine, Endocrinology Unit I, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
- DiaSorin S.p.A, Saluggia, Italy
| | - G Rotondo Dottore
- Department of Clinical and Experimental Medicine, Endocrinology Unit I, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - M Leo
- Department of Clinical and Experimental Medicine, Endocrinology Unit I, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - F Latrofa
- Department of Clinical and Experimental Medicine, Endocrinology Unit I, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - P Vitti
- Department of Clinical and Experimental Medicine, Endocrinology Unit I, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | - M Marinò
- Department of Clinical and Experimental Medicine, Endocrinology Unit I, University of Pisa and University Hospital of Pisa, Via Paradisa 2, 56124, Pisa, Italy.
| |
Collapse
|
17
|
Lisi S, Madsen P, Botta R, Petersen CM, Nykjær A, Latrofa F, Vitti P, Marinò M. ABSENCE OF A THYROID PHENOTYPE IN SORTILIN-DEFICIENT MICE. Endocr Pract 2015; 21:981-5. [PMID: 26121464 DOI: 10.4158/ep15697.or] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE The Vps10p family member sortilin is expressed in thyroid epithelial cells where it contributes to recycling of the thyroid hormone precursor thyroglobulin (Tg), a process that is thought to render hormone release more effective. Here we investigated the functional impact of sortilin in the thyroid gland using sortilin-deficient mice. METHODS We measured free T4, thyroid-stimulating hormone (TSH) and Tg serum levels and studied thyroid morphology in 14 sortilin-deficient (Sort1)(-/-)and 12 wildtype (WT) mice. RESULTS Serum free T4 levels did not differ between Sort1(-/-)and WT females but were significantly lower in Sort1(-/-)males compared with WT (P = .0424). Neither serum TSH nor Tg levels differed between Sort1(-/-)and WT mice, regardless of sex. On the same line, no thyroid histology differences were observed. CONCLUSION Our findings seem to exclude a role of sortilin in thyroid hormone secretion, although it is possible that the absence of sortilin may result in a thyroid phenotype if combined with other molecular defects of thyroid hormone synthesis and secretion or under iodine deficiency.
Collapse
|
18
|
Chan S, Boelaert K. Optimal management of hypothyroidism, hypothyroxinaemia and euthyroid TPO antibody positivity preconception and in pregnancy. Clin Endocrinol (Oxf) 2015; 82:313-26. [PMID: 25200555 DOI: 10.1111/cen.12605] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 04/08/2014] [Accepted: 08/28/2014] [Indexed: 01/10/2023]
Abstract
Normal physiological changes of pregnancy warrant the need to employ gestation specific reference ranges for the interpretation of thyroid function tests. Thyroid hormones play crucial roles in foetal growth and neurodevelopment which are dependent on adequate supply of maternal thyroid hormones from early gestation onwards. The prevention of significant adverse obstetric and neurodevelopmental outcomes from hypothyroidism requires a strategy of empirical levothyroxine dose increases and predictive dose adjustments in pregnancy combined with regular thyroid function testing, starting before pregnancy and until the postpartum period. Subclinical hypothyroidism has been associated with an increased risk of pregnancy loss and neurocognitive deficits in children, especially when diagnosed before or during early pregnancy. Whilst trials of levothyroxine replacement for mild hypothyroidism in pregnancy have not indicated definite evidence of improvements in these outcomes, professional guidelines recommend treatment, especially if evidence of underlying thyroid autoimmunity is present. Studies of isolated hypothyroxinaemia in pregnancy have shown conflicting evidence with regards to adverse obstetric and neurodevelopmental outcomes and no causative relationships have been determined. Treatment of this condition in pregnancy may be considered in those with underlying thyroid autoimmunity. Whilst the evidence for a link between the presence of anti-TPO antibodies and increased risks of pregnancy loss and infertility is compelling, the results of ongoing randomized trials of levothyroxine in euthyroid women with underlying autoimmunity are currently awaited. Further studies to define the selection of women who require levothyroxine replacement and to determine the benefits of a predictive dose adjustment strategy are required.
Collapse
Affiliation(s)
- Shiao Chan
- Centre for Women's & Children's Health, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK; Centre for Endocrinology, Diabetes and Metabolism, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | |
Collapse
|
19
|
Colin IM, Denef JF, Lengelé B, Many MC, Gérard AC. Recent insights into the cell biology of thyroid angiofollicular units. Endocr Rev 2013; 34:209-38. [PMID: 23349248 PMCID: PMC3610675 DOI: 10.1210/er.2012-1015] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Accepted: 11/07/2012] [Indexed: 01/06/2023]
Abstract
In thyrocytes, cell polarity is of crucial importance for proper thyroid function. Many intrinsic mechanisms of self-regulation control how the key players involved in thyroid hormone (TH) biosynthesis interact in apical microvilli, so that hazardous biochemical processes may occur without detriment to the cell. In some pathological conditions, this enzymatic complex is disrupted, with some components abnormally activated into the cytoplasm, which can lead to further morphological and functional breakdown. When iodine intake is altered, autoregulatory mechanisms outside the thyrocytes are activated. They involve adjacent capillaries that, together with thyrocytes, form the angiofollicular units (AFUs) that can be considered as the functional and morphological units of the thyroid. In response to iodine shortage, a rapid expansion of the microvasculature occurs, which, in addition to nutrients and oxygen, optimizes iodide supply. These changes are triggered by angiogenic signals released from thyrocytes via a reactive oxygen species/hypoxia-inducible factor/vascular endothelial growth factor pathway. When intra- and extrathyrocyte autoregulation fails, other forms of adaptation arise, such as euthyroid goiters. From onset, goiters are morphologically and functionally heterogeneous due to the polyclonal nature of the cells, with nodules distributed around areas of quiescent AFUs containing globules of compact thyroglobulin (Tg) and surrounded by a hypotrophic microvasculature. Upon TSH stimulation, quiescent AFUs are activated with Tg globules undergoing fragmentation into soluble Tg, proteins involved in TH biosynthesis being expressed and the local microvascular network extending. Over time and depending on physiological needs, AFUs may undergo repetitive phases of high, moderate, or low cell and tissue activity, which may ultimately culminate in multinodular goiters.
Collapse
Affiliation(s)
- Ides M Colin
- Pôle de Morphologie, Institut de Recherche Expérimentale et Clinique, Secteur des Sciences de la Santé, Université Catholique de Louvain (UCL), UCL-5251, 52 Avenue E. Mounier, B-1200, Bruxelles, Belgium.
| | | | | | | | | |
Collapse
|
20
|
Nakabashi CCD, Biscolla RPM, Kasamatsu TS, Tachibana TT, Barcelos RN, Malouf EZ, Andreoni DM, Maciel RMB, Vieira JGH. Development, characterization and clinical validation of new sensitive immunofluorometric assay for the measurement of serum thyroglobulin. ACTA ACUST UNITED AC 2012; 56:658-65. [DOI: 10.1590/s0004-27302012000900010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 08/09/2012] [Indexed: 11/22/2022]
Abstract
OBJECTIVE: In the last decade, data published stressed the role of highly-sensitive thyroglobulin (Tg) assays in the follow-up of differentiated thyroid carcinoma (DTC) patients. The present study describes a new, highly-sensitive Tg assay, compares it with an available commercial assay, and validates it in the follow-up of DTC patients. SUBJECTS AND METHODS: The immunofluorometric high-sensitivity Tg assay is based on monoclonal and polyclonal antibodies produced at our laboratories. It was validated in 100 samples of 87 patients with DTC submitted to total thyroidectomy, 87% of whom also received radioiodine. For correlation, all samples were also tested using a commercial Tg assay (Beckman Access) with functional sensitivity (FS) of 0.1 ng/mL. RESULTS: The new method showed FS of 0.3 ng/mL. The correlation between the two methods was good (r = 0.74; p < 0.0001). The diagnostic sensitivity was 88.9%, and it was increased to 100% when combined with neck US. CONCLUSION: This new, high-sensitivity Tg assay presented a good correlation with Beckman Access assay and with the clinical outcome of the patients. The continuous availability of a validated assay is an additional advantage for long term follow-up of DTC patients. Arq Bras Endocrinol Metab. 2012;56(9):658-65
Collapse
|
21
|
Vickers AE, Heale J, Sinclair JR, Morris S, Rowe JM, Fisher RL. Thyroid organotypic rat and human cultures used to investigate drug effects on thyroid function, hormone synthesis and release pathways. Toxicol Appl Pharmacol 2012; 260:81-8. [DOI: 10.1016/j.taap.2012.01.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Revised: 01/30/2012] [Accepted: 01/31/2012] [Indexed: 01/28/2023]
|
22
|
Botta R, Lisi S, Pinchera A, Taddei AR, Fausto AM, Giorgi F, Marinò M. Binding, uptake, and degradation of internalized thyroglobulin in cultured thyroid and non-thyroid cells. J Endocrinol Invest 2011; 34:515-20. [PMID: 20959721 DOI: 10.3275/7297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Thyroid hormone release requires degradation of thyroglobulin (Tg) by thyroid epithelial cells, which occurs mainly in the lysosomal pathway following Tg endocytosis. Non-specific fluid-phase endocytosis is thought to be the main route of Tg uptake leading to degradation, whereas receptor- mediated endocytosis is believed to lead to post-endocytic pathways other than degradation. To gain more insights into these issues, we investigated handling of Tg by various cell types. Tg bound similarly to thyroid (FRTL-5, FRT) and non-thyroid (COS-7, IRPT) cells, indicating the presence of membrane-binding sites, presumably receptors, in both cell types. Tg was internalized and degraded by all cells and degradation paralleled uptake, with the exception of FRTL- 5 cells, in which a lower proportion of Tg was degraded, suggesting that in FRTL-5 cells mechanisms that target Tg to the various post-endocytic pathways (either receptors or postreceptorial factors) are differently represented. Immunoelectronmicroscopy showed a common path of endocytosis in FRTL-5, COS-7, and IRPT cells, namely the formation of pseudopods engulfing Tg, followed by internalization and accumulation of Tg in cytoplasmic vesicles and lysosomes. The fastest rate was observed in COS-7 cells, probably reflecting a lower impact of endocytic receptors. Our findings suggest that Tg uptake and degradation are not thyroid-specific, that Tg binding sites exist in different cell types, and that uptake and/or degradation are differently regulated in differentiated thyroid cells, presumably because of a different impact of endocytic receptors or post-endocytic mechanisms, which are probably responsible for the regulation of hormone release.
Collapse
Affiliation(s)
- R Botta
- Department of Endocrinology and Metabolism, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Hermey G. The Vps10p-domain receptor family. Cell Mol Life Sci 2009; 66:2677-89. [PMID: 19434368 PMCID: PMC11115710 DOI: 10.1007/s00018-009-0043-1] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 04/21/2009] [Accepted: 04/21/2009] [Indexed: 12/24/2022]
Abstract
The family of mammalian type-I transmembrane receptors containing a Vps10p domain contains five members, Sortilin, SorCS1, SorCS2, SorCS3, and SorLA. The common characteristic of these receptors is an N-terminal Vps10p domain, which either represents the only module of the luminal/extracellular moiety or is combined with additional domains. Family members play roles in protein transport and signal transduction. The individual receptors bind and internalize a variety of ligands, such as neuropeptides and trophic factors, and Sortilin and SorLA mediate trans-Golgi network-to-endosome sorting. Their prominent neuronal expression, several of the identified ligands, and recent results support the notion that members of this receptor family have important functions in neurogenesis, plasticity-related processes, and functional maintenance of the nervous system. For instance, it has been demonstrated that Sortilin partakes in the transduction of proapoptotic effects, and there is converging biochemical and genetic evidence that implies that SorLA is an Alzheimer's disease risk factor.
Collapse
Affiliation(s)
- Guido Hermey
- Institute of Molecular and Cellular Cognition, Zentrum für Molekulare Neurobiologie Hamburg, Hamburg, Germany.
| |
Collapse
|
24
|
Chan SY, Vasilopoulou E, Kilby MD. The role of the placenta in thyroid hormone delivery to the fetus. ACTA ACUST UNITED AC 2009; 5:45-54. [DOI: 10.1038/ncpendmet1026] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Accepted: 10/27/2008] [Indexed: 01/28/2023]
|
25
|
Botta R, Lisi S, Pinchera A, Giorgi F, Marcocci C, Taddei AR, Fausto AM, Bernardini N, Ippolito C, Mattii L, Persani L, de Filippis T, Calebiro D, Madsen P, Petersen CM, Marinò M. Sortilin is a putative postendocytic receptor of thyroglobulin. Endocrinology 2009; 150:509-18. [PMID: 18687776 DOI: 10.1210/en.2008-0953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Vps10p family member sortilin is involved in various cell processes, including protein trafficking. Here we found that sortilin is expressed in thyroid epithelial cells (thyrocytes) in a TSH-dependent manner, that the hormone precursor thyroglobulin (Tg) is a high-affinity sortilin ligand, and that binding to sortilin occurs after Tg endocytosis, resulting in Tg recycling. Sortilin was found to be expressed intracellularly in thyrocytes, as observed in mouse, human, and rat thyroid as well as in FRTL-5 cells. Sortilin expression was demonstrated to be TSH dependent, both in FRTL-5 cells and in mice treated with methimazole and perchlorate. Plasmon resonance binding assays showed that Tg binds to sortilin in a concentration-dependent manner and with high affinity, with Kd values that paralleled the hormone content of Tg. In addition, we found that Tg and sortilin interact in vivo and in cultured cells, as observed by immunoprecipitation, in mouse thyroid extracts and in COS-7 cells transiently cotransfected with sortilin and Tg. After incubation of FRTL-5 cells with exogenous, labeled Tg, sortilin and Tg interacted intracellularly, presumably within the endocytic pathway, as observed by immunofluorescence and immunoelectron microscopy, the latter technique showing some degree of Tg recycling. This was confirmed in FRTL-5 cells in which Tg recycling was reduced by silencing of the sortilin gene and in CHO cells transfected with sortilin in which recycling was increased. Our findings provide a novel pathway of Tg trafficking and a novel function of sortilin in the thyroid gland, the functional impact of which remains to be established.
Collapse
Affiliation(s)
- Roberta Botta
- Department of Endocrinology, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Lisi S, Botta R, Pinchera A, Collins AB, Marcocci C, Marinò M. Kidney abnormalities in low density lipoprotein receptor associated protein knockout mice. J Endocrinol Invest 2008; 31:57-61. [PMID: 18296906 DOI: 10.1007/bf03345567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mice lacking the LDL receptor associated protein (RAP) have a severe defect of thyroglobulin secretion into the colloid, associated with moderately increased serum TSH levels and histological features of early goiter. RAP is expressed also in renal proximal tubule cells, where it functions as a molecular chaperone for the endocytic receptor megalin, which is responsible for reabsorption of low molecular weight proteins from the glomerular filtrate. Here we investigated whether the thyroid phenotype in RAP knockout (KO) mice is associated with kidney alterations. By immunohistochemistry, we found that in RAP KO mice megalin expression on the apical membrane of renal proximal tubule cells was markedly reduced, with intracellular retention of the receptor. The reduced expression of megalin was associated with its impaired function. Thus, urinary protein concentrations and urinary protein excretion in 24 h were higher in RAP KO than in wild-type mice. Coomassie staining of urine samples revealed an increased intensity of low molecular mass bands in the urine of RAP KO mice, indicating that they had low molecular weight proteinuria. Therefore, we concluded that disruption of the RAP gene determines not only thyroid abnormalities, but also a severe defect of megalin expression and function in the kidney.
Collapse
Affiliation(s)
- S Lisi
- Department of Endocrinology, University of Pisa, 56124 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
27
|
Lisi S, Botta R, Pinchera A, Di Cosmo C, Perri A, De Marco G, Menconi F, Marinò M. Sequencing of the entire coding region of the receptor associated protein (RAP) in patients with primary hypothyroidism of unknown origin. J Endocrinol Invest 2007; 30:839-43. [PMID: 18075286 DOI: 10.1007/bf03349225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The LDL receptor-associated protein (RAP) is involved in secretion of thyroglobulin (Tg) from the thyrocyte to the colloid. Disruption of the RAP gene in mice results in a reduced Tg content within the colloid, leading to subclinical hypothyroidism and histological alterations resembling early goiter. Here we studied the entire coding sequence of RAP in genomic DNA samples from 18 patients with primary hypothyroidism not due to thyroid autoimmunity or dysgenesis. The control group included 21 subjects with no evidence of thyroid alterations. Eleven different polymorphisms with amino-acid substitution and 4 different missense polymorphisms without amino-acid substitution were found in various regions of the RAP gene. Only one polymorphism in exone 7 (V311M) was observed exclusively in patients, but it had been previously reported in normal subjects as well. The remaining polymorphisms were found either both in patients and controls or only in controls and had not been previously reported. The frequency of the various polymorphisms did not differ significantly between patients and controls. Based on these findings, we conclude that alterations of the RAP gene are not a common cause of hypothyroidism, although it cannot be excluded that other, rarer alterations with a pathogenic effect exist, and that they should be investigated in a larger number of patients.
Collapse
Affiliation(s)
- S Lisi
- Department of Endocrinology and Metabolism, University of Pisa, 56124 Pisa, Italy
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kero J, Ahmed K, Wettschureck N, Tunaru S, Wintermantel T, Greiner E, Schütz G, Offermanns S. Thyrocyte-specific Gq/G11 deficiency impairs thyroid function and prevents goiter development. J Clin Invest 2007; 117:2399-407. [PMID: 17694176 PMCID: PMC1937498 DOI: 10.1172/jci30380] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2006] [Accepted: 05/29/2007] [Indexed: 11/17/2022] Open
Abstract
The function of the adult thyroid is regulated by thyroid-stimulating hormone (TSH), which acts through a G protein-coupled receptor. Overactivation of the TSH receptor results in hyperthyroidism and goiter. The Gs-mediated stimulation of adenylyl cyclase-dependent cAMP formation has been regarded as the principal intracellular signaling mechanism mediating the action of TSH. Here we show that the Gq/G11-mediated signaling pathway plays an unexpected and essential role in the regulation of thyroid function. Mice lacking the alpha subunits of Gq and G11 specifically in thyroid epithelial cells showed severely reduced iodine organification and thyroid hormone secretion in response to TSH, and many developed hypothyroidism within months after birth. In addition, thyrocyte-specific Galphaq/Galpha11-deficient mice lacked the normal proliferative thyroid response to TSH or goitrogenic diet, indicating an essential role of this pathway in the adaptive growth of the thyroid gland. Our data suggest that Gq/G11 and their downstream effectors are promising targets to interfere with increased thyroid function and growth.
Collapse
Affiliation(s)
- Jukka Kero
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Kashan Ahmed
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Nina Wettschureck
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Sorin Tunaru
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Tim Wintermantel
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Erich Greiner
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Günther Schütz
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | - Stefan Offermanns
- Institute of Pharmacology, University of Heidelberg, Heidelberg, Germany.
Division of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
29
|
Abstract
Among known autoantigens, thyroglobulin (Tg) is unique in its capacity to store iodine, an element provided in our daily diet. Evolutionary pressure has sculpted Tg into a large molecular scaffolding to allow organification of iodide and its incorporation into thyroid hormones. The increase in molecular size and the posttranslational modification by iodine had to exact immunological consequences. Over the last 15 years, numerous Tg peptides-targets of thyroiditogenic T cells-have been mapped, raising questions regarding the mechanisms that maintain or abrogate immune tolerance against this large autoantigen. This review summarizes the work in this area and discusses the role iodine may play in these processes.
Collapse
Affiliation(s)
- George Carayanniotis
- Divisions of Endocrinology and Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| |
Collapse
|
30
|
van den Hove MF, Croizet-Berger K, Tyteca D, Selvais C, de Diesbach P, Courtoy PJ. Thyrotropin activates guanosine 5'-diphosphate/guanosine 5'-triphosphate exchange on the rate-limiting endocytic catalyst, Rab5a, in human thyrocytes in vivo and in vitro. J Clin Endocrinol Metab 2007; 92:2803-10. [PMID: 17473071 DOI: 10.1210/jc.2006-2351] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT We have previously reported that the TSH receptor/cAMP cascade enhances the coordinate expression of the rate-limiting endocytic catalysts, Rab5a and Rab7, which respectively promote thyroglobulin (Tg) internalization and transfer to lysosomes, thereby accelerating thyroid hormone secretion. OBJECTIVE We address whether TSH further controls Rab5a activity by promoting its GTP-bound state. DESIGN We compared Rab5a activation in seven pairs of hyperactive and corresponding quiescent thyroid tissues; TSH effect was reproduced on polarized cultures of normal human thyrocytes. PATIENTS We studied seven euthyroid patients bearing hyperactive autonomous adenomas; normal thyroid tissue for culture. MAIN OUTCOME MEASUREMENTS Rab5a GDP/GTP exchange factor activity [Rab5a-guanine nucleotide exchange factor (GEF)], expression of Rabex-5 (a Rab5a-GEF), and function of thyrocytes in vitro were the main outcome measures. RESULTS In autonomous adenomas, constitutive activation increased both total activity and sedimentability (membrane recruitment) of Rab5a-GEF, compared with perinodular tissues. Increased Rab5a-GEF activity correlated with increased expression of Rabex-5 and Rab5a, as well as with Tg store depletion. In polarized human thyrocyte monolayers, TSH did not affect total Rab5a-GEF activity after 2 h but promoted its membrane recruitment; after 4 d, TSH increased both Rab5a-GEF activity and Rabex-5 expression and recruitment onto membranes where Rabex-5 coimmunoprecipitated with Rabaptin-5 and Rab5a. Sedimentable Rab5a-GEF perfectly correlated with apical endocytosis and lysosomal transfer of 125I-Tg, and with basolateral secretion of 125I-derived hormones. CONCLUSION This study provides the first clinical and experimental evidence that regulation of the activity of a rate-limiting endocytic catalyst finely tunes a tightly controlled cellular function that ultimately governs whole body metabolism.
Collapse
Affiliation(s)
- Marie-France van den Hove
- Université Catholique de Louvain, Christian de Duve Institute of Cellular Pathology, Cell Biology Unit, B-1200 Brussels, Belgium.
| | | | | | | | | | | |
Collapse
|
31
|
Wong DY, Qutub A, Hunt CA. Modeling transport kinetics with StarLogo. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2007; 2004:845-8. [PMID: 17271809 DOI: 10.1109/iembs.2004.1403290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
StarLogo, an agent-based modeling and simulation platform, was used to simulate adsorption-mediated transcytosis of a molecule from the lumen side of a cell membrane to the abluminal extra-cellular fluid (ECF). The model contains small nondiffusible substrate molecules, transporters, and substrate-transporter agents. The "reaction" is a transporter combining with the substrate which then crosses the cell cytoplasm. The substrate that is deposited on the ECF side becomes the "product". Results showed characteristics consistent with Michaelis-Menten enzyme kinetics. The model can serve as an example of agent-based modeling and simulation.
Collapse
Affiliation(s)
- D Y Wong
- Dept. of Bioeng., California Univ., Berkeley, CA, USA
| | | | | |
Collapse
|
32
|
Botta R, Lisi S, Pinchera A, Segnani C, Cianferotti L, Altea MA, Menconi F, Mattii L, Corsini GU, Marcocci C, Dolfi A, Bernardini N, Marinò M. TSH-Dependent expression of the LDL receptor-associated protein (RAP) in thyroid epithelial cells. Thyroid 2006; 16:1097-104. [PMID: 17123336 DOI: 10.1089/thy.2006.16.1097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The low density lipoprotein (LDL) receptor-associated protein (RAP) is an endoplasmic reticulum (ER)-resident molecular chaperone for several LDL receptor family members and it also binds to thyroglobulin (Tg), the thyroid hormone precursor. Disruption of the RAP gene in thyrocytes results in impaired Tg secretion. To gain further insights into the function of RAP in the thyroid, we investigated whether its expression in thyrocytes is regulated by thyroid-stimulating hormone (TSH), a feature common to all proteins involved in thyroid hormone secretion. We found by immunofluorescence that in FRTL-5 cells cultured in the presence of TSH, RAP is expressed intracellularly. The levels of expression increased after exposure to TSH, beginning at 48 hours, in a concentration-dependent manner as observed by immunofluorescence and Western blotting. Expression of RAP was also increased by TSH in primary cultures of human thyrocytes as observed by Western blotting. In hypothyroid mice with high serum TSH, RAP was markedly increased compared with euthyroid mice as observed by immunohistochemistry and Western blotting. Based on these findings, we concluded that RAP is expressed by thyrocytes in a TSH-dependent manner, both in cultured thyroid cells and in vivo.
Collapse
Affiliation(s)
- Roberta Botta
- Department of Endocrinology and Metabolism, University of Pisa, Via Paradisa 2, 56124, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Fisher CE, Howie SEM. The role of megalin (LRP-2/Gp330) during development. Dev Biol 2006; 296:279-97. [PMID: 16828734 DOI: 10.1016/j.ydbio.2006.06.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 04/21/2006] [Accepted: 06/05/2006] [Indexed: 11/17/2022]
Abstract
Megalin (LRP-2/GP330), a member of the LDL receptor family, is an endocytic receptor expressed mainly in polarised epithelial cells. Identified as the pathogenic autoantigen of Heymann nephritis in rats, its functions have been studied in greatest detail in adult mammalian kidney, but there is increasing recognition of its involvement in embryonic development. The megalin homologue LRP-1 is essential for growth and development in Caenorhabditis elegans and megalin plays a role in CNS development in zebrafish. There is now also evidence for a homologue in Drosophila. However, most research concerns mammalian embryogenesis; it is widely accepted to be important during forebrain development and the developing renal proximal tubule. Megalin is also expressed in lung, eye, intestine, uterus, oviduct, and male reproductive tract. It is found in yolk sacs and the outer cells of pre-implantation mouse embryos, where interactions with cubilin result in nutrient endocytosis, and it may be important during implantation. Models for megalin interaction(s) with Sonic Hedgehog (Shh) have been proposed. The importance of Shh signalling during embryogenesis is well established; how and when megalin interacts with Shh is becoming a pertinent question in developmental biology.
Collapse
Affiliation(s)
- Carolyn E Fisher
- Centre for Inflammation Research, Queen's Research Institute, University of Edinburgh, 47 Little France Crescent, Edinburgh EH 16 4JT, Scotland, UK.
| | | |
Collapse
|
34
|
Maritzen T, Lisi S, Botta R, Pinchera A, Fanelli G, Viacava P, Marcocci C, Marinò M. ClC-5 does not affect megalin expression and function in the thyroid. Thyroid 2006; 16:725-30. [PMID: 16910872 DOI: 10.1089/thy.2006.16.725] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Megalin is an endocytic receptor responsible for thyroglobulin (Tg) transcytosis, a process that favors hormone release. Accordingly, megalin KO mice have primary hypothyroidism. In the kidney, megalin expression is reduced when the gene encoding the chloride transporter ClC-5 is mutated. We investigated whether megalin expression and function in the thyroid are affected by ClC-5 using a ClC-5 KO mouse model. By Western blotting, ClC-5 was found in thyroid tissue extracts of WT, but not of ClC-5 KO mice. In addition, ClC-5 was found to be expressed by cultured thyroid cells (FRTL-5). The thyroid size, weight, and histology were similar in ClC- 5 KO and WT mice, as were the amounts of megalin in thyroid extracts. Accordingly, serum Tg, a measure of megalin-mediated transcytosis, was similar in WT and ClC-5 KO mice, suggesting that megalin function was unaffected. Thus, unlike in megalin KO mice, in ClC-5 KO mice thyroid function was unchanged, as indicated by the normal serum FT4 and TSH. We concluded that in the thyroid, unlike in the kidney, ClC-5 does not affect megalin expression and function, suggesting that megalin is differentially regulated in these two organs.
Collapse
Affiliation(s)
- Tanja Maritzen
- Molecular Biology Center, University of Hamburg, Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lisi S, Botta R, Pinchera A, Collins AB, Refetoff S, Arvan P, Bu G, Grasso L, Marshansky V, Bechoua S, Hurtado-Lorenzo A, Marcocci C, Brown D, McCluskey RT, Marinò M. Defective thyroglobulin storage in LDL receptor-associated protein-deficient mice. Am J Physiol Cell Physiol 2006; 290:C1160-7. [PMID: 16306127 DOI: 10.1152/ajpcell.00382.2005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular chaperone receptor-associated protein (RAP) is required for biosynthesis of megalin, an endocytic receptor for follicular thyroglobulin (Tg), the thyroid hormone precursor. RAP also binds to Tg itself, suggesting that it may affect Tg trafficking in various manners. To elucidate RAP function, we have studied the thyroid phenotype in RAP-knockout (RAP-KO) mice and found a reduction of Tg aggregates into thyroid follicles. Serum Tg levels were significantly increased compared with those of wild-type (WT) mice, suggesting a directional alteration of Tg secretion. In spite of these abnormalities, hormone secretion was maintained as indicated by normal serum thyroxine levels. Because Tg in thyroid extracts from RAP-KO mice contained thyroxine residues as in WT mice, we concluded that in RAP-KO mice, follicular Tg, although reduced, was nevertheless sufficient to provide normal hormone secretion. Serum TSH was increased in RAP-KO mice, and although no thyroid enlargement was observed, some histological features resembling early goiter were present. Megalin was decreased in RAP-KO mice, but this did not affect thyroid function, probably because of the concomitant reduction of follicular Tg. In conclusion, RAP is required for the establishment of Tg reservoirs, but its absence does not affect hormone secretion.
Collapse
Affiliation(s)
- Simonetta Lisi
- Department of Endocrinology, University of Pisa, via Paradisa 2, I-56124 Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
van den Hove MF, Croizet-Berger K, Jouret F, Guggino SE, Guggino WB, Devuyst O, Courtoy PJ. The loss of the chloride channel, ClC-5, delays apical iodide efflux and induces a euthyroid goiter in the mouse thyroid gland. Endocrinology 2006; 147:1287-96. [PMID: 16306076 DOI: 10.1210/en.2005-1149] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Genetic inactivation of ClC-5, a voltage-gated chloride channel prominently expressed in the kidney, leads to proteinuria because of defective apical endocytosis in proximal tubular cells. Because thyroid hormone secretion depends on apical endocytosis of thyroglobulin (Tg), we investigated whether ClC-5 is expressed in the thyroid and affects its function, using Clcn5-deficient knockout (KO) mice. We found that ClC-5 is highly expressed in wild-type mouse thyroid ( approximately 40% of mRNA kidney level). The protein was immunolocalized at the apical pole of thyrocytes. In Percoll gradients, ClC-5 overlapped with plasma membrane and early endosome markers, but best codistributed with the late endosomal marker, Rab7. ClC-5 KO mice were euthyroid (normal T4 and TSH serum levels) but developed a goiter with parallel iodine and Tg accumulation (i.e. normal Tg iodination level). When comparing ClC-5 KO with wild-type mice, thyroid 125I uptake after 1 h was doubled, incorporation into Tg was decreased by approximately 2-fold, so that trichloroacetic acid-soluble 125I increased approximately 4-fold. Enhanced 125I- efflux upon perchlorate and presence of 125I-Tg as autoradiographic rings at follicle periphery demonstrated delayed iodide organification. Endocytic trafficking of 125I-Tg toward lysosomes was not inhibited. Expression of pendrin, an I-/Cl- exchanger involved in apical iodide efflux, was selectively decreased by 60% in KO mice at mRNA and protein levels. Thus, ClC-5 is well expressed in the thyroid but is not critical for apical endocytosis, contrary to the kidney. Instead, the goiter associated with ClC-5 KO results from impaired rate of apical iodide efflux by down-regulation of pendrin expression.
Collapse
|
37
|
Elisei R, Romei C, Castagna MG, Lisi S, Vivaldi A, Faviana P, Marinò M, Ceccarelli C, Pacini F, Pinchera A. RET/PTC3 rearrangement and thyroid differentiation gene analysis in a struma ovarii fortuitously revealed by elevated serum thyroglobulin concentration. Thyroid 2005; 15:1355-1361. [PMID: 16405408 DOI: 10.1089/thy.2005.15.1355] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Struma ovarii (SO) is usually asymptomatic and only in a few cases it is associated with thyrotoxicosis. The presurgical diagnosis is very uncommon. In the majority of cases a pelvic mass is discovered at physical examination or by abdominal ultrasound. Only the hystopathologic examination is able to reveal the characteristic features of SO, with thyroid cells organized in follicles as the main tumoral tissue constituent. The histologic recognition of malignancy is not easy and usually requires an exhaustive sampling of the lesion to evaluate the extracapsular invasion. We report the case of a 59-year-old woman who came to our observation for the fortuitous finding of elevated serum thyroglobulin (Tg) levels (600-800 ng/mL). Because the thyroid function was normal and the ultrasound showed only a subcentrimetric nodule, the clinical suspicious of a SO was considered. Ultrasound examination of the abdomen showed a solid mass of 2 cm in the left ovary. A (131)I uptake was observed at scintiscan in the site of the solid mass. Three months after the resection of the left ovary serum Tg levels were markedly reduced (106 ng/mL), and its values continued to decrease down to 34 ng/mL at last control. The histology showed that the ovarian mass was mainly constituted of thyroid tissue (98%), with no malignant features. The molecular analysis of several thyroid differentiation gene mRNAs in the SO tissue showed an abundant expression of all genes but pendrin (PDS). A reduced PDS mRNA expression might explain the defective thyroxine (T(4)) production. Despite the absence of malignant features, the expression of RET/PTC3 rearrangement was found, raising the possibility of a potential malignant nature of the tumor. A cancer-free period of 3-4 years, as in our patient, is not long enough to definitively exclude a late onset metastatic disease but, unfortunately, the patient died of nonmedical reasons. In conclusion, we report a case of SO that, to our knowledge, is the first in which the clinical suspicion arose from the inappropriately elevated presurgical serum levels of Tg. A quite exhaustive molecular analysis of thyroid specific genes and oncogenes provided two interesting findings: the low PDS mRNA expression, which may explain the low hormonal production and the absence of thyrotoxicosis and the presence of a RET/PTC3 rearrangement, which prompts the possibility of a late malignant evolution.
Collapse
Affiliation(s)
- Rossella Elisei
- Department of Endocrinology and Metabolism, University of Pisa, 56124 Pisa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Lisi S, Segnani C, Mattii L, Botta R, Marcocci C, Dolfi A, McCluskey RT, Pinchera A, Bernardini N, Marinò M. Thyroid dysfunction in megalin deficient mice. Mol Cell Endocrinol 2005; 236:43-7. [PMID: 15878230 DOI: 10.1016/j.mce.2005.03.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2005] [Revised: 03/09/2005] [Accepted: 03/09/2005] [Indexed: 11/19/2022]
Abstract
Megalin mediates transcytosis of thyroglobulin (Tg), the thyroid hormone precursor, resulting in its passage into the bloodstream. The process involves especially hormone-poor Tg, which may favour hormone secretion by preventing competition with hormone-rich Tg for proteolytic degradation. To gain more insight into the role of megalin, here we studied thyroid function and histology in megalin deficient mice compared with WT mice. As expected from the knowledge that megalin mediates Tg transcytosis, serum Tg levels were significantly reduced in homozygous (megalin-/-) mice, which, more importantly, were found to be hypothyroid, as demonstrated by significantly reduced serum free thyroxine and significantly increased serum thyroid stimulating hormone (TSH) levels. In heterozygous (megalin+/-) mice, in which megalin expression was normal, thyroid function was unaffected. Although the serological phenotype in megalin-/- mice was not associated with histological alterations or goiter, our results support a major role of megalin in thyroid hormone secretion.
Collapse
Affiliation(s)
- Simonetta Lisi
- Department of Endocrinology and Metabolism, University of Pisa, Via Paradisa 2, 56124 Pisa, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Jelier R, Jenster G, Dorssers LCJ, van der Eijk CC, van Mulligen EM, Mons B, Kors JA. Co-occurrence based meta-analysis of scientific texts: retrieving biological relationships between genes. Bioinformatics 2005; 21:2049-58. [PMID: 15657104 DOI: 10.1093/bioinformatics/bti268] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION The advent of high-throughput experiments in molecular biology creates a need for methods to efficiently extract and use information for large numbers of genes. Recently, the associative concept space (ACS) has been developed for the representation of information extracted from biomedical literature. The ACS is a Euclidean space in which thesaurus concepts are positioned and the distances between concepts indicates their relatedness. The ACS uses co-occurrence of concepts as a source of information. In this paper we evaluate how well the system can retrieve functionally related genes and we compare its performance with a simple gene co-occurrence method. RESULTS To assess the performance of the ACS we composed a test set of five groups of functionally related genes. With the ACS good scores were obtained for four of the five groups. When compared to the gene co-occurrence method, the ACS is capable of revealing more functional biological relations and can achieve results with less literature available per gene. Hierarchical clustering was performed on the ACS output, as a potential aid to users, and was found to provide useful clusters. Our results suggest that the algorithm can be of value for researchers studying large numbers of genes. AVAILABILITY The ACS program is available upon request from the authors.
Collapse
Affiliation(s)
- R Jelier
- Department of Medical Informatics, Erasmus MC-University Medical Center, Rotterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
40
|
Lisi S, Menconi F, Altea MA, Agate L, Molinaro E, Castagna MG, Taddei D, Grasso L, Pinchera A, Elisei R, Marinò M. Failure to use measurement of megalin secretory components complexed with serum thyroglobulin as a tool to identify metastases after surgery in papillary thyroid cancer. J Endocrinol Invest 2004; 27:636-42. [PMID: 15505986 DOI: 10.1007/bf03347495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
When thyroid follicles are intact, some colloidal thyroglobulin (Tg) reaches the circulation by megalin-mediated transcytosis and is to various extents complexed with megalin secretory components. In contrast, in papillary thyroid cancer (PTC), serum Tg is not complexed with megalin because it is directly secreted by tumor cells. Here we attempted to use measurement of megalin secretory components to distinguish PTC patients with thyroid remnant plus metastases from those with thyroid remnant only, after thyroidectomy and before 131I ablation. Tg values in anti-Tg antibodies (TgAb)-free sera from 5 PTC patients with thyroid remnant plus metastases and 12 PTC patients with thyroid remnant only were measured following pre-adsorption with uncoupled protein A beads or with protein A beads coupled with antimegalin antibodies. The degree of Tg pre-adsorption with antimegalin antibodies was minimal, with no substantial differences between the two groups. Thus, we concluded that measurement of megalin secretory components is unlikely to be useful to identify the origin of serum Tg in PTC patients after thyroidectomy.
Collapse
Affiliation(s)
- S Lisi
- Department of Endocrinology, University of Pisa, Pisa, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|