1
|
Tofani GSS, Clarke G, Cryan JF. I "Gut" Rhythm: the microbiota as a modulator of the stress response and circadian rhythms. FEBS J 2025; 292:1454-1479. [PMID: 39841560 PMCID: PMC11927059 DOI: 10.1111/febs.17400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/20/2024] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Modern habits are becoming more and more disruptive to health. As our days are often filled with circadian disruption and stress exposures, we need to understand how our responses to these external stimuli are shaped and how their mediators can be targeted to promote health. A growing body of research demonstrates the role of the gut microbiota in influencing brain function and behavior. The stress response and circadian rhythms, which are essential to maintaining appropriate responses to the environment, are known to be impacted by the gut microbiota. Gut microbes have been shown to alter the host's response to stress and modulate circadian rhythmicity. Although studies demonstrated strong links between the gut microbiota, circadian rhythms and the stress response, such studies were conducted in an independent manner not conducive to understanding the interface between these factors. Due to the interconnected nature of the stress response and circadian rhythms, in this review we explore how the gut microbiota may play a role in regulating the integration of stress and circadian signals in mammals and the consequences for brain health and disease.
Collapse
Affiliation(s)
- Gabriel S. S. Tofani
- APC MicrobiomeUniversity College CorkIreland
- Department of Anatomy & NeuroscienceUniversity College CorkIreland
| | - Gerard Clarke
- APC MicrobiomeUniversity College CorkIreland
- Department of Psychiatry & Neurobehavioural ScienceUniversity College CorkIreland
| | - John F. Cryan
- APC MicrobiomeUniversity College CorkIreland
- Department of Anatomy & NeuroscienceUniversity College CorkIreland
| |
Collapse
|
2
|
Boutrin MC, Richardson MES, Oriola F, Bolo S. Improved jet lag recovery is associated with a weaker molecular biological clock response around the time of expected activity onset. Front Behav Neurosci 2025; 19:1535124. [PMID: 39958753 PMCID: PMC11825751 DOI: 10.3389/fnbeh.2025.1535124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/14/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction Properly timed environmental light input to the suprachiasmatic nucleus (SCN) in the brain is crucial in maintaining the 24-hour biological rhythm (circadian rhythm). However, light exposure at the wrong time of the day-night cycle is disruptive to circadian-regulated behaviors such as the sleep-wake cycle and memory. While factors such as jet lag, variations in day length, and light at night are known disruptors to the timing of activity onset following rest, the molecular consequence of the intersection of multiple disruptions is less understood. Methods Here, we expose mice to a jet lag paradigm under two light-dark (LD) conditions (12:12 LD and 8:16 LD) coupled with additional light exposure at night during the recovery period (known as negative masking), previously demonstrated to improve jet lag-related memory loss in mice. Results Our results show that jet lag exposure in both LD cycles (to a greater extent in 8:16 LD) increased the fold-change of circadian gene expression in the SCN relative to the dark onset. The further addition of light during the jet lag recovery period reduced typical changes in circadian gene expression in the SCN to minimal levels under both LD cycles. Discussion This study uncovers a novel explanation for the impact of multiple disruptive light exposures on gene expression of the molecular SCN clock in the brain.
Collapse
Affiliation(s)
- Marie-Claire Boutrin
- Department of Biological Sciences, Oakwood University, Huntsville, AL, United States
| | | | | | | |
Collapse
|
3
|
Walch O, Tavella F, Zeitzer JM, Lok R. Beyond phase shifting: targeting circadian amplitude for light interventions in humans. Sleep 2025; 48:zsae247. [PMID: 39435852 PMCID: PMC11725520 DOI: 10.1093/sleep/zsae247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Indexed: 10/23/2024] Open
Affiliation(s)
- Oliva Walch
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Arcascope Inc, Arlington, VA, USA
| | - Franco Tavella
- Department of Biophysics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Jamie M Zeitzer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Mental Illness Research Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Renske Lok
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Ognjanovski N, Kim DS, Charlett-Green E, Goldiez E, van Koppen S, Aton SJ, Watson BO. Daily rhythms drive dynamism in sleep, oscillations and interneuron firing, while excitatory firing remains stable across 24 h. Eur J Neurosci 2025; 61:e16619. [PMID: 39663213 DOI: 10.1111/ejn.16619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 12/13/2024]
Abstract
The adaptation to the daily 24-h light-dark cycle is ubiquitous across animal species and is crucial for maintaining fitness. This free-running cycle occurs innately within multiple bodily systems, such as endogenous circadian rhythms in clock-gene expression and synaptic plasticity. These phenomena are well studied; however, it is unknown if and how the 24-h clock affects electrophysiologic network function in vivo. The hippocampus is a region of interest for long timescale (>8 h) studies because it is critical for cognitive function and exhibits time-of-day effects in learning. We recorded single cell spiking activity and local field potentials (LFPs) in mouse hippocampus across the 24-h (12:12-h light/dark) cycle to quantify how electrophysiological network function is modulated across the 24-h day. We found that while inhibitory population firing rates and LFP oscillations exhibit modulation across the day, average excitatory population firing is static. This excitatory stability, despite inhibitory dynamism, may enable consistent around-the-clock function of neural circuits.
Collapse
Affiliation(s)
- Nicolette Ognjanovski
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - David S Kim
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Emma Charlett-Green
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Ethan Goldiez
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| | - Sofie van Koppen
- Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Brendon O Watson
- Department of Psychiatry, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Nikhil K, Singhal B, Granados-Fuentes D, Li JS, Kiss IZ, Herzog ED. The Functional Connectome Mediating Circadian Synchrony in the Suprachiasmatic Nucleus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.06.627294. [PMID: 39713450 PMCID: PMC11661124 DOI: 10.1101/2024.12.06.627294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Circadian rhythms in mammals arise from the spatiotemporal synchronization of ~20,000 neuronal clocks in the Suprachiasmatic Nucleus (SCN). While anatomical, molecular, and genetic approaches have revealed diverse cell types and signaling mechanisms, the network wiring that enables SCN cells to communicate and synchronize remains unclear. To overcome the challenges of revealing functional connectivity from fixed tissue, we developed MITE (Mutual Information & Transfer Entropy), an information theory approach that infers directed cell-cell connections with high fidelity. By analyzing 3447 hours of continuously recorded clock gene expression from 9011 cells in 17 mice, we found that the functional connectome of SCN was highly conserved bilaterally and across mice, sparse, and organized into a dorsomedial and a ventrolateral module. While most connections were local, we discovered long-range connections from ventral cells to cells in both the ventral and dorsal SCN. Based on their functional connectivity, SCN cells can be characterized as circadian signal generators, broadcasters, sinks, or bridges. For example, a subset of VIP neurons acts as hubs that generate circadian signals critical to synchronize daily rhythms across the SCN neural network. Simulations of the experimentally inferred SCN networks recapitulated the stereotypical dorsal-to-ventral wave of daily PER2 expression and ability to spontaneously synchronize, revealing that SCN emergent dynamics are sculpted by cell-cell connectivity. We conclude that MITE provides a powerful method to infer functional connectomes, and that the conserved architecture of cell-cell connections mediates circadian synchrony across space and time in the mammalian SCN.
Collapse
Affiliation(s)
- K.L. Nikhil
- Department of Biology, Washington University in Saint Louis, USA
| | - Bharat Singhal
- Department of Electrical and Systems Engineering, Washington University in Saint Louis, USA
| | | | - Jr-Shin Li
- Department of Electrical and Systems Engineering, Washington University in Saint Louis, USA
| | | | - Erik D. Herzog
- Department of Biology, Washington University in Saint Louis, USA
| |
Collapse
|
6
|
Evans JA, Schwartz WJ. On the origin and evolution of the dual oscillator model underlying the photoperiodic clockwork in the suprachiasmatic nucleus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:503-511. [PMID: 37481773 PMCID: PMC10924288 DOI: 10.1007/s00359-023-01659-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
Decades have now passed since Colin Pittendrigh first proposed a model of a circadian clock composed of two coupled oscillators, individually responsive to the rising and setting sun, as a flexible solution to the challenge of behavioral and physiological adaptation to the changing seasons. The elegance and predictive power of this postulation has stimulated laboratories around the world in searches to identify and localize such hypothesized evening and morning oscillators, or sets of oscillators, in insects, rodents, and humans, with experimental designs and approaches keeping pace over the years with technological advances in biology and neuroscience. Here, we recount the conceptual origin and highlight the subsequent evolution of this dual oscillator model for the circadian clock in the mammalian suprachiasmatic nucleus; and how, despite our increasingly sophisticated view of this multicellular pacemaker, Pittendrigh's binary conception has remained influential in our clock models and metaphors.
Collapse
Affiliation(s)
- Jennifer A Evans
- Department of Biomedical Sciences, College of Health Sciences, Marquette University, Milwaukee, WI, USA.
| | - William J Schwartz
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, USA
- Groningen Institute for Evolutionary Life Sciences, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Wang Z, Yu J, Zhai M, Wang Z, Sheng K, Zhu Y, Wang T, Liu M, Wang L, Yan M, Zhang J, Xu Y, Wang X, Ma L, Hu W, Cheng H. System-level time computation and representation in the suprachiasmatic nucleus revealed by large-scale calcium imaging and machine learning. Cell Res 2024; 34:493-503. [PMID: 38605178 PMCID: PMC11217450 DOI: 10.1038/s41422-024-00956-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/28/2024] [Indexed: 04/13/2024] Open
Abstract
The suprachiasmatic nucleus (SCN) is the mammalian central circadian pacemaker with heterogeneous neurons acting in concert while each neuron harbors a self-sustained molecular clockwork. Nevertheless, how system-level SCN signals encode time of the day remains enigmatic. Here we show that population-level Ca2+ signals predict hourly time, via a group decision-making mechanism coupled with a spatially modular time feature representation in the SCN. Specifically, we developed a high-speed dual-view two-photon microscope for volumetric Ca2+ imaging of up to 9000 GABAergic neurons in adult SCN slices, and leveraged machine learning methods to capture emergent properties from multiscale Ca2+ signals as a whole. We achieved hourly time prediction by polling random cohorts of SCN neurons, reaching 99.0% accuracy at a cohort size of 900. Further, we revealed that functional neuron subtypes identified by contrastive learning tend to aggregate separately in the SCN space, giving rise to bilaterally symmetrical ripple-like modular patterns. Individual modules represent distinctive time features, such that a module-specifically learned time predictor can also accurately decode hourly time from random polling of the same module. These findings open a new paradigm in deciphering the design principle of the biological clock at the system level.
Collapse
Affiliation(s)
- Zichen Wang
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China
| | - Jing Yu
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China
| | - Muyue Zhai
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Zehua Wang
- Wangxuan Institute of Computer Technology, Peking University, Beijing, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Kaiwen Sheng
- Beijing Academy of Artificial Intelligence, Beijing, China
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Yu Zhu
- Beijing Academy of Artificial Intelligence, Beijing, China
| | - Tianyu Wang
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Mianzhi Liu
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Lu Wang
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Miao Yan
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
| | - Jue Zhang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- College of Engineering, Peking University, Beijing, China
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Su Genomic Resource Center, Medical School of Soochow University, Suzhou, Jiangsu, China
| | - Xianhua Wang
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China
| | - Lei Ma
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China.
- Beijing Academy of Artificial Intelligence, Beijing, China.
| | - Wei Hu
- Wangxuan Institute of Computer Technology, Peking University, Beijing, China.
| | - Heping Cheng
- National Biomedical Imaging Center, State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, Peking-Tsinghua Center for Life Sciences, College of Future Technology, Peking University, Beijing, China.
- Research Unit of Mitochondria in Brain Diseases, Chinese Academy of Medical Sciences, PKU-Nanjing Institute of Translational Medicine, Nanjing, Jiangsu, China.
| |
Collapse
|
8
|
Bonnefont X. Cell Signaling in the Circadian Pacemaker: New Insights from in vivo Imaging. Neuroendocrinology 2024; 115:103-110. [PMID: 38754404 DOI: 10.1159/000539344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
BACKGROUND "One for all, and all for one," the famous rallying cry of the Three Musketeers, in Alexandre Dumas's popular novel, certainly applies to the 20,000 cells composing the suprachiasmatic nuclei (SCN). These cells work together to form the central clock that coordinates body rhythms in tune with the day-night cycle. Like virtually every body cell, individual SCN cells exhibit autonomous circadian oscillations, but this rhythmicity only reaches a high level of precision and robustness when the cells are coupled with their neighbors. Therefore, understanding the functional network organization of SCN cells beyond their core rhythmicity is an important issue in circadian biology. SUMMARY The present review summarizes the main results from our recent study demonstrating the feasibility of recording SCN cells in freely moving mice and the significance of variations in intracellular calcium over several timescales. KEY MESSAGE We discuss how in vivo imaging at the cell level will be pivotal to interrogate the mammalian master clock, in an integrated context that preserves the SCN network organization, with intact inputs and outputs.
Collapse
Affiliation(s)
- Xavier Bonnefont
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
- BioCampus Montpellier, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
9
|
Oka S, Ogawa A, Osada T, Tanaka M, Nakajima K, Kamagata K, Aoki S, Oshima Y, Tanaka S, Kirino E, Nakamura TJ, Konishi S. Diurnal Variation of Brain Activity in the Human Suprachiasmatic Nucleus. J Neurosci 2024; 44:e1730232024. [PMID: 38238074 PMCID: PMC10883613 DOI: 10.1523/jneurosci.1730-23.2024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 02/23/2024] Open
Abstract
The suprachiasmatic nucleus (SCN) is the central clock for circadian rhythms. Animal studies have revealed daily rhythms in the neuronal activity in the SCN. However, the circadian activity of the human SCN has remained elusive. In this study, to reveal the diurnal variation of the SCN activity in humans, we localized the SCN by employing an areal boundary mapping technique to resting-state functional images and investigated the SCN activity using perfusion imaging. In the first experiment (n = 27, including both sexes), we scanned each participant four times a day, every 6 h. Higher activity was observed at noon, while lower activity was recorded in the early morning. In the second experiment (n = 20, including both sexes), the SCN activity was measured every 30 min for 6 h from midnight to dawn. The results showed that the SCN activity gradually decreased and was not associated with the electroencephalography. Furthermore, the SCN activity was compatible with the rodent SCN activity after switching off the lights. These results suggest that the diurnal variation of the human SCN follows the zeitgeber cycles of nocturnal and diurnal mammals and is modulated by physical lights rather than the local time.
Collapse
Affiliation(s)
- Satoshi Oka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Akitoshi Ogawa
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Takahiro Osada
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Masaki Tanaka
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Koji Nakajima
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Tokyo 113-0033, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Yasushi Oshima
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Tokyo 113-0033, Japan
| | - Sakae Tanaka
- Department of Orthopaedic Surgery, The University of Tokyo School of Medicine, Tokyo 113-0033, Japan
| | - Eiji Kirino
- Department of Psychiatry, Juntendo Shizuoka Hospital, Shizuoka 410-2211, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, Kanagawa 214-8571, Japan
| | - Seiki Konishi
- Department of Neurophysiology, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Sportology Center, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo 113-8421, Japan
- Advanced Research Institute for Health Science, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
10
|
Stengl M, Schneider AC. Contribution of membrane-associated oscillators to biological timing at different timescales. Front Physiol 2024; 14:1243455. [PMID: 38264332 PMCID: PMC10803594 DOI: 10.3389/fphys.2023.1243455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 12/12/2023] [Indexed: 01/25/2024] Open
Abstract
Environmental rhythms such as the daily light-dark cycle selected for endogenous clocks. These clocks predict regular environmental changes and provide the basis for well-timed adaptive homeostasis in physiology and behavior of organisms. Endogenous clocks are oscillators that are based on positive feedforward and negative feedback loops. They generate stable rhythms even under constant conditions. Since even weak interactions between oscillators allow for autonomous synchronization, coupling/synchronization of oscillators provides the basis of self-organized physiological timing. Amongst the most thoroughly researched clocks are the endogenous circadian clock neurons in mammals and insects. They comprise nuclear clockworks of transcriptional/translational feedback loops (TTFL) that generate ∼24 h rhythms in clock gene expression entrained to the environmental day-night cycle. It is generally assumed that this TTFL clockwork drives all circadian oscillations within and between clock cells, being the basis of any circadian rhythm in physiology and behavior of organisms. Instead of the current gene-based hierarchical clock model we provide here a systems view of timing. We suggest that a coupled system of autonomous TTFL and posttranslational feedback loop (PTFL) oscillators/clocks that run at multiple timescales governs adaptive, dynamic homeostasis of physiology and behavior. We focus on mammalian and insect neurons as endogenous oscillators at multiple timescales. We suggest that neuronal plasma membrane-associated signalosomes constitute specific autonomous PTFL clocks that generate localized but interlinked oscillations of membrane potential and intracellular messengers with specific endogenous frequencies. In each clock neuron multiscale interactions of TTFL and PTFL oscillators/clocks form a temporally structured oscillatory network with a common complex frequency-band comprising superimposed multiscale oscillations. Coupling between oscillator/clock neurons provides the next level of complexity of an oscillatory network. This systemic dynamic network of molecular and cellular oscillators/clocks is suggested to form the basis of any physiological homeostasis that cycles through dynamic homeostatic setpoints with a characteristic frequency-band as hallmark. We propose that mechanisms of homeostatic plasticity maintain the stability of these dynamic setpoints, whereas Hebbian plasticity enables switching between setpoints via coupling factors, like biogenic amines and/or neuropeptides. They reprogram the network to a new common frequency, a new dynamic setpoint. Our novel hypothesis is up for experimental challenge.
Collapse
Affiliation(s)
- Monika Stengl
- Department of Biology, Animal Physiology/Neuroethology, University of Kassel, Kassel, Germany
| | | |
Collapse
|
11
|
van Beurden AW, Tersteeg MMH, Michel S, van Veldhoven JPD, IJzerman AP, Rohling JHT, Meijer JH. Small-molecule CEM3 strengthens single-cell oscillators in the suprachiasmatic nucleus. FASEB J 2024; 38:e23348. [PMID: 38084798 DOI: 10.1096/fj.202300597rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
A robust endogenous clock is required for proper function of many physiological processes. The suprachiasmatic nucleus (SCN) constitutes our central circadian clock and allows us to adapt to daily changes in the environment. Aging can cause a decline in the amplitude of circadian rhythms in SCN and peripheral clocks, which contributes to increased risk of several chronic diseases. Strengthening clock function would therefore be an effective strategy to improve health. A high-throughput chemical screening has identified clock-enhancing molecule 3 (CEM3) as small molecule that increases circadian rhythm amplitude in cell lines and SCN explants. It is, however, currently not known whether CEM3 acts by enhancing the amplitude of individual single-cell oscillators or by enhancing synchrony among neurons. In view of CEM3's potential, it is of evident importance to clarify the mode of action of CEM3. Here, we investigated the effects of CEM3 on single-cell PERIOD2::LUCIFERASE rhythms in mouse SCN explants. CEM3 increased the amplitude in approximately 80%-90% of the individual cells in the SCN without disrupting the phase and/or period of their rhythms. Noticeably, CEM3's effect on amplitude is independent of the cell's initial amplitude. These findings make CEM3 a potential therapeutic candidate to restore compromised amplitude in circadian rhythms and will boost the development of other molecular approaches to improve health.
Collapse
Affiliation(s)
- Anouk W van Beurden
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Mayke M H Tersteeg
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Michel
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jaco P D van Veldhoven
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Adriaan P IJzerman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, The Netherlands
| | - Jos H T Rohling
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H Meijer
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Davidson AJ, Beckner D, Bonnefont X. A Journey in the Brain's Clock: In Vivo Veritas? BIOLOGY 2023; 12:1136. [PMID: 37627020 PMCID: PMC10452196 DOI: 10.3390/biology12081136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
The suprachiasmatic nuclei (SCN) of the hypothalamus contain the circadian pacemaker that coordinates mammalian rhythms in tune with the day-night cycle. Understanding the determinants of the intrinsic rhythmicity of this biological clock, its outputs, and resetting by environmental cues, has been a longstanding goal of the field. Integrated techniques of neurophysiology, including lesion studies and in vivo multi-unit electrophysiology, have been key to characterizing the rhythmic nature and outputs of the SCN in animal models. In parallel, reduced ex vivo and in vitro approaches have permitted us to unravel molecular, cellular, and multicellular mechanisms underlying the pacemaker properties of the SCN. New questions have emerged in recent years that will require combining investigation at a cell resolution within the physiological context of the living animal: What is the role of specific cell subpopulations in the SCN neural network? How do they integrate various external and internal inputs? What are the circuits involved in controlling other body rhythms? Here, we review what we have already learned about the SCN from in vivo studies, and how the recent development of new genetically encoded tools and cutting-edge imaging technology in neuroscience offers chronobiologists the opportunity to meet these challenges.
Collapse
Affiliation(s)
- Alec J. Davidson
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Delaney Beckner
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Xavier Bonnefont
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| |
Collapse
|
13
|
Santana NNM, Silva EHA, dos Santos SF, Costa MSMO, Nascimento Junior ES, Engelberth RCJG, Cavalcante JS. Retinorecipient areas in the common marmoset ( Callithrix jacchus): An image-forming and non-image forming circuitry. Front Neural Circuits 2023; 17:1088686. [PMID: 36817647 PMCID: PMC9932520 DOI: 10.3389/fncir.2023.1088686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
The mammalian retina captures a multitude of diverse features from the external environment and conveys them via the optic nerve to a myriad of retinorecipient nuclei. Understanding how retinal signals act in distinct brain functions is one of the most central and established goals of neuroscience. Using the common marmoset (Callithrix jacchus), a monkey from Northeastern Brazil, as an animal model for parsing how retinal innervation works in the brain, started decades ago due to their marmoset's small bodies, rapid reproduction rate, and brain features. In the course of that research, a large amount of new and sophisticated neuroanatomical techniques was developed and employed to explain retinal connectivity. As a consequence, image and non-image-forming regions, functions, and pathways, as well as retinal cell types were described. Image-forming circuits give rise directly to vision, while the non-image-forming territories support circadian physiological processes, although part of their functional significance is uncertain. Here, we reviewed the current state of knowledge concerning retinal circuitry in marmosets from neuroanatomical investigations. We have also highlighted the aspects of marmoset retinal circuitry that remain obscure, in addition, to identify what further research is needed to better understand the connections and functions of retinorecipient structures.
Collapse
Affiliation(s)
- Nelyane Nayara M. Santana
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Eryck H. A. Silva
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Sâmarah F. dos Santos
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Expedito S. Nascimento Junior
- Laboratory of Neuroanatomy, Department of Morphology, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena Clara J. G. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology and Behavior, Bioscience Center, Federal University of Rio Grande do Norte, Natal, Brazil,*Correspondence: Jeferson S. Cavalcante,
| |
Collapse
|
14
|
Kim R, Nijhout HF, Reed MC. Mathematical insights into the role of dopamine signaling in circadian entrainment. Math Biosci 2023; 356:108956. [PMID: 36581152 DOI: 10.1016/j.mbs.2022.108956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The circadian clock in the mammalian brain comprises interlocked molecular feedback loops that have downstream effects on important physiological functions such as the sleep-wake cycle and hormone regulation. Experiments have shown that the circadian clock also modulates the synthesis and breakdown of the neurotransmitter dopamine. Imbalances in dopamine are linked to a host of neurological conditions including Parkinson's disease, attention-deficit/hyperactivity disorder, and mood disorders, and these conditions are often accompanied by circadian disruptions. We have previously created a mathematical model using nonlinear ordinary differential equations to describe the influences of the circadian clock on dopamine at the molecular level. Recent experiments suggest that dopamine reciprocally influences the circadian clock. Dopamine receptor D1 (DRD1) signaling has been shown to aid in the entrainment of the clock to the 24-hour light-dark cycle, but the underlying mechanisms are not well understood. In this paper, we use our mathematical model to support the experimental hypothesis that DRD1 signaling promotes circadian entrainment by modulating the clock's response to light. We model the effects of a phase advance or delay, as well as the therapeutic potential of a REV-ERB agonist. In addition to phase shifts, we study the influences of photoperiod, or day length, in the mathematical model, connect our findings with the experimental and clinical literature, and determine the parameter that affects the critical photoperiod that signals seasonal changes to physiology.
Collapse
Affiliation(s)
- Ruby Kim
- Department of Mathematics, University of Michigan, 530 Church Street, Ann Arbor, 48109, MI, USA.
| | - H Frederik Nijhout
- Department of Biology, Duke University, 130 Science Drive, Durham, 27708, NC, USA
| | - Michael C Reed
- Department of Mathematics, Duke University, 120 Science Drive, Durham, 27708, NC, USA
| |
Collapse
|
15
|
Arginine-vasopressin-expressing neurons in the murine suprachiasmatic nucleus exhibit a circadian rhythm in network coherence in vivo. Proc Natl Acad Sci U S A 2023; 120:e2209329120. [PMID: 36656857 PMCID: PMC9942887 DOI: 10.1073/pnas.2209329120] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) is composed of functionally distinct subpopulations of GABAergic neurons which form a neural network responsible for synchronizing most physiological and behavioral circadian rhythms in mammals. To date, little is known regarding which aspects of SCN rhythmicity are generated by individual SCN neurons, and which aspects result from neuronal interaction within a network. Here, we utilize in vivo miniaturized microscopy to measure fluorescent GCaMP-reported calcium dynamics in arginine vasopressin (AVP)-expressing neurons in the intact SCN of awake, behaving mice. We report that SCN AVP neurons exhibit periodic, slow calcium waves which we demonstrate, using in vivo electrical recordings, likely reflect burst firing. Further, we observe substantial heterogeneity of function in that AVP neurons exhibit unstable rhythms, and relatively weak rhythmicity at the population level. Network analysis reveals that correlated cellular behavior, or coherence, among neuron pairs also exhibited stochastic rhythms with about 33% of pairs rhythmic at any time. Unlike single-cell variables, coherence exhibited a strong rhythm at the population level with time of maximal coherence among AVP neuronal pairs at CT/ZT 6 and 9, coinciding with the timing of maximal neuronal activity for the SCN as a whole. These results demonstrate robust circadian variation in the coordination between stochastically rhythmic neurons and that interactions between AVP neurons in the SCN may be more influential than single-cell activity in the regulation of circadian rhythms. Furthermore, they demonstrate that cells in this circuit, like those in many other circuits, exhibit profound heterogenicity of function over time and space.
Collapse
|
16
|
Porcu A, Nilsson A, Booreddy S, Barnes SA, Welsh DK, Dulcis D. Seasonal changes in day length induce multisynaptic neurotransmitter switching to regulate hypothalamic network activity and behavior. SCIENCE ADVANCES 2022; 8:eabn9867. [PMID: 36054362 PMCID: PMC10848959 DOI: 10.1126/sciadv.abn9867] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 07/19/2022] [Indexed: 05/18/2023]
Abstract
Seasonal changes in day length (photoperiod) affect numerous physiological functions. The suprachiasmatic nucleus (SCN)-paraventricular nucleus (PVN) axis plays a key role in processing photoperiod-related information. Seasonal variations in SCN and PVN neurotransmitter expression have been observed in humans and animal models. However, the molecular mechanisms by which the SCN-PVN network responds to altered photoperiod is unknown. Here, we show in mice that neuromedin S (NMS) and vasoactive intestinal polypeptide (VIP) neurons in the SCN display photoperiod-induced neurotransmitter plasticity. In vivo recording of calcium dynamics revealed that NMS neurons alter PVN network activity in response to winter-like photoperiod. Chronic manipulation of NMS neurons is sufficient to induce neurotransmitter switching in PVN neurons and affects locomotor activity. Our findings reveal previously unidentified molecular adaptations of the SCN-PVN network in response to seasonality and the role for NMS neurons in adjusting hypothalamic function to day length via a coordinated multisynaptic neurotransmitter switching affecting behavior.
Collapse
Affiliation(s)
- Alessandra Porcu
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Anna Nilsson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Sathwik Booreddy
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - Samuel A. Barnes
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
| | - David K. Welsh
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Veterans Affairs San Diego Healthcare System, San Diego, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| | - Davide Dulcis
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA
- Center for Circadian Biology, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
17
|
Wang Y, Song Y, Dai Y, Li X, Xie J, Luo J, Yang C, Fan P, Xiao G, Luo Y, Wang Y, Li Y, Cai X. The burst of electrophysiological signals in the suprachiasmatic nucleus of mouse during the arousal detected by microelectrode arrays. Front Bioeng Biotechnol 2022; 10:970726. [PMID: 36110317 PMCID: PMC9468547 DOI: 10.3389/fbioe.2022.970726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
The neural mechanisms of torpor have essential reference significance for medical methods and long-term manned space. Changes in electrophysiology of suprachiasmatic nucleus (SCN) conduce to revealing the neural mechanisms from the torpor to arousal. Due to the lower physiology state during the torpor, it is a challenge to detect neural activities in vivo on freely behaving mice. Here, we introduced a multichannel microelectrode array (MEA) for real-time detection of local field potential (LFP) and action potential (spike) in the SCN in induced torpor mice. Meanwhile, core body temperature and behaviors of mice were recorded for further analysis. Platinum nanoparticles (PtNPs) and Nafion membrane modified MEA has a lower impedance (16.58 ± 3.93 kΩ) and higher signal-to-noise ratio (S/N = 6.1). We found that from torpor to arousal, the proportion of theta frequency bands of LFPs increased, spike firing rates rapidly increased. These results could all be characteristic information of arousal, supported by the microscopic neural activity promoting arousal in mice. MEA displayed real-time dynamic changes of neuronal activities in the SCN, which was more helpful to analyze and understand neural mechanisms of torpor and arousal. Our study provided a factual basis for the neural state in SCN of induced non-hibernating animals, which was helpful for the application of clinics and spaceflight.
Collapse
Affiliation(s)
- Yiding Wang
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yilin Song
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yuchuan Dai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinrong Li
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jingyu Xie
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Jinping Luo
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Chao Yang
- China Astronaut Research and Training Center, Beijing, China
| | - Penghui Fan
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Guihua Xiao
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yan Luo
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Wang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
- *Correspondence: Xinxia Cai, ; Yinghui Li, ; Ying Wang,
| | - Yinghui Li
- China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Xinxia Cai, ; Yinghui Li, ; Ying Wang,
| | - Xinxia Cai
- State Key Laboratory of Transducer Technology, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing, China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, China
- *Correspondence: Xinxia Cai, ; Yinghui Li, ; Ying Wang,
| |
Collapse
|
18
|
Time-restricted feeding entrains long-term behavioral changes through the IGF2-KCC2 pathway. iScience 2022; 25:104267. [PMID: 35521538 PMCID: PMC9062755 DOI: 10.1016/j.isci.2022.104267] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 10/13/2021] [Accepted: 04/13/2022] [Indexed: 02/03/2023] Open
Abstract
The suprachiasmatic nucleus (SCN) integrates light and systemic signals from peripheral tissues to coordinate physiology and behavior daily rhythms. However, the contribution that nutrients and feeding patterns provide to the SCN network regulation remains controversial. Here, we found that time-restricted feeding (TRF) in ZT0-4 (Zeitgeber Time) generates a robust and long-term shift in locomotor behavior and increased wakefulness. Intracellular Ca2+ signals in SCN GABAergic neurons of freely moving mice showed significant activation after ZT0-4 TRF treatment. Furthermore, RNA-seq profiling of SCN showed that TRF during ZT0-4 increased Insulin-like Growth Factor 2 (Igf2) expression and dysregulated ion transporters, including the downregulation of Kcc2. SCN neuron-specific loss of function of Kcc2 amplified ZT0-4 TRF induced aftereffect. Moreover, overexpression of IGF2 in SCN GABAergic neurons extended the locomotion range, mirroring the TRF aftereffect. In summary, our study showed that the IGF2-KCC2 pathway plays an important role for TRF induced behavior changes.
Collapse
|
19
|
The Drosophila circadian phase response curve to light: Conservation across seasonally relevant photoperiods and anchorage to sunset. Physiol Behav 2021; 245:113691. [PMID: 34958825 DOI: 10.1016/j.physbeh.2021.113691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/17/2021] [Accepted: 12/23/2021] [Indexed: 12/31/2022]
Abstract
Photic history, including the relative duration of day versus night in a 24-hour cycle, is known to influence subsequent circadian responses to light in mammals. Whether such modulation is present in Drosophila is currently unknown. To date, all photic phase-response curves (PRCs) generated from Drosophila have done so with animals housed under seasonally agnostic equatorial photoperiods with alternating 12-hour segments of light and darkness. However, the genus contains thousands of species, some of which populate high and low-latitude habitats (20-50° north or south of the Equator) where seasonal variations in the light-dark schedule are pronounced. Here, we address this disconnect by constructing the first high-resolution Drosophila seasonal atlas for light-induced circadian phase-resetting. Testing the light responses of over 4,000 Drosophila at 120 timepoints across 5 seasonally-relevant rectangular photoperiods (i.e., LD 8:16, 10:14, 12:12, 14:10, and 16:8; 24 hourly intervals surveyed in each), we determined that many aspects of the fly circadian PRC waveform are conserved with increasing daylength. Surprisingly though, irrespective of LD schedule, the start of the PRCs always remained anchored to the timing of subjective sunset, creating a differential overlap of the advance zone with the morning hours after subjective sunrise that was maximized under summer photoperiods and minimized under winter photoperiods. These data suggest that there may be differences in flies versus mammals as to how the photoperiod modulates the waveform and amplitude of the circadian PRC to light. On the other hand, they support the possibility that the lights-off transition determines the phase-positioning of photic PRCs across seasons and across species. More work is necessary to test this claim and whether it might factor into the timing of seasonal light responses in humans.
Collapse
|
20
|
Kim S, McMahon DG. Light sets the brain's daily clock by regional quickening and slowing of the molecular clockworks at dawn and dusk. eLife 2021; 10:e70137. [PMID: 34927581 PMCID: PMC8687663 DOI: 10.7554/elife.70137] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 12/11/2021] [Indexed: 12/15/2022] Open
Abstract
How daily clocks in the brain are set by light to local environmental time and encode the seasons is not fully understood. The suprachiasmatic nucleus (SCN) is a central circadian clock in mammals that orchestrates physiology and behavior in tune with daily and seasonal light cycles. Here, we have found that optogenetically simulated light input to explanted mouse SCN changes the waveform of the molecular clockworks from sinusoids in free-running conditions to highly asymmetrical shapes with accelerated synthetic (rising) phases and extended degradative (falling) phases marking clock advances and delays at simulated dawn and dusk. Daily waveform changes arise under ex vivo entrainment to simulated winter and summer photoperiods, and to non-24 hr periods. Ex vivo SCN imaging further suggests that acute waveform shifts are greatest in the ventrolateral SCN, while period effects are greatest in the dorsomedial SCN. Thus, circadian entrainment is encoded by SCN clock gene waveform changes that arise from spatiotemporally distinct intrinsic responses within the SCN neural network.
Collapse
Affiliation(s)
- Suil Kim
- Vanderbilt Brain Institute, Vanderbilt UniversityNashvilleUnited States
| | - Douglas G McMahon
- Vanderbilt Brain Institute, Vanderbilt UniversityNashvilleUnited States
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| |
Collapse
|
21
|
Hartsock MJ, Strnad HK, Spencer RL. Iterative Metaplasticity Across Timescales: How Circadian, Ultradian, and Infradian Rhythms Modulate Memory Mechanisms. J Biol Rhythms 2021; 37:29-42. [PMID: 34781753 DOI: 10.1177/07487304211058256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Work in recent years has provided strong evidence for the modulation of memory function and neuroplasticity mechanisms across circadian (daily), ultradian (shorter-than-daily), and infradian (longer-than-daily) timescales. Despite rapid progress, however, the field has yet to adopt a general framework to describe the overarching role of biological rhythms in memory. To this end, Iyer and colleagues introduced the term iterative metaplasticity, which they define as the "gating of receptivity to subsequent signals that repeats on a cyclic timebase." The central concept is that the cyclic regulation of molecules involved in neuroplasticity may produce cycles in neuroplastic capacity-that is, the ability of neural cells to undergo activity-dependent change. Although Iyer and colleagues focus on the circadian timescale, we think their framework may be useful for understanding how biological rhythms influence memory more broadly. In this review, we provide examples and terminology to explain how the idea of iterative metaplasticity can be readily applied across circadian, ultradian, and infradian timescales. We suggest that iterative metaplasticity may not only support the temporal niching of neuroplasticity processes but also serve an essential role in the maintenance of memory function.
Collapse
Affiliation(s)
- Matthew J Hartsock
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, Colorado
| | | | | |
Collapse
|
22
|
Oviposition-promoting pars intercerebralis neurons show period-dependent photoperiodic changes in their firing activity in the bean bug. Proc Natl Acad Sci U S A 2021; 118:2018823118. [PMID: 33622784 DOI: 10.1073/pnas.2018823118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Animals show photoperiodic responses in physiology and behavior to adapt to seasonal changes. Recent genetic analyses have demonstrated the significance of circadian clock genes in these responses. However, the importance of clock genes in photoperiodic responses at the cellular level and the physiological roles of the cellular responses are poorly understood. The bean bug Riptortus pedestris shows a clear photoperiodic response in its reproduction. In the bug, the pars intercerebralis (PI) is an important brain region for promoting oviposition. Here, we analyzed the role of the photoperiodic neuronal response and its relationship with clock genes, focusing on PI neurons. Large PI neurons exhibited photoperiodic firing changes, and high firing activities were primarily found under photoperiodic conditions suitable for oviposition. RNA interference-mediated knockdown of the clock gene period abolished the photoperiodic response in PI neurons, as well as the response in ovarian development. To clarify whether the photoperiodic response in the PI was dependent on ovarian development, we performed an ovariectomy experiment. Ovariectomy did not have significant effects on the firing activity of PI neurons. Finally, we identified the output molecules of the PI neurons and analyzed the relevance of the output signals in oviposition. PI neurons express multiple neuropeptides-insulin-like peptides and diuretic hormone 44-and RNA interference of these neuropeptides reduced oviposition. Our results suggest that oviposition-promoting peptidergic neurons in the PI exhibit a circadian clock-dependent photoperiodic firing response, which contributes to the photoperiodic promotion of oviposition.
Collapse
|
23
|
Tabuchi M, Coates KE, Bautista OB, Zukowski LH. Light/Clock Influences Membrane Potential Dynamics to Regulate Sleep States. Front Neurol 2021; 12:625369. [PMID: 33854471 PMCID: PMC8039321 DOI: 10.3389/fneur.2021.625369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/15/2021] [Indexed: 11/13/2022] Open
Abstract
The circadian rhythm is a fundamental process that regulates the sleep-wake cycle. This rhythm is regulated by core clock genes that oscillate to create a physiological rhythm of circadian neuronal activity. However, we do not know much about the mechanism by which circadian inputs influence neurons involved in sleep-wake architecture. One possible mechanism involves the photoreceptor cryptochrome (CRY). In Drosophila, CRY is receptive to blue light and resets the circadian rhythm. CRY also influences membrane potential dynamics that regulate neural activity of circadian clock neurons in Drosophila, including the temporal structure in sequences of spikes, by interacting with subunits of the voltage-dependent potassium channel. Moreover, several core clock molecules interact with voltage-dependent/independent channels, channel-binding protein, and subunits of the electrogenic ion pump. These components cooperatively regulate mechanisms that translate circadian photoreception and the timing of clock genes into changes in membrane excitability, such as neural firing activity and polarization sensitivity. In clock neurons expressing CRY, these mechanisms also influence synaptic plasticity. In this review, we propose that membrane potential dynamics created by circadian photoreception and core clock molecules are critical for generating the set point of synaptic plasticity that depend on neural coding. In this way, membrane potential dynamics drive formation of baseline sleep architecture, light-driven arousal, and memory processing. We also discuss the machinery that coordinates membrane excitability in circadian networks found in Drosophila, and we compare this machinery to that found in mammalian systems. Based on this body of work, we propose future studies that can better delineate how neural codes impact molecular/cellular signaling and contribute to sleep, memory processing, and neurological disorders.
Collapse
Affiliation(s)
- Masashi Tabuchi
- Department of Neurosciences, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | | | | | | |
Collapse
|
24
|
Song BJ, Sharp SJ, Rogulja D. Daily rewiring of a neural circuit generates a predictive model of environmental light. SCIENCE ADVANCES 2021; 7:7/13/eabe4284. [PMID: 33762336 PMCID: PMC7990339 DOI: 10.1126/sciadv.abe4284] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 02/03/2021] [Indexed: 05/02/2023]
Abstract
Behavioral responsiveness to external stimulation is shaped by context. We studied how sensory information can be contextualized, by examining light-evoked locomotor responsiveness of Drosophila relative to time of day. We found that light elicits an acute increase in locomotion (startle) that is modulated in a time-of-day-dependent manner: Startle is potentiated during the nighttime, when light is unexpected, but is suppressed during the daytime. The internal daytime-nighttime context is generated by two interconnected and functionally opposing populations of circadian neurons-LNvs generating the daytime state and DN1as generating the nighttime state. Switching between the two states requires daily remodeling of LNv and DN1a axons such that the maximum presynaptic area in one population coincides with the minimum in the other. We propose that a dynamic model of environmental light resides in the shifting connectivities of the LNv-DN1a circuit, which helps animals evaluate ongoing conditions and choose a behavioral response.
Collapse
Affiliation(s)
- Bryan J Song
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Slater J Sharp
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Dragana Rogulja
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
25
|
Maejima T, Tsuno Y, Miyazaki S, Tsuneoka Y, Hasegawa E, Islam MT, Enoki R, Nakamura TJ, Mieda M. GABA from vasopressin neurons regulates the time at which suprachiasmatic nucleus molecular clocks enable circadian behavior. Proc Natl Acad Sci U S A 2021; 118:e2010168118. [PMID: 33526663 PMCID: PMC8017960 DOI: 10.1073/pnas.2010168118] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals, is a network structure composed of multiple types of γ-aminobutyric acid (GABA)-ergic neurons and glial cells. However, the roles of GABA-mediated signaling in the SCN network remain controversial. Here, we report noticeable impairment of the circadian rhythm in mice with a specific deletion of the vesicular GABA transporter in arginine vasopressin (AVP)-producing neurons. These mice showed disturbed diurnal rhythms of GABAA receptor-mediated synaptic transmission in SCN neurons and marked lengthening of the activity time in circadian behavioral rhythms due to the extended interval between morning and evening locomotor activities. Synchrony of molecular circadian oscillations among SCN neurons did not significantly change, whereas the phase relationships between SCN molecular clocks and circadian morning/evening locomotor activities were altered significantly, as revealed by PER2::LUC imaging of SCN explants and in vivo recording of intracellular Ca2+ in SCN AVP neurons. In contrast, daily neuronal activity in SCN neurons in vivo clearly showed a bimodal pattern that correlated with dissociated morning/evening locomotor activities. Therefore, GABAergic transmission from AVP neurons regulates the timing of SCN neuronal firing to temporally restrict circadian behavior to appropriate time windows in SCN molecular clocks.
Collapse
Affiliation(s)
- Takashi Maejima
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 920-8640 Ishikawa, Japan
| | - Yusuke Tsuno
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 920-8640 Ishikawa, Japan
| | - Shota Miyazaki
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, 214-8571 Kanagawa, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, 143-8540 Tokyo, Japan
| | - Emi Hasegawa
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 920-8640 Ishikawa, Japan
| | - Md Tarikul Islam
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 920-8640 Ishikawa, Japan
| | - Ryosuke Enoki
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 444-8787 Okazaki, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 444-8787 Okazaki, Japan
| | - Takahiro J Nakamura
- Laboratory of Animal Physiology, School of Agriculture, Meiji University, 214-8571 Kanagawa, Japan
| | - Michihiro Mieda
- Department of Integrative Neurophysiology, Graduate School of Medical Sciences, Kanazawa University, 920-8640 Ishikawa, Japan;
| |
Collapse
|
26
|
Merrow M, Harrington M. A functional context for heterogeneity of the circadian clock in cells. PLoS Biol 2020; 18:e3000927. [PMID: 33052900 PMCID: PMC7671520 DOI: 10.1371/journal.pbio.3000927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/17/2020] [Indexed: 11/25/2022] Open
Abstract
Characterization of circadian systems at the organism level—a top-down approach—has led to definition of unifying properties, a hallmark of the science of chronobiology. The next challenge is to use a bottom-up approach to show how the molecular workings of the cellular circadian clock work as building blocks of those properties. We review new studies, including a recently published PLOS Biology paper by Nikhil and colleagues, that show how programmed but also stochastic generation of variation in cellular circadian period explain important adaptive features of entrained circadian phase. A recent PLOS Biology paper shows that clonal cell populations are themselves a collection heterogeneous cellular circadian clocks; this Primer explores the implications, proposing that the phase of entrainment of biological clocks (to time of day or to season) is granular, built from the contributions of individual cells.
Collapse
Affiliation(s)
- Martha Merrow
- Institute of Medical Psychology, Medical Faculty, LMU Munich, Munich, Germany
- * E-mail: (MM); (MH)
| | - Mary Harrington
- Neuroscience Program, Smith College, Northampton, Massachusetts, United States of America
- * E-mail: (MM); (MH)
| |
Collapse
|
27
|
Shan Y, Abel JH, Li Y, Izumo M, Cox KH, Jeong B, Yoo SH, Olson DP, Doyle FJ, Takahashi JS. Dual-Color Single-Cell Imaging of the Suprachiasmatic Nucleus Reveals a Circadian Role in Network Synchrony. Neuron 2020; 108:164-179.e7. [PMID: 32768389 PMCID: PMC8265161 DOI: 10.1016/j.neuron.2020.07.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 06/17/2020] [Accepted: 07/10/2020] [Indexed: 01/08/2023]
Abstract
The suprachiasmatic nucleus (SCN) acts as a master pacemaker driving circadian behavior and physiology. Although the SCN is small, it is composed of many cell types, making it difficult to study the roles of particular cells. Here we develop bioluminescent circadian reporter mice that are Cre dependent, allowing the circadian properties of genetically defined populations of cells to be studied in real time. Using a Color-Switch PER2::LUCIFERASE reporter that switches from red PER2::LUCIFERASE to green PER2::LUCIFERASE upon Cre recombination, we assess circadian rhythms in two of the major classes of peptidergic neurons in the SCN: AVP (arginine vasopressin) and VIP (vasoactive intestinal polypeptide). Surprisingly, we find that circadian function in AVP neurons, not VIP neurons, is essential for autonomous network synchrony of the SCN and stability of circadian rhythmicity.
Collapse
Affiliation(s)
- Yongli Shan
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - John H Abel
- Department of Anesthesiology, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA; Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yan Li
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Mariko Izumo
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Kimberly H Cox
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Byeongha Jeong
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - Seung-Hee Yoo
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA
| | - David P Olson
- Department of Pediatrics, Department of Molecular & Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Francis J Doyle
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Division of Sleep Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Joseph S Takahashi
- Department of Neuroscience, Peter O'Donnell Jr. Brain Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390-9111, USA.
| |
Collapse
|
28
|
Harding C, Bechtold DA, Brown TM. Suprachiasmatic nucleus-dependent and independent outputs driving rhythmic activity in hypothalamic and thalamic neurons. BMC Biol 2020; 18:134. [PMID: 32998726 PMCID: PMC7528611 DOI: 10.1186/s12915-020-00871-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 09/17/2020] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Daily variations in mammalian physiology are under control of a central clock in the suprachiasmatic nucleus (SCN). SCN timing signals are essential for coordinating cellular clocks and associated circadian variations in cell and tissue function across the body; however, direct SCN projections primarily target a restricted set of hypothalamic and thalamic nuclei involved in physiological and behavioural control. The role of the SCN in driving rhythmic activity in these targets remains largely unclear. Here, we address this issue via multielectrode recording and manipulations of SCN output in adult mouse brain slices. RESULTS Electrical stimulation identifies cells across the midline hypothalamus and ventral thalamus that receive inhibitory input from the SCN and/or excitatory input from the retina. Optogenetic manipulations confirm that SCN outputs arise from both VIP and, more frequently, non-VIP expressing cells and that both SCN and retinal projections almost exclusively target GABAergic downstream neurons. The majority of midline hypothalamic and ventral thalamic neurons exhibit circadian variation in firing and those receiving inhibitory SCN projections consistently exhibit peak activity during epochs when SCN output is low. Physical removal of the SCN confirms that neuronal rhythms in ~ 20% of the recorded neurons rely on central clock input but also reveals many neurons that can express circadian variation in firing independent of any SCN input. CONCLUSIONS We identify cell populations across the midline hypothalamus and ventral thalamus exhibiting SCN-dependent and independent rhythms in neural activity, providing new insight into the mechanisms by which the circadian system generates daily physiological rhythms.
Collapse
Affiliation(s)
- Court Harding
- Centre for Biological Timing, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - David A Bechtold
- Centre for Biological Timing, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK
| | - Timothy M Brown
- Centre for Biological Timing, Faculty of Medicine, Biology and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
29
|
Olde Engberink AHO, Huisman J, Michel S, Meijer JH. Brief light exposure at dawn and dusk can encode day-length in the neuronal network of the mammalian circadian pacemaker. FASEB J 2020; 34:13685-13695. [PMID: 32869393 DOI: 10.1096/fj.202001133rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/23/2020] [Accepted: 07/29/2020] [Indexed: 11/11/2022]
Abstract
The central circadian pacemaker in mammals, the suprachiasmatic nucleus (SCN), is important for daily as well as seasonal rhythms. The SCN encodes seasonal changes in day length by adjusting phase distribution among oscillating neurons thereby shaping the output signal used for adaptation of physiology and behavior. It is well-established that brief light exposure at the beginning and end of the day, also referred to as "skeleton" light pulses, are sufficient to evoke the seasonal behavioral phenotype. However, the effect of skeleton light exposure on SCN network reorganization remains unknown. Therefore, we exposed mice to brief morning and evening light pulses that mark the time of dawn and dusk in a short winter- or a long summer day. Single-cell PER2::LUC recordings, electrophysiological recordings of SCN activity, and measurements of GABA response polarity revealed that skeleton light-regimes affected the SCN network to the same degree as full photoperiod. These results indicate the powerful, yet potentially harmful effects of even relatively short light exposures during the evening or night for nocturnal animals.
Collapse
Affiliation(s)
- Anneke H O Olde Engberink
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Job Huisman
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Stephan Michel
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johanna H Meijer
- Department of Cellular and Chemical Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
30
|
Nikhil KL, Korge S, Kramer A. Heritable gene expression variability and stochasticity govern clonal heterogeneity in circadian period. PLoS Biol 2020; 18:e3000792. [PMID: 32745129 PMCID: PMC7425987 DOI: 10.1371/journal.pbio.3000792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 08/13/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022] Open
Abstract
A ubiquitous feature of the circadian clock across life forms is its organization as a network of cellular oscillators, with individual cellular oscillators within the network often exhibiting considerable heterogeneity in their intrinsic periods. The interaction of coupling and heterogeneity in circadian clock networks is hypothesized to influence clock’s entrainability, but our knowledge of mechanisms governing period heterogeneity within circadian clock networks remains largely elusive. In this study, we aimed to explore the principles that underlie intercellular period variation in circadian clock networks (clonal period heterogeneity). To this end, we employed a laboratory selection approach and derived a panel of 25 clonal cell populations exhibiting circadian periods ranging from 22 to 28 h. We report that a single parent clone can produce progeny clones with a wide distribution of circadian periods, and this heterogeneity, in addition to being stochastically driven, has a heritable component. By quantifying the expression of 20 circadian clock and clock-associated genes across our clone panel, we found that inheritance of expression patterns in at least three clock genes might govern clonal period heterogeneity in circadian clock networks. Furthermore, we provide evidence suggesting that heritable epigenetic variation in gene expression regulation might underlie period heterogeneity. How do genetically identical cells exhibit a different circadian phenotype? This study reveals that a single parent clone can produce progeny with a wide distribution of circadian periods and that this heterogeneity, in addition to being stochastically driven, has a heritable component, likely via heritable epigenetic variation in gene expression regulation.
Collapse
Affiliation(s)
- K. L. Nikhil
- Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Sandra Korge
- Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Achim Kramer
- Charité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Laboratory of Chronobiology, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- * E-mail:
| |
Collapse
|
31
|
Food anticipatory circadian rhythms in mice entrained to long or short day photoperiods. Physiol Behav 2020; 222:112939. [PMID: 32407832 DOI: 10.1016/j.physbeh.2020.112939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 04/03/2020] [Accepted: 04/23/2020] [Indexed: 11/21/2022]
Abstract
Food anticipatory activity (FAA) rhythms that emerge in nocturnal rodents fed once daily are mediated by food-entrainable circadian oscillators (FEOs) located outside of the suprachiasmatic nucleus (SCN), the site of a circadian pacemaker required for entrainment to daily light-dark (LD) cycles. Specification of the neural and molecular substrates of FEOs driving FAA is complicated by homeostatic, hedonic and environmental factors that can modulate expression of activity independent of circadian timing. Here, we examined the effect of photoperiod (duration of the daily light period) on FAA in mice fed during the last 4 h or middle 4 h of the light period for at least 5 weeks. Long photoperiods decrease SCN pacemaker amplitude, which may favor expression of FAA during the day, when the SCN normally opposes activity in nocturnal rodents. To test this prediction, in Experiment 1, mice housed with or without running discs were entrained to 24 h LD cycles with 8 h (L8) or 16 h (L16) photoperiods. When food was restricted to the last 4 h of the light period (late-day), mice housed with running discs showed more FAA in L16, whereas mice without running discs showed more FAA in L8. In Experiment 2, mice were entrained to L8 or L16 photoperiods, and the 4 h daily meal was centered in the light period (mid-day). FAA was decreased relative to late-day fed mice, but did not vary by photoperiod. In Experiment 3, mice with or without running discs were entrained to L12 or L18 photoperiods, with mealtime centered in the light period. FAA again did not differ between photoperiods. In constant dark (DD) prior to food restriction, the period (τ) of free-running rhythms was shorter in mice entrained to long days. This known after-effect of photoperiod on τ was absent in DD immediately following restricted feeding. The phase of LD entrainment, unmasked on the first day of DD with food ad-libitum, was significantly advanced in mice from the late-day feeding schedule, compared to mice from the mid-day schedules. These results indicate that FAA in mice does not vary systematically with photoperiod, possibly because daytime feeding schedules attenuate the effect of photoperiod on the mouse SCN pacemaker. FAA in the present study was more strongly influenced by running disc availability and by meal time within the light period, possibly due to effects on LD entrainment, which was phase advanced by late-day but not midday feeding.
Collapse
|
32
|
Ananthasubramaniam B, Meijer JH. Regulation of Rest, Rather Than Activity, Underlies Day-Night Activity Differences in Mice. Front Physiol 2020; 11:268. [PMID: 32296342 PMCID: PMC7136415 DOI: 10.3389/fphys.2020.00268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/09/2020] [Indexed: 11/17/2022] Open
Abstract
The suprachiasmatic nucleus (SCN), which serves as the central pacemaker in mammals, regulates the 24-h rhythm in behavioral activity. However, it is currently unclear whether and how bouts of activity and rest are regulated within the 24-h cycle (i.e., over ultradian time scales). Therefore, we used passive infrared sensors to measure temporal behavior in mice housed under either a light–dark (LD) cycle or continuous darkness (DD). We found that a probabilistic Markov model captures the ultradian changes in the behavioral state over a 24-h cycle. In this model, the animal’s behavioral state in the next time interval is determined solely by the animal’s current behavioral state and by the “toss” of a proverbial “biased coin.” We found that the bias of this “coin” is regulated by light input and by the phase of the clock. Moreover, the bias of this “coin” for an animal is related to the average length of rest and activity bouts in that animal. In LD conditions, the average length of rest bouts was greater during the day compared to during the night, whereas the average length of activity bouts was greater during the night compared to during the day. Importantly, we also found that day-night changes in the rest bout lengths were significantly greater than day-night changes in the activity bout lengths. Finally, in DD conditions, the activity and rest bouts also differed between subjective night and subjective day, albeit to a lesser extent compared to LD conditions. The ultradian regulation represented by the model does not result in ultradian rhythms, although some weak ultradian rhythms are present in the data. The persistent differences in bout length over the circadian cycle following loss of the external LD cycle indicate that the central pacemaker plays a role in regulating rest and activity bouts on an ultradian time scale.
Collapse
Affiliation(s)
| | - Johanna H Meijer
- Leiden University Medical Center, Leiden University, Leiden, Netherlands
| |
Collapse
|
33
|
Paul S, Hanna L, Harding C, Hayter EA, Walmsley L, Bechtold DA, Brown TM. Output from VIP cells of the mammalian central clock regulates daily physiological rhythms. Nat Commun 2020; 11:1453. [PMID: 32193397 PMCID: PMC7081308 DOI: 10.1038/s41467-020-15277-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 02/29/2020] [Indexed: 12/27/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) circadian clock is critical for optimising daily cycles in mammalian physiology and behaviour. The roles of the various SCN cell types in communicating timing information to downstream physiological systems remain incompletely understood, however. In particular, while vasoactive intestinal polypeptide (VIP) signalling is essential for SCN function and whole animal circadian rhythmicity, the specific contributions of VIP cell output to physiological control remains uncertain. Here we reveal a key role for SCN VIP cells in central clock output. Using multielectrode recording and optogenetic manipulations, we show that VIP neurons provide coordinated daily waves of GABAergic input to target cells across the paraventricular hypothalamus and ventral thalamus, supressing their activity during the mid to late day. Using chemogenetic manipulation, we further demonstrate specific roles for this circuitry in the daily control of heart rate and corticosterone secretion, collectively establishing SCN VIP cells as influential regulators of physiological timing. VIP-expressing neurons play a central role in circadian timekeeping within the mammalian central clock. Here the authors use opto- and chemogenetic approaches to show that VIP neuronal activity regulates rhythmic activity in downstream hypothalamic target neurons and their physiological functions.
Collapse
Affiliation(s)
- Sarika Paul
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Lydia Hanna
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK.,School of Pharmacy, University of Reading, Reading, UK
| | - Court Harding
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Edward A Hayter
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Lauren Walmsley
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - David A Bechtold
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK
| | - Timothy M Brown
- Centre for Biological timing, Faculty of Biology Medicine & Health, University of Manchester, Manchester, UK.
| |
Collapse
|
34
|
Flôres DEFL, Oda GA. Quantitative Study of Dual Circadian Oscillator Models under Different Skeleton Photoperiods. J Biol Rhythms 2020; 35:302-316. [DOI: 10.1177/0748730420901939] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The daily proportion of light and dark hours (photoperiod) changes annually and plays an important role in the synchronization of seasonal biological phenomena, such as reproduction, hibernation, and migration. In mammals, the first step of photoperiod transduction occurs in the suprachiasmatic nuclei (SCN), the circadian pacemaker that also coordinates 24-h activity rhythms. Thus, in parallel with its role in annual synchronization, photoperiod variation acutely shapes day/night activity patterns, which vary throughout the year. Systematic studies of this behavioral modulation help understand the mechanisms behind its transduction at the SCN level. To explain how entrainment mechanisms could account for daily activity patterns under different photoperiods, Colin Pittendrigh and Serge Daan proposed a conceptual model in which the pacemaker would be composed of 2 coupled, evening (E) and morning (M), oscillators. Although the E-M model has existed for more than 40 years now, its physiological bases are still not fully resolved, and it has not been tested quantitatively under different photoperiods. To better explore the implications of the E-M model, we performed computer simulations of 2 coupled limit-cycle oscillators. Four model configurations were exposed to systematic variation of skeleton photoperiods, and the resulting daily activity patterns were assessed. The criterion for evaluating different model configurations was the successful reproduction of 2 key behavioral phenomena observed experimentally: activity psi-jumps and photoperiod-induced changes in activity phase duration. We compared configurations with either separate light inputs to E and M or the same light inputs to both oscillators. The former replicated experimental results closely, indicating that the configuration with separate E and M light inputs is the mechanism that best reproduces the effects of different skeleton photoperiods on day/night activity patterns. We hope this model can contribute to the search for E and M and their light input organization in the SCN.
Collapse
Affiliation(s)
| | - Gisele A. Oda
- Instituto de Biociências, Universidade de São Paulo, Sao Paulo, Brazil
| |
Collapse
|
35
|
Foster S, Christiansen T, Antle MC. Modeling the Influence of Synaptic Plasticity on After-effects. J Biol Rhythms 2019; 34:645-657. [PMID: 31436125 DOI: 10.1177/0748730419871189] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
While circadian rhythms in physiology and behavior demonstrate remarkable day-to-day precision, they are also able to exhibit plasticity in a variety of parameters and under a variety of conditions. After-effects are one type of plasticity in which exposure to non-24-h light-dark cycles (T-cycles) will alter the animal's free-running rhythm in subsequent constant conditions. We use a mathematical model to explore whether the concept of synaptic plasticity can explain the observation of after-effects. In this model, the SCN is composed of a set of individual oscillators randomly selected from a normally distributed population. Each cell receives input from a defined set of oscillators, and the overall period of a cell is a weighted average of its own period and that of its inputs. The influence that an input has on its target's period is determined by the proximity of the input cell's period to the imposed T-cycle period, such that cells with periods near T will have greater influence. Such an arrangement is able to duplicate the phenomenon of after-effects, with relatively few inputs per cell (~4-5) being required. When the variability of periods between oscillators is low, the system is quite robust and results in minimal after-effects, while systems with greater between-cell variability exhibit greater magnitude after-effects. T-cycles that produce maximal after-effects have periods within ~2.5 to 3 h of the population period. Overall, this model demonstrates that synaptic plasticity in the SCN network could contribute to plasticity of the circadian period.
Collapse
Affiliation(s)
- Semra Foster
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Tom Christiansen
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael C Antle
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
36
|
Naber WC, Fronczek R, Haan J, Doesborg P, Colwell CS, Ferrari MD, Meijer JH. The biological clock in cluster headache: A review and hypothesis. Cephalalgia 2019; 39:1855-1866. [DOI: 10.1177/0333102419851815] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Objective To review and discuss the putative role of light, sleep, and the biological clock in cluster headache. Discussion Cluster headache attacks are believed to be modulated in the hypothalamus; moreover, the severe pain and typical autonomic cranial features associated with cluster headache are caused by abnormal activity of the trigeminal-autonomic reflex. The temporal pattern of cluster headache attacks suggests involvement of the biological clock, and the seasonal pattern is influenced by the number of daylight hours. Although sleep is often reported as a trigger for cluster headache attacks, to date no clear correlation has been established between these attacks and sleep stage. Conclusions We hypothesize that light, sleep, and the biological clock can change the brain’s state, thereby lowering the threshold for activating the trigeminal-autonomic reflex, resulting in a cluster headache attack. Understanding the mechanisms that contribute to the daily and seasonal fluctuations in cluster headache attacks may provide new therapeutic targets.
Collapse
Affiliation(s)
- Willemijn C Naber
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Rolf Fronczek
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Joost Haan
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Neurology, Alrijne Hospital, Leiderdorp, the Netherlands
| | - Patty Doesborg
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Christopher S Colwell
- Department of Psychiatry, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Johanna H Meijer
- Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
37
|
Min C, Kim H, Choi W, Lee KJ. Diversity in the structure of action potential-mediated neural connectivity within rat supra chiasmatic nucleus. Eur J Neurosci 2019; 50:2814-2829. [PMID: 30968479 DOI: 10.1111/ejn.14417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 03/14/2019] [Accepted: 03/21/2019] [Indexed: 11/30/2022]
Abstract
Action potential (AP)-mediated cell-to-cell communication is essential for the frequency-locking and phase-synchronization of the clock cells within the biological master clock, suprachiasmatic nucleus (SCN). Nevertheless, the morphology of its network connectivity is largely unexplored. Here, with an optimized optogenetic light-stimulation and scanning protocol, we report some key characteristics of the inhibitory receptive field (IRF), the area which brings inhibitory synaptic currents to a given target cell, and basic statistics of the inhibitory network connections of rat SCN clock cells. ChR2 transfected, slice cultures of rat SCN were stimulated by a blue power LED light in a repetitive box-scanning modes, while a target cell was whole-cell patched. The registered inhibitory postsynaptic currents, which were brought by light-induced APs of presynaptic neurons, were mostly GABAergic. The sizes and shapes of IRFs of SCN cells were very diverse, and the number of presynaptic cells making up the IRF of a given target cell followed an exponential distribution with an average value of 8.9 approximately, according to our clustering analysis which is based on a hybrid measure D, combining the physical distance r and the difference in the current amplitudes of two different sites. Although this estimate inevitably depends on the construct of the measure D, it is found not so sensitive on the parameter w, which weighs the relative significance of the current amplitude different with respect to the physical distance r: The average number of presynaptic neurons varies < 26% over a significant range of 0 < w < 30. On average, the presynaptic connection number density around a target cell falls off as an exponentially decreasing function of r. But, its space constant (~210.7 μm) is quite large that long-range (>210.7 μm) neural connections are abundant (>66.9%) within the SCN.
Collapse
Affiliation(s)
- Cheolhong Min
- Department of Physics, Korea University, Seoul, Korea
| | - Hyun Kim
- Department of Physics, Korea University, Seoul, Korea
| | - Wonshik Choi
- Department of Physics, Korea University, Seoul, Korea.,Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, Korea
| | - Kyoung J Lee
- Department of Physics, Korea University, Seoul, Korea
| |
Collapse
|
38
|
Buijink MR, van Weeghel M, Gülersönmez MC, Harms AC, Rohling JHT, Meijer JH, Hankemeier T, Michel S. The influence of neuronal electrical activity on the mammalian central clock metabolome. Metabolomics 2018; 14:122. [PMID: 30830420 PMCID: PMC6153692 DOI: 10.1007/s11306-018-1423-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/31/2018] [Indexed: 01/13/2023]
Abstract
INTRODUCTION Most organisms display circadian rhythms in physiology and behaviour. In mammals, these rhythms are orchestrated by the suprachiasmatic nucleus (SCN). Recently, several metabolites have emerged as important regulators of circadian timekeeping. Metabolomics approaches have aided in identifying some key metabolites in circadian processes in peripheral tissue, but methods to routinely measure metabolites in small brain areas are currently lacking. OBJECTIVE The aim of the study was to establish a reliable method for metabolite quantifications in the central circadian clock and relate them to different states of neuronal excitability. METHODS We developed a method to collect and process small brain tissue samples (0.2 mm3), suitable for liquid chromatography-mass spectrometry. Metabolites were analysed in the SCN and one of its main hypothalamic targets, the paraventricular nucleus (PVN). Tissue samples were taken at peak (midday) and trough (midnight) of the endogenous rhythm in SCN electrical activity. Additionally, neuronal activity was altered pharmacologically. RESULTS We found a minor effect of day/night fluctuations in electrical activity or silencing activity during the day. In contrast, increasing electrical activity during the night significantly upregulated many metabolites in SCN and PVN. CONCLUSION Our method has shown to produce reliable and physiologically relevant metabolite data from small brain samples. Inducing electrical activity at night mimics the effect of a light pulses in the SCN, producing phase shifts of the circadian rhythm. The upregulation of metabolites could have a functional role in this process, since they are not solely products of physiological states, they are significant parts of cellular signalling pathways.
Collapse
Affiliation(s)
- M Renate Buijink
- Department of Cellular and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Michel van Weeghel
- Department of Cellular and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
- Analytical BioSciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - M Can Gülersönmez
- Analytical BioSciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Amy C Harms
- Analytical BioSciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Jos H T Rohling
- Department of Cellular and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Johanna H Meijer
- Department of Cellular and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Thomas Hankemeier
- Analytical BioSciences and Metabolomics, Division of Systems Biomedicine and Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands
| | - Stephan Michel
- Department of Cellular and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands.
| |
Collapse
|
39
|
Deboer T. Sleep homeostasis and the circadian clock: Do the circadian pacemaker and the sleep homeostat influence each other's functioning? Neurobiol Sleep Circadian Rhythms 2018; 5:68-77. [PMID: 31236513 PMCID: PMC6584681 DOI: 10.1016/j.nbscr.2018.02.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 02/23/2018] [Accepted: 02/23/2018] [Indexed: 12/13/2022] Open
Abstract
Sleep is regulated by a homeostatic and a circadian process. Together these two processes determine most aspects of sleep and related variables like sleepiness and alertness. The two processes are known to be able to work independently, but also to both influence sleep and sleep related variables in an additive or more complex manner. The question remains whether the two processes are directly influencing each other. The present review summarizes evidence from behavioural and electroencephalographic determined sleep, electrophysiology, gene knock out mouse models, and mathematical modelling to explore whether sleep homeostasis can influence circadian clock functioning and vice versa. There is a multitude of data available showing parallel action or influence of sleep homeostatic mechanisms and the circadian clock on several objective and subjective variables related to sleep and alertness. However, the evidence of a direct influence of the circadian clock on sleep homeostatic mechanisms is sparse and more research is needed, particularly applying longer sleep deprivations that include a second night. The strongest evidence of an influence of sleep homeostatic mechanisms on clock functioning comes from sleep deprivation experiments, demonstrating an attenuation of phase shifts of the circadian rhythm to light pulses when sleep homeostatic pressure is increased. The data suggest that the circadian clock is less susceptible to light when sleep pressure is high. The available data indicate that a strong central clock will induce periods of deep sleep, which in turn will strengthen clock function. Both are therefore important for health and wellbeing. Weakening of one will also hamper functioning of the other. Shift work and jet lag are situations where one tries to adapt to zeitgebers in a condition where sleep is compromised. Adaptation to zeitgebers may be improved by introducing nap schedules to reduce sleep pressure, and through that increasing clock susceptibility to light.
Collapse
|
40
|
Santana NNM, Barros MAS, Medeiros HHA, Santana MAD, Silva LL, Morais PLAG, Ladd FVL, Cavalcante JS, Lima RRM, Cavalcante JC, Costa MSMO, Engelberth RCJG, Nascimento Jr. ES. The Suprachiasmatic Nucleus and the Intergeniculate Leaflet of the Flat-Faced Fruit-Eating Bat ( Artibeus planirostris): Retinal Projections and Neurochemical Anatomy. Front Neuroanat 2018; 12:36. [PMID: 29867376 PMCID: PMC5962671 DOI: 10.3389/fnana.2018.00036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/20/2018] [Indexed: 12/27/2022] Open
Abstract
In mammals, the suprachiasmatic nucleus (SCN) and the intergeniculate leaflet (IGL) are the main components of the circadian timing system. The SCN, classically known as the master circadian clock, generates rhythms and synchronizes them to environmental cues. The IGL is a key structure that modulates SCN activity. Strategies on the use of time by animals can provide important clues about how some species are adapted to competitive process in nature. Few studies have provided information about temporal niche in bats with special attention on the neural substrate underlies circadian rhythms. The aim of this study was to investigate these circadian centers with respect to their cytoarchitecture, chemical content and retinal projections in the flat-faced fruit-eating bat (Artibeus planirostris), a chiropteran endemic to South America. Unlike other species of phyllostomid bats, the flat-faced fruit-eating bat's peak of activity occurs 5 h after sunset. This raises several questions about the structure and function of the SCN and IGL in this species. We carried out a mapping of the retinal projections and cytoarchitectural study of the nuclei using qualitative and quantitative approaches. Based on relative optical density findings, the SCN and IGL of the flat-faced fruit-eating bat receive bilaterally symmetric retinal innervation. The SCN contains vasopressin (VP) and vasoactive intestinal polypeptide (VIP) neurons with neuropeptide Y (NPY), serotonin (5-HT) and glutamic acid decarboxylase (GAD) immunopositive fibers/terminals and is marked by intense glial fibrillary acidic protein (GFAP) immunoreactivity. The IGL contains NPY perikarya as well as GAD and 5-HT immunopositive terminals and is characterized by dense GFAP immunostaining. In addition, stereological tools were combined with Nissl stained sections to estimate the volumes of the circadian centers. Taken together, the present results in the flat-faced fruit-eating bat reveal some differences compared to other bat species which might explain the divergence in the hourly activity among bats in order to reduce the competitive potential and resource partitioning in nature.
Collapse
Affiliation(s)
- Nelyane N. M. Santana
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Helder H. A. Medeiros
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Melquisedec A. D. Santana
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Lara L. Silva
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Paulo L. A. G. Morais
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Fernando V. L. Ladd
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Jeferson S. Cavalcante
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Ruthnaldo R. M. Lima
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Judney C. Cavalcante
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Miriam S. M. O. Costa
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Rovena C. J. G. Engelberth
- Laboratory of Neurochemical Studies, Department of Physiology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Expedito S. Nascimento Jr.
- Laboratory of Neuroanatomy, Department of Morphology, Biosciences Center, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
41
|
Pierre K, Rao RT, Hartmanshenn C, Androulakis IP. Modeling the Influence of Seasonal Differences in the HPA Axis on Synchronization of the Circadian Clock and Cell Cycle. Endocrinology 2018; 159:1808-1826. [PMID: 29444258 PMCID: PMC6044315 DOI: 10.1210/en.2017-03226] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 02/06/2018] [Indexed: 12/22/2022]
Abstract
Synchronization of biological functions to environmental signals enables organisms to anticipate and appropriately respond to daily external fluctuations and is critical to the maintenance of homeostasis. Misalignment of circadian rhythms with environmental cues is associated with adverse health outcomes. Cortisol, the downstream effector of hypothalamic-pituitary-adrenal (HPA) activity, facilitates synchronization of peripheral biological processes to the environment. Cortisol levels exhibit substantial seasonal rhythmicity, with peak levels occurring during the short-photoperiod winter months and reduced levels occurring in the long-photoperiod summer season. Seasonal changes in cortisol secretion could therefore alter its entraining capabilities, resulting in a season-dependent modification in the alignment of biological activities with the environment. We develop a mathematical model to investigate the influence of photoperiod-induced seasonal differences in the circadian rhythmicity of the HPA axis on the synchronization of the peripheral circadian clock and cell cycle in a heterogeneous cell population. Model simulations predict that the high-amplitude cortisol rhythms in winter result in the greatest entrainment of peripheral oscillators. Furthermore, simulations predict a circadian gating of the cell cycle with respect to the expression of peripheral clock genes. Seasonal differences in cortisol rhythmicity are also predicted to influence mitotic synchrony, with a high-amplitude winter rhythm resulting in the greatest synchrony and a shift in timing of the cell cycle phases, relative to summer. Our results highlight the primary interactions among the HPA axis, the peripheral circadian clock, and the cell cycle and thereby provide an improved understanding of the implications of circadian misalignment on the synchronization of peripheral regulatory processes.
Collapse
Affiliation(s)
- Kamau Pierre
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Rohit T Rao
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Clara Hartmanshenn
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| | - Ioannis P Androulakis
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
- Department of Chemical and Biochemical Engineering, Rutgers, The State University of New Jersey, Piscataway, New Jersey
| |
Collapse
|
42
|
Belle MDC, Diekman CO. Neuronal oscillations on an ultra-slow timescale: daily rhythms in electrical activity and gene expression in the mammalian master circadian clockwork. Eur J Neurosci 2018; 48:2696-2717. [PMID: 29396876 DOI: 10.1111/ejn.13856] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/16/2018] [Accepted: 01/28/2018] [Indexed: 12/17/2022]
Abstract
Neuronal oscillations of the brain, such as those observed in the cortices and hippocampi of behaving animals and humans, span across wide frequency bands, from slow delta waves (0.1 Hz) to ultra-fast ripples (600 Hz). Here, we focus on ultra-slow neuronal oscillators in the hypothalamic suprachiasmatic nuclei (SCN), the master daily clock that operates on interlocking transcription-translation feedback loops to produce circadian rhythms in clock gene expression with a period of near 24 h (< 0.001 Hz). This intracellular molecular clock interacts with the cell's membrane through poorly understood mechanisms to drive the daily pattern in the electrical excitability of SCN neurons, exhibiting an up-state during the day and a down-state at night. In turn, the membrane activity feeds back to regulate the oscillatory activity of clock gene programs. In this review, we emphasise the circadian processes that drive daily electrical oscillations in SCN neurons, and highlight how mathematical modelling contributes to our increasing understanding of circadian rhythm generation, synchronisation and communication within this hypothalamic region and across other brain circuits.
Collapse
Affiliation(s)
- Mino D C Belle
- Institute of Clinical and Biomedical Sciences, University of Exeter Medical School, University of Exeter, Exeter, EX4 4PS, UK
| | - Casey O Diekman
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, NJ, USA.,Institute for Brain and Neuroscience Research, New Jersey Institute of Technology, Newark, NJ, USA
| |
Collapse
|
43
|
Tackenberg MC, McMahon DG. Photoperiodic Programming of the SCN and Its Role in Photoperiodic Output. Neural Plast 2018; 2018:8217345. [PMID: 29552032 PMCID: PMC5818903 DOI: 10.1155/2018/8217345] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
Though the seasonal response of organisms to changing day lengths is a phenomenon that has been scientifically reported for nearly a century, significant questions remain about how photoperiod is encoded and effected neurobiologically. In mammals, early work identified the master circadian clock, the suprachiasmatic nuclei (SCN), as a tentative encoder of photoperiodic information. Here, we provide an overview of research on the SCN as a coordinator of photoperiodic responses, the intercellular coupling changes that accompany that coordination, as well as the SCN's role in a putative brain network controlling photoperiodic input and output. Lastly, we discuss the importance of photoperiodic research in the context of tangible benefits to human health that have been realized through this research as well as challenges that remain.
Collapse
Affiliation(s)
| | - Douglas G. McMahon
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
44
|
Luo S, Zhang Y, Ezrokhi M, Li Y, Tsai T, Cincotta AH. Circadian peak dopaminergic activity response at the biological clock pacemaker (suprachiasmatic nucleus) area mediates the metabolic responsiveness to a high-fat diet. J Neuroendocrinol 2018; 30:e12563. [PMID: 29224246 PMCID: PMC5817247 DOI: 10.1111/jne.12563] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/28/2017] [Accepted: 12/04/2017] [Indexed: 12/24/2022]
Abstract
Among vertebrate species of the major vertebrate classes in the wild, a seasonal rhythm of whole body fuel metabolism, oscillating from a lean to obese condition, is a common biological phenomenon. This annual cycle is driven in part by annual changes in the circadian dopaminergic signalling at the suprachiasmatic nuclei (SCN), with diminution of circadian peak dopaminergic activity at the SCN facilitating development of the seasonal obese insulin-resistant condition. The present study investigated whether such an ancient circadian dopamine-SCN activity system for expression of the seasonal obese, insulin-resistant phenotype may be operative in animals made obese amd insulin resistant by high-fat feeding and, if so, whether reinstatement of the circadian dopaminergic peak at the SCN would be sufficient to reverse the adverse metabolic impact of the high-fat diet without any alteration of caloric intake. First, we identified the supramammillary nucleus as a novel site providing the majority of dopaminergic neuronal input to the SCN. We further identified dopamine D2 receptors within the peri-SCN region as being functional in mediating SCN responsiveness to local dopamine. In lean, insulin-sensitive rats, the peak in the circadian rhythm of dopamine release at the peri-SCN coincided with the daily peak in SCN electrophysiological responsiveness to local dopamine administration. However, in rats made obese and insulin resistant by high-fat diet (HFD) feeding, these coincident circadian peak activities were both markedly attenuated or abolished. Reinstatement of the circadian peak in dopamine level at the peri-SCN by its appropriate circadian-timed daily microinjection to this area (but not outside this circadian time-interval) abrogated the obese, insulin-resistant condition without altering the consumption of the HFD. These findings suggest that the circadian peak of dopaminergic activity at the peri-SCN/SCN is a key modulator of metabolism and the responsiveness to adverse metabolic consequences of HFD consumption.
Collapse
Affiliation(s)
- S. Luo
- VeroScience LLCTivertonRIUSA
| | | | | | - Y. Li
- VeroScience LLCTivertonRIUSA
| | | | | |
Collapse
|
45
|
Rao RT, Pierre KK, Schlesinger N, Androulakis IP. The Potential of Circadian Realignment in Rheumatoid Arthritis. Crit Rev Biomed Eng 2017; 44:177-191. [PMID: 28605351 DOI: 10.1615/critrevbiomedeng.2016018812] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this short review, we discuss evidence supporting the modulation of peripheral circadian systems as a therapeutic strategy for rheumatoid arthritis (RA). We first review the role of proinflammatory cytokines and oxidative stress, two of the primary mediators of chronic inflammation in RA, and their regulation by circadian clock machinery. We further highlight the role of environmental and metabolic signals in regulating the central and peripheral circadian clocks, with an emphasis on seasonal variations in photoperiod and rhythmic metabolic input, respectively. Finally, we hypothesize that the entrainment and realignment of peripheral clock rhythms have the ability to modulate these mediators, improving clinical outcomes in RA patients. Our discussion emphasizes the use of light therapy and time-restricted feeding for entraining peripheral clocks either via the entrainment of the central circadian clock in suprachiasmatic nuclei (SCN) or directly by uncoupling the peripheral circadian clocks from SCN. In doing so, we highlight the use of nonpharmacologic interventions as a potential strategy for improving clinical outcomes in chronic inflammatory conditions such as RA.
Collapse
Affiliation(s)
- Rohit T Rao
- Chemical & Biochemical Engineering Department, Rutgers University, Piscataway, New Jersey
| | - Kamau K Pierre
- Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey
| | - Naomi Schlesinger
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Ioannis P Androulakis
- Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, New Jersey; Biomedical Engineering Department, Rutgers University, Piscataway, New Jersey; Department of Surgery, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey
| |
Collapse
|
46
|
Hanna L, Walmsley L, Pienaar A, Howarth M, Brown TM. Geniculohypothalamic GABAergic projections gate suprachiasmatic nucleus responses to retinal input. J Physiol 2017; 595:3621-3649. [PMID: 28217893 DOI: 10.1113/jp273850] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 02/13/2017] [Indexed: 01/28/2023] Open
Abstract
KEY POINTS Visual input to the suprachiasmatic nucleus circadian clock is critical for animals to adapt their physiology and behaviour in line with the solar day. In addition to direct retinal projections, the clock receives input from the visual thalamus, although the role of this geniculohypothalamic pathway in circadian photoreception is poorly understood. In the present study, we develop a novel brain slice preparation that preserves the geniculohypothalamic pathway to show that GABAergic thalamic neurons inhibit retinally-driven activity in the central clock in a circadian time-dependent manner. We also show that in vivo manipulation of thalamic signalling adjusts specific features of the hypothalamic light response, indicating that the geniculohypothalamic pathway is primarily activated by crossed retinal inputs. Our data provide a mechanism by which geniculohypothalamic signals can adjust the magnitude of circadian and more acute hypothalamic light responses according to time-of-day and establish an important new model for future investigations of the circadian visual system. ABSTRACT Sensory input to the master mammalian circadian clock, the suprachiasmatic nucleus (SCN), is vital in allowing animals to optimize physiology and behaviour alongside daily changes in the environment. Retinal inputs encoding changes in external illumination provide the principle source of such information. The SCN also receives input from other retinorecipient brain regions, primarily via the geniculohypothalamic tract (GHT), although the contribution of these indirect projections to circadian photoreception is currently poorly understood. To address this deficit, in the present study, we established an in vitro mouse brain slice preparation that retains connectivity across the extended circadian system. Using multi-electrode recordings, we first confirm that this preparation retains intact optic projections to the SCN, thalamus and pretectum and a functional GHT. We next show that optogenetic activation of GHT neurons selectively suppresses SCN responses to retinal input, and also that this effect exhibits a pronounced day/night variation and involves a GABAergic mechanism. This inhibitory action was not associated with overt circadian rhythmicity in GHT output, indicating modulation at the SCN level. Finally, we use in vivo electrophysiological recordings alongside pharmacological inactivation or optogenetic excitation to show that GHT signalling actively modulates specific features of the SCN light response, indicating that GHT cells are primarily activated by crossed retinal projections. Taken together, our data establish a new model for studying network communication in the extended circadian system and provide novel insight into the roles of GHT-signalling, revealing a mechanism by which thalamic activity can help gate retinal input to the SCN according to time of day.
Collapse
Affiliation(s)
- Lydia Hanna
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Lauren Walmsley
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Abigail Pienaar
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Michael Howarth
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Timothy M Brown
- Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
47
|
Synchronous circadian voltage rhythms with asynchronous calcium rhythms in the suprachiasmatic nucleus. Proc Natl Acad Sci U S A 2017; 114:E2476-E2485. [PMID: 28270612 DOI: 10.1073/pnas.1616815114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The suprachiasmatic nucleus (SCN), the master circadian clock, contains a network composed of multiple types of neurons which are thought to form a hierarchical and multioscillator system. The molecular clock machinery in SCN neurons drives membrane excitability and sends time cue signals to various brain regions and peripheral organs. However, how and at what time of the day these neurons transmit output signals remain largely unknown. Here, we successfully visualized circadian voltage rhythms optically for many days using a genetically encoded voltage sensor, ArcLightD. Unexpectedly, the voltage rhythms are synchronized across the entire SCN network of cultured slices, whereas simultaneously recorded Ca2+ rhythms are topologically specific to the dorsal and ventral regions. We further found that the temporal order of these two rhythms is cell-type specific: The Ca2+ rhythms phase-lead the voltage rhythms in AVP neurons but Ca2+ and voltage rhythms are nearly in phase in VIP neurons. We confirmed that circadian firing rhythms are also synchronous and are coupled with the voltage rhythms. These results indicate that SCN networks with asynchronous Ca2+ rhythms produce coherent voltage rhythms.
Collapse
|
48
|
Buijink MR, Almog A, Wit CB, Roethler O, Olde Engberink AHO, Meijer JH, Garlaschelli D, Rohling JHT, Michel S. Evidence for Weakened Intercellular Coupling in the Mammalian Circadian Clock under Long Photoperiod. PLoS One 2016; 11:e0168954. [PMID: 28006027 PMCID: PMC5179103 DOI: 10.1371/journal.pone.0168954] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 12/08/2016] [Indexed: 11/18/2022] Open
Abstract
For animals living in temperate latitudes, seasonal changes in day length are an important cue for adaptations of their physiology and behavior to the altered environmental conditions. The suprachiasmatic nucleus (SCN) is known as the central circadian clock in mammals, but may also play an important role in adaptations to different photoperiods. The SCN receives direct light input from the retina and is able to encode day-length by approximating the waveform of the electrical activity rhythm to the duration of daylight. Changing the overall waveform requires a reorganization of the neuronal network within the SCN with a change in the degree of synchrony between the neurons; however, the underlying mechanisms are yet unknown. In the present study we used PER2::LUC bioluminescence imaging in cultured SCN slices to characterize network dynamics on the single-cell level and we aimed to provide evidence for a role of modulations in coupling strength in the photoperiodic-induced phase dispersal. Exposure to long photoperiod (LP) induced a larger distribution of peak times of the single-cell PER2::LUC rhythms in the anterior SCN, compared to short photoperiod. Interestingly, the cycle-to-cycle variability in single-cell period of PER2::LUC rhythms is also higher in the anterior SCN in LP, and is positively correlated with peak time dispersal. Applying a new, impartial community detection method on the time series data of the PER2::LUC rhythm revealed two clusters of cells with a specific spatial distribution, which we define as dorsolateral and ventromedial SCN. Post hoc analysis of rhythm characteristics of these clusters showed larger cycle-to-cycle single-cell period variability in the dorsolateral compared to the ventromedial cluster in the anterior SCN. We conclude that a change in coupling strength within the SCN network is a plausible explanation to the observed changes in single-cell period variability, which can contribute to the photoperiod-induced phase distribution.
Collapse
Affiliation(s)
- M. Renate Buijink
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Assaf Almog
- Lorentz Institute for Theoretical Physics, Leiden University, Leiden, The Netherlands
| | - Charlotte B. Wit
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ori Roethler
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Anneke H. O. Olde Engberink
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Johanna H. Meijer
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Diego Garlaschelli
- Lorentz Institute for Theoretical Physics, Leiden University, Leiden, The Netherlands
| | - Jos H. T. Rohling
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Stephan Michel
- Department of Molecular Cell Biology, Laboratory for Neurophysiology, Leiden University Medical Center, Leiden, The Netherlands
- * E-mail:
| |
Collapse
|
49
|
van Ee R, Van de Cruys S, Schlangen LJ, Vlaskamp BN. Circadian-Time Sickness: Time-of-Day Cue-Conflicts Directly Affect Health. Trends Neurosci 2016; 39:738-749. [DOI: 10.1016/j.tins.2016.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 10/20/2022]
|
50
|
Park J, Zhu H, O'Sullivan S, Ogunnaike BA, Weaver DR, Schwaber JS, Vadigepalli R. Single-Cell Transcriptional Analysis Reveals Novel Neuronal Phenotypes and Interaction Networks Involved in the Central Circadian Clock. Front Neurosci 2016; 10:481. [PMID: 27826225 PMCID: PMC5079116 DOI: 10.3389/fnins.2016.00481] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 10/07/2016] [Indexed: 12/31/2022] Open
Abstract
Single-cell heterogeneity confounds efforts to understand how a population of cells organizes into cellular networks that underlie tissue-level function. This complexity is prominent in the mammalian suprachiasmatic nucleus (SCN). Here, individual neurons exhibit a remarkable amount of asynchronous behavior and transcriptional heterogeneity. However, SCN neurons are able to generate precisely coordinated synaptic and molecular outputs that synchronize the body to a common circadian cycle by organizing into cellular networks. To understand this emergent cellular network property, it is important to reconcile single-neuron heterogeneity with network organization. In light of recent studies suggesting that transcriptionally heterogeneous cells organize into distinct cellular phenotypes, we characterized the transcriptional, spatial, and functional organization of 352 SCN neurons from mice experiencing phase-shifts in their circadian cycle. Using the community structure detection method and multivariate analytical techniques, we identified previously undescribed neuronal phenotypes that are likely to participate in regulatory networks with known SCN cell types. Based on the newly discovered neuronal phenotypes, we developed a data-driven neuronal network structure in which multiple cell types interact through known synaptic and paracrine signaling mechanisms. These results provide a basis from which to interpret the functional variability of SCN neurons and describe methodologies toward understanding how a population of heterogeneous single cells organizes into cellular networks that underlie tissue-level function.
Collapse
Affiliation(s)
- James Park
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphia, PA, USA; Department of Chemical and Biomolecular Engineering, University of DelawareNewark, NJ, USA
| | - Haisun Zhu
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson University Philadelphia, PA, USA
| | - Sean O'Sullivan
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson University Philadelphia, PA, USA
| | - Babatunde A Ogunnaike
- Department of Chemical and Biomolecular Engineering, University of Delaware Newark, NJ, USA
| | - David R Weaver
- Department of Neurobiology, University of Massachusetts Medical School Worcester, MA, USA
| | - James S Schwaber
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphia, PA, USA; Department of Chemical and Biomolecular Engineering, University of DelawareNewark, NJ, USA
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Sidney Kimmel Medical College, Thomas Jefferson UniversityPhiladelphia, PA, USA; Department of Chemical and Biomolecular Engineering, University of DelawareNewark, NJ, USA
| |
Collapse
|