1
|
da Silva D, Matsui A, Murray EM, Mamais A, Authement ME, Shin JH, Shaw M, Ron D, Cookson MR, Alvarez VA. Leucine-rich repeat kinase 2 limits dopamine D1 receptor signaling in striatum and biases against heavy persistent alcohol drinking. Neuropsychopharmacology 2024; 49:824-836. [PMID: 37684522 PMCID: PMC10948780 DOI: 10.1038/s41386-023-01731-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/25/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023]
Abstract
The transition from hedonic alcohol drinking to problematic drinking is a hallmark of alcohol use disorder that occurs only in a subset of drinkers. This transition requires long-lasting changes in the synaptic drive and the activity of striatal neurons expressing dopamine D1 receptor (D1R). The molecular mechanisms that generate vulnerability in some individuals to undergo the transition are less understood. Here, we report that the Parkinson's-related protein leucine-rich repeat kinase 2 (LRRK2) modulates striatal D1R function to affect the behavioral response to alcohol and the likelihood that mice transition to heavy, persistent alcohol drinking. Constitutive deletion of the Lrrk2 gene specifically from D1R-expressing neurons potentiated D1R signaling at the cellular and synaptic level and enhanced alcohol-related behaviors and drinking. Mice with cell-specific deletion of Lrrk2 were more prone to heavy alcohol drinking, and consumption was insensitive to punishment. These findings identify a potential novel role for LRRK2 function in the striatum in promoting resilience against heavy and persistent alcohol drinking.
Collapse
Affiliation(s)
- Daniel da Silva
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Aya Matsui
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Erin M Murray
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Adamantios Mamais
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Michael E Authement
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Jung Hoon Shin
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Marlisa Shaw
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA
| | - Dorit Ron
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Mark R Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Veronica A Alvarez
- Laboratory on Neurobiology of Compulsive Behaviors, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, 20892, USA.
- Center on Compulsive Behaviors, Intramural Research Program, NIH, Bethesda, MD, 20892, USA.
- NIMH, National Institutes of Health, Bethesda, USA.
| |
Collapse
|
2
|
Caniceiro AB, Bueschbell B, Schiedel AC, Moreira IS. Class A and C GPCR Dimers in Neurodegenerative Diseases. Curr Neuropharmacol 2022; 20:2081-2141. [PMID: 35339177 PMCID: PMC9886835 DOI: 10.2174/1570159x20666220327221830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/21/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases affect over 30 million people worldwide with an ascending trend. Most individuals suffering from these irreversible brain damages belong to the elderly population, with onset between 50 and 60 years. Although the pathophysiology of such diseases is partially known, it remains unclear upon which point a disease turns degenerative. Moreover, current therapeutics can treat some of the symptoms but often have severe side effects and become less effective in long-term treatment. For many neurodegenerative diseases, the involvement of G proteincoupled receptors (GPCRs), which are key players of neuronal transmission and plasticity, has become clearer and holds great promise in elucidating their biological mechanism. With this review, we introduce and summarize class A and class C GPCRs, known to form heterodimers or oligomers to increase their signalling repertoire. Additionally, the examples discussed here were shown to display relevant alterations in brain signalling and had already been associated with the pathophysiology of certain neurodegenerative diseases. Lastly, we classified the heterodimers into two categories of crosstalk, positive or negative, for which there is known evidence.
Collapse
Affiliation(s)
- Ana B. Caniceiro
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Beatriz Bueschbell
- PhD Programme in Experimental Biology and Biomedicine, Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão, 3030-789 Coimbra, Portugal; ,These authors contributed equally to this work.
| | - Anke C. Schiedel
- Department of Pharmaceutical & Medicinal Chemistry, Pharmaceutical Institute, University of Bonn, D-53121 Bonn, Germany;
| | - Irina S. Moreira
- University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; ,Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal,Address correspondence to this author at the Center for Neuroscience and Cell Biology, Center for Innovative Biomedicine and Biotechnology, 3004-504 Coimbra, Portugal; E-mail:
| |
Collapse
|
3
|
Kaźmierczak M, Nicola SM. The Arousal-motor Hypothesis of Dopamine Function: Evidence that Dopamine Facilitates Reward Seeking in Part by Maintaining Arousal. Neuroscience 2022; 499:64-103. [PMID: 35853563 PMCID: PMC9479757 DOI: 10.1016/j.neuroscience.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
Dopamine facilitates approach to reward via its actions on dopamine receptors in the nucleus accumbens. For example, blocking either D1 or D2 dopamine receptors in the accumbens reduces the proportion of reward-predictive cues to which rats respond with cued approach. Recent evidence indicates that accumbens dopamine also promotes wakefulness and arousal, but the relationship between dopamine's roles in arousal and reward seeking remains unexplored. Here, we show that the ability of systemic or intra-accumbens injections of the D1 antagonist SCH23390 to reduce cued approach to reward depends on the animal's state of arousal. Handling the animal, a manipulation known to increase arousal, was sufficient to reverse the behavioral effects of the antagonist. In addition, SCH23390 reduced spontaneous locomotion and increased time spent in sleep postures, both consistent with reduced arousal, but also increased time spent immobile in postures inconsistent with sleep. In contrast, the ability of the D2 antagonist haloperidol to reduce cued approach was not reversible by handling. Haloperidol reduced spontaneous locomotion but did not increase sleep postures, instead increasing immobility in non-sleep postures. We place these results in the context of the extensive literature on dopamine's contributions to behavior, and propose the arousal-motor hypothesis. This novel synthesis, which proposes that two main functions of dopamine are to promote arousal and facilitate motor behavior, accounts both for our findings and many previous behavioral observations that have led to disparate and conflicting conclusions.
Collapse
Affiliation(s)
- Marcin Kaźmierczak
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Forchheimer 111, Bronx, NY 10461, USA
| | - Saleem M Nicola
- Departments of Neuroscience and Psychiatry, Albert Einstein College of Medicine, 1300 Morris Park Ave, Forchheimer 111, Bronx, NY 10461, USA.
| |
Collapse
|
4
|
ADORA 1-driven brain-sympathetic neuro-adipose connections control body weight and adipose lipid metabolism. Mol Psychiatry 2021; 26:2805-2819. [PMID: 33067580 PMCID: PMC8050129 DOI: 10.1038/s41380-020-00908-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/14/2020] [Accepted: 10/01/2020] [Indexed: 12/21/2022]
Abstract
It is essential to elucidate brain-adipocyte interactions in order to tackle obesity and its comorbidities, as the precise control of brain-adipose tissue cross-talk is crucial for energy and glucose homeostasis. Recent studies show that in the peripheral adipose tissue, adenosine induces adipogenesis through peripheral adenosine A1 receptor (pADORA1) signaling; however, it remains unclear whether systemic and adipose tissue metabolism would also be under the control of central (c) ADORA1 signaling. Here, we use tissue-specific pharmacology and metabolic tools to clarify the roles of cADORA1 signaling in energy and adipocyte physiology. We found that cADORA1 signaling reduces body weight while also inducing adipose tissue lipolysis. cADORA1 signaling also increases adipose tissue sympathetic norepinephrine content. In contrast, pADORA1 signaling facilitates a high-fat diet-induced obesity (DIO). We propose here a novel mechanism in which cADORA1 and pADORA1 signaling hinder and aggravate DIO, respectively.
Collapse
|
5
|
Docherty JR, Alsufyani HA. Cardiovascular and temperature adverse actions of stimulants. Br J Pharmacol 2021; 178:2551-2568. [PMID: 33786822 DOI: 10.1111/bph.15465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
The vast majority of illicit stimulants act at monoaminergic systems, causing both psychostimulant and adverse effects. Stimulants can interact as substrates or antagonists at the nerve terminal monoamine transporter that mediates the reuptake of monoamines across the nerve synaptic membrane and at the vesicular monoamine transporter (VMAT-2) that mediates storage of monoamines in vesicles. Stimulants can act directly at presynaptic or postsynaptic receptors for monoamines or have indirect monoamine-mimetic actions due to the release of monoamines. Cocaine and other stimulants can acutely increase the risk of sudden cardiac death. Stimulants, particularly MDMA, in hot conditions, such as that occurring at a "rave," have caused fatalities from the consequences of hyperthermia, often compounding cardiac adverse actions. This review examines the pharmacology of the cardiovascular and temperature adverse actions of stimulants.
Collapse
Affiliation(s)
- James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Hadeel A Alsufyani
- Department of Physiology, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
6
|
Petković B, Kesić S, Pešić V. Critical View on the Usage of Ribavirin in Already Existing Psychostimulant-Use Disorder. Curr Pharm Des 2020; 26:466-484. [PMID: 31939725 PMCID: PMC8383468 DOI: 10.2174/1381612826666200115094642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022]
Abstract
Substance-use disorder represents a frequently hidden non-communicable chronic disease. Patients with intravenous drug addiction are at high risk of direct exposure to a variety of viral infections and are considered to be the largest subpopulation infected with the hepatitis C virus. Ribavirin is a synthetic nucleoside analog that has been used as an integral component of hepatitis C therapy. However, ribavirin medication is quite often associated with pronounced psychiatric adverse effects. It is not well understood to what extent ribavirin per se contributes to changes in drug-related neurobehavioral disturbances, especially in the case of psychostimulant drugs, such as amphetamine. It is now well-known that repeated amphetamine usage produces psychosis in humans and behavioral sensitization in animals. On the other hand, ribavirin has an affinity for adenosine A1 receptors that antagonistically modulate the activity of dopamine D1 receptors, which play a critical role in the development of behavioral sensitization. This review will focus on the current knowledge of neurochemical/ neurobiological changes that exist in the psychostimulant drug-addicted brain itself and the antipsychotic-like efficiency of adenosine agonists. Particular attention will be paid to the potential side effects of ribavirin therapy, and the opportunities and challenges related to its application in already existing psychostimulant-use disorder.
Collapse
Affiliation(s)
- Branka Petković
- Address correspondence to this author at the Department of Neurophysiology, Institute for Biological Research “Siniša Stanković” - National Institute of Republic of Serbia, University of Belgrade, Despota Stefana Blvd. 142, 11060, Belgrade, Serbia; Tel: +381-11-20-78-300; Fax: +381-11-27-61-433; E-mail:
| | | | | |
Collapse
|
7
|
Ferré S, Bonaventura J, Zhu W, Hatcher-Solis C, Taura J, Quiroz C, Cai NS, Moreno E, Casadó-Anguera V, Kravitz AV, Thompson KR, Tomasi DG, Navarro G, Cordomí A, Pardo L, Lluís C, Dessauer CW, Volkow ND, Casadó V, Ciruela F, Logothetis DE, Zwilling D. Essential Control of the Function of the Striatopallidal Neuron by Pre-coupled Complexes of Adenosine A 2A-Dopamine D 2 Receptor Heterotetramers and Adenylyl Cyclase. Front Pharmacol 2018; 9:243. [PMID: 29686613 PMCID: PMC5900444 DOI: 10.3389/fphar.2018.00243] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 03/05/2018] [Indexed: 01/10/2023] Open
Abstract
The central adenosine system and adenosine receptors play a fundamental role in the modulation of dopaminergic neurotransmission. This is mostly achieved by the strategic co-localization of different adenosine and dopamine receptor subtypes in the two populations of striatal efferent neurons, striatonigral and striatopallidal, that give rise to the direct and indirect striatal efferent pathways, respectively. With optogenetic techniques it has been possible to dissect a differential role of the direct and indirect pathways in mediating "Go" responses upon exposure to reward-related stimuli and "NoGo" responses upon exposure to non-rewarded or aversive-related stimuli, respectively, which depends on their different connecting output structures and their differential expression of dopamine and adenosine receptor subtypes. The striatopallidal neuron selectively expresses dopamine D2 receptors (D2R) and adenosine A2A receptors (A2AR), and numerous experiments using multiple genetic and pharmacological in vitro, in situ and in vivo approaches, demonstrate they can form A2AR-D2R heteromers. It was initially assumed that different pharmacological interactions between dopamine and adenosine receptor ligands indicated the existence of different subpopulations of A2AR and D2R in the striatopallidal neuron. However, as elaborated in the present essay, most evidence now indicates that all interactions can be explained with a predominant population of striatal A2AR-D2R heteromers forming complexes with adenylyl cyclase subtype 5 (AC5). The A2AR-D2R heteromer has a tetrameric structure, with two homodimers, which allows not only multiple allosteric interactions between different orthosteric ligands, agonists, and antagonists, but also the canonical Gs-Gi antagonistic interaction at the level of AC5. We present a model of the function of the A2AR-D2R heterotetramer-AC5 complex, which acts as an integrative device of adenosine and dopamine signals that determine the excitability and gene expression of the striatopallidal neurons. The model can explain most behavioral effects of A2AR and D2R ligands, including the psychostimulant effects of caffeine. The model is also discussed in the context of different functional striatal compartments, mainly the dorsal and the ventral striatum. The current accumulated knowledge of the biochemical properties of the A2AR-D2R heterotetramer-AC5 complex offers new therapeutic possibilities for Parkinson's disease, schizophrenia, SUD and other neuropsychiatric disorders with dysfunction of dorsal or ventral striatopallidal neurons.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Jordi Bonaventura
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Wendy Zhu
- Circuit Therapeutics, Inc., Menlo Park, CA, United States
| | - Candice Hatcher-Solis
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Jaume Taura
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - César Quiroz
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Ning-Sheng Cai
- Integrative Neurobiology Section, National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, United States
| | - Estefanía Moreno
- Center for Biomedical Research in Neurodegenerative Diseases Network, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Verónica Casadó-Anguera
- Center for Biomedical Research in Neurodegenerative Diseases Network, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Alexxai V Kravitz
- Eating and Addiction Section, Diabetes, Endocrinology and Obesity Branch, National Institute of Diabetes and Digestive and Kidney Diseases, Intramural Research Program, National Institutes of Health, Bethesda, MD, United States
| | | | - Dardo G Tomasi
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, National Institutes of Health, Rockville, MD, United States
| | - Gemma Navarro
- Department of Biochemistry and Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Arnau Cordomí
- Laboratory of Computational Medicine, School of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Leonardo Pardo
- Laboratory of Computational Medicine, School of Medicine, Autonomous University of Barcelona, Bellaterra, Spain
| | - Carme Lluís
- Center for Biomedical Research in Neurodegenerative Diseases Network, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, Intramural Research Program, National Institutes of Health, Rockville, MD, United States
| | - Vicent Casadó
- Center for Biomedical Research in Neurodegenerative Diseases Network, Department of Biochemistry and Molecular Biomedicine, Faculty of Biology, Institute of Biomedicine of the University of Barcelona, University of Barcelona, Barcelona, Spain
| | - Francisco Ciruela
- Unitat de Farmacologia, Departament de Patologia i Terapèutica Experimental, Facultat de Medicina i Ciències de la Salut, IDIBELL, Universitat de Barcelona, Barcelona, Spain.,Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Boston, MA, United States
| | | |
Collapse
|
8
|
Tamiji Z, Salahinejad M, Niazi A. Molecular modeling of potential PET imaging agents for adenosine receptor in Parkinson’s disease. Struct Chem 2017. [DOI: 10.1007/s11224-017-1044-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Alsufyani HA, Docherty JR. Gender differences in the effects of cathinone and the interaction with caffeine on temperature and locomotor activity in the rat. Eur J Pharmacol 2017; 809:203-208. [PMID: 28529142 DOI: 10.1016/j.ejphar.2017.05.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/01/2017] [Accepted: 05/12/2017] [Indexed: 01/25/2023]
Abstract
We have investigated gender differences in the effects of cathinone and the interaction with caffeine on temperature and movement activity in Wistar rats. Telemetry probes were implanted in rats under isoflurane anaesthesia, and 7 days later, temperature and activity were recorded in conscious unrestrained animals. Caffeine (10mg/lkg) or vehicle, and 30min later, cathinone (5mg/kg) or vehicle, were injected subcutaneously. Cathinone produced significant and marked increases in activity, and the response to cathinone was significantly greater in female animals. The combination of caffeine and cathinone causes a short lived potentiation followed by a prolonged inhibition of the activity response to cathinone. Cathinone alone had minor effects on temperature. However, the combination of caffeine and cathinone produced a significant acute rise in temperature only in male rats in the 90min after cathinone injection. Hence, cathinone caused greater increases in activity in female than in male rats. Secondly, caffeine produced an initial potentiation followed by a prolonged inhibition of the activity response to cathinone. Thirdly, cathinone in combination with caffeine significantly raised temperature acutely in male but not female rats. These differences highlight the need to carry out gender studies of the actions of stimulants.
Collapse
Affiliation(s)
- Hadeel A Alsufyani
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland; Department of Physiology, King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia
| | - James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland.
| |
Collapse
|
10
|
Ferré S. Mechanisms of the psychostimulant effects of caffeine: implications for substance use disorders. Psychopharmacology (Berl) 2016; 233:1963-79. [PMID: 26786412 PMCID: PMC4846529 DOI: 10.1007/s00213-016-4212-2] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/09/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND The psychostimulant properties of caffeine are reviewed and compared with those of prototypical psychostimulants able to cause substance use disorders (SUD). Caffeine produces psychomotor-activating, reinforcing, and arousing effects, which depend on its ability to disinhibit the brake that endogenous adenosine imposes on the ascending dopamine and arousal systems. OBJECTIVES A model that considers the striatal adenosine A2A-dopamine D2 receptor heteromer as a key modulator of dopamine-dependent striatal functions (reward-oriented behavior and learning of stimulus-reward and reward-response associations) is introduced, which should explain most of the psychomotor and reinforcing effects of caffeine. HIGHLIGHTS The model can explain the caffeine-induced rotational behavior in rats with unilateral striatal dopamine denervation and the ability of caffeine to reverse the adipsic-aphagic syndrome in dopamine-deficient rodents. The model can also explain the weaker reinforcing effects and low abuse liability of caffeine, compared with prototypical psychostimulants. Finally, the model can explain the actual major societal dangers of caffeine: the ability of caffeine to potentiate the addictive and toxic effects of drugs of abuse, with the particularly alarming associations of caffeine (as adulterant) with cocaine, amphetamine derivatives, synthetic cathinones, and energy drinks with alcohol, and the higher sensitivity of children and adolescents to the psychostimulant effects of caffeine and its potential to increase vulnerability to SUD. CONCLUSIONS The striatal A2A-D2 receptor heteromer constitutes an unequivocal main pharmacological target of caffeine and provides the main mechanisms by which caffeine potentiates the acute and long-term effects of prototypical psychostimulants.
Collapse
Affiliation(s)
- Sergi Ferré
- Integrative Neurobiology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Triad Technology Building, 333 Cassell Drive, Baltimore, MD, 21224, USA.
| |
Collapse
|
11
|
Gallardo CM, Darvas M, Oviatt M, Chang CH, Michalik M, Huddy TF, Meyer EE, Shuster SA, Aguayo A, Hill EM, Kiani K, Ikpeazu J, Martinez JS, Purpura M, Smit AN, Patton DF, Mistlberger RE, Palmiter RD, Steele AD. Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice. eLife 2014; 3:e03781. [PMID: 25217530 PMCID: PMC4196120 DOI: 10.7554/elife.03781] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/10/2014] [Indexed: 12/23/2022] Open
Abstract
Daily rhythms of food anticipatory activity (FAA) are regulated independently of the suprachiasmatic nucleus, which mediates entrainment of rhythms to light, but the neural circuits that establish FAA remain elusive. In this study, we show that mice lacking the dopamine D1 receptor (D1R KO mice) manifest greatly reduced FAA, whereas mice lacking the dopamine D2 receptor have normal FAA. To determine where dopamine exerts its effect, we limited expression of dopamine signaling to the dorsal striatum of dopamine-deficient mice; these mice developed FAA. Within the dorsal striatum, the daily rhythm of clock gene period2 expression was markedly suppressed in D1R KO mice. Pharmacological activation of D1R at the same time daily was sufficient to establish anticipatory activity in wild-type mice. These results demonstrate that dopamine signaling to D1R-expressing neurons in the dorsal striatum plays an important role in manifestation of FAA, possibly by synchronizing circadian oscillators that modulate motivational processes and behavioral output.
Collapse
Affiliation(s)
- Christian M Gallardo
- Division of Biology, California Institute of Technology, Pasadena, United States
| | - Martin Darvas
- Department of Pathology, University of Washington, Seattle, United States
| | - Mia Oviatt
- Division of Biology, California Institute of Technology, Pasadena, United States
| | - Chris H Chang
- W M Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, United States
| | - Mateusz Michalik
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | - Timothy F Huddy
- Biological Sciences Department, California State Polytechnic University Pomona, Pomona, United States
| | - Emily E Meyer
- W M Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, United States
| | - Scott A Shuster
- Division of Biology, California Institute of Technology, Pasadena, United States
| | - Antonio Aguayo
- Biological Sciences Department, California State Polytechnic University Pomona, Pomona, United States
| | - Elizabeth M Hill
- Biological Sciences Department, California State Polytechnic University Pomona, Pomona, United States
| | - Karun Kiani
- W M Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, United States
| | - Jonathan Ikpeazu
- Division of Biology, California Institute of Technology, Pasadena, United States
| | - Johan S Martinez
- Division of Biology, California Institute of Technology, Pasadena, United States
| | - Mari Purpura
- W M Keck Science Department, Claremont McKenna, Pitzer and Scripps Colleges, Claremont, United States
| | - Andrea N Smit
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | - Danica F Patton
- Department of Psychology, Simon Fraser University, Burnaby, Canada
| | | | - Richard D Palmiter
- Department of Biochemistry, Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Andrew D Steele
- Division of Biology, California Institute of Technology, Pasadena, United States
- Biological Sciences Department, California State Polytechnic University Pomona, Pomona, United States
| |
Collapse
|
12
|
Voiculescu M, Ghiță I, Segărceanu A, Fulga I, Coman O. Molecular and pharmacodynamic interactions between caffeine and dopaminergic system. J Med Life 2014; 7 Spec No. 4:30-8. [PMID: 27057246 PMCID: PMC4813614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Many drugs targeting dopaminergic system were developed for treating schizophrenia (antagonists of D2 dopaminergic receptors, e.g. antipsychotics) or Parkinson' disease (agonists of dopaminergic receptors, e.g. L-DOPA). Because many of the patients treated with these drugs consume caffeine based beverages, pharmacodynamics and pharmacokinetics interactions between caffeine and dopaminergic system or drugs influencing this system are possible. The present review is assessing the current available scientific data on pharmacodynamics interactions between the dopaminergic and adenosinergic system but also on caffeine and dopaminergic system interactions. Caffeine can significantly improve Parkinson's disease symptoms but also the extrapyramidal syndrome induced by antipsychotics via dopaminergic pathways. No study so far has directly evaluated the influence of caffeine in schizophrenia, but there is growing evidence that adenosine dysfunction may contribute to the neurobiological and clinical features of schizophrenia. Caffeine has also effects on the reward system but it seems that this effect does not involve dopaminergic system. Caffeine has some endocrine effects via dopaminergic system such as decreasing the milk production in lactating women or other potential reproductive and nutritional consequences.
Collapse
Affiliation(s)
- M Voiculescu
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine,
“Carol Davila” University of Medicine and Pharmacy, Bucharest
| | - I Ghiță
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine,
“Carol Davila” University of Medicine and Pharmacy, Bucharest
| | - A Segărceanu
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine,
“Carol Davila” University of Medicine and Pharmacy, Bucharest
| | - I Fulga
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine,
“Carol Davila” University of Medicine and Pharmacy, Bucharest
| | - O Coman
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine,
“Carol Davila” University of Medicine and Pharmacy, Bucharest
| |
Collapse
|
13
|
Moreno JL, Holloway T, González-Maeso J. G protein-coupled receptor heterocomplexes in neuropsychiatric disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:187-205. [PMID: 23663970 DOI: 10.1016/b978-0-12-386931-9.00008-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
G protein-coupled receptors (or GPCRs) represent the largest family of membrane proteins in the human genome and are the target of approximately half of all therapeutic drugs. GPCRs contain a conserved structure of seven transmembrane domains. Their amino terminus is located extracellularly, whereas the carboxy terminus extends into the cytoplasm. Accumulating evidence suggests that GPCRs exist and function as monomeric entities. Nevertheless, more recent findings indicate that GPCRs can also form dimers or even higher order oligomers. The differential pharmacological and signaling properties of GPCR heteromeric complexes hint that their physiological effects may be different as compared to those obtained in tissue cultures that express a particular GPCR. In this chapter, we review current data on the role of GPCR heteromerization in receptor signaling, as well as its potential implication in neuropsychiatric disorders such as schizophrenia, depression, and Parkinson's disease.
Collapse
Affiliation(s)
- José L Moreno
- Department of Psychiatry, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, USA
| | | | | |
Collapse
|
14
|
Palma-Rigo K, Bassi JK, Nguyen-Huu TP, Jackson KL, Davern PJ, Chen D, Elghozi JL, Thomas WG, Allen AM, Head GA. Angiotensin 1A receptors transfected into caudal ventrolateral medulla inhibit baroreflex gain and stress responses. Cardiovasc Res 2012; 96:330-9. [PMID: 22869618 DOI: 10.1093/cvr/cvs252] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
AIMS The caudal ventrolateral medulla (CVLM) is important for autonomic regulation and is rich in angiotensin II type 1A receptors (AT(1A)R). To determine their function, we examined whether the expression of AT(1A)R in the CVLM of mice lacking AT(1A)R (AT(1A)(-/-)) alters baroreflex sensitivity and cardiovascular responses to stress. METHODS AND RESULTS Bilateral microinjections into the CVLM of AT(1A)(-/-) mice of lentivirus with the phox-2 selective promoter (PRSx8) were made to express either AT(1A)R (Lv-PRSx8-AT(1A)) or green fluorescent protein (Lv-PRSx8-GFP) as a control. Radiotelemetry was used to record mean arterial pressure (MAP), heart rate (HR), and locomotor activity. Following injection of Lv-PRSx8-GFP, robust neuronal expression of GFP was observed with ∼60% of the GFP-positive cells also expressing the catecholamine-synthetic enzyme tyrosine hydroxylase. After 5 weeks, there were no differences in MAP or HR between groups, but the Lv-PRSx8-AT(1A)- injected mice showed reduced baroreflex sensitivity (-25%, P = 0.003) and attenuated pressor responses to cage-switch and restraint stress compared with the Lv-PRSx8-GFP-injected mice. Reduced MAP mid-frequency power during cage-switch stress reflected attenuated sympathetic activation (Pgroup × stress = 0.04). Fos-immunohistochemistry indicated greater activation of forebrain and hypothalamic neurons in the Lv-PRSx8-AT(1A) mice compared with the control. CONCLUSION The expression of AT(1A)R in CVLM neurons, including A1 neurons, while having little influence on the basal blood pressure or HR, may play a tonic role in inhibiting cardiac vagal baroreflex sensitivity. However, they strongly facilitate the forebrain response to aversive stress, yet reduce the pressor response presumably through greater sympatho-inhibition. These findings outline novel and specific roles for angiotensin II in the CVLM in autonomic regulation.
Collapse
Affiliation(s)
- Kesia Palma-Rigo
- Neuropharmacology Laboratory, Baker IDI Heart and Diabetes Research Institute, 75 Commercial Road, PO Box 6492 St Kilda Road Central, Melbourne, VIC 8008, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Postuma RB, Lang AE, Munhoz RP, Charland K, Pelletier A, Moscovich M, Filla L, Zanatta D, Rios Romenets S, Altman R, Chuang R, Shah B. Caffeine for treatment of Parkinson disease: a randomized controlled trial. Neurology 2012; 79:651-8. [PMID: 22855866 DOI: 10.1212/wnl.0b013e318263570d] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Epidemiologic studies consistently link caffeine, a nonselective adenosine antagonist, to lower risk of Parkinson disease (PD). However, the symptomatic effects of caffeine in PD have not been adequately evaluated. METHODS We conducted a 6-week randomized controlled trial of caffeine in PD to assess effects upon daytime somnolence, motor severity, and other nonmotor features. Patients with PD with daytime somnolence (Epworth >10) were given caffeine 100 mg twice daily ×3 weeks, then 200 mg twice daily ×3 weeks, or matching placebo. The primary outcome was the Epworth Sleepiness Scale score. Secondary outcomes included motor severity, sleep markers, fatigue, depression, and quality of life. Effects of caffeine were analyzed with Bayesian hierarchical models, adjusting for study site, baseline scores, age, and sex. RESULTS Of 61 patients, 31 were randomized to placebo and 30 to caffeine. On the primary intention-to-treat analysis, caffeine resulted in a nonsignificant reduction in Epworth Sleepiness Scale score (-1.71 points; 95% confidence interval [CI] -3.57, 0.13). However, somnolence improved on the Clinical Global Impression of Change (+0.64; 0.16, 1.13, intention-to-treat), with significant reduction in Epworth Sleepiness Scale score on per-protocol analysis (-1.97; -3.87, -0.05). Caffeine reduced the total Unified Parkinson's Disease Rating Scale score (-4.69 points; -7.7, -1.6) and the objective motor component (-3.15 points; -5.50, -0.83). Other than modest improvement in global health measures, there were no changes in quality of life, depression, or sleep quality. Adverse events were comparable in caffeine and placebo groups. CONCLUSIONS Caffeine provided only equivocal borderline improvement in excessive somnolence in PD, but improved objective motor measures. These potential motor benefits suggest that a larger long-term trial of caffeine is warranted. CLASSIFICATION OF EVIDENCE This study provides Class I evidence that caffeine, up to 200 mg BID for 6 weeks, had no significant benefit on excessive daytime sleepiness in patients with PD.
Collapse
Affiliation(s)
- Ronald B Postuma
- Department of Neurology, McGill University, Montreal General Hospital, Montreal, Canada.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Cole TB, Fisher JC, Burbacher TM, Costa LG, Furlong CE. Neurobehavioral assessment of mice following repeated postnatal exposure to chlorpyrifos-oxon. Neurotoxicol Teratol 2012; 34:311-22. [PMID: 22425525 PMCID: PMC3367041 DOI: 10.1016/j.ntt.2012.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 02/08/2012] [Accepted: 02/29/2012] [Indexed: 11/17/2022]
Abstract
Chlorpyrifos (CPF), one of the most widely-used organophosphorus (OP) insecticides in agriculture, is degraded in the field to its oxon form, chlorpyrifos-oxon (CPO), which can represent a significant contaminant in exposures to adults and children. CPO is also responsible for the acetylcholinesterase (AChE) inhibition associated with CPF exposures; CPF is converted by liver CYP450 enzymes to CPO, which binds to and inhibits AChE and other serine active-site esterases, lipases and proteases. Young children represent a particularly susceptible population for exposure to CPF and CPO, in part because levels of the plasma enzyme, paraoxonase (PON1), which hydrolyzes CPO, are very low during early development. While a number of studies have demonstrated developmental neurotoxicity associated with CPF exposure, including effects at or below the threshold levels for AChE inhibition, it is unclear whether these effects were due directly to CPF or to its active metabolite, CPO. PON1 knockout (PON1-/-) mice, which lack PON1, represent a highly sensitive mouse model for toxicity associated with exposure to CPF or CPO. To examine the neurobehavioral consequences of CPO exposure during postnatal development, PON1-/- mice were exposed daily from PND 4 to PND 21 to CPO at 0.15, 0.18, or 0.25 mg/kg/d. A neurobehavioral test battery did not reveal significant effects of CPO on early reflex development, motor coordination, pre-pulse inhibition of startle, startle amplitude, open field behavior, or learning and memory in the contextual fear conditioning, Morris water maze, or water radial-arm maze tests. However, body weight gain and startle latency were significantly affected by exposure to 0.25 mg/kg/d CPO. Additionally, from PNDs 15-20 the mice exposed repeatedly to CPO at all three doses exhibited a dose-related transient hyperkinesis in the 20-min period following CPO administration, suggesting possible effects on catecholaminergic neurotransmission. Our previous study demonstrated wide-ranging effects of neonatal CPO exposure on gene expression in the brain and on brain AChE inhibition, and modulation of both of these effects by the PON1(Q192R) polymorphism. The current study indicates that the neurobehavioral consequences of these effects are more elusive, and suggests that alternative neurobehavioral tests might be warranted, such as tests of social interactions, age-dependent effects on learning and memory, or tests designed specifically to assess dopaminergic or noradrenergic function.
Collapse
Affiliation(s)
- Toby B. Cole
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| | - Jenna C. Fisher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Thomas M. Burbacher
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Lucio G. Costa
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States
| | - Clement E. Furlong
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA, United States
- Department of Genome Sciences, University of Washington, Seattle, WA, United States
| |
Collapse
|
17
|
Palmiter R. Dopamine signaling as a neural correlate of consciousness. Neuroscience 2011; 198:213-20. [DOI: 10.1016/j.neuroscience.2011.06.089] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2011] [Revised: 06/13/2011] [Accepted: 06/17/2011] [Indexed: 10/17/2022]
|
18
|
Fredholm BB, Johansson S, Wang YQ. Adenosine and the Regulation of Metabolism and Body Temperature. ADVANCES IN PHARMACOLOGY 2011; 61:77-94. [DOI: 10.1016/b978-0-12-385526-8.00003-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
19
|
Xu Z, Cheng F, Da C, Liu G, Tang Y. Pharmacophore modeling of human adenosine receptor A2A antagonists. J Mol Model 2010; 16:1867-76. [DOI: 10.1007/s00894-010-0690-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
20
|
Restriction of dopamine signaling to the dorsolateral striatum is sufficient for many cognitive behaviors. Proc Natl Acad Sci U S A 2009; 106:14664-9. [PMID: 19667174 DOI: 10.1073/pnas.0907299106] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The striatum is a vital substrate for performance, procedural memory, and learning. The ventral and medial striatum are thought to be critical for acquisition of tasks while the dorsolateral striatum is important for performance and habitual enactment of skills. Evidence based on cortical, thalamic, and amygdaloid inputs to the striatum suggests a medio-lateral zonation imposed on the classical dorso-ventral distinction. We therefore investigated the functional significance of dopaminergic signaling in cognitive tasks by studying dopamine-deficient (DD) mice and mice with dopamine signaling restored to only the dorsolateral (DL) striatum by viral rescue (vrDD-DL mice). Whereas DD mice failed in all of the tasks examined here, vrDD-DL mice displayed intact discriminatory learning, object recognition, visuospatial learning and spatial memory. Acquisition of operant behavior for food rewards was delayed in vrDD-DL mice and their motivation in a progressive ratio experiments was reduced. Therefore, dopaminergic signaling in the dorsolateral striatum is sufficient for mice to learn several different cognitive tasks although the rate of learning some of them was reduced. These results indicate that dopaminergic signaling in the ventromedial striatum is not absolutely necessary for mastery of these behaviors, but may facilitate them.
Collapse
|
21
|
Ferré S. La cafeína en la enfermedad de Parkinson. Med Clin (Barc) 2008; 131:710-5. [DOI: 10.1157/13129123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Palmiter RD. Dopamine signaling in the dorsal striatum is essential for motivated behaviors: lessons from dopamine-deficient mice. Ann N Y Acad Sci 2008; 1129:35-46. [PMID: 18591467 PMCID: PMC2720267 DOI: 10.1196/annals.1417.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Genetically engineered mice that lack tyrosine hydroxylase in all dopaminergic neurons become hypoactive and aphagic, and they starve by 4 weeks of age. However, they can be rescued by daily treatment with l-dopa, which restores activity and feeding for about 10 hours. Thus, these mice can be examined in both dopamine-depleted and dopamine-replete states. A series of behavioral experiments lead to the primary conclusion that in the dopamine-depleted state these mice are not motivated to engage in goal-directed behaviors. Nevertheless, they still have a preference for sucrose, they can learn the location of food rewards, and they can form a conditioned-place preference for drugs. Dopamine signaling can be restored to the striatum by several different viral gene-therapy procedures. Restoring dopamine signaling selectively to the dorsal striatum is sufficient to allow feeding, locomotion, and reward-based learning. The rescued mice appear to have normal motivation to engage in all goal-directed behaviors that have been tested. The results suggest that dopamine facilitates the output from dorsal striatum, which provides a permissive signal allowing feeding and other goal-directed behaviors.
Collapse
Affiliation(s)
- Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, Box 357370, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
23
|
Viggiano D. The hyperactive syndrome: metanalysis of genetic alterations, pharmacological treatments and brain lesions which increase locomotor activity. Behav Brain Res 2008; 194:1-14. [PMID: 18656502 DOI: 10.1016/j.bbr.2008.06.033] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2008] [Revised: 06/26/2008] [Accepted: 06/29/2008] [Indexed: 01/01/2023]
Abstract
The large number of transgenic mice realized thus far with different purposes allows addressing new questions, such as which animals, over the entire set of transgenic animals, show a specific behavioural abnormality. In the present study, we have used a metanalytical approach to organize a database of genetic modifications, brain lesions and pharmacological interventions that increase locomotor activity in animal models. To further understand the resulting data set, we have organized a second database of the alterations (genetic, pharmacological or brain lesions) that reduce locomotor activity. Using this approach, we estimated that 1.56% of the genes in the genome yield to hyperactivity and 0.75% of genes produce hypoactivity when altered. These genes have been classified into genes for neurotransmitter systems, hormonal, metabolic systems, ion channels, structural proteins, transcription factors, second messengers and growth factors. Finally, two additional classes included animals with neurodegeneration and inner ear abnormalities. The analysis of the database revealed several unexpected findings. First, the genes that, when mutated, induce hyperactive behaviour do not pertain to a single neurotransmitter system. In fact, alterations in most neurotransmitter systems can give rise to a hyperactive phenotype. In contrast, fewer changes can decrease locomotor activity. Specifically, genetic and pharmacological alterations that enhance the dopamine, orexin, histamine, cannabinoids systems or that antagonize the cholinergic system induce an increase in locomotor activity. Similarly, imbalances in the two main neurotransmitters of the nervous system, GABA and glutamate usually result in hyperactive behaviour. It is remarkable that no genetic alterations pertaining to the GABA system have been reported to reduce locomotor behaviour. Other neurotransmitters, such as norepinephrine and serotonin, have a more complex influence. For instance, a decrease in norepinephrine synthesis usually results in hypoactive behaviour. However, a chronic increase in norepinephrine may result in hypoactivity too. Similarly, changes in both directions of serotonin levels may reduce locomotor activity, whereas alterations in specific serotonin receptors can induce hyperactivity. The lesion of at least 12 different brain regions can increase locomotor activity too. Comparatively, few focal lesions decrease locomotor activity. Finally, a large number of toxic events can increase locomotor activity, particularly if delivered during the prepuberal time window. These data show that there is a net imbalance in the number of altered genes/brain lesions/toxics that induce hyperactivity versus hypoactive behaviour. Although some of these data may be explained in terms of the activating role of subcortical systems (such as catecholamines), the larger number of alterations that induce hyperactivity suggests a different scenario. Specifically, we hypothesize (i) the existence of a control system that continuously inhibit a basally hyperactive locomotor tone and (ii) that this control system is highly vulnerable (intrinsic fragility) to any change in the genetic asset or to any toxic/drug delivered during prepuberal stages. Brain lesion studies suggest that the putative control system is located along an axis that connects the olfactory bulb and the enthorhinal cortex (enthorhinal-hippocampal-septal-prefrontal cortex-olfactory bulb axis). We suggest that the increased locomotor activity in many psychiatric diseases may derive from the interference with the development of this brain axis during a specific postnatal time window.
Collapse
Affiliation(s)
- Davide Viggiano
- Department of Health Sciences, Faculty of Scienze del Benessere, University of Molise, Via De Sanctis III Edificio Polifunzionale, 86100 Campobasso, Italy.
| |
Collapse
|
24
|
Robinson S, Rainwater AJ, Hnasko TS, Palmiter RD. Viral restoration of dopamine signaling to the dorsal striatum restores instrumental conditioning to dopamine-deficient mice. Psychopharmacology (Berl) 2007; 191:567-78. [PMID: 17093978 DOI: 10.1007/s00213-006-0579-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 08/23/2006] [Indexed: 10/23/2022]
Abstract
INTRODUCTION Instrumental responding was evaluated to determine whether mice lacking dopamine [dopamine-deficient mice (DD mice)] could learn to preferentially press a visually cued, active lever for food reward over an inactive lever. RESULTS When DD mice were treated with 3,4-L: -dihydroxyphenalanine (L-dopa) to restore dopamine signaling systemically, they were able to learn to press the active lever as well as control mice, whereas mice lacking dopamine would not perform the task. Importantly, DD mice treated with caffeine (to stimulate locomotor and feeding behaviors) also failed to show preference for the active lever and were slower to retrieve rewards after making a reinforced operant response. Selective restoration of dopamine signaling to the nigrostriatal pathway of DD mice via viral-mediated gene transfer completely restored learning and performance of this simple instrumental task. Furthermore, the virally treated DD mice were willing to lever press as much as control mice for reward in progressive-ratio and high fixed-ratio schedules of reinforcement. CONCLUSION These results suggest that the deficit in goal-directed behavior observed in mice without dopamine signaling is the result of decreased motivation to obtain reward, and that dopamine signaling in the dorsal striatum is sufficient to restore normal goal-directed behavior on a variety of operant responding tasks.
Collapse
Affiliation(s)
- Siobhan Robinson
- Graduate program in Neurobiology & Behavior, Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | | | | | | |
Collapse
|
25
|
Piersanti G, Giorgi L, Bartoccini F, Tarzia G, Minetti P, Gallo G, Giorgi F, Castorina M, Ghirardi O, Carminati P. Synthesis of benzo[1,2-d;3,4-d′]diimidazole and 1H-pyrazolo[4,3-b]pyridine as putative A2A receptor antagonists. Org Biomol Chem 2007; 5:2567-71. [DOI: 10.1039/b707599e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
Camarasa J, Pubill D, Escubedo E. Association of caffeine to MDMA does not increase antinociception but potentiates adverse effects of this recreational drug. Brain Res 2006; 1111:72-82. [PMID: 16889759 DOI: 10.1016/j.brainres.2006.06.087] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Revised: 06/27/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
Ecstasy (MDMA) street tablets often contain several other compounds in addition to MDMA, particularly caffeine. Then, it becomes necessary to study the consequences of caffeine plus MDMA combination. MDMA (1 mg/kg) elicited an analgesic response both at the spinal and supraspinal levels. However, when associated, MDMA and caffeine did not show any synergistic interaction. When caffeine was administered prior to MDMA, a potentiation of locomotor activity was observed, which consisted in an increase in maximal values and in a prolonged time of activity. In the neurotoxicity studies, a hyperthermic effect of MDMA was observed. Although caffeine alone failed to alter body temperature, it potentiated MDMA-induced hyperthermia. This association also significantly increased MDMA lethality (from 22% to 34%). Following administration of MDMA to rats, there was a persistent decrease in the number of serotonin transporter sites in the cortex, striatum and hippocampus, which was potentiated by caffeine co-treatment. This MDMA toxicity in rats was accompanied by a transient dopaminergic impairment in the striatum, measured as decreased [(3)H]WIN35428 binding sites, by 31% 3 days after treatment, which was not modified by caffeine. A transient down-regulation of 5-HT(2) receptors occurred in the cortex of MDMA-treated rats, whose recovery was slowed by co-treatment with caffeine. In conclusion, the association of MDMA with caffeine does not generate any beneficial effects at the antinociceptive level. The acute effects stemming from this association, in tandem with the final potentiation of serotonergic terminals injury, provide evidence of the potentially greater long-term adverse effects of this particular recreational drug combination.
Collapse
Affiliation(s)
- Jordi Camarasa
- Unitat de Farmacologia i Farmacognòsia, Facultat de Farmàcia, Universitat de Barcelona, Av. Joan XXIII s/n, 08028 Barcelona, Spain
| | | | | |
Collapse
|
27
|
Hnasko TS, Sotak BN, Palmiter RD. Morphine reward in dopamine-deficient mice. Nature 2005; 438:854-7. [PMID: 16341013 DOI: 10.1038/nature04172] [Citation(s) in RCA: 193] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 09/01/2005] [Indexed: 11/08/2022]
Abstract
Dopamine has been widely implicated as a mediator of many of the behavioural responses to drugs of abuse. To test the hypothesis that dopamine is an essential mediator of various opiate-induced responses, we administered morphine to mice unable to synthesize dopamine. We found that dopamine-deficient mice are unable to mount a normal locomotor response to morphine, but a small dopamine-independent increase in locomotion remains. Dopamine-deficient mice have a rightward shift in the dose-response curve to morphine on the tail-flick test (a pain sensitivity assay), suggesting either a decreased sensitivity to the analgesic effects of morphine and/or basal hyperalgesia. In contrast, dopamine-deficient mice display a robust conditioned place preference for morphine when given either caffeine or l-dihydroxyphenylalanine (a dopamine precursor that restores dopamine throughout the brain) during the testing phases. Together, these data demonstrate that dopamine is a crucial component of morphine-induced locomotion, dopamine may contribute to morphine analgesia, but that dopamine is not required for morphine-induced reward as measured by conditioned place preference.
Collapse
Affiliation(s)
- Thomas S Hnasko
- Graduate Program in Neurobiology & Behavior, University of Washington, Seattle, Washington 98195, USA
| | | | | |
Collapse
|
28
|
Pinna A, Wardas J, Simola N, Morelli M. New therapies for the treatment of Parkinson's disease: Adenosine A2A receptor antagonists. Life Sci 2005; 77:3259-67. [PMID: 15979104 DOI: 10.1016/j.lfs.2005.04.029] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2005] [Accepted: 04/23/2005] [Indexed: 11/24/2022]
Abstract
The development of non-dopaminergic therapies for the treatment of Parkinson's disease (PD) has attracted much interest in recent years. Among new different classes of drugs, adenosine A2A receptor antagonists have emerged as best candidates. The present review will provide an updated summary of the results reported in literature concerning the effects of adenosine A2A antagonists in rodent and primate models of PD. These results show that A2A receptor antagonists improve motor deficits without inducing dyskinesia and counteract parkinsonian tremor. In progress clinical trials have shown that a low dose of L-DOPA plus KW-6002 produced symptomatic relief no different from that produced by an optimal dose of L-DOPA alone, whereas dyskinesias were reduced rendering this class of compounds particularly attractive.
Collapse
|
29
|
Abstract
Neurochemical and pharmacological evidence obtained over the past 30 yr has indicated that adenosine and dopamine interact functionally in the basal ganglia and that such interactions have pathophysiological and therapeutic implications. The receptors implicated are adenosine A1 and A2A, and dopamine D1 and D2. There is evidence that dopamine D2 receptor activation in vivo antagonizes tonic activation of adenosine A2A receptors. Thus, acute blockade of dopamine D2 receptors, or disruption of dopamine transmission, unmasks strong adenosine A2A activation. Effects of dopamine D2 blockade are different after adenosine A2A blockade or in A2A knockout mice. Possibly as an adaptation to this increase in adenosine A2A signaling, there is a decreased coupling of A2A receptors to biological effects in dopamine D2 knockout mice. Compared to wild-type mice, adenosine A2A knockout mice show decreased neurodegeneration after treatment with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and show improved motor performance in models of Parkinson's disease Adenosine A1 receptors are not specifically located with any dopamine receptor, as is the A2A receptor with D2 receptors. Many A1 receptors are located presynaptically, where they regulate transmitter release. In A1 knockout mice, glutamatergic and dopaminergic transmission is therefore modified.
Collapse
Affiliation(s)
- Peter Salmi
- Department of Physiology and Pharmacology, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | |
Collapse
|
30
|
Sotnikova TD, Beaulieu JM, Barak LS, Wetsel WC, Caron MG, Gainetdinov RR. Dopamine-independent locomotor actions of amphetamines in a novel acute mouse model of Parkinson disease. PLoS Biol 2005; 3:e271. [PMID: 16050778 PMCID: PMC1181539 DOI: 10.1371/journal.pbio.0030271] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 06/03/2005] [Indexed: 11/30/2022] Open
Abstract
Brain dopamine is critically involved in movement control, and its deficiency is the primary cause of motor symptoms in Parkinson disease. Here we report development of an animal model of acute severe dopamine deficiency by using mice lacking the dopamine transporter. In the absence of transporter-mediated recycling mechanisms, dopamine levels become entirely dependent on de novo synthesis. Acute pharmacological inhibition of dopamine synthesis in these mice induces transient elimination of striatal dopamine accompanied by the development of a striking behavioral phenotype manifested as severe akinesia, rigidity, tremor, and ptosis. This phenotype can be reversed by administration of the dopamine precursor, L-DOPA, or by nonselective dopamine agonists. Surprisingly, several amphetamine derivatives were also effective in reversing these behavioral abnormalities in a dopamine-independent manner. Identification of dopamine transporter- and dopamine-independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs. Identification of dopamine transporter- and dopamine- independent locomotor actions of amphetamines suggests a novel paradigm in the search for prospective anti-Parkinsonian drugs.
Collapse
Affiliation(s)
- Tatyana D Sotnikova
- 1Department of Cell Biology, Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Jean-Martin Beaulieu
- 1Department of Cell Biology, Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Larry S Barak
- 1Department of Cell Biology, Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - William C Wetsel
- 2Psychiatry and Behavioral Sciences, Mouse Behavioral and Neuroendocrine Analysis Core Facility, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Marc G Caron
- 1Department of Cell Biology, Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Raul R Gainetdinov
- 1Department of Cell Biology, Center for Models of Human Disease, Institute for Genome Sciences and Policy, Duke University Medical Center, Durham, North Carolina, United States of America
| |
Collapse
|
31
|
Robinson S, Sandstrom SM, Denenberg VH, Palmiter RD. Distinguishing whether dopamine regulates liking, wanting, and/or learning about rewards. Behav Neurosci 2005; 119:5-15. [PMID: 15727507 DOI: 10.1037/0735-7044.119.1.5] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
To determine whether dopamine regulates liking, wanting, and/or learning about rewards during goal-directed behavior, the authors tested genetically engineered dopamine-deficient (DD) mice for acquisition of an appetitive T-maze task with and without endogenous dopamine signaling. Experiment 1 established that DD mice treated with L-dihydroxyphenylalanine (L-dopa [LD]) perform similarly to controls on a T-maze task designed to measure liking, wanting, and learning about rewards. Experiment 2, which tested saline-, caffeine-, and LD-treated DD mice on the T maze, separated performance factors from cognitive processes and revealed that dopamine is not necessary for mice to like or learn about rewards but is necessary for mice to seek (want) rewards during goal-directed behavior.
Collapse
Affiliation(s)
- Siobhan Robinson
- Neurobiology and Behavior Program, University of Washington, Seattle, WA, USA
| | | | | | | |
Collapse
|
32
|
Xu K, Bastia E, Schwarzschild M. Therapeutic potential of adenosine A2A receptor antagonists in Parkinson's disease. Pharmacol Ther 2005; 105:267-310. [PMID: 15737407 DOI: 10.1016/j.pharmthera.2004.10.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Accepted: 10/14/2004] [Indexed: 10/26/2022]
Abstract
In the pursuit of improved treatments for Parkinson's disease (PD), the adenosine A(2A) receptor has emerged as an attractive nondopaminergic target. Based on the compelling behavioral pharmacology and selective basal ganglia expression of this G-protein-coupled receptor, its antagonists are now crossing the threshold of clinical development as adjunctive symptomatic treatment for relatively advanced PD. The antiparkinsonian potential of A(2A) antagonism has been boosted further by recent preclinical evidence that A(2A) antagonists might favorably alter the course as well as the symptoms of the disease. Convergent epidemiological and laboratory data have suggested that A(2A) blockade may confer neuroprotection against the underlying dopaminergic neuron degeneration. In addition, rodent and nonhuman primate studies have raised the possibility that A(2A) receptor activation contributes to the pathophysiology of dyskinesias-problematic motor complications of standard PD therapy--and that A(2A) antagonism might help prevent them. Realistically, despite being targeted to basal ganglia pathophysiology, A(2A) antagonists may be expected to have other beneficial and adverse effects elsewhere in the central nervous system (e.g., on mood and sleep) and in the periphery (e.g., on immune and inflammatory processes). The thoughtful design of new clinical trials of A(2A) antagonists should take into consideration these counterbalancing hopes and concerns and may do well to shift toward a broader set of disease-modifying as well as symptomatic indications in early PD.
Collapse
Affiliation(s)
- Kui Xu
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Charlestown, MA 02129, USA
| | | | | |
Collapse
|
33
|
Cannon CM, Abdallah L, Tecott LH, During MJ, Palmiter RD. Dysregulation of striatal dopamine signaling by amphetamine inhibits feeding by hungry mice. Neuron 2005; 44:509-20. [PMID: 15504330 DOI: 10.1016/j.neuron.2004.10.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2004] [Revised: 07/01/2004] [Accepted: 09/16/2004] [Indexed: 01/06/2023]
Abstract
Amphetamine (AMPH) releases monoamines, transiently stimulates locomotion, and inhibits feeding. Using a genetic approach, we show that mice lacking dopamine (DA-deficient, or DD, mice) are resistant to the hypophagic effects of a moderate dose of AMPH (2 microg/g) but manifest normal AMPH-induced hypophagia after restoration of DA signaling in the caudate putamen by viral gene therapy. By contrast, AMPH-induced hypophagia in response to the same dose of AMPH is not blunted in mice lacking the ability to make norepinephrine and epinephrine (Dbh(-/-)), dopamine D(2) receptors (D2r(-/-)), dopamine D(1) receptors (D1r(-/-)), serotonin 2C receptors (Htr2c(-/Y)), neuropeptide Y (Npy(-/-)), and in mice with compromised melanocortin signaling (A(y)). We suggest that, at this moderate dose of AMPH, dysregulation of striatal DA is the primary cause of AMPH-induced hypophagia and that regulated striatal dopaminergic signaling may be necessary for normal feeding behaviors.
Collapse
MESH Headings
- Amphetamine/pharmacology
- Analysis of Variance
- Animals
- Behavior, Animal
- Corpus Striatum/drug effects
- Dopamine/metabolism
- Dopamine Uptake Inhibitors/pharmacology
- Dopamine beta-Hydroxylase/deficiency
- Dopamine beta-Hydroxylase/genetics
- Dose-Response Relationship, Drug
- Eating/drug effects
- Feeding Behavior/drug effects
- Feeding and Eating Disorders/chemically induced
- Feeding and Eating Disorders/genetics
- Feeding and Eating Disorders/physiopathology
- Feeding and Eating Disorders/therapy
- Genetic Therapy/methods
- Hunger/drug effects
- Hunger/physiology
- Levodopa/pharmacology
- Locomotion/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neuropeptide Y/deficiency
- Neuropeptide Y/genetics
- Receptor, Serotonin, 5-HT2C
- Receptors, Dopamine D1/deficiency
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D2/deficiency
- Receptors, Dopamine D2/genetics
- Time Factors
- Tyrosine 3-Monooxygenase/deficiency
- Tyrosine 3-Monooxygenase/genetics
Collapse
Affiliation(s)
- Claire Matson Cannon
- Department of Biochemistry and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA.
| | | | | | | | | |
Collapse
|
34
|
Fredholm BB, Chen JF, Cunha RA, Svenningsson P, Vaugeois JM. Adenosine and Brain Function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 63:191-270. [PMID: 15797469 DOI: 10.1016/s0074-7742(05)63007-3] [Citation(s) in RCA: 510] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Bertil B Fredholm
- Department of Physiology and Pharmacology, Karolinska Institutet Stockholm, Sweden
| | | | | | | | | |
Collapse
|
35
|
Gołembiowska K, Dziubina A. Striatal adenosine A(2A) receptor blockade increases extracellular dopamine release following l-DOPA administration in intact and dopamine-denervated rats. Neuropharmacology 2004; 47:414-26. [PMID: 15275831 DOI: 10.1016/j.neuropharm.2004.04.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 03/30/2004] [Accepted: 04/22/2004] [Indexed: 11/22/2022]
Abstract
The influence of the selective adenosine A(2A) receptor antagonist ZM 241385 on exogenous l-DOPA-derived dopamine (DA) release in intact and dopamine-denervated rats was studied using an in vivo microdialysis in freely moving animals. Local infusion of l-DOPA (2.5 microM) produced a marked increase in striatal extracellular DA level in intact and malonate-lesioned rats. Intrastriatal perfusion of ZM 241385 (50-100 microM) had no effect on basal extracellular DA level, but enhanced dose-dependently the l-DOPA-induced DA release in intact and malonate-lesioned animals. A non-selective adenosine A(2A) receptor antagonist DMPX (100 microM), similarly to ZM 241385, accelerated conversion of l-DOPA in intact and malonate-denervated rats. This effect was not produced by the adenosine A(1) receptor antagonist, CPX (10-50 microM). However, ZM 241385 did not affect the l-DOPA-induced DA release in rats pretreated with reserpine (5 mg/kg i.p.) and alpha-methyl-p-tyrosine (AMPT, 300 mg/kg i.p.). Obtained results indicate that blockade of striatal adenosine A(2A) receptors increases the l-DOPA-derived DA release possibly by indirect mechanism exerted on DA terminals, an effect dependent on striatal tyrosine hydroxylase activity. Selective antagonists of adenosine A(2A) receptors may exert a beneficial effect at early stages of Parkinson's disease by enhancing the therapeutic efficacy of l-DOPA applied exogenously.
Collapse
Affiliation(s)
- Krystyna Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31343 Krakow, Poland.
| | | |
Collapse
|
36
|
Gołembiowska K, Dziubina A. Effect of the adenosine A2A receptor antagonist 8-(3-chlorostyryl)caffeine on l-DOPA biotransformation in rat striatum. Brain Res 2004; 998:208-17. [PMID: 14751592 DOI: 10.1016/j.brainres.2003.11.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In the present study, we investigated effects of the new selective adenosine A2A receptor antagonist 8-(3-chlorostyryl)caffeine (CSC) on L-DOPA-induced dopamine (DA) release in the striatum of intact and reserpine-treated rats. CSC given in a pharmacologically effective dose of 5 mg/kg i.p. significantly increased striatal DA release after joint administration of L-DOPA (100 mg/kg, i.p.) and benserazide (50 mg/kg, i.p.) to intact and reserpine (2.5 mg/kg, s.c.)-injected rats. CSC did not change the elevated level of 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA) in intact rats, but raised it in DA-depleted animals. The availability of exogenous L-DOPA in the extracellular space was similar and equally increased by CSC in both intact and reserpinized rats. Our results suggest that the observed effects may be mediated by striatal adenosine A2A receptors, and are probably related to the CSC action on DA metabolism and the increased transport of exogenous L-DOPA into the brain. These observations might be of relevance, considering the use of selective A2A antagonists as potential supplements to L-DOPA therapy of Parkinson's disease.
Collapse
Affiliation(s)
- Krystyna Gołembiowska
- Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Kraków, Poland.
| | | |
Collapse
|