1
|
Raveh B, Eliasian R, Rashkovits S, Russel D, Hayama R, Sparks S, Singh D, Lim R, Villa E, Rout MP, Cowburn D, Sali A. Integrative mapping reveals molecular features underlying the mechanism of nucleocytoplasmic transport. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.31.573409. [PMID: 38260487 PMCID: PMC10802240 DOI: 10.1101/2023.12.31.573409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Nuclear Pore Complexes (NPCs) enable rapid, selective, and robust nucleocytoplasmic transport. To explain how transport emerges from the system components and their interactions, we used experimental data and theoretical information to construct an integrative Brownian dynamics model of transport through an NPC, coupled to a kinetic model of transport in the cell. The model recapitulates key aspects of transport for a wide range of molecular cargos, including pre-ribosomes and viral capsids. It quantifies how flexible phenylalanine-glycine (FG) repeat proteins raise an entropy barrier to passive diffusion and how this barrier is selectively lowered in facilitated diffusion by the many transient interactions of nuclear transport receptors with the FG repeats. Selective transport is enhanced by "fuzzy" multivalent interactions, redundant FG repeats, coupling to the energy-dependent RanGTP concentration gradient, and exponential dependence of transport kinetics on the transport barrier. Our model will facilitate rational modulation of the NPC and its artificial mimics.
Collapse
|
2
|
Akter M, Cui H, Hosain MA, Liu J, Duan Y, Ding B. RANBP17 Overexpression Restores Nucleocytoplasmic Transport and Ameliorates Neurodevelopment in Induced DYT1 Dystonia Motor Neurons. J Neurosci 2024; 44:e1728232024. [PMID: 38438257 PMCID: PMC11007476 DOI: 10.1523/jneurosci.1728-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/06/2024] Open
Abstract
DYT1 dystonia is a debilitating neurological movement disorder, and it represents the most frequent and severe form of hereditary primary dystonia. There is currently no cure for this disease due to its unclear pathogenesis. In our previous study utilizing patient-specific motor neurons (MNs), we identified distinct cellular deficits associated with the disease, including a deformed nucleus, disrupted neurodevelopment, and compromised nucleocytoplasmic transport (NCT) functions. However, the precise molecular mechanisms underlying these cellular impairments have remained elusive. In this study, we revealed the genome-wide changes in gene expression in DYT1 MNs through transcriptomic analysis. We found that those dysregulated genes are intricately involved in neurodevelopment and various biological processes. Interestingly, we identified that the expression level of RANBP17, a RAN-binding protein crucial for NCT regulation, exhibited a significant reduction in DYT1 MNs. By manipulating RANBP17 expression, we further demonstrated that RANBP17 plays an important role in facilitating the nuclear transport of both protein and transcript cargos in induced human neurons. Excitingly, the overexpression of RANBP17 emerged as a substantial mitigating factor, effectively restoring impaired NCT activity and rescuing neurodevelopmental deficits observed in DYT1 MNs. These findings shed light on the intricate molecular underpinnings of impaired NCT in DYT1 neurons and provide novel insights into the pathophysiology of DYT1 dystonia, potentially leading to the development of innovative treatment strategies.
Collapse
Affiliation(s)
- Masuma Akter
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Haochen Cui
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Md Abir Hosain
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Jinmei Liu
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Yuntian Duan
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana 71130-3932
| |
Collapse
|
3
|
Jing CB, Prutsch N, He S, Zimmerman MW, Landesman Y, Look AT. Synthetic lethal targeting of TET2-mutant haematopoietic stem and progenitor cells by XPO1 inhibitors. Br J Haematol 2023; 201:489-501. [PMID: 36746437 PMCID: PMC10121884 DOI: 10.1111/bjh.18667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 02/08/2023]
Abstract
TET2 inactivating mutations serve as initiating genetic lesions in the transformation of haematopoietic stem and progenitor cells (HSPCs). In this study, we analysed known drugs in zebrafish embryos for their ability to selectively kill tet2-mutant HSPCs in vivo. We found that the exportin 1 (XPO1) inhibitors, selinexor and eltanexor, selectively kill tet2-mutant HSPCs. In serial replating colony assays, these small molecules were selectively active in killing murine Tet2-deficient Lineage-, Sca1+, Kit+ (LSK) cells, and also TET2-inactivated human acute myeloid leukaemia (AML) cells. Selective killing of TET2-mutant HSPCs and human AML cells by these inhibitors was due to increased levels of apoptosis, without evidence of DNA damage based on increased γH2AX expression. The finding that TET2 loss renders HSPCs and AML cells selectively susceptible to cell death induced by XPO1 inhibitors provides preclinical evidence of the selective activity of these drugs, justifying further clinical studies of these small molecules for the treatment of TET2-mutant haematopoietic malignancies, and to suppress clonal expansion in age-related TET2-mutant clonal haematopoiesis.
Collapse
Affiliation(s)
- Chang-Bin Jing
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School
| | - Nicole Prutsch
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School
| | - Shuning He
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School
| | - Mark W. Zimmerman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School
| | | | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School
- Division of Pediatric Hematology/Oncology Boston Children’s Hospital, Boston, Massachusetts
| |
Collapse
|
4
|
Shi J, Pei Y, Yu Q, Dong H. Progress in the study of parvovirus entry pathway. Virol J 2023; 20:61. [PMID: 37016419 PMCID: PMC10072039 DOI: 10.1186/s12985-023-02016-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
A group of DNA viruses called parvoviruses that have significant effects on cancer therapy and genetic engineering applications. After passing through the cell membrane to reach the cytosol, it moves along the microtubule toward the nuclear membrane. The nuclear localization signal (NLS) is recognized by importin-beta (impβ) and other proteins from the complex outside the nuclear membrane and binds to enter the nucleus via the nuclear pore complex (NPC). There are two main pathways for viruses to enter the nucleus. The classical pathway is through the interaction of imp α and impβ with NLS via NPC. The other is the NPC mediated by the combination of impβ and it. While the capsid is introduced into the nucleus through classical nuclear transduction, there is also a transient nuclear membrane dissolution leading to passive transport into the nucleus, which has been proposed in recent years. This article mainly discusses several nuclear entry pathways and related proteins, providing a reference for subsequent research on viral entry pathways.
Collapse
Affiliation(s)
- Jiuming Shi
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Yifeng Pei
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Qian Yu
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin Province, China
| | - Hao Dong
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, Jilin Province, China.
- Engineering Research Center of Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
5
|
Liu G, Chen T, Zhang X, Ma X, Shi H. Small molecule inhibitors targeting the cancers. MedComm (Beijing) 2022; 3:e181. [PMID: 36254250 PMCID: PMC9560750 DOI: 10.1002/mco2.181] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 08/23/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Compared with traditional therapies, targeted therapy has merits in selectivity, efficacy, and tolerability. Small molecule inhibitors are one of the primary targeted therapies for cancer. Due to their advantages in a wide range of targets, convenient medication, and the ability to penetrate into the central nervous system, many efforts have been devoted to developing more small molecule inhibitors. To date, 88 small molecule inhibitors have been approved by the United States Food and Drug Administration to treat cancers. Despite remarkable progress, small molecule inhibitors in cancer treatment still face many obstacles, such as low response rate, short duration of response, toxicity, biomarkers, and resistance. To better promote the development of small molecule inhibitors targeting cancers, we comprehensively reviewed small molecule inhibitors involved in all the approved agents and pivotal drug candidates in clinical trials arranged by the signaling pathways and the classification of small molecule inhibitors. We discussed lessons learned from the development of these agents, the proper strategies to overcome resistance arising from different mechanisms, and combination therapies concerned with small molecule inhibitors. Through our review, we hoped to provide insights and perspectives for the research and development of small molecule inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Gui‐Hong Liu
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Tao Chen
- Department of CardiologyThe First Affiliated Hospital of China Medical UniversityShenyangLiaoningChina
| | - Xin Zhang
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Xue‐Lei Ma
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| | - Hua‐Shan Shi
- Department of BiotherapyState Key Laboratory of BiotherapyCancer Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
6
|
Kalita J, Kapinos LE, Lim RYH. On the asymmetric partitioning of nucleocytoplasmic transport - recent insights and open questions. J Cell Sci 2021; 134:239102. [PMID: 33912945 DOI: 10.1242/jcs.240382] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Macromolecular cargoes are asymmetrically partitioned in the nucleus or cytoplasm by nucleocytoplasmic transport (NCT). At the center of this activity lies the nuclear pore complex (NPC), through which soluble factors circulate to orchestrate NCT. These include cargo-carrying importin and exportin receptors from the β-karyopherin (Kapβ) family and the small GTPase Ran, which switches between guanosine triphosphate (GTP)- and guanosine diphosphate (GDP)-bound forms to regulate cargo delivery and compartmentalization. Ongoing efforts have shed considerable light on how these soluble factors traverse the NPC permeability barrier to sustain NCT. However, this does not explain how importins and exportins are partitioned in the cytoplasm and nucleus, respectively, nor how a steep RanGTP-RanGDP gradient is maintained across the nuclear envelope. In this Review, we peel away the multiple layers of control that regulate NCT and juxtapose unresolved features against known aspects of NPC function. Finally, we discuss how NPCs might function synergistically with Kapβs, cargoes and Ran to establish the asymmetry of NCT.
Collapse
Affiliation(s)
- Joanna Kalita
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel CH4056, Switzerland
| | - Larisa E Kapinos
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel CH4056, Switzerland
| | - Roderick Y H Lim
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Basel CH4056, Switzerland
| |
Collapse
|
7
|
Azizian NG, Li Y. XPO1-dependent nuclear export as a target for cancer therapy. J Hematol Oncol 2020; 13:61. [PMID: 32487143 PMCID: PMC7268335 DOI: 10.1186/s13045-020-00903-4] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/22/2020] [Indexed: 01/08/2023] Open
Abstract
Cellular homeostasis requires the proper nuclear-cytoplasmic partitioning of large molecules, which is often deregulated in cancer. XPO1 is an export receptor responsible for the nuclear-cytoplasmic transport of hundreds of proteins and multiple RNA species. XPO1 is frequently overexpressed and/or mutated in human cancers and functions as an oncogenic driver. Suppression of XPO1-mediated nuclear export, therefore, presents a unique therapeutic strategy. In this review, we summarize the physiological functions of XPO1 as well as the development of various XPO1 inhibitors and provide an update on the recent clinical trials of the SINE compounds. We also discuss potential future research directions on the molecular function of XPO1 and the clinical application of XPO1 inhibitors.
Collapse
Affiliation(s)
- Nancy G Azizian
- Center for Immunotherapy Research, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Yulin Li
- Center for Immunotherapy Research, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX, 77030, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Barbato S, Kapinos LE, Rencurel C, Lim RYH. Karyopherin enrichment at the nuclear pore complex attenuates Ran permeability. J Cell Sci 2020; 133:jcs238121. [PMID: 31932502 DOI: 10.1242/jcs.238121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/13/2019] [Indexed: 12/25/2022] Open
Abstract
Ran is a small GTPase whose nucleotide-bound forms cycle through nuclear pore complexes (NPCs) to direct nucleocytoplasmic transport (NCT). Generally, Ran guanosine triphosphate (RanGTP) binds cargo-carrying karyopherin receptors (Kaps) in the nucleus and releases them into the cytoplasm following hydrolysis to Ran guanosine diphosphate (RanGDP). This generates a remarkably steep Ran gradient across the nuclear envelope that sustains compartment-specific cargo delivery and accumulation. However, because NPCs are permeable to small molecules of comparable size, it is unclear how an uncontrolled mixing of RanGTP and RanGDP is prevented. Here, we find that an NPC-enriched pool of karyopherin subunit beta 1 (KPNB1, hereafter referred to as Kapβ1) selectively mediates Ran diffusion across the pore but not passive molecules of similar size (e.g. GFP). This is due to RanGTP having a stronger binding interaction with Kapβ1 than RanGDP. For this reason, the RanGDP importer, nuclear transport factor 2, facilitates the return of RanGDP into the nucleus following GTP hydrolysis. Accordingly, the enrichment of Kapβ1 at NPCs may function as a retention mechanism that preserves the sharp transition of RanGTP and RanGDP in the nucleus and cytoplasm, respectively.
Collapse
Affiliation(s)
- Suncica Barbato
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Larisa E Kapinos
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Chantal Rencurel
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Roderick Y H Lim
- Biozentrum & The Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
9
|
Cytoplasmic Parvovirus Capsids Recruit Importin Beta for Nuclear Delivery. J Virol 2020; 94:JVI.01532-19. [PMID: 31748386 DOI: 10.1128/jvi.01532-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/16/2019] [Indexed: 02/06/2023] Open
Abstract
Parvoviruses are an important platform for gene and cancer therapy. Their cell entry and the following steps, including nuclear import, are inefficient, limiting their use in therapeutic applications. Two models exist on parvoviral nuclear entry: the classical import of the viral capsid using nuclear transport receptors of the importin (karyopherin) family or the direct attachment of the capsid to the nuclear pore complex leading to the local disintegration of the nuclear envelope. Here, by laser scanning confocal microscopy and in situ proximity ligation analyses combined with coimmunoprecipitation, we show that infection requires importin β-mediated access to the nuclear pore complex and nucleoporin 153-mediated interactions on the nuclear side. The importin β-capsid interaction continued within the nucleoplasm, which suggests a mixed model of nuclear entry in which the classical nuclear import across the nuclear pore complex is accompanied by transient ruptures of the nuclear envelope, also allowing the passive entry of importin β-capsid complexes into the nucleus.IMPORTANCE Parvoviruses are small DNA viruses that deliver their DNA into the postmitotic nuclei, which is an important step for parvoviral gene and cancer therapies. Limitations in virus-receptor interactions or endocytic entry do not fully explain the low transduction/infection efficiency, indicating a bottleneck after virus entry into the cytoplasm. We thus investigated the transfer of parvovirus capsids from the cytoplasm to the nucleus, showing that the nuclear import of the parvovirus capsid follows a unique strategy, which differs from classical nuclear import and those of other viruses.
Collapse
|
10
|
Murley JS, Arbiser JL, Weichselbaum RR, Grdina DJ. ROS modifiers and NOX4 affect the expression of the survivin-associated radio-adaptive response. Free Radic Biol Med 2018; 123:39-52. [PMID: 29660403 DOI: 10.1016/j.freeradbiomed.2018.04.547] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022]
Abstract
The survivin-associated radio-adaptive response can be induced following exposure to ionizing radiation in the dose range from 5 to 100 mGy, and its magnitude of expression is dependent upon the TP53 mutational status of cells and ROS signaling. The purpose of the study was to investigate the potential role of ROS in the development of the survivin-associated adaptive response. Utilizing human colon carcinoma HCT116 TP53 wild type (WT) and HCT116 isogenic TP53 null mutant (Mut) cell cultures, the roles of inter- and intracellular ROS signaling on expression of the adaptive response as evidenced by changes in intracellular translocation of survivin measured by ELISA, and cell survival determined by a standard colony forming assay were investigated using ROS modifying agents that include emodin, N-acetyl-L-cysteine (NAC), fulvene-5, honokiol, metformin and rotenone. The role of NADPH oxidase 4 (NOX4) in the survivin-associated adaptive response was investigated by transfecting HCT116 cells, both WT and Mut, with two different NOX4 siRNA oligomers and Western blotting. A dose of 5 mGy or a 15 min exposure to 50 µM of the ROS producing drug emodin were equally effective in inducing a pro-survival adaptive response in TP53 WT and a radio-sensitization adaptive response in TP53 Mut HCT116 cells. Each response was associated with a corresponding translocation of survivin into the cytoplasm or nucleus, respectively. Exposure to 10 mM NAC completely inhibited both responses. Exposure to 10 µM honokiol induced responses similar to those observed following NAC exposure in TP53 WT and Mut cells. The mitochondrial complex 1 inhibitor rotenone was effective in reducing both cytoplasmic and nuclear survivin levels, but was ineffective in altering the expression of the adaptive response in either TP53 WT or Mut cells. In contrast, both metformin and fulvene-5, inhibitors of NOX4, facilitated the reversal of TP53 WT and Mut adaptive responses from pro-survival to radio-sensitization and vice versa, respectively. These changes were accompanied by corresponding reversals in the translocation of survivin to the nuclei of TP53 WT and to the cytoplasm of TP53 Mut cells. The potential role of NOX4 in the expression of the survivin-associated adaptive response was investigated by transfecting HCT116 cells with NOX4 siRNA oligomers to inhibit NOX4 expression. Under these conditions NOX4 expression was inhibited by about 50%, resulting in a reversal in the expression of the TP53 WT and Mut survivin-associated adaptive responses as was observed following metformin and fulvene-5 treatment. Exposure to 5 mGy resulted in enhanced NOX4 expression by about 40% in both TP53 WT and Mut cells, in contrast to only a 1-2% increase following a 2 Gy only exposure. Utilizing mixed cultures of HCT116 TP53 WT and isogenic null Mut cells, as few as 10% TP53 Mut cells were sufficient to control the expression of the remaining 90% WT cells and resulted in an overall radio-sensitization response accompanied by the nuclear translocation of survivin characteristic of homogeneous TP53 Mut populations.
Collapse
Affiliation(s)
- Jeffrey S Murley
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - Jack L Arbiser
- Department of Dermatology and Atlanta Veterans Administration Medical Center, Emory University, Atlanta, GA 30322, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA
| | - David J Grdina
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
11
|
Lundberg L, Carey B, Kehn-Hall K. Venezuelan Equine Encephalitis Virus Capsid-The Clever Caper. Viruses 2017; 9:E279. [PMID: 28961161 PMCID: PMC5691631 DOI: 10.3390/v9100279] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 01/13/2023] Open
Abstract
Venezuelan equine encephalitis virus (VEEV) is a New World alphavirus that is vectored by mosquitos and cycled in rodents. It can cause disease in equines and humans characterized by a febrile illness that may progress into encephalitis. Like the capsid protein of other viruses, VEEV capsid is an abundant structural protein that binds to the viral RNA and interacts with the membrane-bound glycoproteins. It also has protease activity, allowing cleavage of itself from the growing structural polypeptide during translation. However, VEEV capsid protein has additional nonstructural roles within the host cell functioning as the primary virulence factor for VEEV. VEEV capsid inhibits host transcription and blocks nuclear import in mammalian cells, at least partially due to its complexing with the host CRM1 and importin α/β1 nuclear transport proteins. VEEV capsid also shuttles between the nucleus and cytoplasm and is susceptible to inhibitors of nuclear trafficking, making it a promising antiviral target. Herein, the role of VEEV capsid in viral replication and pathogenesis will be discussed including a comparison to proteins of other alphaviruses.
Collapse
Affiliation(s)
- Lindsay Lundberg
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Brian Carey
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| | - Kylene Kehn-Hall
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA 20110, USA.
| |
Collapse
|
12
|
Murley JS, Miller RC, Weichselbaum RR, Grdina DJ. TP53 Mutational Status and ROS Effect the Expression of the Survivin-Associated Radio-Adaptive Response. Radiat Res 2017; 188:579-590. [PMID: 28813624 DOI: 10.1667/rr14831.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A survivin-associated radio-adaptive response, characterized by increased radiation resistance or sensitization, was induced by exposure to 5 mGy of ionizing radiation and was correlated to the TP53 mutational status of exposed cells. Ten human cancer lines were investigated: colorectal carcinomas HCT116 and RKO [TP53 wild-type (WT)] and their respective TP53 null isogenic lines; breast adenocarcinomas MCF7 (TP53 WT) and MDA-MB-231 (TP53 Mut); lung carcinomas A549 (TP53 WT) and NCI-H1975 (TP53 Mut); and pancreatic carcinomas Hs766T (TP53 WT) and Panc-1 (TP53 Mut). Radiation induced (5 mGy) changes in the subsequent responses to 2 Gy in a multi-dose paradigm. Effects on radiation sensitivity were associated with changes in survivin's intracellular translocation to the cytoplasm (TP53 WT) or nucleus (TP53 Mut). Survival responses were determined using a colony forming assay. Intracellular localization of survivin was determined by ELISA and correlated with survival response. Two 2 Gy doses had minimal effects on the intracellular translocation of survivin. When preceded 15 min earlier by a 5 mGy exposure, survivin translocated to the cytoplasm in all of the TP53 WT cell lines, and to the nuclei in the TP53 null and Mut cells. All TP53 WT cells were protected (P < 0.001) by 5 mGy exposures, while Mut cells were sensitized (P < 0.001). HCT116 and RKO TP53 WT cells were admixed with their respective isogenic TP53 null counterparts in different proportions: 75% to 25%, 50% to 50% and 25% to 75%, respectively. All mixed confluent cultures expressed enhanced radio-sensitization (P ≤ 0.047) characteristic of TP53 Mut cells, which could be inhibited by their exposure to the antioxidant N-acetyl-l-cysteine (NAC) indicating a role for intercellular signaling by reactive oxygen species (ROS). ROS signaling in propagating the survivin-mediated response is involved in both intra- and intercellular communication processes.
Collapse
Affiliation(s)
- Jeffrey S Murley
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637
| | - Richard C Miller
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637
| | - David J Grdina
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
13
|
Wang IH, Burckhardt CJ, Yakimovich A, Morf MK, Greber UF. The nuclear export factor CRM1 controls juxta-nuclear microtubule-dependent virus transport. J Cell Sci 2017; 130:2185-2195. [PMID: 28515232 DOI: 10.1242/jcs.203794] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/12/2017] [Indexed: 12/26/2022] Open
Abstract
Transport of large cargo through the cytoplasm requires motor proteins and polarized filaments. Viruses that replicate in the nucleus of post-mitotic cells use microtubules and the dynein-dynactin motor to traffic to the nuclear membrane and deliver their genome through nuclear pore complexes (NPCs) into the nucleus. How virus particles (virions) or cellular cargo are transferred from microtubules to the NPC is unknown. Here, we analyzed trafficking of incoming cytoplasmic adenoviruses by single-particle tracking and super-resolution microscopy. We provide evidence for a regulatory role of CRM1 (chromosome-region-maintenance-1; also known as XPO1, exportin-1) in juxta-nuclear microtubule-dependent adenovirus transport. Leptomycin B (LMB) abolishes nuclear targeting of adenovirus. It binds to CRM1, precludes CRM1-cargo binding and blocks signal-dependent nuclear export. LMB-inhibited CRM1 did not compete with adenovirus for binding to the nucleoporin Nup214 at the NPC. Instead, CRM1 inhibition selectively enhanced virion association with microtubules, and boosted virion motions on microtubules less than ∼2 µm from the nuclear membrane. The data show that the nucleus provides positional information for incoming virions to detach from microtubules, engage a slower microtubule-independent motility to the NPC and enhance infection.
Collapse
Affiliation(s)
- I-Hsuan Wang
- Department of Molecular Life Sciences, University of Zürich, 8057 Zurich, Switzerland
| | - Christoph J Burckhardt
- Department of Molecular Life Sciences, University of Zürich, 8057 Zurich, Switzerland
- Department of Bioinformatics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Artur Yakimovich
- Department of Molecular Life Sciences, University of Zürich, 8057 Zurich, Switzerland
| | - Matthias K Morf
- Department of Molecular Life Sciences, University of Zürich, 8057 Zurich, Switzerland
- Molecular Life Sciences Graduate School, ETH and University of Zürich, 8057 Zurich, Switzerland
| | - Urs F Greber
- Department of Molecular Life Sciences, University of Zürich, 8057 Zurich, Switzerland
| |
Collapse
|
14
|
Miller RC, Murley JS, Rademaker AW, Woloschak GE, Li JJ, Weichselbaum RR, Grdina DJ. Very low doses of ionizing radiation and redox associated modifiers affect survivin-associated changes in radiation sensitivity. Free Radic Biol Med 2016; 99:110-119. [PMID: 27427516 PMCID: PMC6764831 DOI: 10.1016/j.freeradbiomed.2016.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/12/2016] [Accepted: 07/13/2016] [Indexed: 12/27/2022]
Abstract
Exposure of cells to a dose of ionizing radiation as low as 5mGy can induce changes in radiation sensitivity expressed by cells exposed to subsequent higher doses at later times. This is referred to as an adaptive effect. We describe a unique survivin-associated adaptive response in which increased radiation resistance or sensitization of cells can be induced by exposure to 5mGy or to the reactive oxygen species (ROS) generating drug Emodin (1,3,8-trihydroxy-6-methylanthraquinone), a naturally occurring anthraquinone. The purpose of this study was to determine the role of ROS generating processes in affecting both the intracellular localization of the inhibitor of apoptosis protein survivin and its subsequent effect on radiation response in the presence or absence of the anti-oxidant N-acetyl-L-cysteine (NAC). Experiments were performed using two well characterized murine sarcomas: SA-NH p53 wild-type (WT) and FSa p53 mutant (Mut), grown either in culture or as solid tumors in the right hind legs of C3H mice. Doses of 5mGy or 50μM Emodin were used to induce changes in the response of these tumor cells to higher radiation exposures using a multi-dosing paradigm. Effects on radiation sensitivity were determined for SA-NH and FSa cells as a function of survivin translocation either to the cytoplasm or nucleus in the presence or absence of 10mM NAC treatment. In vitro survival assays (2Gy per fraction, two once daily fractions) and tumor growth delay (TGD) (5Gy per fraction, five once daily fractions) studies were performed. Intracellular localization of survivin was determined by enzyme-linked immunosorbent assay (ELISA) and correlated to survival response and treatment conditions. 2Gy alone had no effect on intracellular translocation of survivin. When preceded 15min earlier by 5mGy or Emodin exposures, survivin became elevated in the cytoplasm of p53 WT SA-NH as compared to the nuclei of p53 Mut FSa cells. SA-NH cells transfected with p53 small interfering RNA (siRNA), in contrast, responded similarly to p53 Mut FSa cells by becoming more radiation sensitive if exposed to 5mGy prior to each 2Gy irradiation. In contrast to their respective responses to five once daily 5Gy fractions, SA-NH tumors were protected by 5mGy exposures administered 15min prior to each daily 5Gy dose as evidenced by a more rapid growth (1.9 day decrease in TGD, P=0.032), while FSa tumors were sensitized, growing at a much slower rate (4.5 day increase in TGD, P<0.001). Exposure of SA-NH and FSa tumor cells to 10mM NAC inhibited the ability of 5mGy and Emodin to induce intracellular translocation of survivin and the corresponding altered adaptive survival response. The survivin-associated adaptive response can be induced following a multi-dosing scheme in which very low radiation doses are followed shortly thereafter by higher doses consistent with a standard image guided radiotherapy protocol that is currently widely used in the treatment of cancer. While induced by exposure to ROS generating stresses, the ultimate expression of changes in radiation response is dependent upon the bi-functionality of the tumor associated protein survivin and its intracellular translocation.
Collapse
Affiliation(s)
- Richard C Miller
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
| | - Jeffrey S Murley
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
| | - Alfred W Rademaker
- Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, United States
| | - Gayle E Woloschak
- Department of Radiation Oncology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, United States
| | - Jian Jian Li
- Department of Radiation Oncology, The University of California Davis, Sacramento, CA, United States
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States
| | - David J Grdina
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, IL, United States.
| |
Collapse
|
15
|
Ludington WB, Ishikawa H, Serebrenik YV, Ritter A, Hernandez-Lopez RA, Gunzenhauser J, Kannegaard E, Marshall WF. A systematic comparison of mathematical models for inherent measurement of ciliary length: how a cell can measure length and volume. Biophys J 2016; 108:1361-1379. [PMID: 25809250 DOI: 10.1016/j.bpj.2014.12.051] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 12/15/2014] [Accepted: 12/19/2014] [Indexed: 10/23/2022] Open
Abstract
Cells control organelle size with great precision and accuracy to maintain optimal physiology, but the mechanisms by which they do so are largely unknown. Cilia and flagella are simple organelles in which a single measurement, length, can represent size. Maintenance of flagellar length requires an active transport process known as intraflagellar transport, and previous measurements suggest that a length-dependent feedback regulates intraflagellar transport. But the question remains: how is a length-dependent signal produced to regulate intraflagellar transport appropriately? Several conceptual models have been suggested, but testing these models quantitatively requires that they be cast in mathematical form. Here, we derive a set of mathematical models that represent the main broad classes of hypothetical size-control mechanisms currently under consideration. We use these models to predict the relation between length and intraflagellar transport, and then compare the predicted relations for each model with experimental data. We find that three models-an initial bolus formation model, an ion current model, and a diffusion-based model-show particularly good agreement with available experimental data. The initial bolus and ion current models give mathematically equivalent predictions for length control, but fluorescence recovery after photobleaching experiments rule out the initial bolus model, suggesting that either the ion current model or a diffusion-based model is more likely correct. The general biophysical principles of the ion current and diffusion-based models presented here to measure cilia and flagellar length can be generalized to measure any membrane-bound organelle volume, such as the nucleus and endoplasmic reticulum.
Collapse
Affiliation(s)
- William B Ludington
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, California
| | - Hiroaki Ishikawa
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, California
| | - Yevgeniy V Serebrenik
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, California
| | - Alex Ritter
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts
| | | | - Julia Gunzenhauser
- Physiology Course, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Elisa Kannegaard
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, California
| | - Wallace F Marshall
- Department of Biophysics and Biochemistry, University of California, San Francisco, San Francisco, California.
| |
Collapse
|
16
|
Lin TY, Lee CC, Chen KC, Lin CJ, Shih CM. Inhibition of RNA transportation induces glioma cell apoptosis via downregulation of RanGAP1 expression. Chem Biol Interact 2015; 232:49-57. [DOI: 10.1016/j.cbi.2015.02.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 02/14/2015] [Accepted: 02/23/2015] [Indexed: 02/04/2023]
|
17
|
Kim S, Elbaum M. Enzymatically driven transport: a kinetic theory for nuclear export. Biophys J 2014; 105:1997-2005. [PMID: 24209844 DOI: 10.1016/j.bpj.2013.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 11/29/2022] Open
Abstract
Nuclear import and export are often considered inverse processes whereby transport receptors ferry protein cargo through the nuclear pore. In contrast to import, where the reversible binding of receptor to nuclear RanGTP leads to a balanced bidirectional exchange, termination of export by physiologically irreversible hydrolysis of the Ran-bound GTP leads to unidirectional transport. We present a concise mathematical model that predicts protein distributions and kinetic rates for receptor-mediated nuclear export, which further exhibit an unexpected pseudolinear relation one to the other. Predictions of the model are verified with permeabilized and live cell measurements.
Collapse
Affiliation(s)
- Sanghyun Kim
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
18
|
Abstract
Cilia and flagella are microtubule-based organelles that protrude from the cell body. Ciliary assembly requires intraflagellar transport (IFT), a motile system that delivers cargo from the cell body to the flagellar tip for assembly. The process controlling injections of IFT proteins into the flagellar compartment is, therefore, crucial to ciliogenesis. Extensive biochemical and genetic analyses have determined the molecular machinery of IFT, but these studies do not explain what regulates IFT injection rate. Here, we provide evidence that IFT injections result from avalanche-like releases of accumulated IFT material at the flagellar base and that the key regulated feature of length control is the recruitment of IFT material to the flagellar base. We used total internal reflection fluorescence microscopy of IFT proteins in live cells to quantify the size and frequency of injections over time. The injection dynamics reveal a power-law tailed distribution of injection event sizes and a negative correlation between injection size and frequency, as well as rich behaviors such as quasiperiodicity, bursting, and long-memory effects tied to the size of the localized load of IFT material awaiting injection at the flagellar base, collectively indicating that IFT injection dynamics result from avalanche-like behavior. Computational models based on avalanching recapitulate observed IFT dynamics, and we further show that the flagellar Ras-related nuclear protein (Ran) guanosine 5'-triphosphate (GTP) gradient can in theory act as a flagellar length sensor to regulate this localized accumulation of IFT. These results demonstrate that a self-organizing, physical mechanism can control a biochemically complex intracellular transport pathway.
Collapse
|
19
|
Fronz K, Güttinger S, Burkert K, Kühn U, Stöhr N, Schierhorn A, Wahle E. Arginine methylation of the nuclear poly(a) binding protein weakens the interaction with its nuclear import receptor, transportin. J Biol Chem 2011; 286:32986-94. [PMID: 21808065 PMCID: PMC3190935 DOI: 10.1074/jbc.m111.273912] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Revised: 07/28/2011] [Indexed: 11/06/2022] Open
Abstract
The nuclear poly(A) binding protein, PABPN1, promotes mRNA polyadenylation in the cell nucleus by increasing the processivity of poly(A) polymerase and contributing to poly(A) tail length control. In its C-terminal domain, the protein carries 13 arginine residues that are all asymmetrically dimethylated. The function of this modification in PABPN1 has been unknown. Part of the methylated domain serves as nuclear localization signal, binding the import receptor transportin. Here we report that arginine methylation weakens the affinity of PABPN1 for transportin. Recombinant, unmethylated PABPN1 binds more strongly to transportin than its methylated counterpart from mammalian tissue, and in vitro methylation reduces the affinity. Transportin and RNA compete for binding to PABPN1. Methylation favors RNA binding. Transportin also inhibits in vitro methylation of the protein. Finally, a peptide corresponding to the nuclear localization signal of PABPN1 competes with transportin-dependent nuclear import of the protein in a permeabilized cell assay and does so less efficiently when it is methylated. We hypothesize that transportin binding might delay methylation of PABPN1 until after nuclear import. In the nucleus, arginine methylation may favor the transition of PABPN1 to the competing ligand RNA and serve to reduce the risk of the protein being reexported to the cytoplasm by transportin.
Collapse
Affiliation(s)
- Katharina Fronz
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Stefan Güttinger
- the Institute of Biochemistry, Swiss Federal Institute of Technology (ETH Zürich), Schafmattstrasse 18, 8093 Zürich, Switzerland, and
| | - Kerstin Burkert
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Uwe Kühn
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Nadine Stöhr
- the Section for Molecular Cell Biology, Department of Medicine, Martin Luther University Halle-Wittenberg, 06097 Halle, Germany
| | - Angelika Schierhorn
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| | - Elmar Wahle
- From the Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany
| |
Collapse
|
20
|
Yahav T, Maimon T, Grossman E, Dahan I, Medalia O. Cryo-electron tomography: gaining insight into cellular processes by structural approaches. Curr Opin Struct Biol 2011; 21:670-7. [PMID: 21813274 DOI: 10.1016/j.sbi.2011.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 06/23/2011] [Accepted: 07/11/2011] [Indexed: 11/18/2022]
Abstract
Visualization of cellular processes at a resolution of the individual protein should involve integrative and complementary approaches that can eventually draw realistic functional and cellular landscapes. Electron tomography of vitrified but otherwise unaltered cells emerges as a central method for three-dimensional reconstruction of cellular architecture at a resolution of 2-6 nm. While a combination of correlative light-based microscopy with cryo-electron tomography (cryo-ET) provides medium-resolution insight into pivotal cellular processes, fitting high-resolution structural approaches, for example, X-ray crystallography, into reconstructed macromolecular assemblies provides unprecedented information on native protein assemblies. Thus, cryo-ET bridges the resolution gap between cellular and structural biology. In this article, we focus on the study of eukaryotic cells and macromolecular complexes in a close-to-life-state. We discuss recent developments and structural findings enabling major strides to be made in understanding complex physiological functions.
Collapse
Affiliation(s)
- Tal Yahav
- Department of Biochemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | | | | | | | | |
Collapse
|
21
|
Ben-Harush K, Maimon T, Patla I, Villa E, Medalia O. Visualizing cellular processes at the molecular level by cryo-electron tomography. J Cell Sci 2010; 123:7-12. [PMID: 20016061 DOI: 10.1242/jcs.060111] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The cellular landscape rapidly changes throughout the biological processes that transpire within a cell. For example, the cytoskeleton is remodeled within fractions of a second. Therefore, reliable structural analysis of the cell requires approaches that allow for instantaneous arrest of functional states of a given process while offering the best possible preservation of the delicate cellular structure. Electron tomography of vitrified but otherwise unaltered cells (cryo-ET) has proven to be the method of choice for three-dimensional (3D) reconstruction of cellular architecture at a resolution of 4-6 nm. Through the use of cryo-ET, the 3D organization of macromolecular complexes and organelles can be studied in their native environment in the cell. In this Commentary, we focus on the application of cryo-ET to study eukaryotic cells - in particular, the cytoskeletal-driven processes that are involved in cell movements, filopodia protrusion and viral entry. Finally, we demonstrate the potential of cryo-ET to determine structures of macromolecular complexes in situ, such as the nuclear pore complex.
Collapse
|
22
|
Atasheva S, Fish A, Fornerod M, Frolova EI. Venezuelan equine Encephalitis virus capsid protein forms a tetrameric complex with CRM1 and importin alpha/beta that obstructs nuclear pore complex function. J Virol 2010; 84:4158-71. [PMID: 20147401 PMCID: PMC2863722 DOI: 10.1128/jvi.02554-09] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2009] [Accepted: 01/31/2010] [Indexed: 12/25/2022] Open
Abstract
Development of the cellular antiviral response requires nuclear translocation of multiple transcription factors and activation of a wide variety of cellular genes. To counteract the antiviral response, several viruses have developed an efficient means of inhibiting nucleocytoplasmic traffic. In this study, we demonstrate that the pathogenic strain of Venezuelan equine encephalitis virus (VEEV) has developed a unique mechanism of nuclear import inhibition. Its capsid protein forms a tetrameric complex with the nuclear export receptor CRM1 and the nuclear import receptor importin alpha/beta. This unusual complex accumulates in the center channel of the nuclear pores and blocks nuclear import mediated by different karyopherins. The inhibitory function of VEEV capsid protein is determined by a short 39-amino-acid-long peptide that contains both nuclear import and supraphysiological nuclear export signals. Mutations in these signals or in the linker peptide attenuate or completely abolish capsid-specific inhibition of nuclear traffic. The less pathogenic VEEV strains contain a wide variety of mutations in this peptide that affect its inhibitory function in nuclear import. Thus, these mutations appear to be the determinants of this attenuated phenotype. This novel mechanism of inhibiting nuclear transport also shows that the nuclear pore complex is vulnerable to unusual cargo receptor complexes and sheds light on the importance of finely adjusted karyopherin-nucleoporin interactions for efficient cargo translocation.
Collapse
Affiliation(s)
- Svetlana Atasheva
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, Netherlands Cancer Institute Proteomics Center, Division of Gene Regulation, Plesmanlaan 121, 1066CX Amsterdam, Netherlands
| | - Alexander Fish
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, Netherlands Cancer Institute Proteomics Center, Division of Gene Regulation, Plesmanlaan 121, 1066CX Amsterdam, Netherlands
| | - Maarten Fornerod
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, Netherlands Cancer Institute Proteomics Center, Division of Gene Regulation, Plesmanlaan 121, 1066CX Amsterdam, Netherlands
| | - Elena I. Frolova
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama 35294-2170, Netherlands Cancer Institute Proteomics Center, Division of Gene Regulation, Plesmanlaan 121, 1066CX Amsterdam, Netherlands
| |
Collapse
|
23
|
A glycine-rich domain of hnRNP H/F promotes nucleocytoplasmic shuttling and nuclear import through an interaction with transportin 1. Mol Cell Biol 2010; 30:2552-62. [PMID: 20308327 DOI: 10.1128/mcb.00230-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) H and F are members of a closely related subfamily of hnRNP proteins that are implicated in many aspects of RNA processing. hnRNP H and F are alternative splicing factors for numerous U2- and U12-dependent introns. The proteins have three RNA binding domains and two glycine-rich domains and localize to both the nucleus and cytoplasm, but little is known about which domains govern subcellular localization or splicing activity. We show here that the central glycine-tyrosine-arginine-rich (GYR) domain is responsible for nuclear localization, and a nonclassical nuclear localization signal (NLS) was mapped to a short, highly conserved sequence whose activity was compromised by point mutations. Glutathione S-transferase (GST) pulldown assays demonstrated that the hnRNP H NLS interacts with the import receptor transportin 1. Finally, we show that hnRNP H/F are transcription-dependent shuttling proteins. Collectively, the results suggest that hnRNP H and F are GYR domain-dependent shuttling proteins whose posttranslational modifications may alter nuclear localization and hence function.
Collapse
|
24
|
Kopito RB, Elbaum M. Nucleocytoplasmic transport: a thermodynamic mechanism. HFSP JOURNAL 2009; 3:130-41. [PMID: 19794817 DOI: 10.2976/1.3080807] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 01/23/2009] [Indexed: 01/09/2023]
Abstract
The nuclear pore supports molecular communication between cytoplasm and nucleus in eukaryotic cells. Selective transport of proteins is mediated by soluble receptors, whose regulation by the small GTPase Ran leads to cargo accumulation in, or depletion from, the nucleus, i.e., nuclear import or nuclear export. We consider the operation of this transport system by a combined analytical and experimental approach. Provocative predictions of a simple model were tested using cell-free nuclei reconstituted in Xenopus egg extract, a system well suited to quantitative studies. We found that accumulation capacity is limited, so that introduction of one import cargo leads to egress of another. Clearly, the pore per se does not determine transport directionality. Moreover, different cargo reach a similar ratio of nuclear to cytoplasmic concentration in steady-state. The model shows that this ratio should in fact be independent of the receptor-cargo affinity, though kinetics may be strongly influenced. Numerical conservation of the system components highlights a conflict between the observations and the popular concept of transport cycles. We suggest that chemical partitioning provides a framework to understand the capacity to generate concentration gradients by equilibration of the receptor-cargo intermediary.
Collapse
Affiliation(s)
- Ronen Benjamine Kopito
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | | |
Collapse
|
25
|
Engelsma D, Valle N, Fish A, Salomé N, Almendral JM, Fornerod M. A supraphysiological nuclear export signal is required for parvovirus nuclear export. Mol Biol Cell 2008; 19:2544-52. [PMID: 18385513 PMCID: PMC2397317 DOI: 10.1091/mbc.e08-01-0009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/04/2008] [Accepted: 03/24/2008] [Indexed: 01/07/2023] Open
Abstract
CRM1 exports proteins that carry a short leucine-rich peptide signal, the nuclear export signal (NES), from the nucleus. Regular NESs must have low affinity for CRM1 to function optimally. We previously generated artificial NESs with higher affinities for CRM1, termed supraphysiological NESs. Here we identify a supraphysiological NES in an endogenous protein, the NS2 protein of parvovirus Minute Virus of Mice (MVM). NS2 interacts with CRM1 without the requirement of RanGTP, whereas addition of RanGTP renders the complex highly stable. Mutation of a single hydrophobic residue that inactivates regular NESs lowers the affinity of the NS2 NES for CRM1 from supraphysiological to regular. Mutant MVM harboring this regular NES is compromised in viral nuclear export and productivity. In virus-infected mouse fibroblasts we observe colocalization of NS2, CRM1 and mature virions, which is dependent on the supraphysiological NS2 NES. We conclude that supraphysiological NESs exist in nature and that the supraphysiological NS2 NES has a critical role in active nuclear export of mature MVM particles before cell lysis.
Collapse
Affiliation(s)
| | - Noelia Valle
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), 28049 Cantoblanco, Madrid, Spain; and
| | - Alexander Fish
- Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Nathalie Salomé
- Infection and Cancer Program, Division F010 and INSERM U701, Deutsches Krebsforschungszentrum, D-69120 Heidelberg, Germany
| | - José M. Almendral
- Centro de Biología Molecular “Severo Ochoa” (Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid), 28049 Cantoblanco, Madrid, Spain; and
| | | |
Collapse
|
26
|
Sabri N, Roth P, Xylourgidis N, Sadeghifar F, Adler J, Samakovlis C. Distinct functions of the Drosophila Nup153 and Nup214 FG domains in nuclear protein transport. ACTA ACUST UNITED AC 2007; 178:557-65. [PMID: 17682050 PMCID: PMC2064463 DOI: 10.1083/jcb.200612135] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The phenylanine-glycine (FG)–rich regions of several nucleoporins both bind to nuclear transport receptors and collectively provide a diffusion barrier to the nuclear pores. However, the in vivo roles of FG nucleoporins in transport remain unclear. We have inactivated 30 putative nucleoporins in cultured Drosophila melanogaster S2 cells by RNA interference and analyzed the phenotypes on importin α/β−mediated import and CRM1-dependent protein export. The fly homologues of FG nucleoporins Nup358, Nup153, and Nup54 are selectively required for import. The FG repeats of Nup153 are necessary for its function in transport, whereas the remainder of the protein maintains pore integrity. Inactivation of the CRM1 cofactor RanBP3 decreased the nuclear accumulation of CRM1 and protein export. We report a surprisingly antagonistic relationship between RanBP3 and the Nup214 FG region in determining CRM1 localization and its function in protein export. Our data suggest that peripheral metazoan FG nucleoporins have distinct functions in nuclear protein transport events.
Collapse
Affiliation(s)
- Nafiseh Sabri
- Department of Developmental Biology, Wenner-Gren Institute, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
Nucleocytoplasmic exchange of proteins and RNAs is mediated by receptors that usher their cargo through the nuclear pores. Peptide localization signals on each cargo determine the receptors with which it will interact. Those interactions are normally regulated by the small GTPase Ran. Hydrolysis of GTP provides the chemical energy required to create a bona fide thermodynamic pump that selectively and directionally accumulates its substrates across the nuclear envelope. A common perception is that cargo delivery is irreversible, e.g., a protein imported to the nucleus does not return to the cytoplasm except perhaps via a specific export receptor. Quantitative measurements using cell-free nuclei reconstituted in Xenopus egg extract show that nuclear accumulation follows first-order kinetics and reaches steady state at a level that follows a Michaelis-Menten function of the cytoplasmic cargo concentration. This saturation suggests that receptor-mediated translocation across the nuclear pore occurs bidirectionally. The reversibility of accumulation was demonstrated directly by exchange of the cytosolic medium and by fluorescence recovery after photobleaching. Based on our results, we offer a simple biophysical model that predicts the observed behavior. A far-reaching consequence is that the nuclear localization signal dictates the fate of a protein population rather than that of the individual molecules that bear it, which remain free to shuttle back and forth. This implies an open communication between the nucleus and cytoplasm and a ubiquitous mechanism for signaling in both directions.
Collapse
Affiliation(s)
- Ronen Benjamine Kopito
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Michael Elbaum
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
28
|
Iijima M, Suzuki M, Tanabe A, Nishimura A, Yamada M. Two motifs essential for nuclear import of the hnRNP A1 nucleocytoplasmic shuttling sequence M9 core. FEBS Lett 2006; 580:1365-70. [PMID: 16455081 DOI: 10.1016/j.febslet.2006.01.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 12/31/2005] [Accepted: 01/04/2006] [Indexed: 10/25/2022]
Abstract
Heterogeneous nuclear ribonucleoprotein (hnRNP) A1 regulates mRNA genesis. It shuttles between the nucleus and cytoplasm. Its shuttling signal is a 38-residue sequence M9. We studied the nuclear import and export of M9 by mutational analysis. Heterokaryon assay indicated that the 19-residue sequence SNFGPMKGGNFGGRSSGPY (M9 core) is necessary and sufficient for shuttling. Moreover, M9 core mutation revealed that in addition to the hitherto characterized N-terminal motif SNFGPMK, the C-terminal motif PY is crucial for nuclear import as well as for binding to transportin. Key residues of the motifs are conserved in the shuttling signals of hnRNP D and JKTBP.
Collapse
Affiliation(s)
- Megumi Iijima
- Graduate School of Integrated Science, Yokohama City University, 22-2, Seto, Kanazawa-ku, Yokohama 236-0027, Japan
| | | | | | | | | |
Collapse
|
29
|
Hetzer MW, Walther TC, Mattaj IW. PUSHING THE ENVELOPE: Structure, Function, and Dynamics of the Nuclear Periphery. Annu Rev Cell Dev Biol 2005; 21:347-80. [PMID: 16212499 DOI: 10.1146/annurev.cellbio.21.090704.151152] [Citation(s) in RCA: 233] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nuclear envelope (NE) is a highly specialized membrane that delineates the eukaryotic cell nucleus. It is composed of the inner and outer nuclear membranes, nuclear pore complexes (NPCs) and, in metazoa, the lamina. The NE not only regulates the trafficking of macromolecules between nucleoplasm and cytosol but also provides anchoring sites for chromatin and the cytoskeleton. Through these interactions, the NE helps position the nucleus within the cell and chromosomes within the nucleus, thereby regulating the expression of certain genes. The NE is not static, rather it is continuously remodeled during cell division. The most dramatic example of NE reorganization occurs during mitosis in metazoa when the NE undergoes a complete cycle of disassembly and reformation. Despite the importance of the NE for eukaryotic cell life, relatively little is known about its biogenesis or many of its functions. We thus are far from understanding the molecular etiology of a diverse group of NE-associated diseases.
Collapse
Affiliation(s)
- Martin W Hetzer
- Molecular and Cell Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | | | |
Collapse
|
30
|
Abstract
The separation of transcription in the nucleus and translation in the cytoplasm requires nucleo-cytoplasmic exchange of proteins and RNAs. Viruses have evolved strategies to capitalize on the nucleo-cytoplasmic trafficking machinery of the cell. Here, we first discuss the principal mechanisms of receptor-mediated nuclear import of proteinaceous cargo through the nuclear pore complex, the gate keeper of the cell nucleus. We then focus on viral strategies leading to nuclear import of genomes and subgenomic particles. Nucleo-cytoplasmic transport is directly important for those viruses that are replicating in the nucleus, such as DNA tumor viruses and RNA viruses, including parvoviruses, the DNA retroviruses hepadnaviruses, RNA-retrotransposons and retroviruses, adenoviruses, herpesviruses, papovaviruses, and particular negative-sense RNA viruses, such as the orthomyxovirus influenza virus. The viral strategies of nuclear import turn out to be surprisingly diverse. Their investigation continues to give insight into how nucleic acids pass in and out of the nucleus.
Collapse
Affiliation(s)
- U F Greber
- Zoologisches Institut der Universität Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland.
| | | |
Collapse
|
31
|
N/A. N/A. Shijie Huaren Xiaohua Zazhi 2004; 12:2488-2491. [DOI: 10.11569/wcjd.v12.i10.2488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
32
|
Engelsma D, Bernad R, Calafat J, Fornerod M. Supraphysiological nuclear export signals bind CRM1 independently of RanGTP and arrest at Nup358. EMBO J 2004; 23:3643-52. [PMID: 15329671 PMCID: PMC517610 DOI: 10.1038/sj.emboj.7600370] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Accepted: 07/23/2004] [Indexed: 11/09/2022] Open
Abstract
Leucine-rich nuclear export signals (NESs) mediate rapid nuclear export of proteins via interaction with CRM1. This interaction is stimulated by RanGTP but remains of a relatively low affinity. In order to identify strong signals, we screened a 15-mer random peptide library for CRM1 binding, both in the presence and absence of RanGTP. Under each condition, strikingly similar signals were enriched, conforming to the NES consensus sequence. A derivative of an NES selected in the absence of RanGTP exhibits very high affinity for CRM1 in vitro and stably binds without the requirement of RanGTP. Localisation studies and RNA interference demonstrate inefficient CRM1-mediated export and accumulation of CRM1 complexed with the high-affinity NES at nucleoporin Nup358. These results provide in vivo evidence for a nuclear export reaction intermediate. They suggest that NESs have evolved to maintain low affinity for CRM1 to allow efficient export complex disassembly and release from Nup358.
Collapse
Affiliation(s)
- Dieuwke Engelsma
- Department of Tumor Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Rafael Bernad
- Department of Tumor Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jero Calafat
- Department of Cell Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Maarten Fornerod
- Department of Tumor Biology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Casolari JM, Brown CR, Komili S, West J, Hieronymus H, Silver PA. Genome-Wide Localization of the Nuclear Transport Machinery Couples Transcriptional Status and Nuclear Organization. Cell 2004; 117:427-39. [PMID: 15137937 DOI: 10.1016/s0092-8674(04)00448-9] [Citation(s) in RCA: 461] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Revised: 03/09/2004] [Accepted: 03/16/2004] [Indexed: 11/21/2022]
Abstract
The association of genes with the nuclear pore complex (NPC) and nuclear transport factors has been implicated in transcriptional regulation. We therefore examined the association of components of the nuclear transport machinery including karyopherins, nucleoporins, and the Ran guanine-nucleotide exchange factor (RanGEF) with the Saccharomyces cerevisiae genome. We find that most nucleoporins and karyopherins preferentially associate with a subset of highly transcribed genes and with genes that possess Rap1 binding sites whereas the RanGEF preferentially associates with transcriptionally inactive genes. Consistent with coupling of transcription to the nuclear pore, we show that transcriptional activation of the GAL genes results in their association with nuclear pore proteins, relocation to the nuclear periphery, and loss of RanGEF association. Taken together, these results indicate that the organization of the genome is coupled via transcriptional state to the nuclear transport machinery.
Collapse
Affiliation(s)
- Jason M Casolari
- Department of Systems Biology, Harvard Medical School and Department of Cancer Biology, The Dana-Farber Cancer Institute, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
34
|
Becskei A, Boselli MG, van Oudenaarden A. Amplitude control of cell-cycle waves by nuclear import. Nat Cell Biol 2004; 6:451-7. [PMID: 15107861 DOI: 10.1038/ncb1124] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2004] [Accepted: 03/25/2004] [Indexed: 11/08/2022]
Abstract
Propagation of waves of biochemical activities through consecutive stages of the cell cycle is essential to execute the steps of cell division in a strict temporal order. Mechanisms that ensure the proper amplitude and timing of these waves are poorly understood. Using a synthetic gene circuit, we show that a transcriptional activator driven by yeast cell-cycle promoters propagates transcriptional oscillations with substantial damping. Although regulated nuclear translocation has been implicated in the timing of oscillatory events, mathematical analysis shows that increasing the rate of nuclear transport is an example of a general regulatory principle, which enhances the fidelity of wave propagation. Indeed, increasing the constitutive import rate of the activator counteracts the damping of waves and concurrently preserves the intensity of the signal. In contrast to the regulatory range of nuclear transport, the range of mRNA turnover considerably limits transcriptional wave propagation. This classification of cellular processes outlines potential regulatory mechanisms that can contribute to faithful transmission of oscillations at different stages of the cell cycle.
Collapse
Affiliation(s)
- Attila Becskei
- Department of Physics, Massachusetts Institute of Technology, 13-2008, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
35
|
Rebane A, Aab A, Steitz JA. Transportins 1 and 2 are redundant nuclear import factors for hnRNP A1 and HuR. RNA (NEW YORK, N.Y.) 2004; 10:590-599. [PMID: 15037768 PMCID: PMC1370549 DOI: 10.1261/rna.5224304] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2003] [Accepted: 12/22/2003] [Indexed: 05/24/2023]
Abstract
Several mRNA-binding proteins, including hnRNP A1 and HuR, contain bidirectional transport signals that mediate both their nuclear import and export. Previously, Transportin 1 (Trn1) was identified as a mediator of hnRNP A1 import, whereas the closely related protein Transportin 2 (Trn2) was shown to interact with HuR. Here we have investigated the subfamily of transportins that consists of Trn1 (or Kap beta2A) and two alternatively spliced Trn2 isoforms (Trn2a and Trn2b), also called Trn2 and Kap beta2B. The sequence differences among these proteins could alter either their cargo specificity or their response to RanGTP and thus their function as import or export receptors. Using in vitro binding assays, we show that hnRNP A1 preferentially binds Trn1 and Trn2b versus Trn2a. HuR interacts with all three transportins, as well as weakly with Imp beta. The hnRNP A1 and HuR shuttling domains, called M9 and HNS, respectively, are sufficient for these interactions. Despite small differences in the binding of HuR and hnRNP A1 to the three transportins, in vitro interaction studies performed in the presence and absence of RanQ69LGTP indicate that all three transportins most likely act as import factors for HuR and hnRNP A1. In digitonin-permeabilized HeLa cells, both M9 and HNS peptides compete for the import of recombinant hnRNP A1 and HuR, indicating that HuR and hnRNP A1 import pathways are at least partially overlapping. Possible nucleocytoplasmic shuttling mechanisms for hnRNP A1 and HuR are discussed.
Collapse
Affiliation(s)
- Ana Rebane
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | | | | |
Collapse
|
36
|
Bernad R, van der Velde H, Fornerod M, Pickersgill H. Nup358/RanBP2 attaches to the nuclear pore complex via association with Nup88 and Nup214/CAN and plays a supporting role in CRM1-mediated nuclear protein export. Mol Cell Biol 2004; 24:2373-84. [PMID: 14993277 PMCID: PMC355853 DOI: 10.1128/mcb.24.6.2373-2384.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2003] [Revised: 12/08/2003] [Accepted: 12/16/2003] [Indexed: 11/20/2022] Open
Abstract
Nuclear pore complexes (NPCs) traverse the nuclear envelope (NE), providing a channel through which nucleocytoplasmic transport occurs. Nup358/RanBP2, Nup214/CAN, and Nup88 are components of the cytoplasmic face of the NPC. Here we show that Nup88 localizes midway between Nup358 and Nup214 and physically interacts with them. RNA interference of either Nup88 or Nup214 in human cells caused a strong reduction of Nup358 at the NE. Nup88 and Nup214 showed an interdependence at the NPC and were not affected by the absence of Nup358. These data indicate that Nup88 and Nup214 mediate the attachment of Nup358 to the NPC. We show that localization of the export receptor CRM1 at the cytoplasmic face of the NE is Nup358 dependent and represents its empty state. Also, removal of Nup358 causes a distinct reduction in nuclear export signal-dependent nuclear export. We propose that Nup358 provides both a platform for rapid disassembly of CRM1 export complexes and a binding site for empty CRM1 recycling into the nucleus.
Collapse
Affiliation(s)
- Rafael Bernad
- The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | |
Collapse
|