1
|
Ouyang M, Xing Y, Zhang S, Li L, Pan Y, Deng L. Development of FRET Biosensor to Characterize CSK Subcellular Regulation. BIOSENSORS 2024; 14:206. [PMID: 38667199 PMCID: PMC11048185 DOI: 10.3390/bios14040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
C-terminal Src kinase (CSK) is the major inhibitory kinase for Src family kinases (SFKs) through the phosphorylation of their C-tail tyrosine sites, and it regulates various types of cellular activity in association with SFK function. As a cytoplasmic protein, CSK needs be recruited to the plasma membrane to regulate SFKs' activity. The regulatory mechanism behind CSK activity and its subcellular localization remains largely unclear. In this work, we developed a genetically encoded biosensor based on fluorescence resonance energy transfer (FRET) to visualize the CSK activity in live cells. The biosensor, with an optimized substrate peptide, confirmed the crucial Arg107 site in the CSK SH2 domain and displayed sensitivity and specificity to CSK activity, while showing minor responses to co-transfected Src and Fyn. FRET measurements showed that CSK had a relatively mild level of kinase activity in comparison to Src and Fyn in rat airway smooth muscle cells. The biosensor tagged with different submembrane-targeting signals detected CSK activity at both non-lipid raft and lipid raft microregions, while it showed a higher FRET level at non-lipid ones. Co-transfected receptor-type protein tyrosine phosphatase alpha (PTPα) had an inhibitory effect on the CSK FRET response. The biosensor did not detect obvious changes in CSK activity between metastatic cancer cells and normal ones. In conclusion, a novel FRET biosensor was generated to monitor CSK activity and demonstrated CSK activity existing in both non-lipid and lipid raft membrane microregions, being more present at non-lipid ones.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| | - Yujie Xing
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Shumin Zhang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| | - Liting Li
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yan Pan
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China; (Y.X.); (S.Z.); (L.L.); (Y.P.)
| |
Collapse
|
2
|
Boča R, Štofko J, Imrich R. Ab initio study of molecular properties of l-tyrosine. J Mol Model 2023; 29:245. [PMID: 37442864 PMCID: PMC10344843 DOI: 10.1007/s00894-023-05648-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
CONTEXT l-Tyrosine is a naturally occurring agent that acts as a precursor in biosynthesis of monoaminergic neurotransmitters in brain such as dopamine, adrenaline, noradrenaline, and hormones like thyroxine and triiodothyronine. While l-tyrosine in vacuo adopts the canonical aminoacid form with -NH2 and -COOH functional groups, from neutral solutions, is crystallizes in the zwitterionic form possessing -NH3+ and -COO- groups. As l-tyrosine is non-innocent agent with respect to redox processes, redox ability in water expressed by the absolute oxidation and reduction potentials is investigated. The cluster analysis applied to a set of nine related neurotransmitters and trace amines confirms that l-tyrosine is mostly similar to aminoacid forms of phenylalanine, octopamine, and noradrenaline. METHODS The energetic data at the Hartree-Fock MO-LCAO-SCF method has been conducted using def2-TZVP basis set, and improved by the many-body perturbation theory using the MP2 correction to the correlation energy. For the aminoacid form and the zwitterionic form of l-tyrosine, a set of molecular descriptors has been evaluated (ionization energy, electron affinity, molecular electronegativity, chemical hardness, electrophilicity index, dipole moment, quadrupole moment, and dipole polarizability). The solvent effect (CPCM) is very expressive to the zwitterionic form and alters the sign of the electron affinity from positive to negative values. In parallel, density-functional theory with B3LYP variant in the same basis set has been employed for full geometry optimization of the neutral and ionized forms of l-tyrosine allowing assessing the adiabatic (a) ionization/affinity processes. The complete vibrational analysis enables evaluating thermodynamic functions such as the inner energy, enthalpy, entropy, Gibbs energy, and consequently the absolute oxidation and reduction potentials. Of applied methods, the most reliable are B3LYP(a) results that account to the correlation energy and the electron and nuclear relaxation during the ionization/affinity processes.
Collapse
Affiliation(s)
- Roman Boča
- Faculty of Health Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia.
| | - Juraj Štofko
- Faculty of Health Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia
| | - Richard Imrich
- Faculty of Health Sciences, University of SS Cyril and Methodius, 91701, Trnava, Slovakia
| |
Collapse
|
3
|
Sun G, Ayrapetov MK. Dissection of the catalytic and regulatory structure-function relationships of Csk protein tyrosine kinase. Front Cell Dev Biol 2023; 11:1148352. [PMID: 36936693 PMCID: PMC10016382 DOI: 10.3389/fcell.2023.1148352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 03/04/2023] Open
Abstract
Protein tyrosine kinases (PTKs) are a large enzyme family that regulates many cellular processes. The key to their broad role in signaling is their tunable substrate specificity and regulatory mechanisms that allow each to respond to appropriate regulatory signals and phosphorylate the correct physiological protein substrates. Thus, in addition to the general PTK catalytic platform, each PTK acquires unique structural motifs that confer a unique combination of catalytic and regulatory properties. Understanding the structural basis for these properties is essential for understanding and manipulating the PTK-based signaling networks in normal and cancer cells. C-terminal Src kinase (Csk) and its homolog, Csk-homologous kinase (Chk), phosphorylate Src family kinases on a C-terminal Tyr residue and negatively regulate their kinase activity. While this regulatory function is biologically essential, Csk and Chk have also been excellent model PTKs for dissecting the structural basis of PTK catalysis and regulation. In this article, we review the structure-function studies of Csk and Chk that shed light on the regulatory and catalytic mechanisms of protein tyrosine kinases in general.
Collapse
|
4
|
Sanner MF, Zoghebi K, Hanna S, Mozaffari S, Rahighi S, Tiwari RK, Parang K. Cyclic Peptides as Protein Kinase Inhibitors: Structure-Activity Relationship and Molecular Modeling. J Chem Inf Model 2021; 61:3015-3026. [PMID: 34000187 PMCID: PMC8238896 DOI: 10.1021/acs.jcim.1c00320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Under-expression or overexpression of protein kinases has been shown to be associated with unregulated cell signal transduction in cancer cells. Therefore, there is major interest in designing protein kinase inhibitors as anticancer agents. We have previously reported [WR]5, a peptide containing alternative arginine (R) and tryptophan (W) residues as a non-competitive c-Src tyrosine kinase inhibitor. A number of larger cyclic peptides containing alternative hydrophobic and positively charged residues [WR]x (x = 6-9) and hybrid cyclic-linear peptides, [R6K]W6 and [R5K]W7, containing R and W residues were evaluated for their protein kinase inhibitory potency. Among all the peptides, cyclic peptide [WR]9 was found to be the most potent tyrosine kinase inhibitor. [WR]9 showed higher inhibitory activity (IC50 = 0.21 μM) than [WR]5, [WR]6, [WR]7, and [WR]8 with IC50 values of 0.81, 0.57, 0.35, and 0.33 μM, respectively, against c-Src kinase as determined by a radioactive assay using [γ-33P]ATP. Consistent with the result above, [WR]9 inhibited other protein kinases such as Abl kinase activity with an IC50 value of 0.35 μM, showing 2.2-fold higher inhibition than [WR]5 (IC50 = 0.79 μM). [WR]9 also inhibited PKCa kinase activity with an IC50 value of 2.86 μM, approximately threefold higher inhibition than [WR]5 (IC50 = 8.52 μM). A similar pattern was observed against Braf, c-Src, Cdk2/cyclin A1, and Lck. [WR]9 exhibited IC50 values of <0.25 μM against Akt1, Alk, and Btk. These data suggest that [WR]9 is consistently more potent than other cyclic peptides with a smaller ring size and hybrid cyclic-linear peptides [R6K]W6 and [R5K]W7 against selected protein kinases. Thus, the presence of R and W residues in the ring, ring size, and the number of amino acids in the structure of the cyclic peptide were found to be critical in protein kinase inhibitory potency. We identified three putative binding pockets through automated blind docking of cyclic peptides [WR](5-9). The most populated pocket is located between the SH2, SH3, and N-lobe domains on the opposite side of the ATP binding site. The second putative pocket is formed by the same domains and located on the ATP binding site side of the protein. Finally, a third pocket was identified between the SH2 and SH3 domains. These results are consistent with the non-competitive nature of the inhibition displayed by these molecules. Molecular dynamics simulations of the protein-peptide complexes indicate that the presence of either [WR]5 or [WR]9 affects the plasticity of the protein and in particular the volume of the ATP binding site pocket in different ways. These results suggest that the second pocket is most likely the site where these peptides bind and offer a plausible rationale for the increased affinity of [WR]9.
Collapse
Affiliation(s)
| | - Khalid Zoghebi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Samara Hanna
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Saghar Mozaffari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Simin Rahighi
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Rakesh K. Tiwari
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| | - Keykavous Parang
- Center for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Harry and Diane Rinker Health Science Campus, Irvine, California 92618, United States
| |
Collapse
|
5
|
Negi P, Cheke RS, Patil VM. Recent advances in pharmacological diversification of Src family kinase inhibitors. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00172-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abstract
Background
Src kinase, a nonreceptor protein-tyrosine kinase is composed of 11 members (in human) and is involved in a wide variety of essential functions required to sustain cellular homeostasis and survival.
Main body of the abstract
Deregulated activity of Src family kinase is related to malignant transformation. In 2001, Food and Drug Administration approved imatinib for the treatment of chronic myeloid leukemia followed by approval of various other inhibitors from this category as effective therapeutics for cancer patients. In the past decade, Src family kinase has been investigated for the treatment of diverse pathologies in addition to cancer. In this regard, we provide a systematic evaluation of Src kinase regarding its mechanistic role in cancer and other diseases. Here we comment on preclinical and clinical success of Src kinase inhibitors in cancer followed by diabetes, hypertension, tuberculosis, and inflammation.
Short conclusion
Studies focusing on the diversified role of Src kinase as potential therapeutical target for the development of medicinally active agents might produce significant advances in the management of not only various types of cancer but also other diseases which are in demand for potent and safe therapeutics.
Collapse
|
6
|
Braun R, Schönberger N, Vinke S, Lederer F, Kalinowski J, Pollmann K. Application of Next Generation Sequencing (NGS) in Phage Displayed Peptide Selection to Support the Identification of Arsenic-Binding Motifs. Viruses 2020; 12:E1360. [PMID: 33261041 PMCID: PMC7759992 DOI: 10.3390/v12121360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 11/21/2022] Open
Abstract
Next generation sequencing (NGS) in combination with phage surface display (PSD) are powerful tools in the newly equipped molecular biology toolbox for the identification of specific target binding biomolecules. Application of PSD led to the discovery of manifold ligands in clinical and material research. However, limitations of traditional phage display hinder the identification process. Growth-based library biases and target-unrelated peptides often result in the dominance of parasitic sequences and the collapse of library diversity. This study describes the effective enrichment of specific peptide motifs potentially binding to arsenic as proof-of-concept using the combination of PSD and NGS. Arsenic is an environmental toxin, which is applied in various semiconductors as gallium arsenide and selective recovery of this element is crucial for recycling and remediation. The development of biomolecules as specific arsenic-binding sorbents is a new approach for its recovery. Usage of NGS for all biopanning fractions allowed for evaluation of motif enrichment, in-depth insight into the selection process and the discrimination of biopanning artefacts, e.g., the amplification-induced library-wide reduction in hydrophobic amino acid proportion. Application of bioinformatics tools led to the identification of an SxHS and a carboxy-terminal QxQ motif, which are potentially involved in the binding of arsenic. To the best of our knowledge, this is the first report of PSD combined with NGS of all relevant biopanning fractions.
Collapse
Affiliation(s)
- Robert Braun
- Department of Biotechnology, Helmholtz Institute Freiberg for Resource Technology, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (N.S.); (F.L.); (K.P.)
| | - Nora Schönberger
- Department of Biotechnology, Helmholtz Institute Freiberg for Resource Technology, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (N.S.); (F.L.); (K.P.)
| | - Svenja Vinke
- Microbial Genomics and Biotechnology, CeBiTec–Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (S.V.); (J.K.)
| | - Franziska Lederer
- Department of Biotechnology, Helmholtz Institute Freiberg for Resource Technology, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (N.S.); (F.L.); (K.P.)
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, CeBiTec–Center for Biotechnology, Bielefeld University, 33594 Bielefeld, Germany; (S.V.); (J.K.)
| | - Katrin Pollmann
- Department of Biotechnology, Helmholtz Institute Freiberg for Resource Technology, Helmholtz Center Dresden-Rossendorf, 01328 Dresden, Germany; (N.S.); (F.L.); (K.P.)
| |
Collapse
|
7
|
Shen J, Li L, Howlett NG, Cohen PS, Sun G. Application of a Biphasic Mathematical Model of Cancer Cell Drug Response for Formulating Potent and Synergistic Targeted Drug Combinations to Triple Negative Breast Cancer Cells. Cancers (Basel) 2020; 12:cancers12051087. [PMID: 32349331 PMCID: PMC7281712 DOI: 10.3390/cancers12051087] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 04/20/2020] [Accepted: 04/24/2020] [Indexed: 01/22/2023] Open
Abstract
Triple negative breast cancer is a collection of heterogeneous breast cancers that are immunohistochemically negative for estrogen receptor, progesterone receptor, and ErbB2 (due to deletion or lack of amplification). No dominant proliferative driver has been identified for this type of cancer, and effective targeted therapy is lacking. In this study, we hypothesized that triple negative breast cancer cells are multi-driver cancer cells, and evaluated a biphasic mathematical model for identifying potent and synergistic drug combinations for multi-driver cancer cells. The responses of two triple negative breast cancer cell lines, MDA-MB-231 and MDA-MB-468, to a panel of targeted therapy drugs were determined over a broad range of concentrations. The analyses of the drug responses by the biphasic mathematical model revealed that both cell lines were indeed dependent on multiple drivers, and inhibitors of individual drivers caused a biphasic response: a target-specific partial inhibition at low nM concentrations, and an off-target toxicity at μM concentrations. We further demonstrated that combinations of drugs, targeting each driver, cause potent, synergistic, and cell-specific cell killing. Immunoblotting analysis of the effects of the individual drugs and drug combinations on the signaling pathways supports the above conclusion. These results support a multi-driver proliferation hypothesis for these triple negative breast cancer cells, and demonstrate the applicability of the biphasic mathematical model for identifying effective and synergistic targeted drug combinations for triple negative breast cancer cells.
Collapse
Affiliation(s)
- Jinyan Shen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Li Li
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan 030001, China
| | - Niall G. Howlett
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA
- Correspondence: ; Tel.: +1-401-874-5937
| |
Collapse
|
8
|
Shen J, Li L, Yang T, Cohen PS, Sun G. Biphasic Mathematical Model of Cell-Drug Interaction That Separates Target-Specific and Off-Target Inhibition and Suggests Potent Targeted Drug Combinations for Multi-Driver Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12020436. [PMID: 32069833 PMCID: PMC7072552 DOI: 10.3390/cancers12020436] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/04/2020] [Accepted: 02/11/2020] [Indexed: 11/25/2022] Open
Abstract
Quantifying the response of cancer cells to a drug, and understanding the mechanistic basis of the response, are the cornerstones for anti-cancer drug discovery. Classical single target-based IC50 measurements are inadequate at describing cancer cell responses to targeted drugs. In this study, based on an analysis of targeted inhibition of colorectal cancer cell lines, we develop a new biphasic mathematical model that accurately describes the cell–drug response. The model describes the drug response using three kinetic parameters: ratio of target-specific inhibition, F1, potency of target-specific inhibition, Kd1, and potency of off-target toxicity, Kd2. Determination of these kinetic parameters also provides a mechanistic basis for predicting effective combination targeted therapy for multi-driver cancer cells. The experiments confirmed that a combination of inhibitors, each blocking a driver pathway and having a distinct target-specific effect, resulted in a potent and synergistic blockade of cell viability, improving potency over mono-agent treatment by one to two orders of magnitude. We further demonstrate that mono-driver cancer cells represent a special scenario in which F1 becomes nearly 100%, and the drug response becomes monophasic. Application of this model to the responses of >400 cell lines to kinase inhibitor dasatinib revealed that the ratio of biphasic versus monophasic responses is about 4:1. This study develops a new mathematical model of quantifying cancer cell response to targeted therapy, and suggests a new framework for developing rational combination targeted therapy for colorectal and other multi-driver cancers.
Collapse
Affiliation(s)
- Jinyan Shen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Li Li
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
- Department of Cell Biology and Medical Genetics, Shanxi Medical University, Taiyuan 030001, China
| | - Tao Yang
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan 030001, China
| | - Paul S. Cohen
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
| | - Gongqin Sun
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI 02881, USA; (J.S.); (L.L.); (T.Y.); (P.S.C.)
- Correspondence: ; Tel.: +1-401-874-5937
| |
Collapse
|
9
|
Dynamic regulatory features of the protein tyrosine kinases. Biochem Soc Trans 2019; 47:1101-1116. [PMID: 31395755 DOI: 10.1042/bst20180590] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
The SRC, Abelson murine leukemia viral oncogene homolog 1, TEC and C-terminal SRC Kinase families of non-receptor tyrosine kinases (collectively the Src module kinases) mediate an array of cellular signaling processes and are therapeutic targets in many disease states. Crystal structures of Src modules kinases provide valuable insights into the regulatory mechanisms that control activation and generate a framework from which drug discovery can advance. The conformational ensembles visited by these multidomain kinases in solution are also key features of the regulatory machinery controlling catalytic activity. Measurement of dynamic motions within kinases substantially augments information derived from crystal structures. In this review, we focus on a body of work that has transformed our understanding of non-receptor tyrosine kinase regulation from a static view to one that incorporates how fluctuations in conformational ensembles and dynamic motions influence activation status. Regulatory dynamic networks are often shared across and between kinase families while specific dynamic behavior distinguishes unique regulatory mechanisms for select kinases. Moreover, intrinsically dynamic regions of kinases likely play important regulatory roles that have only been partially explored. Since there is clear precedence that kinase inhibitors can exploit specific dynamic features, continued efforts to define conformational ensembles and dynamic allostery will be key to combating drug resistance and devising alternate treatments for kinase-associated diseases.
Collapse
|
10
|
Ribeiro Filho HV, Guerra JV, Cagliari R, Batista FAH, Le Maire A, Oliveira PSL, Figueira ACM. Exploring the mechanism of PPARγ phosphorylation mediated by CDK5. J Struct Biol 2019; 207:317-326. [PMID: 31319193 DOI: 10.1016/j.jsb.2019.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/05/2019] [Accepted: 07/09/2019] [Indexed: 12/16/2022]
Abstract
Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor with a key role in metabolic processes and is target of CDK5 kinase phosphorylation at S245 (S273 in PPARγ isoform 2), thereby inducing insulin resistance. A remarkable effort has been addressed to find PPARγ ligands that inhibit S245 phosphorylation, but the poor understanding in this field challenges the design of such ligands. Here, through computational and biophysical methods, we explored an experimentally validated model of PPARγ-CDK5 complex, and we presented K261, K263 or K265, which are conserved in mammals, as important anchor residues for this interaction. In addition, we observed, from structural data analysis, that PPARγ ligands that inhibit S245 phosphorylation are not in direct contact with these residues; but induce structural modifications in PPARγ:CDK5/p25 interface. In summary, our PPARγ and CDK5/p25 interaction analyses open new possibilities for the rational design of novel inhibitors that impair S245 phosphorylation.
Collapse
Affiliation(s)
- H V Ribeiro Filho
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil; Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - J V Guerra
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil; Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - R Cagliari
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil; Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - F A H Batista
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil
| | - A Le Maire
- Centre de Biochimie Structurale CNRS, Université de Montpellier, Montpellier, France
| | - P S L Oliveira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil; Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (Unicamp), Campinas, SP, Brazil
| | - A C M Figueira
- Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP, Brazil; Graduate Program in Biosciences and Technology of Bioactive Products, Institute of Biology, State University of Campinas (Unicamp), Campinas, SP, Brazil.
| |
Collapse
|
11
|
Li L, Cui Y, Shen J, Dobson H, Sun G. Evidence for activated Lck protein tyrosine kinase as the driver of proliferation in acute myeloid leukemia cell, CTV-1. Leuk Res 2019; 78:12-20. [PMID: 30660961 DOI: 10.1016/j.leukres.2019.01.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 01/19/2023]
Abstract
Acute myeloid leukemia (AML) is a heterogeneous group of fast growing cancers of myeloid progenitor cells, for which effective treatments are still lacking. Identification of signaling inhibitors that block their proliferation could reveal the proliferative mechanism of a given leukemia cell, and provide small molecule drugs for targeted therapy for AML. In this study, kinase inhibitors that block the majority of cancer signaling pathways are evaluated for their inhibition of two AML cell lines of the M5 subtypes, CTV-1 and THP-1. While THP-1 cells do not respond to any of these inhibitors, CTV-1 cells are potently inhibited by dasatinib, bosutinib, crizotinib, A-770041, and WH-4-23, all potent inhibitors for Lck, a Src family kinase. CTV-1 cells contain a kinase activity that phosphorylates an Lck-specific peptide substrate in an Lck inhibitor-sensitive manner. Furthermore, the Lck gene is over-expressed in CTV-1, and it contains four mutations, two of which are located in regions critical for Lck negative regulation, and are confirmed to activate Lck. Collectively, these results provide strong evidence that mutated and overexpressed Lck is driving CTV-1 proliferation. While Lck activation and overexpression is rare in AML, this study provides a potential therapeutic strategy for treating patients with a similar oncogenic mechanism.
Collapse
Affiliation(s)
- Li Li
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Yixin Cui
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Jinyan Shen
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Hannah Dobson
- Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA
| | - Gongqin Sun
- Department of Cell Biology and Medical Genetics, School of Basic Medical Science, Shanxi Medical University, Taiyuan, Shanxi, China; Department of Cell and Molecular Biology, University of Rhode Island, Kingston, RI, USA.
| |
Collapse
|
12
|
Cui Y, Sun G. Structural versatility that serves the function of the HRD motif in the catalytic loop of protein tyrosine kinase, Src. Protein Sci 2018; 28:533-542. [PMID: 30461096 DOI: 10.1002/pro.3554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 12/19/2022]
Abstract
Site-directed mutagenesis is a traditional approach for structure-function analysis of protein tyrosine kinases, and it requires the generation, expression, purification, and analysis of each mutant enzyme. In this study, we report a versatile high throughput bacterial screening system that can identify functional kinase mutants by immunological detection of tyrosine phosphorylation. Two key features of this screening system are noteworthy. First, instead of blotting bacterial colonies directly from Agar plates to nitrocellulose membrane, the colonies were cultured in 96-well plates, and then spotted in duplicate onto the membrane with appropriate controls. This made the screening much more reliable compared with direct colony blotting transfer. A second feature is the parallel use of a protein tyrosine phosphatase (PTP)-expressing host and a non-PTP-expressing host. Because high activity Src mutants are toxic to the host, the PTP system allowed the identification of Src mutants with high activity, while the non-PTP system identified Src mutants with low activity. This approach was applied to Src mutant libraries randomized in the highly conserved HRD motif in the catalytic loop, and revealed that structurally diverse residues can replace the His and Arg residues, while the Asp residue is irreplaceable for catalytic activity.
Collapse
Affiliation(s)
- Yixin Cui
- Department of Cell and Molecular Biology, Center for Biotechnology and Life Science, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island, 02881
| | - Gongqin Sun
- Department of Cell and Molecular Biology, Center for Biotechnology and Life Science, University of Rhode Island, 120 Flagg Road, Kingston, Rhode Island, 02881
| |
Collapse
|
13
|
Shah NH, Amacher JF, Nocka LM, Kuriyan J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit Rev Biochem Mol Biol 2018; 53:535-563. [PMID: 30183386 PMCID: PMC6328253 DOI: 10.1080/10409238.2018.1495173] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the "Src module," composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.
Collapse
Affiliation(s)
- Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jeanine F. Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Laura M. Nocka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
14
|
Nakedi KC, Calder B, Banerjee M, Giddey A, Nel AJM, Garnett S, Blackburn JM, Soares NC. Identification of Novel Physiological Substrates of Mycobacterium bovis BCG Protein Kinase G (PknG) by Label-free Quantitative Phosphoproteomics. Mol Cell Proteomics 2018; 17:1365-1377. [PMID: 29549130 PMCID: PMC6030727 DOI: 10.1074/mcp.ra118.000705] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Indexed: 01/09/2023] Open
Abstract
Mycobacterial Ser/Thr kinases play a critical role in bacterial physiology and pathogenesis. Linking kinases to the substrates they phosphorylate in vivo, thereby elucidating their exact functions, is still a challenge. The aim of this work was to associate protein phosphorylation in mycobacteria with important subsequent macro cellular events by identifying the physiological substrates of PknG in Mycobacterium bovis BCG. The study compared the phosphoproteome dynamics during the batch growth of M. bovis BCG versus the respective PknG knock-out mutant (ΔPknG-BCG) strains. We employed TiO2 phosphopeptide enrichment techniques combined with label-free quantitative phosphoproteomics workflow on LC-MS/MS. The comprehensive analysis of label-free data identified 603 phosphopeptides on 307 phosphoproteins with high confidence. Fifty-five phosphopeptides were differentially phosphorylated, of these, 23 phosphopeptides were phosphorylated in M. bovis BCG wild-type only and not in the mutant. These were further validated through targeted mass spectrometry assays (PRMs). Kinase-peptide docking studies based on a published crystal structure of PknG in complex with GarA revealed that the majority of identified phosphosites presented docking scores close to that seen in previously described PknG substrates, GarA, and ribosomal protein L13. Six out of the 22 phosphoproteins had higher docking scores than GarA, consistent with the proteins identified here being true PknG substrates. Based on protein functional analysis of the PknG substrates identified, this study confirms that PknG plays an important regulatory role in mycobacterial metabolism, through phosphorylation of ATP binding proteins and enzymes in the TCA cycle. This work also reinforces PknG's regulation of protein translation and folding machinery.
Collapse
Affiliation(s)
- Kehilwe C Nakedi
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Bridget Calder
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Mousumi Banerjee
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Alexander Giddey
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Andrew J M Nel
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Shaun Garnett
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Jonathan M Blackburn
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa.,§Institute of Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa
| | - Nelson C Soares
- From the ‡Division of Chemical & Systems Biology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, South Africa;
| |
Collapse
|
15
|
Advani G, Lim YC, Catimel B, Lio DSS, Ng NLY, Chüeh AC, Tran M, Anasir MI, Verkade H, Zhu HJ, Turk BE, Smithgall TE, Ang CS, Griffin M, Cheng HC. Csk-homologous kinase (Chk) is an efficient inhibitor of Src-family kinases but a poor catalyst of phosphorylation of their C-terminal regulatory tyrosine. Cell Commun Signal 2017; 15:29. [PMID: 28784162 PMCID: PMC5547543 DOI: 10.1186/s12964-017-0186-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 07/28/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND C-terminal Src kinase (Csk) and Csk-homologous kinase (Chk) are the major endogenous inhibitors of Src-family kinases (SFKs). They employ two mechanisms to inhibit SFKs. First, they phosphorylate the C-terminal tail tyrosine which stabilizes SFKs in a closed inactive conformation by engaging the SH2 domain in cis. Second, they employ a non-catalytic inhibitory mechanism involving direct binding of Csk and Chk to the active forms of SFKs that is independent of phosphorylation of their C-terminal tail. Csk and Chk are co-expressed in many cell types. Contributions of the two mechanisms towards the inhibitory activity of Csk and Chk are not fully clear. Furthermore, the determinants in Csk and Chk governing their inhibition of SFKs by the non-catalytic inhibitory mechanism are yet to be defined. METHODS We determined the contributions of the two mechanisms towards the inhibitory activity of Csk and Chk both in vitro and in transduced colorectal cancer cells. Specifically, we assayed the catalytic activities of Csk and Chk in phosphorylating a specific peptide substrate and a recombinant SFK member Src. We employed surface plasmon resonance spectroscopy to measure the kinetic parameters of binding of Csk, Chk and their mutants to a constitutively active mutant of the SFK member Hck. Finally, we determined the effects of expression of recombinant Chk on anchorage-independent growth and SFK catalytic activity in Chk-deficient colorectal cancer cells. RESULTS Our results revealed Csk as a robust enzyme catalysing phosphorylation of the C-terminal tail tyrosine of SFKs but a weak non-catalytic inhibitor of SFKs. In contrast, Chk is a poor catalyst of SFK tail phosphorylation but binds SFKs with high affinity, enabling it to efficiently inhibit SFKs with the non-catalytic inhibitory mechanism both in vitro and in transduced colorectal cancer cells. Further analyses mapped some of the determinants governing this non-catalytic inhibitory mechanism of Chk to its kinase domain. CONCLUSIONS SFKs are activated by different upstream signals to adopt multiple active conformations in cells. SFKs adopting these conformations can effectively be constrained by the two complementary inhibitory mechanisms of Csk and Chk. Furthermore, the lack of this non-catalytic inhibitory mechanism accounts for SFK overactivation in the Chk-deficient colorectal cancer cells.
Collapse
Affiliation(s)
- Gahana Advani
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
- Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010 Australia
| | - Ya Chee Lim
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Bruno Catimel
- Walter and Eliza Hall Institute for Medical Research and Department of Medical Biology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Daisy Sio Seng Lio
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
- Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010 Australia
| | - Nadia L. Y. Ng
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
- Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010 Australia
| | - Anderly C. Chüeh
- Walter and Eliza Hall Institute for Medical Research and Department of Medical Biology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Mai Tran
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Mohd Ishtiaq Anasir
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Heather Verkade
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
| | - Hong-Jian Zhu
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3052 Australia
| | - Benjamin E. Turk
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT USA
| | - Thomas E. Smithgall
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Ching-Seng Ang
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Michael Griffin
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
| | - Heung-Chin Cheng
- Department of Biochemistry & Molecular Biology, University of Melbourne, Parkville, VIC 3010 Australia
- Bio21 Biotechnology and Molecular Science Institute, University of Melbourne, Parkville, VIC 3010 Australia
- Cell Signalling Research Laboratories, School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010 Australia
| |
Collapse
|
16
|
Cunningham AD, Qvit N, Mochly-Rosen D. Peptides and peptidomimetics as regulators of protein-protein interactions. Curr Opin Struct Biol 2017; 44:59-66. [PMID: 28063303 PMCID: PMC5496809 DOI: 10.1016/j.sbi.2016.12.009] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 12/03/2016] [Accepted: 12/16/2016] [Indexed: 01/16/2023]
Abstract
Protein-protein interactions are essential for almost all intracellular and extracellular biological processes. Regulation of protein-protein interactions is one strategy to regulate cell fate in a highly selective manner. Specifically, peptides are ideal candidates for inhibition of protein-protein interactions because they can mimic a protein surface to effectively compete for binding. Additionally, peptides are synthetically accessible and can be stabilized by chemical modifications. In this review, we survey screening and rational design methods for identifying peptides to inhibit protein-protein interactions, as well as methods for stabilizing peptides to effectively mimic protein surfaces. In addition, we discuss recent applications of peptides to regulate protein-protein interactions for both basic research and therapeutic purposes.
Collapse
Affiliation(s)
- Anna D Cunningham
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305-5174, USA
| | - Nir Qvit
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305-5174, USA.
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford, CA 94305-5174, USA.
| |
Collapse
|
17
|
Xing WR, Goodluck H, Zeng C, Mohan S. Role and mechanism of action of leucine-rich repeat kinase 1 in bone. Bone Res 2017; 5:17003. [PMID: 28326224 PMCID: PMC5348726 DOI: 10.1038/boneres.2017.3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 12/13/2022] Open
Abstract
Leucine-rich repeat kinase 1 (LRRK1) plays a critical role in regulating cytoskeletal organization, osteoclast activity, and bone resorption with little effect on bone formation parameters. Deficiency of Lrrk1 in mice causes a severe osteopetrosis in the metaphysis of the long bones and vertebrae bones, which makes LRRK1 an attractive alternative drug target for the treatment of osteoporosis and other high-turnover bone diseases. This review summarizes recent advances on the functions of the Lrrk1-related family members, Lrrk1 deficiency-induced skeletal phenotypes, LRRK1 structure–function, potential biological substrates and interacting proteins, and the mechanisms of LRRK1 action in osteoclasts.
Collapse
Affiliation(s)
- Weirong R Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA; Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Helen Goodluck
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center , Loma Linda, CA, USA
| | - Canjun Zeng
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA; Department of Orthopedics, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Subburaman Mohan
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA; Department of Medicine, Loma Linda University, Loma Linda, CA, USA
| |
Collapse
|
18
|
Tiwari RK, Brown A, Sadeghiani N, Shirazi AN, Bolton J, Tse A, Verkhivker G, Parang K, Sun G. Design, Synthesis, and Evaluation of Dasatinib-Amino Acid and Dasatinib-Fatty Acid Conjugates as Protein Tyrosine Kinase Inhibitors. ChemMedChem 2017; 12:86-99. [PMID: 27875633 PMCID: PMC5224969 DOI: 10.1002/cmdc.201600387] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/20/2016] [Indexed: 12/12/2022]
Abstract
Derivatives of the tyrosine kinase inhibitor dasatinib were synthesized by esterification with 25 carboxylic acids, including amino acids and fatty acids, thereby extending the drug to interact with more diverse sites and to improve specificity. The dasatinib-l-arginine derivative (Das-R, 7) was found to be the most potent of the inhibitors tested, with IC50 values of 4.4, <0.25, and <0.45 nm against Csk, Src, and Abl kinases, respectively. The highest selectivity ratio obtained in our study, 91.4 Csk/Src, belonged to compound 18 (Das-C10 ) with an IC50 value of 3.2 μm for Csk compared with 35 nm for Src. Furthermore, many compounds displayed increased selectivity toward Src over Abl. Compounds 15 (Das-glutamic acid) and 13 (Das-cysteine) demonstrated the largest gains (10.2 and 10.3 Abl/Src IC50 ratios). Das-R (IC50 =2.06 μm) was significantly more potent than the parent dasatinib (IC50 =26.3 μm) against Panc-1 cells, whereas both compounds showed IC50 <51.2 pm against BV-173 and K562 cells. Molecular modeling and binding free energy simulations revealed good agreements with the experimental results and rationalized the differences in selectivity among the studied compounds. Integration of experimental and computational approaches in the design and biochemical screening of dasatinib derivatives facilitated rational engineering and diversification of the dasatinib scaffold, providing useful insight into mechanisms of kinase selectivity.
Collapse
Affiliation(s)
- Rakesh K Tiwari
- Center For Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Alex Brown
- Department of Cell & Molecular Biology, University of Rhode Island, 389 CBLS Building, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Neda Sadeghiani
- Center For Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Amir Nasrolahi Shirazi
- Center For Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Jared Bolton
- Department of Cell & Molecular Biology, University of Rhode Island, 389 CBLS Building, 120 Flagg Road, Kingston, RI, 02881, USA
| | - Amanda Tse
- Schmid College of Science and Technology Physics, Computational Science and Engineering, Chapman University, Orange, CA, 92866, USA
| | - Gennady Verkhivker
- Schmid College of Science and Technology Physics, Computational Science and Engineering, Chapman University, Orange, CA, 92866, USA
| | - Keykavous Parang
- Center For Targeted Drug Delivery, Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, 9401 Jeronimo Road, Irvine, CA, 92618, USA
| | - Gongqin Sun
- Department of Cell & Molecular Biology, University of Rhode Island, 389 CBLS Building, 120 Flagg Road, Kingston, RI, 02881, USA
| |
Collapse
|
19
|
Qvit N, Disatnik MH, Sho J, Mochly-Rosen D. Selective Phosphorylation Inhibitor of Delta Protein Kinase C-Pyruvate Dehydrogenase Kinase Protein-Protein Interactions: Application for Myocardial Injury in Vivo. J Am Chem Soc 2016; 138:7626-35. [PMID: 27218445 PMCID: PMC5065007 DOI: 10.1021/jacs.6b02724] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Protein kinases regulate numerous cellular processes, including cell growth, metabolism, and cell death. Because the primary sequence and the three-dimensional structure of many kinases are highly similar, the development of selective inhibitors for only one kinase is challenging. Furthermore, many protein kinases are pleiotropic, mediating diverse and sometimes even opposing functions by phosphorylating multiple protein substrates. Here, we set out to develop an inhibitor of a selective protein kinase phosphorylation of only one of its substrates. Focusing on the pleiotropic delta protein kinase C (δPKC), we used a rational approach to identify a distal docking site on δPKC for its substrate, pyruvate dehydrogenase kinase (PDK). We reasoned that an inhibitor of PDK's docking should selectively inhibit the phosphorylation of only PDK without affecting phosphorylation of the other δPKC substrates. Our approach identified a selective inhibitor of PDK docking to δPKC with an in vitro Kd of ∼50 nM and reducing cardiac injury IC50 of ∼5 nM. This inhibitor, which did not affect the phosphorylation of other δPKC substrates even at 1 μM, demonstrated that PDK phosphorylation alone is critical for δPKC-mediated injury by heart attack. The approach we describe is likely applicable for the identification of other substrate-specific kinase inhibitors.
Collapse
Affiliation(s)
- Nir Qvit
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| | - Marie-Hélène Disatnik
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| | - Jie Sho
- Kunming Biomed International Chenggong, Kunming, P.R. China
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University, School of Medicine, Stanford CA 94305-5174 USA
| |
Collapse
|
20
|
Qvit N, Joshi AU, Cunningham AD, Ferreira JCB, Mochly-Rosen D. Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) Protein-Protein Interaction Inhibitor Reveals a Non-catalytic Role for GAPDH Oligomerization in Cell Death. J Biol Chem 2016; 291:13608-21. [PMID: 27129213 DOI: 10.1074/jbc.m115.711630] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 12/16/2022] Open
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an important glycolytic enzyme, has a non-catalytic (thus a non-canonical) role in inducing mitochondrial elimination under oxidative stress. We recently demonstrated that phosphorylation of GAPDH by δ protein kinase C (δPKC) inhibits this GAPDH-dependent mitochondrial elimination. δPKC phosphorylation of GAPDH correlates with increased cell injury following oxidative stress, suggesting that inhibiting GAPDH phosphorylation should decrease cell injury. Using rational design, we identified pseudo-GAPDH (ψGAPDH) peptide, an inhibitor of δPKC-mediated GAPDH phosphorylation that does not inhibit the phosphorylation of other δPKC substrates. Unexpectedly, ψGAPDH decreased mitochondrial elimination and increased cardiac damage in an animal model of heart attack. Either treatment with ψGAPDH or direct phosphorylation of GAPDH by δPKC decreased GAPDH tetramerization, which corresponded to reduced GAPDH glycolytic activity in vitro and ex vivo Taken together, our study identified the potential mechanism by which oxidative stress inhibits the protective GAPDH-mediated elimination of damaged mitochondria. Our study also identified a pharmacological tool, ψGAPDH peptide, with interesting properties. ψGAPDH peptide is an inhibitor of the interaction between δPKC and GAPDH and of the resulting phosphorylation of GAPDH by δPKC. ψGAPDH peptide is also an inhibitor of GAPDH oligomerization and thus an inhibitor of GAPDH glycolytic activity. Finally, we found that ψGAPDH peptide is an inhibitor of the elimination of damaged mitochondria. We discuss how this unique property of increasing cell damage following oxidative stress suggests a potential use for ψGAPDH peptide-based therapy.
Collapse
Affiliation(s)
- Nir Qvit
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| | - Amit U Joshi
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| | - Anna D Cunningham
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| | - Julio C B Ferreira
- the Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Daria Mochly-Rosen
- From the Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305-5174 and
| |
Collapse
|
21
|
de Oliveira PSL, Ferraz FAN, Pena DA, Pramio DT, Morais FA, Schechtman D. Revisiting protein kinase-substrate interactions: Toward therapeutic development. Sci Signal 2016; 9:re3. [PMID: 27016527 DOI: 10.1126/scisignal.aad4016] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Despite the efforts of pharmaceutical companies to develop specific kinase modulators, few drugs targeting kinases have been completely successful in the clinic. This is primarily due to the conserved nature of kinases, especially in the catalytic domains. Consequently, many currently available inhibitors lack sufficient selectivity for effective clinical application. Kinases phosphorylate their substrates to modulate their activity. One of the important steps in the catalytic reaction of protein phosphorylation is the correct positioning of the target residue within the catalytic site. This positioning is mediated by several regions in the substrate binding site, which is typically a shallow crevice that has critical subpockets that anchor and orient the substrate. The structural characterization of this protein-protein interaction can aid in the elucidation of the roles of distinct kinases in different cellular processes, the identification of substrates, and the development of specific inhibitors. Because the region of the substrate that is recognized by the kinase can be part of a linear consensus motif or a nonlinear motif, advances in technology beyond simple linear sequence scanning for consensus motifs were needed. Cost-effective bioinformatics tools are already frequently used to predict kinase-substrate interactions for linear consensus motifs, and new tools based on the structural data of these interactions improve the accuracy of these predictions and enable the identification of phosphorylation sites within nonlinear motifs. In this Review, we revisit kinase-substrate interactions and discuss the various approaches that can be used to identify them and analyze their binding structures for targeted drug development.
Collapse
Affiliation(s)
- Paulo Sérgio L de Oliveira
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Felipe Augusto N Ferraz
- Laboratório Nacional de Biociências, Centro Nacional de Pesquisa em Energia e Materiais, Campinas 13083-970, Brazil
| | - Darlene A Pena
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Dimitrius T Pramio
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Felipe A Morais
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil
| | - Deborah Schechtman
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508000, Brazil.
| |
Collapse
|
22
|
Faggi E, Pérez Y, Luis SV, Alfonso I. Supramolecular protection from the enzymatic tyrosine phosphorylation in a polypeptide. Chem Commun (Camb) 2016; 52:8142-5. [DOI: 10.1039/c6cc03875a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Two pseudopeptidic cages bind the EYE peptide motif of poly(EY) in buffered water, as shown by NMR and fluorescence spectroscopy. This supramolecular interaction protects the Tyr residues from the enzymatic phosphorylation by PTK.
Collapse
Affiliation(s)
- Enrico Faggi
- Department of Biological Chemistry and Molecular Modelling
- IQAC-CSIC
- Barcelona
- Spain
| | | | - Santiago V. Luis
- Department of Inorganic and Organic Chemistry
- ESTCE Universitat Jaume I
- Castellón
- Spain
| | - Ignacio Alfonso
- Department of Biological Chemistry and Molecular Modelling
- IQAC-CSIC
- Barcelona
- Spain
| |
Collapse
|
23
|
Theoretical Insights Reveal Novel Motions in Csk's SH3 Domain That Control Kinase Activation. PLoS One 2015; 10:e0127724. [PMID: 26030592 PMCID: PMC4452171 DOI: 10.1371/journal.pone.0127724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 04/20/2015] [Indexed: 11/19/2022] Open
Abstract
The Src family of tyrosine kinases (SFKs) regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk). Although Csk and SFKs share conserved kinase, SH2 and SH3 domains, they differ considerably in three-dimensional structure, regulatory mechanism, and the intrinsic kinase activities. Although the SH2 and SH3 domains are known to up- or down-regulate tyrosine kinase function, little is known about the global motions in the full-length kinase that govern these catalytic variations. We use a combination of accelerated Molecular Dynamics (aMD) simulations and experimental methods to provide a new view of functional motions in the Csk scaffold. These computational studies suggest that high frequency vibrations in the SH2 domain are coupled through the N-terminal lobe of the kinase domain to motions in the SH3 domain. The effects of these reflexive movements on the kinase domain can be viewed using both Deuterium Exchange Mass Spectrometry (DXMS) and steady-state kinetic methods. Removal of several contacts, including a crystallographically unobserved N-terminal segment, between the SH3 and kinase domains short-circuit these coupled motions leading to reduced catalytic efficiency and stability of N-lobe motifs within the kinase domain. The data expands the model of Csk's activation whereby separate domains productively interact with two diametrically opposed surfaces of the kinase domain. Such reversible transitions may organize the active structure of the tyrosine kinase domain of Csk.
Collapse
|
24
|
Mohanta TK, Arora PK, Mohanta N, Parida P, Bae H. Identification of new members of the MAPK gene family in plants shows diverse conserved domains and novel activation loop variants. BMC Genomics 2015; 16:58. [PMID: 25888265 PMCID: PMC4363184 DOI: 10.1186/s12864-015-1244-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 01/15/2015] [Indexed: 11/30/2022] Open
Abstract
Background Mitogen Activated Protein Kinase (MAPK) signaling is of critical importance in plants and other eukaryotic organisms. The MAPK cascade plays an indispensible role in the growth and development of plants, as well as in biotic and abiotic stress responses. The MAPKs are constitute the most downstream module of the three tier MAPK cascade and are phosphorylated by upstream MAP kinase kinases (MAPKK), which are in turn are phosphorylated by MAP kinase kinase kinase (MAPKKK). The MAPKs play pivotal roles in regulation of many cytoplasmic and nuclear substrates, thus regulating several biological processes. Results A total of 589 MAPKs genes were identified from the genome wide analysis of 40 species. The sequence analysis has revealed the presence of several N- and C-terminal conserved domains. The MAPKs were previously believed to be characterized by the presence of TEY/TDY activation loop motifs. The present study showed that, in addition to presence of activation loop TEY/TDY motifs, MAPKs are also contain MEY, TEM, TQM, TRM, TVY, TSY, TEC and TQY activation loop motifs. Phylogenetic analysis of all predicted MAPKs were clustered into six different groups (group A, B, C, D, E and F), and all predicted MAPKs were assigned with specific names based on their orthology based evolutionary relationships with Arabidopsis or Oryza MAPKs. Conclusion We conducted global analysis of the MAPK gene family of plants from lower eukaryotes to higher eukaryotes and analyzed their genomic and evolutionary aspects. Our study showed the presence of several new activation loop motifs and diverse conserved domains in MAPKs. Advance study of newly identified activation loop motifs can provide further information regarding the downstream signaling cascade activated in response to a wide array of stress conditions, as well as plant growth and development. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1244-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tapan Kumar Mohanta
- School of Biotechnology, Yeungnam University, Daehak Gyeongsan, Gyeonsangbook, 712749, Republic of Korea.
| | - Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Daehak Gyeongsan, Gyeonsangbook, 712749, Republic of Korea.
| | - Nibedita Mohanta
- Department of Biotechnology, North Orissa University, Sri Ramchandra Vihar, Takatpur, Baripada, Mayurbhanj, Orissa, 757003, India.
| | - Pratap Parida
- Center for Studies in Biotechnology, Dibrugarh University, Dibrugarh, Assam, 786004, India.
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Daehak Gyeongsan, Gyeonsangbook, 712749, Republic of Korea.
| |
Collapse
|
25
|
Slomiany BL, Slomiany A. Modulation of gastric mucosal inflammatory responses to Helicobacter pylori via ghrelin-induced protein kinase Cδ tyrosine phosphorylation. Inflammopharmacology 2014; 22:251-62. [PMID: 24840386 DOI: 10.1007/s10787-014-0206-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 04/29/2014] [Indexed: 12/13/2022]
Abstract
A peptide hormone, ghrelin, plays a key role in modulation of gastric mucosal inflammatory responses to Helicobacter pylori by controlling the activation of constitutive nitric oxide synthase via Src/Akt-dependent phosphorylation that requires phosphatidylinositol 3-kinase (PI3K) participation. Here, we examined the relationship among PI3K; its upstream effector, protein kinase C (PKC); and cSrc. We show that stimulation of gastric mucosal cells with H. pylori LPS leads to the activation and membrane translocation of Ser-phosphorylated PKCδ, while the effect of ghrelin is reflected in the phosphorylation of membrane-associated PKCδ on Tyr. Further, we demonstrate that in response to the LPS-induced PKCδ activation both PI3K and Src show a marked increase in their Ser phosphorylation, while the effect of ghrelin is manifested in the phosphorylation of PI3K and cSrc at Tyr. Moreover, whereas Tyr phosphorylation of PKCδ exhibited susceptibility to cSrc inhibitor (PP2), the inhibitor of PKC (GF109203X) but not that of cSrc (PP2) blocked the Tyr phosphorylation of PI3K, while ghrelin-induced cSrc phosphorylation at Tyr was subject to inhibition by the inhibitors of PKC and PI3K. Thus, our findings stipulate the prerequisite of PKCδ in the activation of PI3K as well as cSrc, and imply that PI3K activation provides an essential platform for ghrelin-induced cSrc activation through autophosphorylation at Tyr(416). We also reveal that ghrelin-elicited up-regulation in PKCδ activation by Tyr phosphorylation shows dependence on cSrc activity.
Collapse
Affiliation(s)
- B L Slomiany
- Research Center, C875, Rutgers School of Dental Medicine, Rutgers, The State University of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ, 07103-2400, USA,
| | | |
Collapse
|
26
|
Schultheiss KP, Craddock BP, Suga H, Miller WT. Regulation of Src and Csk nonreceptor tyrosine kinases in the filasterean Ministeria vibrans. Biochemistry 2014; 53:1320-9. [PMID: 24520931 PMCID: PMC4033911 DOI: 10.1021/bi4016499] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The development of the phosphotyrosine-based signaling system predated the evolution of multicellular animals. Single-celled choanoflagellates, the closest living relatives to metazoans, possess numerous tyrosine kinases, including Src family nonreceptor tyrosine kinases. Choanoflagellates also have Csk (C-terminal Src kinase), the enzyme that regulates Src in metazoans; however, choanoflagellate Csk kinases fail to repress the cognate Src. Here, we have cloned and characterized Src and Csk kinases from Ministeria vibrans, a filasterean (the sister group to metazoans and choanoflagellates). The two Src kinases (MvSrc1 and MvSrc2) are enzymatically active Src kinases, although they have low activity toward mammalian cellular proteins. Unexpectedly, MvSrc2 has significant Ser/Thr kinase activity. The Csk homologue (MvCsk) is enzymatically inactive and fails to repress MvSrc activity. We suggest that the low activity of MvCsk is due to sequences in the SH2-kinase interface, and we show that a point mutation in this region partially restores MvCsk activity. The inactivity of filasterean Csk kinases is consistent with a model in which the stringent regulation of Src family kinases arose more recently in evolution, after the split between choanoflagellates and multicellular animals.
Collapse
Affiliation(s)
- Kira P Schultheiss
- Department of Physiology and Biophysics, Stony Brook University , Stony Brook, New York 11794, United States
| | | | | | | |
Collapse
|
27
|
PKC ε Phosphorylates and Mediates the Cell Membrane Localization of RhoA. ISRN ONCOLOGY 2013; 2013:329063. [PMID: 24191200 PMCID: PMC3804392 DOI: 10.1155/2013/329063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 08/18/2013] [Indexed: 11/17/2022]
Abstract
Protein kinase Cε (PKCε) signals through RhoA to modulate cell invasion and motility. In this study, the multifaceted interaction between PKCε and RhoA was defined. Phosphopeptide mapping revealed that PKCε phosphorylates RhoA at T127 and S188. Recombinant PKCε bound to recombinant RhoA in the absence of ATP indicating that the association between PKCε and RhoA does not require an active ATP-docked PKCε conformation. Activation of PKCε resulted in a dramatic coordinated translocation of PKCε and RhoA from the cytoplasm to the cell membrane using time-lapse fluorescence microscopy. Stoichiometric FRET analysis revealed that the molecular interaction between PKCε and RhoA is a biphasic event, an initial peak at the cytoplasm and a gradual prolonged increase at the cell membrane for the entire time-course (12.5 minutes). These results suggest that the PKCε-RhoA complex is assembled in the cytoplasm and subsequently recruited to the cell membrane. Kinase inactive (K437R) PKCε is able to recruit RhoA to the cell membrane indicating that the association between PKCε and RhoA is proximal to the active catalytic site and perhaps independent of a PKCε-RhoA phosphorylation event. This work demonstrates, for the first time, that PKCε phosphorylates and modulates the cell membrane translocation of RhoA.
Collapse
|
28
|
Role of ghrelin-induced phosphatidylinositol 3-kinase activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori. Inflammopharmacology 2013; 22:169-77. [PMID: 24057979 DOI: 10.1007/s10787-013-0190-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/10/2013] [Indexed: 12/14/2022]
Abstract
A peptide hormone, ghrelin, is recognized as an important modulator of gastric mucosal inflammatory responses to Helicobacter pylori through the regulation of Src/Akt-dependent activation of constitutive nitric oxide synthase (cNOS) by phosphorylation. In this study, we report on the role of phosphatidylinositol 3-kinase (PI3K) in the processes of Src/Akt activation in gastric mucosal cells exposed to H. pylori LPS. We demonstrate that cNOS activation through phosphorylation induced by ghrelin is associated with PI3K activation which occurs upstream of cSrc, and that PI3K is required for cSrc activation of Akt. We show further that ghrelin-induced activation of PI3K, as well as that of Src and Akt, was susceptible to suppression by the inhibitors of phospholipase C (U73122) and protein kinase C (BIM). Both these inhibitors also blocked the ghrelin-induced membrane translocation of PI3K and cSrc, whereas the inhibitor of PI3K (LY294002) blocked only the membrane translocation of cSrc. Collectively, our findings suggest that the modulatory influence of ghrelin in countering gastric mucosal responses to H. pylori LPS relies on PI3K activation that depends on PLC/PKC signaling pathway, and that PI3K activity is required for the induction of cSrc/Akt activation.
Collapse
|
29
|
Barkho S, Pierce LCT, McGlone ML, Li S, Woods VL, Walker RC, Adams JA, Jennings PA. Distal loop flexibility of a regulatory domain modulates dynamics and activity of C-terminal SRC kinase (csk). PLoS Comput Biol 2013; 9:e1003188. [PMID: 24039559 PMCID: PMC3764022 DOI: 10.1371/journal.pcbi.1003188] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/08/2013] [Indexed: 12/21/2022] Open
Abstract
The Src family of tyrosine kinases (SFKs) regulate numerous aspects of cell growth and differentiation and are under the principal control of the C-terminal Src Kinase (Csk). Csk and SFKs share a modular design with the kinase domain downstream of the N-terminal SH2 and SH3 domains that regulate catalytic function and membrane localization. While the function of interfacial segments in these multidomain kinases are well-investigated, little is known about how surface sites and long-range, allosteric coupling control protein dynamics and catalytic function. The SH2 domain of Csk is an essential component for the down-regulation of all SFKs. A unique feature of the SH2 domain of Csk is the tight turn in place of the canonical CD loop in a surface site far removed from kinase domain interactions. In this study, we used a combination of experimental and computational methods to probe the importance of this difference by constructing a Csk variant with a longer SH2 CD loop to mimic the flexibility found in homologous kinase SH2 domains. Our results indicate that while the fold and function of the isolated domain and the full-length kinase are not affected by loop elongation, native protein dynamics that are essential for efficient catalysis are perturbed. We also identify key motifs and routes through which the distal SH2 site might influence catalysis at the active site. This study underscores the sensitivity of intramolecular signaling and catalysis to native protein dynamics that arise from modest changes in allosteric regions while providing a potential strategy to alter intrinsic activity and signaling modulation.
Collapse
Affiliation(s)
- Sulyman Barkho
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - Levi C. T. Pierce
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - Maria L. McGlone
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
| | - Sheng Li
- Department of Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Virgil L. Woods
- Department of Medicine, University of California at San Diego, La Jolla, California, United States of America
| | - Ross C. Walker
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
- San Diego Supercomputer Center, University of California at San Diego, La Jolla, California, United States of America
| | - Joseph A. Adams
- Department of Pharmacology, University of California at San Diego, La Jolla, California, United States of America
| | - Patricia A. Jennings
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Xing W, Liu J, Cheng S, Vogel P, Mohan S, Brommage R. Targeted disruption of leucine-rich repeat kinase 1 but not leucine-rich repeat kinase 2 in mice causes severe osteopetrosis. J Bone Miner Res 2013; 28:1962-74. [PMID: 23526378 PMCID: PMC9528686 DOI: 10.1002/jbmr.1935] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/22/2013] [Accepted: 03/11/2013] [Indexed: 01/01/2023]
Abstract
To assess the roles of Lrrk1 and Lrrk2, we examined skeletal phenotypes in Lrrk1 and Lrrk2 knockout (KO) mice. Lrrk1 KO mice exhibit severe osteopetrosis caused by dysfunction of multinucleated osteoclasts, reduced bone resorption in endocortical and trabecular regions, and increased bone mineralization. Lrrk1 KO mice have lifelong accumulation of bone and respond normally to the anabolic actions of teriparatide treatment, but are resistant to ovariectomy-induced bone boss. Precursors derived from Lrrk1 KO mice differentiate into multinucleated cells in response to macrophage colony-stimulating factor (M-CSF)/receptor activator of NF-κB ligand (RANKL) treatment, but these cells fail to form peripheral sealing zones and ruffled borders, and fail to resorb bone. The phosphorylation of cellular Rous sarcoma oncogene (c-Src) at Tyr-527 is significantly elevated whereas at Tyr-416 is decreased in Lrrk1-deficient osteoclasts. The defective osteoclast function is partially rescued by overexpression of the constitutively active form of Y527F c-Src. Immunoprecipitation assays in osteoclasts detected a physical interaction of Lrrk1 with C-terminal Src kinase (Csk). Lrrk2 KO mice do not show obvious bone phenotypes. Precursors derived from Lrrk2 KO mice differentiate into functional multinucleated osteoclasts. Our finding of osteopetrosis in Lrrk1 KO mice provides convincing evidence that Lrrk1 plays a critical role in negative regulation of bone mass in part through modulating the c-Src signaling pathway in mice.
Collapse
Affiliation(s)
- Weirong Xing
- Musculoskeletal Disease Center, Jerry L. Pettis Memorial VA Medical Center, Loma Linda, CA, USA
| | | | | | | | | | | |
Collapse
|
31
|
Trinh TB, Xiao Q, Pei D. Profiling the substrate specificity of protein kinases by on-bead screening of peptide libraries. Biochemistry 2013; 52:5645-55. [PMID: 23848432 DOI: 10.1021/bi4008947] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A robust, high-throughput method has been developed to screen one-bead-one-compound peptide libraries to systematically profile the sequence specificity of protein kinases. Its ability to provide individual sequences of the preferred substrates permits the identification of sequence contextual effects and nonpermissive residues. Application of the library method to kinases Pim1, MKK6, and Csk revealed that Pim1 and Csk are highly active toward peptide substrates and recognize specific sequence motifs, whereas MKK6 has little activity or sequence selectivity against peptide substrates. Pim1 recognizes peptide substrates of the consensus RXR(H/R)X(S/T); it accepts essentially any amino acid at the S/T-2 and S/T+1 positions, but strongly disfavors acidic residues (Asp or Glu) at the S/T-2 position and a proline residue at the S/T+1 position. The selected Csk substrates show strong sequence covariance and fall into two classes with the consensus sequences of (D/E)EPIYϕXϕ and (D/E)(E/D)S(E/D/I)YϕXϕ (where X is any amino acid and ϕ is a hydrophobic amino acid). Database searches and in vitro kinase assays identified phosphatase PTP-PEST as a Pim1 substrate and phosphatase SHP-1 as a potential Csk substrate. Our results demonstrate that the sequence specificity of protein kinases is defined not only by favorable interactions between permissive residue(s) on the substrate and their cognate binding site(s) on the kinase but also by repulsive interactions between the kinase and nonpermissive residue(s).
Collapse
Affiliation(s)
- Thi B Trinh
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | | | | |
Collapse
|
32
|
Xie Q, Joseph RE, Fulton DB, Andreotti AH. Substrate recognition of PLCγ1 via a specific docking surface on Itk. J Mol Biol 2012; 425:683-96. [PMID: 23219468 DOI: 10.1016/j.jmb.2012.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/29/2012] [Accepted: 10/31/2012] [Indexed: 12/15/2022]
Abstract
Itk (interleukin-2 inducible T cell kinase) is a non-receptor protein tyrosine kinase expressed primarily in T cells. Itk catalyzes phosphorylation on tyrosine residues within a number of its natural substrates, including the well-characterized Y783 of PLCγ1. However, the molecular mechanisms Itk exploits to recognize its substrates are not completely understood. We have previously identified a specific docking interaction between the kinase domain of Itk and the C-terminal Src homology 2 (SH2C) domain of PLCγ1 that promotes substrate specificity for this enzyme/substrate pair. In the current study, we identify and map the interaction surface on the Itk kinase domain as an acidic patch centered on the G helix. Mutation of the residues on and adjacent to the G helix within the Itk kinase domain impairs the catalytic efficacy of PLCγ1 substrate phosphorylation by specifically altering the protein-protein interaction interface and not the inherent catalytic activity of Itk. NMR titration experiments using a Btk (Bruton's tyrosine kinase) kinase domain as a surrogate for the Itk kinase domain provide further support for an Itk/PLCγ1 SH2C interaction surrounding the G helix of the kinase domain. The work presented here provides structural insight into how the Itk kinase uses the G helix to single out Y783 of PLCγ1 for specific phosphorylation. Comparing these results to other well-characterized kinase/substrate systems suggests that the G helix is a general structural feature used by kinases for substrate recognition during signaling.
Collapse
Affiliation(s)
- Qian Xie
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | |
Collapse
|
33
|
Okada M. Regulation of the SRC family kinases by Csk. Int J Biol Sci 2012; 8:1385-97. [PMID: 23139636 PMCID: PMC3492796 DOI: 10.7150/ijbs.5141] [Citation(s) in RCA: 226] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 10/01/2012] [Indexed: 11/22/2022] Open
Abstract
The non-receptor tyrosine kinase Csk serves as an indispensable negative regulator of the Src family tyrosine kinases (SFKs) by specifically phosphorylating the negative regulatory site of SFKs, thereby suppressing their oncogenic potential. Csk is primarily regulated through its SH2 domain, which is required for membrane translocation of Csk via binding to scaffold proteins such as Cbp/PAG1. The binding of scaffolds to the SH2 domain can also upregulate Csk kinase activity. These regulatory features have been elucidated by analyses of Csk structure at the atomic levels. Although Csk itself may not be mutated in human cancers, perturbation of the regulatory system consisting of Csk, Cbp/PAG1, or other scaffolds, and certain tyrosine phosphatases may explain the upregulation of SFKs frequently observed in human cancers. This review focuses on the molecular bases for the function, structure, and regulation of Csk as a unique regulatory tyrosine kinase for SFKs.
Collapse
Affiliation(s)
- Masato Okada
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, Yamada-oka, Suita, Osaka, JAPAN.
| |
Collapse
|
34
|
Schultheiss KP, Suga H, Ruiz-Trillo I, Miller WT. Lack of Csk-mediated negative regulation in a unicellular SRC kinase. Biochemistry 2012; 51:8267-77. [PMID: 22998693 DOI: 10.1021/bi300965h] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Phosphotyrosine-based signaling plays a vital role in cellular communication in multicellular organisms. Unexpectedly, unicellular choanoflagellates (the closest phylogenetic group to metazoans) possess numbers of tyrosine kinases that are comparable to those in complex metazoans. Here, we have characterized tyrosine kinases from the filasterean Capsaspora owczarzaki, a unicellular protist representing the sister group to choanoflagellates and metazoans. Two Src-like tyrosine kinases have been identified in C. owczarzaki (CoSrc1 and CoSrc2), both of which have the arrangement of SH3, SH2, and catalytic domains seen in mammalian Src kinases. In Capsaspora cells, CoSrc1 and CoSrc2 localize to punctate structures in filopodia that may represent primordial focal adhesions. We have cloned, expressed, and purified both enzymes. CoSrc1 and CoSrc2 are active tyrosine kinases. Mammalian Src kinases are normally regulated in a reciprocal fashion by autophosphorylation in the activation loop (which increases activity) and by Csk-mediated phosphorylation of the C-terminal tail (which inhibits activity). Similar to mammalian Src kinases, the enzymatic activities of CoSrc1 and CoSrc2 are increased by autophosphorylation in the activation loop. We have identified a Csk-like kinase (CoCsk) in the genome of C. owczarzaki. We cloned, expressed, and purified CoCsk and found that it has no measurable tyrosine kinase activity. Furthermore, CoCsk does not phosphorylate or regulate CoSrc1 or CoSrc2 in cells or in vitro, and CoSrc1 and CoSrc2 are active in Capsaspora cell lysates. Thus, the function of Csk as a negative regulator of Src family kinases appears to have arisen with the emergence of metazoans.
Collapse
Affiliation(s)
- Kira P Schultheiss
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
35
|
Slomiany BL, Slomiany A. Role of ghrelin-induced cSrc activation in modulation of gastric mucosal inflammatory responses to Helicobacter pylori. Inflammopharmacology 2011; 19:197-204. [PMID: 21516493 DOI: 10.1007/s10787-011-0083-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Accepted: 04/06/2011] [Indexed: 01/01/2023]
Abstract
A peptide hormone, ghrelin, is recognized as an important modulator of gastric mucosal inflammatory responses to H. pylori through the regulation of nitric oxide synthase (NOS) system. As cSrc kinase plays a major role in transduction of signals that regulate the activity of NOS isozyme system, we investigated the influence of H. pylori LPS on the processes associated with Src activation in gastric mucosal cells. The LPS-induced drop in constitutive (c) cNOS activity and up-regulation in inducible (i) iNOS was associated with the suppression in cSrc kinase activity that was reflected in a decrease in its phosphorylation at Tyr⁴¹⁶. Further, the countering effect of ghrelin on the LPS-induced changes in cSrc activity and the extent of its phosphorylation was accompanied by a marked reduction in the activity of iNOS and an increase in cNOS activation through phosphorylation at Ser¹¹⁷⁹. Moreover, the effect of ghrelin on cSrc activation and its Tyr⁴¹⁶ phosphorylation was associated with the kinase S-nitrosylation that was susceptible to the blockage by cNOS inhibition. Our findings suggest that up-regulation in iNOS with H. pylori infection leads to disturbances in cNOS phosphorylation that exerts the detrimental effect on the processes of cSrc activation through cNOS-mediated S-nitrosylation. We also show that ghrelin attenuation of H. pylori-induced gastric mucosal inflammatory responses involves the enhancement in cSrc activation, elicited by the kinase S-nitrosylation and the increase in its phosphorylation at Tyr⁴¹⁶.
Collapse
Affiliation(s)
- B L Slomiany
- UMDNJ-NJ Dental School, Research Center C875, University of Medicine and Dentistry of New Jersey, 110 Bergen Street, PO Box 1709, Newark, NJ 07103-2400, USA.
| | | |
Collapse
|
36
|
Ia KK, Mills RD, Hossain MI, Chan KC, Jarasrassamee B, Jorissen RN, Cheng HC. Structural elements and allosteric mechanisms governing regulation and catalysis of CSK-family kinases and their inhibition of Src-family kinases. Growth Factors 2010; 28:329-50. [PMID: 20476842 DOI: 10.3109/08977194.2010.484424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) are endogenous inhibitors constraining the activity of the oncogenic Src-family kinases (SFKs) in cells. Both kinases suppress SFKs by selectively phosphorylating their consensus C-terminal regulatory tyrosine. In addition to phosphorylation, CHK can suppress SFKs by a unique non-catalytic inhibitory mechanism that involves tight binding of CHK to SFKs to form stable complexes. In this review, we discuss how allosteric regulators, phosphorylation, and inter-domain interactions interplay to govern the activity of CSK and CHK and their ability to inhibit SFKs. In particular, based upon the published results of structural and biochemical analysis of CSK and CHK, we attempt to chart the allosteric networks in CSK and CHK that govern their catalysis and ability to inhibit SFKs. We also discuss how the published three-dimensional structure of CSK complexed with an SFK member sheds light on the structural basis of substrate recognition by protein kinases.
Collapse
Affiliation(s)
- Kim K Ia
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | | | | | | | | | | | | |
Collapse
|
37
|
The Src, Syk, and Tec family kinases: distinct types of molecular switches. Cell Signal 2010; 22:1175-84. [PMID: 20206686 DOI: 10.1016/j.cellsig.2010.03.001] [Citation(s) in RCA: 185] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/01/2010] [Indexed: 01/03/2023]
Abstract
The Src, Syk, and Tec family kinases are three of the most well characterized tyrosine kinase families found in the human genome. Members of these kinase families function downstream of antigen and F(c) receptors in hematopoietic cells and transduce signals leading to calcium mobilization, altered gene expression, cytokine production, and cell proliferation. Over the last several years, structural and biochemical studies have begun to uncover the molecular mechanisms regulating activation of these kinases. It appears that each kinase family functions as a distinct type of molecular switch. This review discusses the activation of the Src, Syk, and Tec kinases from the perspective of structure, phosphorylation, allosteric regulation, and kinetics. The multiple factors that regulate the Src, Syk, and Tec families illustrate the important role played by each of these kinases in immune cell signaling.
Collapse
|
38
|
Itk tyrosine kinase substrate docking is mediated by a nonclassical SH2 domain surface of PLCgamma1. Proc Natl Acad Sci U S A 2009; 106:21143-8. [PMID: 19955438 DOI: 10.1073/pnas.0911309106] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Interleukin-2 tyrosine kinase (Itk) is a Tec family tyrosine kinase that mediates signaling processes after T cell receptor engagement. Activation of Itk requires recruitment to the membrane via its pleckstrin homology domain, phosphorylation of Itk by the Src kinase, Lck, and binding of Itk to the SLP-76/LAT adapter complex. After activation, Itk phosphorylates and activates phospholipase C-gamma1 (PLC-gamma1), leading to production of two second messengers, DAG and IP(3). We have previously shown that phosphorylation of PLC-gamma1 by Itk requires a direct, phosphotyrosine-independent interaction between the Src homology 2 (SH2) domain of PLC-gamma1 and the kinase domain of Itk. We now define this docking interface using a combination of mutagenesis and NMR spectroscopy and show that disruption of the Itk/PLCgamma1 docking interaction attenuates T cell signaling. The binding surface on PLCgamma1 that mediates recognition by Itk highlights a nonclassical binding activity of the well-studied SH2 domain providing further evidence that SH2 domains participate in important signaling interactions beyond recognition of phosphotyrosine.
Collapse
|
39
|
c-Src associates with ErbB2 through an interaction between catalytic domains and confers enhanced transforming potential. Mol Cell Biol 2009; 29:5858-71. [PMID: 19704002 DOI: 10.1128/mcb.01731-08] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Previous studies have demonstrated that c-Src tyrosine kinase interacts specifically with ErbB2, but not with other members of the epidermal growth factor receptor (EGFR) family. To identify the site of interaction, we recently used a chimeric EGFR/ErbB2 receptor approach to show that c-Src requires the kinase region of ErbB2 for binding. Here, we demonstrate that retention of a conserved amino acid motif surrounding tyrosine 877 (referred to here as EGFR(YHAD)) is sufficient to confer binding to c-Src. Surprisingly the association of c-Src was not dependent on its SH2 or SH3 domain or on the phosphorylation or kinase activity of the receptor. We further show that the chimeric EGFRs that contain the Y877 motif are transforming in vitro and in vivo following ligand stimulation. Transformation was also partially dependent on sustained activation of Stat3. Finally, we demonstrate that EGFRs with mutations in the catalytic domain, originally identified in lung cancer and conferring increased sensitivity to gefitinib and erlotinib, two EGFR kinase inhibitors, gained the capacity to bind c-Src. Moreover, transformation by these EGFR mutants was inhibited by Src inhibitors regardless of their sensitivities to gefitinib and erlotinib. These observations have important implications for understanding the molecular basis for resistance to EGFR inhibitors and implicate c-Src as a critical signaling molecule in EGFR mutant-induced transformation.
Collapse
|
40
|
Cheng HC, Johnson TM, Mills RD, Chong YP, Chan KC, Culvenor JG. Allosteric networks governing regulation and catalysis of Src-family protein tyrosine kinases: implications for disease-associated kinases. Clin Exp Pharmacol Physiol 2009; 37:93-101. [PMID: 19566834 DOI: 10.1111/j.1440-1681.2009.05237.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
1. The Src-family protein tyrosine kinases (SFKs) are multidomain oncogenic protein tyrosine kinases. Their overactivation contributes to cancer formation and progression. Thus, synthetic inhibitors of SFKs are being developed as therapeutics for cancer treatment. Understanding the regulatory and catalytic mechanisms of SFKs is necessary for the development of therapeutic SFK inhibitors. 2. Although many upstream regulators and protein substrates of SFKs have been identified, both the mechanisms of activation and catalysis of SFKs are not fully understood. In particular, it is still unclear how the inactive SFKs undergo conformational transition during activation. The mechanism governing the binding of substrates and the release of products during catalysis is another area that requires investigation. 3. Several recent publications indicate the presence of a 'hydrophobic spine' formed by four conserved interacting hydrophobic residues in the kinase domain of SFKs. In the present review, we discuss how the assembly and disassembly of the hydrophobic spine residues may govern conformational transition of SFKs during activation. In addition to regulation of kinase activity, the hydrophobic spine is implicated to be involved in catalysis. It has been postulated recently that perturbation of the hydrophobic spine residues is a key step in catalysis. 4. Further investigations to decipher the roles of the hydrophobic spine residues in regulation and catalysis of SFKs will benefit the development of therapeutic SFK inhibitors for cancer treatment.
Collapse
Affiliation(s)
- Heung-Chin Cheng
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|
41
|
Joseph RE, Severin A, Min L, Fulton DB, Andreotti AH. SH2-dependent autophosphorylation within the Tec family kinase Itk. J Mol Biol 2009; 391:164-77. [PMID: 19523959 DOI: 10.1016/j.jmb.2009.06.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/03/2009] [Accepted: 06/07/2009] [Indexed: 01/13/2023]
Abstract
The Tec family kinase, Itk (interleukin-2 tyrosine kinase), undergoes an in cis autophosphorylation on Y180 within its Src homology 3 (SH3) domain. Autophosphorylation of the Itk SH3 domain by the Itk kinase domain is strictly dependent on the presence of the intervening Src homology 2 (SH2) domain. A direct docking interaction between the Itk kinase and SH2 domains brings the Itk SH3 domain into the active site where Y180 is then phosphorylated. We now identify the residues on the surface of the Itk SH2 domain responsible for substrate docking and show that this SH2 surface mediates autophosphorylation in the full-length Itk molecule. The canonical phospholigand binding site on the SH2 domain is not involved in substrate docking, instead the docking site consists of side chains from three loop regions (AB, EF and BG) and part of the betaD strand. These results are extended into Btk (Bruton's tyrosine kinase), a Tec family kinase linked to the B-cell deficiency X-linked agammaglobulinemia (XLA). Our results suggest that some XLA-causing mutations might impair Btk phosphorylation.
Collapse
Affiliation(s)
- Raji E Joseph
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
The control of cellular signaling cascades is of utmost importance in regulating the immune response. Exquisitely precise protein-protein interactions and chemical modification of substrates by enzymatic catalysis are the fundamental components of the signals that alert immune cells to the presence of a foreign antigen. In particular, the phosphorylation events induced by protein kinase activity must be spatially and temporally regulated by specific interactions to maintain a normal and effective immune response. High resolution structures of many protein kinases along with supporting biochemical data are providing significant insight into the intricate regulatory mechanisms responsible for controlling cellular signaling. The Tec family kinases are immunologically important kinases for which regulatory details are beginning to emerge. This review focuses on bringing together structural insights gained over the years to develop an understanding of how domain interactions both within the Tec kinases and between the Tec kinases and other signaling molecules control immune cell function.
Collapse
Affiliation(s)
- Raji E Joseph
- Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50010, USA
| | | |
Collapse
|
43
|
Direct and specific inactivation of protein tyrosine kinases in the Src and FGFR families by reversible cysteine oxidation. Proc Natl Acad Sci U S A 2009; 106:5070-5. [PMID: 19273857 DOI: 10.1073/pnas.0806117106] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Accumulating evidence suggests that protein tyrosine phosphorylation-based signaling pathways are under the regulation of reactive oxygen species. Although protein tyrosine phosphatases are directly regulated by reversible oxidation, it is not clear whether protein tyrosine kinases (PTKs) are also directly regulated by reduction/oxidation (redox). In this study we report a mechanism of direct oxidative inactivation specific for the PTKs in the Src and fibroblast growth factor receptor (FGFR) families, key enzymes in mammalian signal transduction. Src is fully active when reduced and retains 8-25% of the full activity toward various substrates when oxidized. This inactivation is caused by oxidation of a specific cysteine residue (Cys-277), which results in homodimerization of Src linked by a disulfide bridge. Cys-277 is located in the Gly loop in the catalytic domain. This cysteine residue is conserved only in 8 of the >90 PTKs in the human kinome, including 3 of the 10 Src family kinases and all 4 kinases of the FGFR family. FGFR1 is also reversibly regulated by redox because of this cysteine residue, whereas Csk, a PTK that lacks a cysteine residue at the corresponding position, is not similarly regulated. These results demonstrate a mechanism of direct redox regulation conserved in certain specific PTKs.
Collapse
|
44
|
Huang K, Wang YH, Brown A, Sun G. Identification of N-terminal lobe motifs that determine the kinase activity of the catalytic domains and regulatory strategies of Src and Csk protein tyrosine kinases. J Mol Biol 2009; 386:1066-77. [PMID: 19244618 PMCID: PMC2768531 DOI: 10.1016/j.jmb.2009.01.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Csk and Src protein tyrosine kinases are structurally homologous but use opposite regulatory strategies. The isolated catalytic domain of Csk is intrinsically inactive and is activated by interactions with the regulatory Src homology 3 (SH3) and SH2 domains, while the isolated catalytic domain of Src is intrinsically active and is suppressed by interactions with the regulatory SH3 and SH2 domains. The structural basis for why one isolated catalytic domain is intrinsically active while the other is inactive is not clear. In this study, we identified structural elements in the N-terminal lobe of the catalytic domain that render the Src catalytic domain active. These structural elements include the alpha-helix C region, a beta turn between the beta4 and beta5 strands, and an Arg residue at the beginning of the catalytic domain. These three motifs interact with one another to activate the Src catalytic domain, but the equivalent motifs in Csk directly interact with the regulatory domains that are important for Csk activation. The Src motifs can be grafted to the Csk catalytic domain to obtain an active Csk catalytic domain. These results, together with available Src and Csk tertiary structures, reveal an important structural switch that determines the kinase activity of a catalytic domain and dictates the regulatory strategy of a kinase.
Collapse
Affiliation(s)
- Kezhen Huang
- Department of Cell and Molecular Biology, University of Rhode Island, 117 Morrill Science Building, 45 Lower College Road, Kingston, RI 02881, USA
| | | | | | | |
Collapse
|
45
|
Levinson NM, Seeliger MA, Cole PA, Kuriyan J. Structural basis for the recognition of c-Src by its inactivator Csk. Cell 2008; 134:124-34. [PMID: 18614016 PMCID: PMC2494536 DOI: 10.1016/j.cell.2008.05.051] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 02/27/2008] [Accepted: 05/21/2008] [Indexed: 11/16/2022]
Abstract
The catalytic activity of the Src family of tyrosine kinases is suppressed by phosphorylation on a tyrosine residue located near the C terminus (Tyr 527 in c-Src), which is catalyzed by C-terminal Src Kinase (Csk). Given the promiscuity of most tyrosine kinases, it is remarkable that the C-terminal tails of the Src family kinases are the only known targets of Csk. We have determined the crystal structure of a complex between the kinase domains of Csk and c-Src at 2.9 A resolution, revealing that interactions between these kinases position the C-terminal tail of c-Src at the edge of the active site of Csk. Csk cannot phosphorylate substrates that lack this docking mechanism because the conventional substrate binding site used by most tyrosine kinases to recognize substrates is destabilized in Csk by a deletion in the activation loop.
Collapse
Affiliation(s)
- Nicholas M Levinson
- Department of Molecular and Cell Biology, Department of Chemistry, Howard Hughes Medical Institute, California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
46
|
Li W, Young SL, King N, Miller WT. Signaling properties of a non-metazoan Src kinase and the evolutionary history of Src negative regulation. J Biol Chem 2008; 283:15491-501. [PMID: 18390552 DOI: 10.1074/jbc.m800002200] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Choanoflagellates, unicellular organisms that are closely related to metazoans, possess cell adhesion and signaling proteins previously thought to be unique to animals, suggesting that these components may have played roles in the evolution of metazoan multicellularity. We have cloned, expressed, and purified the nonreceptor tyrosine kinase MbSrc1 from the choanoflagellate Monosiga brevicollis. The kinase has the same domain arrangement as mammalian Src kinases, and we find that the individual Src homology 3 (SH3), SH2, and catalytic domains have similar functions to their mammalian counterparts. In contrast to mammalian c-Src, the SH2 and catalytic domains of MbSrc1 do not appear to be functionally coupled. We cloned and expressed the M. brevicollis homolog of c-Src C-terminal kinase (MbCsk) and showed that it phosphorylates the C terminus of MbSrc1, yet this phosphorylation does not inhibit MbSrc to the same degree seen in the mammalian Src/Csk pair. Thus, Src autoinhibition likely evolved more recently within the metazoan lineage, and it may have played a role in the establishment of intercellular signaling in metazoans.
Collapse
Affiliation(s)
- Wanqing Li
- Department of Physiology and Biophysics, School of Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
47
|
Kumar A, Wang Y, Lin X, Sun G, Parang K. Synthesis and evaluation of 3-phenylpyrazolo[3,4-d]pyrimidine-peptide conjugates as Src kinase inhibitors. ChemMedChem 2007; 2:1346-1360. [PMID: 17530729 DOI: 10.1002/cmdc.200700074] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2007] [Indexed: 11/12/2022]
Abstract
3-Phenylpyrazolo[3,4-d]pyrimidine (PhPP) derivatives substituted with an alkyl or aryl carboxylic acid at the N1-endocyclic amine, such as PhPP-CH(2)COOH (IC(50)=250 microM), and peptides Ac-CIYKYY (IC(50)=400 microM) and Ac-YIYGSFK (IC(50)=570 microM) were weak inhibitors of polyE(4)Y phosphorylation by active c-Src. A series of PhPP-peptide conjugates were synthesized using PhPP as an ATP mimic and CIYKYY or YIYGSFK as a peptide substrate to improve the inhibitory potency against active c-Src kinase. PhPP derivatives were attached to the N terminus or the side chain of amino acids in the peptide template. Two N-terminal substituted conjugates, PhPP-CH(2)CO-CIYKYY (IC(50)=0.38 microM) and PhPP-CH(2)CO-YIYGSFK (IC(50)=2.7 microM), inhibited the polyE(4)Y phosphorylation by active c-Src significantly higher than that of the parent compounds. The conjugation of PhPP with the peptides produced a synergistic inhibition effect possibly through creation of favorable interactions between the conjugate and the kinase domain as shown by molecular modeling studies.
Collapse
Affiliation(s)
- Anil Kumar
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, 41 Lower College Road, Kingston, Rhode Island 02881, USA
| | | | | | | | | |
Collapse
|
48
|
Lukasiewicz R, Nolen B, Adams JA, Ghosh G. The RGG domain of Npl3p recruits Sky1p through docking interactions. J Mol Biol 2006; 367:249-61. [PMID: 17239901 DOI: 10.1016/j.jmb.2006.12.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2006] [Revised: 12/06/2006] [Indexed: 11/25/2022]
Abstract
The SR protein kinase in yeast, Sky1p, phosphorylates yeast SR-like protein, Npl3p, at a single serine residue located at its C terminus. We report here the X-ray crystal structure of Sky1p bound to a substrate peptide and ADP. Surprisingly, an Npl3p-derived substrate peptide occupies a groove 20 A away from the kinase active site. In vitro studies support the substrate-docking role of this groove. Mutagenesis and binding studies reveal that multiple degenerate short peptide motifs located within the RGG domain of Npl3p serve as the substrate docking motifs. However, a single docking motif is sufficient for its stable interaction with the kinase. Methylation of the docking motifs abolishes kinase binding and phosphorylation of Npl3p. Remarkably, removal of the docking groove in the kinase or the docking motifs of the substrate does not reduce the overall catalytic efficiency of the phosphorylation reaction in any significant manner. We suggest that docking interaction between Sky1p and Npl3p is essential for substrate recruitment and binding specificity.
Collapse
Affiliation(s)
- Randall Lukasiewicz
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, LaJolla, CA 92037, USA
| | | | | | | |
Collapse
|
49
|
Reményi A, Good MC, Lim WA. Docking interactions in protein kinase and phosphatase networks. Curr Opin Struct Biol 2006; 16:676-85. [PMID: 17079133 DOI: 10.1016/j.sbi.2006.10.008] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2006] [Revised: 10/06/2006] [Accepted: 10/20/2006] [Indexed: 12/13/2022]
Abstract
To achieve high biological specificity, protein kinases and phosphatases often recognize their targets through interactions that occur outside of the active site. Although the role of modular protein-protein interaction domains in kinase and phosphatase signaling has been well characterized, it is becoming clear that many kinases and phosphatases utilize docking interactions - recognition of a short peptide motif in target partners by a groove on the catalytic domain that is separate from the active site. Docking is particularly prevalent in serine/threonine kinases and phosphatases, and is a versatile organizational tool for building complex signaling networks; it confers a high degree of specificity and, in some cases, allosteric regulation.
Collapse
Affiliation(s)
- Attila Reményi
- Department of Cellular and Molecular Pharmacology, Program in Biological Sciences, University of California San Francisco, 600 16th Street, San Francisco, CA 94143-2240, USA
| | | | | |
Collapse
|
50
|
Lieser SA, Shaffer J, Adams JA. SRC tail phosphorylation is limited by structural changes in the regulatory tyrosine kinase Csk. J Biol Chem 2006; 281:38004-12. [PMID: 17018524 DOI: 10.1074/jbc.m607824200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src family tyrosine kinases are down-regulated through phosphorylation of a single C-terminal tyrosine by the nonreceptor tyrosine kinase Csk. Despite the fundamental role of Csk in controlling cell growth and differentiation, it is unclear what limits this key signaling reaction and controls the production of catalytically repressed Src. To investigate this issue, stopped-flow fluorescence experiments were performed to determine which steps modulate catalysis. Both Src binding and phosphorylation can be monitored by changes in intrinsic tryptophan fluorescence. Association kinetics are biphasic with the initial phase corresponding to the bimolecular interaction of both proteins and the second phase representing a slow conformational change that coincides with the rate of maximum turnover. The kinetic transients for the phosphorylation reaction are also biphasic with the initial phase corresponding to the rapid phosphorylation and the release of phospho-Src. These data, along with equilibrium sedimentation and product inhibition experiments, suggest that steps involving Src association, phosphorylation, and product release are fast and that a structural change in Csk participates in limiting the catalytic cycle.
Collapse
Affiliation(s)
- Scot A Lieser
- Department of Chemistry and Biochemistry and Pharmacology, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|