1
|
Ansel M, Ramachandran K, Dey G, Brunet T. Origin and evolution of microvilli. Biol Cell 2024; 116:e2400054. [PMID: 39233537 DOI: 10.1111/boc.202400054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND INFORMATION Microvilli are finger-like, straight, and stable cellular protrusions that are filled with F-actin and present a stereotypical length. They are present in a broad range of cell types across the animal tree of life and mediate several fundamental functions, including nutrient absorption, photosensation, and mechanosensation. Therefore, understanding the origin and evolution of microvilli is key to reconstructing the evolution of animal cellular form and function. Here, we review the current state of knowledge on microvilli evolution and perform a bioinformatic survey of the conservation of genes encoding microvillar proteins in animals and their unicellular relatives. RESULTS We first present a detailed description of mammalian microvilli based on two well-studied examples, the brush border microvilli of enterocytes and the stereocilia of hair cells. We also survey the broader diversity of microvilli and discuss similarities and differences between microvilli and filopodia. Based on our bioinformatic survey coupled with carefully reconstructed molecular phylogenies, we reconstitute the order of evolutionary appearance of microvillar proteins. We document the stepwise evolutionary assembly of the "molecular microvillar toolkit" with notable bursts of innovation at two key nodes: the last common filozoan ancestor (correlated with the evolution of microvilli distinct from filopodia) and the last common choanozoan ancestor (correlated with the emergence of inter-microvillar adhesions). CONCLUSION AND SIGNIFICANCE We conclude with a scenario for the evolution of microvilli from filopodia-like ancestral structures in unicellular precursors of animals.
Collapse
Affiliation(s)
- Mylan Ansel
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
- Master BioSciences, Département de Biologie, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Kaustubh Ramachandran
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Gautam Dey
- Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Thibaut Brunet
- Institut Pasteur, Université Paris-Cité, CNRS UMR3691, Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Paris, France
| |
Collapse
|
2
|
García-Contreras R, de la Mora J, Mora-Montes HM, Martínez-Álvarez JA, Vicente-Gómez M, Padilla-Vaca F, Vargas-Maya NI, Franco B. The inorganic pyrophosphatases of microorganisms: a structural and functional review. PeerJ 2024; 12:e17496. [PMID: 38938619 PMCID: PMC11210485 DOI: 10.7717/peerj.17496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/09/2024] [Indexed: 06/29/2024] Open
Abstract
Pyrophosphatases (PPases) are enzymes that catalyze the hydrolysis of pyrophosphate (PPi), a byproduct of the synthesis and degradation of diverse biomolecules. The accumulation of PPi in the cell can result in cell death. Although the substrate is the same, there are variations in the catalysis and features of these enzymes. Two enzyme forms have been identified in bacteria: cytoplasmic or soluble pyrophosphatases and membrane-bound pyrophosphatases, which play major roles in cell bioenergetics. In eukaryotic cells, cytoplasmic enzymes are the predominant form of PPases (c-PPases), while membrane enzymes (m-PPases) are found only in protists and plants. The study of bacterial cytoplasmic and membrane-bound pyrophosphatases has slowed in recent years. These enzymes are central to cell metabolism and physiology since phospholipid and nucleic acid synthesis release important amounts of PPi that must be removed to allow biosynthesis to continue. In this review, two aims were pursued: first, to provide insight into the structural features of PPases known to date and that are well characterized, and to provide examples of enzymes with novel features. Second, the scientific community should continue studying these enzymes because they have many biotechnological applications. Additionally, in this review, we provide evidence that there are m-PPases present in fungi; to date, no examples have been characterized. Therefore, the diversity of PPase enzymes is still a fruitful field of research. Additionally, we focused on the roles of H+/Na+ pumps and m-PPases in cell bioenergetics. Finally, we provide some examples of the applications of these enzymes in molecular biology and biotechnology, especially in plants. This review is valuable for professionals in the biochemistry field of protein structure-function relationships and experts in other fields, such as chemistry, nanotechnology, and plant sciences.
Collapse
Affiliation(s)
- Rodolfo García-Contreras
- Departamento de Microbiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Javier de la Mora
- Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Héctor Manuel Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - José A. Martínez-Álvarez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Marcos Vicente-Gómez
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Felipe Padilla-Vaca
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Naurú Idalia Vargas-Maya
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| | - Bernardo Franco
- Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Guanajuato, Mexico
| |
Collapse
|
3
|
Flores KA, Pérez-Moreno JL, Durica DS, Mykles DL. Phylogenetic and transcriptomic characterization of insulin and growth factor receptor tyrosine kinases in crustaceans. Front Endocrinol (Lausanne) 2024; 15:1379231. [PMID: 38638139 PMCID: PMC11024359 DOI: 10.3389/fendo.2024.1379231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/01/2024] [Indexed: 04/20/2024] Open
Abstract
Receptor tyrosine kinases (RTKs) mediate the actions of growth factors in metazoans. In decapod crustaceans, RTKs are implicated in various physiological processes, such molting and growth, limb regeneration, reproduction and sexual differentiation, and innate immunity. RTKs are organized into two main types: insulin receptors (InsRs) and growth factor receptors, which include epidermal growth factor receptor (EGFR), fibroblast growth factor receptor (FGFR), vascular endothelial growth factor receptor (VEGFR), and platelet-derived growth factor receptor (PDGFR). The identities of crustacean RTK genes are incomplete. A phylogenetic analysis of the CrusTome transcriptome database, which included all major crustacean taxa, showed that RTK sequences segregated into receptor clades representing InsR (72 sequences), EGFR (228 sequences), FGFR (129 sequences), and PDGFR/VEGFR (PVR; 235 sequences). These four receptor families were distinguished by the domain organization of the extracellular N-terminal region and motif sequences in the protein kinase catalytic domain in the C-terminus or the ligand-binding domain in the N-terminus. EGFR1 formed a single monophyletic group, while the other RTK sequences were divided into subclades, designated InsR1-3, FGFR1-3, and PVR1-2. In decapods, isoforms within the RTK subclades were common. InsRs were characterized by leucine-rich repeat, furin-like cysteine-rich, and fibronectin type 3 domains in the N-terminus. EGFRs had leucine-rich repeat, furin-like cysteine-rich, and growth factor IV domains. N-terminal regions of FGFR1 had one to three immunoglobulin-like domains, whereas FGFR2 had a cadherin tandem repeat domain. PVRs had between two and five immunoglobulin-like domains. A classification nomenclature of the four RTK classes, based on phylogenetic analysis and multiple sequence alignments, is proposed.
Collapse
Affiliation(s)
- Kaylie A. Flores
- Department of Biology, Colorado State University, Fort Collins, CO, United States
| | | | - David S. Durica
- Department of Biology, University of Oklahoma, Norman, OK, United States
| | - Donald L. Mykles
- Department of Biology, Colorado State University, Fort Collins, CO, United States
- Bodega Marine Laboratory, University of California, Davis, Bodega Bay, CA, United States
| |
Collapse
|
4
|
Ros-Rocher N, Brunet T. What is it like to be a choanoflagellate? Sensation, processing and behavior in the closest unicellular relatives of animals. Anim Cogn 2023; 26:1767-1782. [PMID: 37067637 PMCID: PMC10770216 DOI: 10.1007/s10071-023-01776-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/18/2023]
Abstract
All animals evolved from a single lineage of unicellular precursors more than 600 million years ago. Thus, the biological and genetic foundations for animal sensation, cognition and behavior must necessarily have arisen by modifications of pre-existing features in their unicellular ancestors. Given that the single-celled ancestors of the animal kingdom are extinct, the only way to reconstruct how these features evolved is by comparing the biology and genomic content of extant animals to their closest living relatives. Here, we reconstruct the Umwelt (the subjective, perceptive world) inhabited by choanoflagellates, a group of unicellular (or facultatively multicellular) aquatic microeukaryotes that are the closest living relatives of animals. Although behavioral research on choanoflagellates remains patchy, existing evidence shows that they are capable of chemosensation, photosensation and mechanosensation. These processes often involve specialized sensorimotor cellular appendages (cilia, microvilli, and/or filopodia) that resemble those that underlie perception in most animal sensory cells. Furthermore, comparative genomics predicts an extensive "sensory molecular toolkit" in choanoflagellates, which both provides a potential basis for known behaviors and suggests the existence of a largely undescribed behavioral complexity that presents exciting avenues for future research. Finally, we discuss how facultative multicellularity in choanoflagellates might help us understand how evolution displaced the locus of decision-making from a single cell to a collective, and how a new space of behavioral complexity might have become accessible in the process.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France
| | - Thibaut Brunet
- Evolutionary Cell Biology and Evolution of Morphogenesis Unit, Institut Pasteur, Université Paris-Cité, CNRS UMR3691, 25-28 Rue du Docteur Roux, 75015, Paris, France.
| |
Collapse
|
5
|
Yin Z, Shen D, Zhao Y, Peng H, Liu J, Dou D. Cross-kingdom analyses of transmembrane protein kinases show their functional diversity and distinct origins in protists. Comput Struct Biotechnol J 2023; 21:4070-4078. [PMID: 37649710 PMCID: PMC10463195 DOI: 10.1016/j.csbj.2023.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/11/2023] [Accepted: 08/11/2023] [Indexed: 09/01/2023] Open
Abstract
Transmembrane kinases (TMKs) are important mediators of cellular signaling cascades. The kinase domains of most metazoan and plant TMKs belong to the serine/threonine/tyrosine kinase (S/T/Y-kinase) superfamily. They share a common origin with prokaryotic kinases and have diversified into distinct subfamilies. Diverse members of the eukaryotic crown radiation such as amoebae, ciliates, and red and brown algae (grouped here under the umbrella term "protists") have long diverged from higher eukaryotes since their ancient common ancestry, making them ideal organisms for studying TMK evolution. Here, we developed an accurate and high-throughput pipeline to predict TMKomes in cellular organisms. Cross-kingdom analyses revealed distinct features of TMKomes in each grouping. Two-transmembrane histidine kinases constitute the main TMKomes of bacteria, while metazoans, plants, and most protists have a large proportion of single-pass TM S/T/Y-kinases. Phylogenetic analyses classified most protist S/T/Y-kinases into three clades, with clades II and III specifically expanded in amoebae and oomycetes, respectively. In contrast, clade I kinases were widespread in all protists examined here, and likely shared a common origin with other eukaryotic S/T/Y-kinases. Functional annotation further showed that most non-kinase domains were grouping-specific, suggesting that their recombination with the more conserved kinase domains led to the divergence of S/T/Y-kinases. However, we also found that protist leucine-rich repeat (LRR)- and G-protein-coupled receptor (GPCR)-type TMKs shared similar sensory domain architectures with respective plant and animal TMKs, despite that they belong to distinct kinase subfamilies. Collectively, our study revealed the functional diversity of TMKomes and the distinct origins of S/T/Y-kinases in protists.
Collapse
Affiliation(s)
- Zhiyuan Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaning Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Peng
- USDA Agricultural Research Service, San Joaquin Valley Agricultural Sciences Center, Parlier, CA 93648, USA
| | - Jinding Liu
- Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
6
|
Bajaj T, Kuriyan J, Gee CL. Crystal structure of the kinase domain of a receptor tyrosine kinase from a choanoflagellate, Monosiga brevicollis. PLoS One 2023; 18:e0276413. [PMID: 37310965 DOI: 10.1371/journal.pone.0276413] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/28/2023] [Indexed: 06/15/2023] Open
Abstract
Genomic analysis of the unicellular choanoflagellate, Monosiga brevicollis (MB), revealed the remarkable presence of cell signaling and adhesion protein domains that are characteristically associated with metazoans. Strikingly, receptor tyrosine kinases, one of the most critical elements of signal transduction and communication in metazoans, are present in choanoflagellates. We determined the crystal structure at 1.95 Å resolution of the kinase domain of the M. brevicollis receptor tyrosine kinase C8 (RTKC8, a member of the choanoflagellate receptor tyrosine kinase C family) bound to the kinase inhibitor staurospaurine. The chonanoflagellate kinase domain is closely related in sequence to mammalian tyrosine kinases (~ 40% sequence identity to the human Ephrin kinase domain EphA3) and, as expected, has the canonical protein kinase fold. The kinase is structurally most similar to human Ephrin (EphA5), even though the extracellular sensor domain is completely different from that of Ephrin. The RTKC8 kinase domain is in an active conformation, with two staurosporine molecules bound to the kinase, one at the active site and another at the peptide-substrate binding site. To our knowledge this is the first example of staurospaurine binding in the Aurora A activation segment (AAS). We also show that the RTKC8 kinase domain can phosphorylate tyrosine residues in peptides from its C-terminal tail segment which is presumably the mechanism by which it transmits the extracellular stimuli to alter cellular function.
Collapse
Affiliation(s)
- Teena Bajaj
- Graduate Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, California, United States of America
| | - John Kuriyan
- Graduate Program in Comparative Biochemistry, University of California, Berkeley, Berkeley, California, United States of America
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Department of Chemistry, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
| | - Christine L Gee
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California, United States of America
| |
Collapse
|
7
|
Tekle YI, Wang F, Tran H, Hayes TD, Ryan JF. The draft genome of Cochliopodium minus reveals a complete meiosis toolkit and provides insight into the evolution of sexual mechanisms in Amoebozoa. Sci Rep 2022; 12:9841. [PMID: 35701521 PMCID: PMC9198077 DOI: 10.1038/s41598-022-14131-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/06/2022] [Indexed: 11/23/2022] Open
Abstract
To date, genomic analyses in amoebozoans have been mostly limited to model organisms or medically important lineages. Consequently, the vast diversity of Amoebozoa genomes remain unexplored. A draft genome of Cochliopodium minus, an amoeba characterized by extensive cellular and nuclear fusions, is presented. C. minus has been a subject of recent investigation for its unusual sexual behavior. Cochliopodium's sexual activity occurs during vegetative stage making it an ideal model for studying sexual development, which is sorely lacking in the group. Here we generate a C. minus draft genome assembly. From this genome, we detect a substantial number of lateral gene transfer (LGT) instances from bacteria (15%), archaea (0.9%) and viruses (0.7%) the majority of which are detected in our transcriptome data. We identify the complete meiosis toolkit genes in the C. minus genome, as well as the absence of several key genes involved in plasmogamy and karyogamy. Comparative genomics of amoebozoans reveals variation in sexual mechanism exist in the group. Similar to complex eukaryotes, C. minus (some amoebae) possesses Tyrosine kinases and duplicate copies of SPO11. We report a first example of alternative splicing in a key meiosis gene and draw important insights on molecular mechanism of sex in C. minus using genomic and transcriptomic data.
Collapse
Affiliation(s)
- Yonas I Tekle
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA.
| | - Fang Wang
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - Hanh Tran
- Department of Biology, Spelman College, 350 Spelman Lane Southwest, Atlanta, GA, 30314, USA
| | - T Danielle Hayes
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Iowa State University, Ames, IA, USA
| | - Joseph F Ryan
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, USA
- Department of Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
8
|
Booth DS, King N. The history of Salpingoeca rosetta as a model for reconstructing animal origins. Curr Top Dev Biol 2022; 147:73-91. [PMID: 35337467 DOI: 10.1016/bs.ctdb.2022.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Choanoflagellates, the closest living relatives of animals, have the potential to reveal the genetic and cell biological foundations of complex multicellular development in animals. Here we describe the history of research on the choanoflagellate Salpingoeca rosetta. From its original isolation in 2000 to the establishment of CRISPR-mediated genome editing in 2020, S. rosetta provides an instructive case study in the establishment of a new model organism.
Collapse
Affiliation(s)
- David S Booth
- Chan Zuckerberg Biohub and Department of Biochemistry and Biophysics, University of California, San Francisco, CA, United States.
| | - Nicole King
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, CA, United States.
| |
Collapse
|
9
|
Domain Analysis and Motif Matcher (DAMM): A Program to Predict Selectivity Determinants in Monosiga brevicollis PDZ Domains Using Human PDZ Data. Molecules 2021; 26:molecules26196034. [PMID: 34641578 PMCID: PMC8512817 DOI: 10.3390/molecules26196034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/17/2022] Open
Abstract
Choanoflagellates are single-celled eukaryotes with complex signaling pathways. They are considered the closest non-metazoan ancestors to mammals and other metazoans and form multicellular-like states called rosettes. The choanoflagellate Monosiga brevicollis contains over 150 PDZ domains, an important peptide-binding domain in all three domains of life (Archaea, Bacteria, and Eukarya). Therefore, an understanding of PDZ domain signaling pathways in choanoflagellates may provide insight into the origins of multicellularity. PDZ domains recognize the C-terminus of target proteins and regulate signaling and trafficking pathways, as well as cellular adhesion. Here, we developed a computational software suite, Domain Analysis and Motif Matcher (DAMM), that analyzes peptide-binding cleft sequence identity as compared with human PDZ domains and that can be used in combination with literature searches of known human PDZ-interacting sequences to predict target specificity in choanoflagellate PDZ domains. We used this program, protein biochemistry, fluorescence polarization, and structural analyses to characterize the specificity of A9UPE9_MONBE, a M. brevicollis PDZ domain-containing protein with no homology to any metazoan protein, finding that its PDZ domain is most similar to those of the DLG family. We then identified two endogenous sequences that bind A9UPE9 PDZ with <100 μM affinity, a value commonly considered the threshold for cellular PDZ-peptide interactions. Taken together, this approach can be used to predict cellular targets of previously uncharacterized PDZ domains in choanoflagellates and other organisms. Our data contribute to investigations into choanoflagellate signaling and how it informs metazoan evolution.
Collapse
|
10
|
Nagy LG, Varga T, Csernetics Á, Virágh M. Fungi took a unique evolutionary route to multicellularity: Seven key challenges for fungal multicellular life. FUNGAL BIOL REV 2020. [DOI: 10.1016/j.fbr.2020.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Nesbit KT, Hamdoun A. Embryo, larval, and juvenile staging of Lytechinus pictus from fertilization through sexual maturation. Dev Dyn 2020; 249:1334-1346. [PMID: 32644271 DOI: 10.1002/dvdy.223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 06/17/2020] [Accepted: 06/21/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Sea urchin embryos have been used for more than a century in the study of fertilization and early development. However, several of the species used, such as Strongylocentrotus purpuratus, have long generation times making them suboptimal for transgenerational studies. RESULTS Here, we present an overview of the development of a rapidly developing echinoderm species, Lytechinus pictus, from fertilization through sexual maturation. When grown at room temperature (20°C) embryos complete the first cell cycle in 90 minutes, followed by subsequent cleavages every 45 minutes, leading to hatching at 9 hours postfertilization (hpf). The swimming embryos gastrulate from 12 to 36 hpf and produce the cells which subsequently give rise to the larval skeleton and immunocytes. Larvae begin to feed at 2 days and metamorphose by 3 weeks. Juveniles reach sexual maturity at 4 to 6 months of age, depending on individual growth rate. CONCLUSIONS This staging scheme lays a foundation for future studies in L. pictus, which share many of the attractive features of other urchins but have the key advantage of rapid development to sexual maturation. This is significant for multigenerational and genetic studies newly enabled by CRISPR-CAS mediated gene editing.
Collapse
Affiliation(s)
- Katherine T Nesbit
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
12
|
Makarevich PI, Efimenko AY, Tkachuk VA. Biochemical Regulation of Regenerative Processes by Growth Factors and Cytokines: Basic Mechanisms and Relevance for Regenerative Medicine. BIOCHEMISTRY (MOSCOW) 2020; 85:11-26. [PMID: 32079514 DOI: 10.1134/s0006297920010022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Regenerative medicine that had emerged as a scientific and medical discipline at end of 20th century uses cultured cells and tissue-engineered structures for transplantation into human body to restore lost or damaged organs. However, practical achievements in this field are far from the promising results obtained in laboratory experiments. Searching for new directions has made apparent that successful solution of practical problems is impossible without understanding the fundamental principles of the regulation of development, renewal, and regeneration of human tissues. These aspects have been extensively investigated by cell biologists, physiologists, and biochemists working in a specific research area often referred to as regenerative biology. It is known that during regeneration, growth factors, cytokines, and hormones act beyond the regulation of individual cell functions, but rather activate specific receptor systems and control pivotal tissue repair processes, including cell proliferation and differentiation. These events require numerous coordinated stimuli and, therefore, are practically irreproducible using single proteins or low-molecular-weight compounds, i.e., cannot be directed by applying classical pharmacological approaches. Our review summarizes current concepts on the regulatory mechanisms of renewal and regeneration of human tissues with special attention to certain general biological and evolutionary aspects. We focus on the biochemical regulatory mechanisms of regeneration, in particular, the role of growth factors and cytokines and their receptor systems. In a separate section, we discussed practical approaches for activating regeneration using small molecules and stem cell secretome containing a broad repertoire of growth factors, cytokines, peptides, and extracellular vesicles.
Collapse
Affiliation(s)
- P I Makarevich
- Lomonosov Moscow State University, Institute for Regenerative Medicine, Medical Research and Education Center, Moscow, 119991, Russia. .,Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, 119991, Russia
| | - A Yu Efimenko
- Lomonosov Moscow State University, Institute for Regenerative Medicine, Medical Research and Education Center, Moscow, 119991, Russia.,Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, 119991, Russia
| | - V A Tkachuk
- Lomonosov Moscow State University, Institute for Regenerative Medicine, Medical Research and Education Center, Moscow, 119991, Russia.,Lomonosov Moscow State University, Faculty of Fundamental Medicine, Moscow, 119991, Russia.,Institute of Experimental Cardiology, National Medical Research Center of Cardiology, Moscow, 121552, Russia
| |
Collapse
|
13
|
Ahsan N, Wilson RS, Rao RSP, Salvato F, Sabila M, Ullah H, Miernyk JA. Mass Spectrometry-Based Identification of Phospho-Tyr in Plant Proteomics. J Proteome Res 2020; 19:561-571. [PMID: 31967836 DOI: 10.1021/acs.jproteome.9b00550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
O-Phosphorylation (phosphorylation of the hydroxyl-group of S, T, and Y residues) is among the first described and most thoroughly studied posttranslational modification (PTM). Y-Phosphorylation, catalyzed by Y-kinases, is a key step in both signal transduction and regulation of enzymatic activity in mammalian systems. Canonical Y-kinase sequences are absent from plant genomes/kinomes, often leading to the assumption that plant cells lack O-phospho-l-tyrosine (pY). However, recent improvements in sample preparation, coupled with advances in instrument sensitivity and accessibility, have led to results that unequivocally disproved this assumption. Identification of hundreds of pY-peptides/proteins, followed by validation using genomic, molecular, and biochemical approaches, implies previously unappreciated roles for this "animal PTM" in plants. Herein, we review extant results from studies of pY in plants and propose a strategy for preparation and analysis of pY-peptides that will allow a depth of coverage of the plant pY-proteome comparable to that achieved in mammalian systems.
Collapse
Affiliation(s)
- Nagib Ahsan
- Division of Biology and Medicine , Brown University , Providence , Rhode Island 02903 , United States.,Center for Cancer Research Development, Proteomics Core Facility , Rhode Island Hospital , Providence , Rhode Island 02903 , United States
| | - Rashaun S Wilson
- Keck Mass Spectrometry & Proteomics Resource , Yale University , New Haven , Connecticut 06511 , United States
| | - R Shyama Prasad Rao
- Biostatistics and Bioinformatics Division, Yenepoya Research Center , Yenepoya University , Mangalore 575018 , India
| | - Fernanda Salvato
- Department of Plant and Microbial Biology, College of Agriculture and Life Sciences , North Carolina State University , Raleigh , North Carolina 27695 , United States
| | - Mercy Sabila
- Department of Biology , Howard University , Washington , D.C. 20059 , United States
| | - Hemayet Ullah
- Department of Biology , Howard University , Washington , D.C. 20059 , United States
| | - Ján A Miernyk
- Division of Biochemistry , University of Missouri , Columbia , Missouri 65211 , United States
| |
Collapse
|
14
|
Nair A, Chauhan P, Saha B, Kubatzky KF. Conceptual Evolution of Cell Signaling. Int J Mol Sci 2019; 20:E3292. [PMID: 31277491 PMCID: PMC6651758 DOI: 10.3390/ijms20133292] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/27/2022] Open
Abstract
During the last 100 years, cell signaling has evolved into a common mechanism for most physiological processes across systems. Although the majority of cell signaling principles were initially derived from hormonal studies, its exponential growth has been supported by interdisciplinary inputs, e.g., from physics, chemistry, mathematics, statistics, and computational fields. As a result, cell signaling has grown out of scope for any general review. Here, we review how the messages are transferred from the first messenger (the ligand) to the receptor, and then decoded with the help of cascades of second messengers (kinases, phosphatases, GTPases, ions, and small molecules such as cAMP, cGMP, diacylglycerol, etc.). The message is thus relayed from the membrane to the nucleus where gene expression ns, subsequent translations, and protein targeting to the cell membrane and other organelles are triggered. Although there are limited numbers of intracellular messengers, the specificity of the response profiles to the ligands is generated by the involvement of a combination of selected intracellular signaling intermediates. Other crucial parameters in cell signaling are its directionality and distribution of signaling strengths in different pathways that may crosstalk to adjust the amplitude and quality of the final effector output. Finally, we have reflected upon its possible developments during the coming years.
Collapse
Affiliation(s)
- Arathi Nair
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India
| | - Prashant Chauhan
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India
| | - Bhaskar Saha
- National Center for Cell Science (NCCS), Ganeshkhind, Pune 411007, India.
| | - Katharina F Kubatzky
- Zentrum für Infektiologie, Medizinische Mikrobiologie und Hygiene, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.
| |
Collapse
|
15
|
Shah NH, Amacher JF, Nocka LM, Kuriyan J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit Rev Biochem Mol Biol 2018; 53:535-563. [PMID: 30183386 PMCID: PMC6328253 DOI: 10.1080/10409238.2018.1495173] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the "Src module," composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.
Collapse
Affiliation(s)
- Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jeanine F. Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Laura M. Nocka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
16
|
Kukushkin NV. Taking memory beyond the brain: Does tobacco dream of the mosaic virus? Neurobiol Learn Mem 2018; 153:111-116. [PMID: 29396326 DOI: 10.1016/j.nlm.2018.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 01/05/2018] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
Abstract
Memory is typically defined through animal behavior, but this point of view may limit our understanding of many related processes in diverse biological systems. The concept of memory can be broadened meaningfully by considering it from the perspective of time and homeostasis. On the one hand, this theoretical angle can help explain and predict the behavior of various non-neural systems such as insulin-secreting cells, plants, or signaling cascades. On the other hand, it emphasizes biological continuity between neural phenomena, such as synaptic plasticity, and their evolutionary precursors in cellular signaling.
Collapse
Affiliation(s)
- Nikolay V Kukushkin
- Center for Neural Science, New York University, 4 Washington Pl, New York, NY 10003, USA.
| |
Collapse
|
17
|
Tong K, Wang Y, Su Z. Phosphotyrosine signalling and the origin of animal multicellularity. Proc Biol Sci 2018; 284:rspb.2017.0681. [PMID: 28768887 DOI: 10.1098/rspb.2017.0681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/26/2017] [Indexed: 12/21/2022] Open
Abstract
The evolution of multicellular animals (i.e. metazoans) from a unicellular ancestor is one of the most important yet least understood evolutionary transitions. Historically, given its indispensable functions in intercellular communication and exclusive presence in metazoans, phosphotyrosine (pTyr) signalling was considered a metazoan-specific evolutionary innovation that might have contributed to the origin of metazoan multicellularity. However, recent studies have led to a new understanding of pTyr signalling evolution and its role in the metazoan origin. Sequence analyses have unravelled a much earlier emergence of pTyr signalling in eukaryotic evolution. Even so, several distinct properties of holozoan pTyr signalling may have paved the way for a hypothesized functional transition of pTyr signalling at the multicellular origin, from environmental sensing to intercellular communication, and for it to evolve as a powerful intercellular signalling system for multicellularity. Biochemical analyses of premetazoan pTyr signalling components have further revealed the premetazoan origin of many key features of metazoan pTyr signalling, and the metazoan establishment of others, including the Csk-mediated negative regulation of the activity of Src, a conserved tyrosine kinase in the Holozoa. Finally, potential future directions are discussed, with a stress on the biological functions of premetazoan pTyr signalling via newly developed gene manipulation tools in non-animal holozoans.
Collapse
Affiliation(s)
- Kai Tong
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Yuyu Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| | - Zhixi Su
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Brunet T, King N. The Origin of Animal Multicellularity and Cell Differentiation. Dev Cell 2017; 43:124-140. [PMID: 29065305 PMCID: PMC6089241 DOI: 10.1016/j.devcel.2017.09.016] [Citation(s) in RCA: 244] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 08/31/2017] [Accepted: 09/19/2017] [Indexed: 12/14/2022]
Abstract
Over 600 million years ago, animals evolved from a unicellular or colonial organism whose cell(s) captured bacteria with a collar complex, a flagellum surrounded by a microvillar collar. Using principles from evolutionary cell biology, we reason that the transition to multicellularity required modification of pre-existing mechanisms for extracellular matrix synthesis and cytokinesis. We discuss two hypotheses for the origin of animal cell types: division of labor from ancient plurifunctional cells and conversion of temporally alternating phenotypes into spatially juxtaposed cell types. Mechanistic studies in diverse animals and their relatives promise to deepen our understanding of animal origins and cell biology.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Nicole King
- Howard Hughes Medical Institute and the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
| |
Collapse
|
19
|
On the origin of biological construction, with a focus on multicellularity. Proc Natl Acad Sci U S A 2017; 114:11018-11026. [PMID: 28973893 DOI: 10.1073/pnas.1704631114] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Biology is marked by a hierarchical organization: all life consists of cells; in some cases, these cells assemble into groups, such as endosymbionts or multicellular organisms; in turn, multicellular organisms sometimes assemble into yet other groups, such as primate societies or ant colonies. The construction of new organizational layers results from hierarchical evolutionary transitions, in which biological units (e.g., cells) form groups that evolve into new units of biological organization (e.g., multicellular organisms). Despite considerable advances, there is no bottom-up, dynamical account of how, starting from the solitary ancestor, the first groups originate and subsequently evolve the organizing principles that qualify them as new units. Guided by six central questions, we propose an integrative bottom-up approach for studying the dynamics underlying hierarchical evolutionary transitions, which builds on and synthesizes existing knowledge. This approach highlights the crucial role of the ecology and development of the solitary ancestor in the emergence and subsequent evolution of groups, and it stresses the paramount importance of the life cycle: only by evaluating groups in the context of their life cycle can we unravel the evolutionary trajectory of hierarchical transitions. These insights also provide a starting point for understanding the types of subsequent organizational complexity. The central research questions outlined here naturally link existing research programs on biological construction (e.g., on cooperation, multilevel selection, self-organization, and development) and thereby help integrate knowledge stemming from diverse fields of biology.
Collapse
|
20
|
Spheres of Hope, Packets of Doom: the Good and Bad of Outer Membrane Vesicles in Interspecies and Ecological Dynamics. J Bacteriol 2017; 199:JB.00012-17. [PMID: 28416709 DOI: 10.1128/jb.00012-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Outer membrane vesicles (OMVs) are proteoliposome nanoparticles ubiquitously produced by Gram-negative bacteria. Typically bearing a composition similar to those of the outer membrane and periplasm of the cells from which they are derived, OMVs package an array of proteins, lipids, and nucleic acids. Once considered inconsequential by-products of bacterial growth, OMVs have since been demonstrated to mediate cellular stress relief, promote horizontal gene transfer and antimicrobial activity, and elicit metazoan inflammation. Recently, OMVs have gained appreciation as critical moderators of interorganismal dynamics. In this review, we focus on recent progress toward understanding the functions of OMVs with regard to symbiosis and ecological contexts, and we propose potential avenues for future OMV studies.
Collapse
|
21
|
Babonis LS, Martindale MQ. Phylogenetic evidence for the modular evolution of metazoan signalling pathways. Philos Trans R Soc Lond B Biol Sci 2017; 372:20150477. [PMID: 27994120 PMCID: PMC5182411 DOI: 10.1098/rstb.2015.0477] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2016] [Indexed: 12/12/2022] Open
Abstract
Communication among cells was paramount to the evolutionary increase in cell type diversity and, ultimately, the origin of large body size. Across the diversity of Metazoa, there are only few conserved cell signalling pathways known to orchestrate the complex cell and tissue interactions regulating development; thus, modification to these few pathways has been responsible for generating diversity during the evolution of animals. Here, we summarize evidence for the origin and putative function of the intracellular, membrane-bound and secreted components of seven metazoan cell signalling pathways with a special focus on early branching metazoans (ctenophores, poriferans, placozoans and cnidarians) and basal unikonts (amoebozoans, fungi, filastereans and choanoflagellates). We highlight the modular incorporation of intra- and extracellular components in each signalling pathway and suggest that increases in the complexity of the extracellular matrix may have further promoted the modulation of cell signalling during metazoan evolution. Most importantly, this updated view of metazoan signalling pathways highlights the need for explicit study of canonical signalling pathway components in taxa that do not operate a complete signalling pathway. Studies like these are critical for developing a deeper understanding of the evolution of cell signalling.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological diversity'.
Collapse
Affiliation(s)
- Leslie S Babonis
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| |
Collapse
|
22
|
Classification and Lineage Tracing of SH2 Domains Throughout Eukaryotes. Methods Mol Biol 2017. [PMID: 28092027 DOI: 10.1007/978-1-4939-6762-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Today there exists a rapidly expanding number of sequenced genomes. Cataloging protein interaction domains such as the Src Homology 2 (SH2) domain across these various genomes can be accomplished with ease due to existing algorithms and predictions models. An evolutionary analysis of SH2 domains provides a step towards understanding how SH2 proteins integrated with existing signaling networks to position phosphotyrosine signaling as a crucial driver of robust cellular communication networks in metazoans. However organizing and tracing SH2 domain across organisms and understanding their evolutionary trajectory remains a challenge. This chapter describes several methodologies towards analyzing the evolutionary trajectory of SH2 domains including a global SH2 domain classification system, which facilitates annotation of new SH2 sequences essential for tracing the lineage of SH2 domains throughout eukaryote evolution. This classification utilizes a combination of sequence homology, protein domain architecture and the boundary positions between introns and exons within the SH2 domain or genes encoding these domains. Discrete SH2 families can then be traced across various genomes to provide insight into its origins. Furthermore, additional methods for examining potential mechanisms for divergence of SH2 domains from structural changes to alterations in the protein domain content and genome duplication will be discussed. Therefore a better understanding of SH2 domain evolution may enhance our insight into the emergence of phosphotyrosine signaling and the expansion of protein interaction domains.
Collapse
|
23
|
Costa TF, Lima APC. Natural cysteine protease inhibitors in protozoa: Fifteen years of the chagasin family. Biochimie 2016; 122:197-207. [DOI: 10.1016/j.biochi.2015.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 11/02/2015] [Indexed: 12/19/2022]
|
24
|
Hydrophobic Core Variations Provide a Structural Framework for Tyrosine Kinase Evolution and Functional Specialization. PLoS Genet 2016; 12:e1005885. [PMID: 26925779 PMCID: PMC4771162 DOI: 10.1371/journal.pgen.1005885] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Accepted: 01/30/2016] [Indexed: 02/07/2023] Open
Abstract
Protein tyrosine kinases (PTKs) are a group of closely related enzymes that have evolutionarily diverged from serine/threonine kinases (STKs) to regulate pathways associated with multi-cellularity. Evolutionary divergence of PTKs from STKs has occurred through accumulation of mutations in the active site as well as in the commonly conserved hydrophobic core. While the functional significance of active site variations is well understood, relatively little is known about how hydrophobic core variations contribute to PTK evolutionary divergence. Here, using a combination of statistical sequence comparisons, molecular dynamics simulations, mutational analysis and in vitro thermostability and kinase assays, we investigate the structural and functional significance of key PTK-specific variations in the kinase core. We find that the nature of residues and interactions in the hydrophobic core of PTKs is strikingly different from other protein kinases, and PTK-specific variations in the core contribute to functional divergence by altering the stability and dynamics of the kinase domain. In particular, a functionally critical STK-conserved histidine that stabilizes the regulatory spine in STKs is selectively mutated to an alanine, serine or glutamate in PTKs, and this loss-of-function mutation is accommodated, in part, through compensatory PTK-specific interactions in the core. In particular, a PTK-conserved phenylalanine in the I-helix appears to structurally and functionally compensate for the loss of STK-histidine by interacting with the regulatory spine, which has far-reaching effects on enzyme activity, inhibitor sensing, and stability. We propose that hydrophobic core variations provide a selective advantage during PTK evolution by increasing the conformational flexibility, and therefore the allosteric potential of the kinase domain. Our studies also suggest that Tyrosine Kinase Like kinases such as RAF are intermediates in PTK evolutionary divergence inasmuch as they share features of both PTKs and STKs in the core. Finally, our studies provide an evolutionary framework for identifying and characterizing disease and drug resistance mutations in the kinase core. Proteins evolve new functions through accumulation of mutations in the primary sequence. Understanding how naturally occurring mutations shape protein function can provide insights into how non-natural mutations contribute to disease. Here, we identify sequence variants associated with the functional specialization of tyrosine kinases, a large and medically important class of proteins associated with the evolution of complex multicellular functions and diseases such as cancer. We find that mutations distal from the active site contribute to functional specialization by altering the stability, activity and dynamics of the kinase core. Our findings have implications for understanding the evolution of allosteric regulation in tyrosine kinases, and in predicting the structural and functional impact of disease and drug resistance mutations in the kinase core.
Collapse
|
25
|
Schaap P, Barrantes I, Minx P, Sasaki N, Anderson RW, Bénard M, Biggar KK, Buchler NE, Bundschuh R, Chen X, Fronick C, Fulton L, Golderer G, Jahn N, Knoop V, Landweber LF, Maric C, Miller D, Noegel AA, Peace R, Pierron G, Sasaki T, Schallenberg-Rüdinger M, Schleicher M, Singh R, Spaller T, Storey KB, Suzuki T, Tomlinson C, Tyson JJ, Warren WC, Werner ER, Werner-Felmayer G, Wilson RK, Winckler T, Gott JM, Glöckner G, Marwan W. The Physarum polycephalum Genome Reveals Extensive Use of Prokaryotic Two-Component and Metazoan-Type Tyrosine Kinase Signaling. Genome Biol Evol 2015; 8:109-25. [PMID: 26615215 PMCID: PMC4758236 DOI: 10.1093/gbe/evv237] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 12/13/2022] Open
Abstract
Physarum polycephalum is a well-studied microbial eukaryote with unique experimental attributes relative to other experimental model organisms. It has a sophisticated life cycle with several distinct stages including amoebal, flagellated, and plasmodial cells. It is unusual in switching between open and closed mitosis according to specific life-cycle stages. Here we present the analysis of the genome of this enigmatic and important model organism and compare it with closely related species. The genome is littered with simple and complex repeats and the coding regions are frequently interrupted by introns with a mean size of 100 bases. Complemented with extensive transcriptome data, we define approximately 31,000 gene loci, providing unexpected insights into early eukaryote evolution. We describe extensive use of histidine kinase-based two-component systems and tyrosine kinase signaling, the presence of bacterial and plant type photoreceptors (phytochromes, cryptochrome, and phototropin) and of plant-type pentatricopeptide repeat proteins, as well as metabolic pathways, and a cell cycle control system typically found in more complex eukaryotes. Our analysis characterizes P. polycephalum as a prototypical eukaryote with features attributed to the last common ancestor of Amorphea, that is, the Amoebozoa and Opisthokonts. Specifically, the presence of tyrosine kinases in Acanthamoeba and Physarum as representatives of two distantly related subdivisions of Amoebozoa argues against the later emergence of tyrosine kinase signaling in the opisthokont lineage and also against the acquisition by horizontal gene transfer.
Collapse
Affiliation(s)
- Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Israel Barrantes
- Magdeburg Centre for Systems Biology and Institute for Biology, University of Magdeburg, Magdeburg, Germany
| | - Pat Minx
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Narie Sasaki
- Department of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusaku, Nagoya, Aichi, Japan
| | - Roger W Anderson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom
| | - Marianne Bénard
- UPMC Univ Paris 06, Institut de Biologie Paris-Seine (IBPS), CNRS UMR-7622, Paris, France
| | - Kyle K Biggar
- Biochemistry Department, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada
| | - Nicolas E Buchler
- Department of Biology and Center for Genomic and Computational Biology, Duke University, Durham Department of Physics, Duke University, Durham
| | - Ralf Bundschuh
- Department of Physics and Center for RNA Biology, The Ohio State University, Columbus Department of Chemistry & Biochemistry, The Ohio State University, Columbus Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus
| | - Xiao Chen
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton
| | - Catrina Fronick
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Lucinda Fulton
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Georg Golderer
- Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Niels Jahn
- Genome Analysis, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Volker Knoop
- IZMB - Institut für Zelluläre und Molekulare Botanik, Universität Bonn, Bonn, Germany
| | - Laura F Landweber
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton
| | - Chrystelle Maric
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot Paris7, Paris, France
| | - Dennis Miller
- The University of Texas at Dallas, Biological Sciences, Richardson
| | - Angelika A Noegel
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany
| | - Rob Peace
- Carleton University, Ottawa, Ontario, Canada
| | - Gérard Pierron
- Institut Jacques Monod, CNRS UMR7592, Université Paris Diderot Paris7, Paris, France
| | - Taeko Sasaki
- Department of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusaku, Nagoya, Aichi, Japan
| | | | - Michael Schleicher
- Institute for Anatomy III / Cell Biology, BioMedCenter, Ludwig-Maximilians-Universität, Planegg-Martinsried, Germany
| | - Reema Singh
- School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Thomas Spaller
- Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | | | - Takamasa Suzuki
- Department of Biological Sciences, Graduate School of Science and JST ERATO Higashiyama Live-holonics Project, Nagoya University, Furocho, Chikusaku, Nagoya, Aichi, Japan
| | - Chad Tomlinson
- The Genome Institute, Washington University School of Medicine, St Louis
| | - John J Tyson
- Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg
| | - Wesley C Warren
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Ernst R Werner
- Biological Chemistry, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | | | - Richard K Wilson
- The Genome Institute, Washington University School of Medicine, St Louis
| | - Thomas Winckler
- Institut für Pharmazie, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Jonatha M Gott
- Center for RNA Molecular Biology, Case Western Reserve University, School of Medicine, Cleveland
| | - Gernot Glöckner
- Institute for Biochemistry I, Medical Faculty, University of Cologne, Cologne, Germany Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Wolfgang Marwan
- Magdeburg Centre for Systems Biology and Institute for Biology, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
26
|
Constitutive Activity in an Ancestral Form of Abl Tyrosine Kinase. PLoS One 2015; 10:e0131062. [PMID: 26090675 PMCID: PMC4474922 DOI: 10.1371/journal.pone.0131062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/28/2015] [Indexed: 11/19/2022] Open
Abstract
The c-abl proto-oncogene encodes a nonreceptor tyrosine kinase that is found in all metazoans, and is ubiquitously expressed in mammalian tissues. The Abl tyrosine kinase plays important roles in the regulation of mammalian cell physiology. Abl-like kinases have been identified in the genomes of unicellular choanoflagellates, the closest relatives to the Metazoa, and in related unicellular organisms. Here, we have carried out the first characterization of a premetazoan Abl kinase, MbAbl2, from the choanoflagellate Monosiga brevicollis. The enzyme possesses SH3, SH2, and kinase domains in a similar arrangement to its mammalian counterparts, and is an active tyrosine kinase. MbAbl2 lacks the N-terminal myristoylation and cap sequences that are critical regulators of mammalian Abl kinase activity, and we show that MbAbl2 is constitutively active. When expressed in mammalian cells, MbAbl2 strongly phosphorylates cellular proteins on tyrosine, and transforms cells much more potently than mammalian Abl kinase. Thus, MbAbl2 appears to lack the autoinhibitory mechanism that tightly constrains the activity of mammalian Abl kinases, suggesting that this regulatory apparatus arose more recently in metazoan evolution.
Collapse
|
27
|
Kipryushina YO, Yakovlev KV, Odintsova NA. Vascular endothelial growth factors: A comparison between invertebrates and vertebrates. Cytokine Growth Factor Rev 2015; 26:687-95. [PMID: 26066416 DOI: 10.1016/j.cytogfr.2015.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Accepted: 04/21/2015] [Indexed: 01/08/2023]
Abstract
This review aims to summarize recent data concerning the structure and role of the members of the vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptor (VEGFR) families in the context of early development, organogenesis and regeneration, with a particular emphasis on the role of these factors in the development of invertebrates. Homologs of VEGF and/or VEGFR have been found in all Eumetazoa, in both Radiata and Bilateria, where they are expressed in the descendants of different germ layers and play a pivotal role in the development of animals with and without a vascular system. VEGF is a well-known angiogenesis regulator, but this factor also control cell migration during neurogenesis and the development of branching organs (the trachea) in invertebrate and vertebrate species. A possible explanation for the origin of Vegf/Vegfr in the animal kingdom and a pathway of Vegf/Vegfr evolution are discussed.
Collapse
Affiliation(s)
- Yulia O Kipryushina
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky Str. 17, 690041 Vladivostok, Russia; Far Eastern Federal University, Sukhanova Str. 8, 690950 Vladivostok, Russia.
| | - Konstantin V Yakovlev
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky Str. 17, 690041 Vladivostok, Russia
| | - Nelly A Odintsova
- Laboratory of Cytotechnology, A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Palchevsky Str. 17, 690041 Vladivostok, Russia; Far Eastern Federal University, Sukhanova Str. 8, 690950 Vladivostok, Russia
| |
Collapse
|
28
|
Abstract
The endothelial TIE1 and TIE2 receptor tyrosine kinases form a distinct subfamily characterized by their unique extracellular domains. Together with the angiopoietin growth factors (ANGPT1, ANGPT2, ANGPT4, also abbreviated as ANG), the TIE receptors form an endothelial specific signaling pathway with important functions in the regulation of lymphatic and cardiovascular development and vascular homeostasis. Angiopoietins exist in multimeric forms that activate the TIE receptors via unique mechanism. In endothelial cell–cell contacts, angiopoietins induce the formation of homomeric in trans TIE receptor complexes extending across the cell junctions, whereas matrix-bound angiopoietin-1 (ANG1) activates the TIE receptors in a cis configuration. In comparison to the vascular endothelial growth factor receptors, the TIE receptors undergo little ubiquitin-mediated degradation after activation, whereas TIE2 signaling is negatively regulated by the vascular endothelial protein tyrosine phosphatase, VE-PTP. ANG1 activation of TIE2 supports vascular stabilization, whereas angiopoietin-2 (ANG2), a context-dependent weak TIE2 agonist/antagonist, promotes pathological tumor angiogenesis, vascular permeability, and inflammation. Recently, ANG2 has been found to mediate some of its vascular destabilizing and angiogenic functions via integrin signalling. The circulating levels of ANG2 are increased in cancer, and in several human diseases associated with inflammation and vascular leak, for example, in sepsis. Blocking of ANG2 has emerged as a potential novel therapeutic strategy for these diseases. In addition, preclinical results demonstrate that genetic TIE1 deletion in mice inhibits the vascularization and growth of tumor isografts and protects from atherosclerosis, with little effect on normal vascular homeostasis in adult mice. The ability of the ANG-TIE pathway to control vessel stability and angiogenesis makes it an interesting vascular target for the treatment of the various diseases.
Collapse
|
29
|
Yuasa HJ, Ball HJ. Efficient tryptophan-catabolizing activity is consistently conserved through evolution of TDO enzymes, but not IDO enzymes. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:128-40. [DOI: 10.1002/jez.b.22608] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 10/27/2014] [Indexed: 12/22/2022]
Affiliation(s)
- Hajime J. Yuasa
- Laboratory of Biochemistry; Department of Applied Science; Faculty of Science; National University Corporation Kochi University; Kochi Japan
| | - Helen J. Ball
- Molecular Immunopathology Unit; Discipline of Pathology; School of Medical Sciences; and Bosch Institute; University of Sydney; NSW Australia
| |
Collapse
|
30
|
Cock JM, Collén J. Independent Emergence of Complex Multicellularity in the Brown and Red Algae. EVOLUTIONARY TRANSITIONS TO MULTICELLULAR LIFE 2015. [DOI: 10.1007/978-94-017-9642-2_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
31
|
Norton TS, Fortwendel JR. Control of Ras-mediated signaling in Aspergillus fumigatus. Mycopathologia 2014; 178:325-30. [PMID: 24952717 DOI: 10.1007/s11046-014-9765-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
Pathogenic fungi employ numerous mechanisms to flourish in the stressful environment encountered within their mammalian hosts. Central to this arsenal for filamentous fungi is invasive growth within the host microenvironment, mediated by establishment and maintenance of polarized hyphal morphogenesis. In Aspergillus fumigatus, the RasA signal transduction pathway has emerged as a significant regulator of hyphal morphogenesis and virulence, among other processes. The factors contributing to the regulation of RasA itself are not as thoroughly understood, although proper temporal activation of RasA and spatial localization of RasA to the plasma membrane are known to play major roles. Interference with RasA palmitoylation or prenylation results in mislocalization of RasA and is associated with severe growth deficits. In addition, dysregulation of RasA activation results in severe morphologic aberrancies and growth deficits. This review highlights the relationship between RasA signaling, hyphal morphogenesis, and virulence in A. fumigatus and focuses on potential determinants of spatial and temporal RasA regulation.
Collapse
Affiliation(s)
- Tiffany S Norton
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, 5851 USA Drive North, MSB 2102, Mobile, AL, 36688, USA
| | | |
Collapse
|
32
|
Abstract
The first animals arose more than six hundred million years ago, yet they left little impression in the fossil record. Nonetheless, the cell biology and genome composition of the first animal, the Urmetazoan, can be reconstructed through the study of phylogenetically relevant living organisms. Comparisons among animals and their unicellular and colonial relatives reveal that the Urmetazoan likely possessed a layer of epithelium-like collar cells, preyed on bacteria, reproduced by sperm and egg, and developed through cell division, cell differentiation, and invagination. Although many genes involved in development, body patterning, immunity, and cell-type specification evolved in the animal stem lineage or after animal origins, several gene families critical for cell adhesion, signaling, and gene regulation predate the origin of animals. The ancestral functions of these and other genes may eventually be revealed through studies of gene and genome function in early-branching animals and their closest non-animal relatives.
Collapse
Affiliation(s)
- Daniel J Richter
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, California 94720-3200; ,
| | | |
Collapse
|
33
|
Cao L, Chen F, Yang X, Xu W, Xie J, Yu L. Phylogenetic analysis of CDK and cyclin proteins in premetazoan lineages. BMC Evol Biol 2014; 14:10. [PMID: 24433236 PMCID: PMC3923393 DOI: 10.1186/1471-2148-14-10] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 01/02/2014] [Indexed: 12/21/2022] Open
Abstract
Background The molecular history of animal evolution from single-celled ancestors remains a major question in biology, and little is known regarding the evolution of cell cycle regulation during animal emergence. In this study, we conducted a comprehensive evolutionary analysis of CDK and cyclin proteins in metazoans and their unicellular relatives. Results Our analysis divided the CDK family into eight subfamilies. Seven subfamilies (CDK1/2/3, CDK5, CDK7, CDK 20, CDK8/19, CDK9, and CDK10/11) are conserved in metazoans and fungi, with the remaining subfamily, CDK4/6, found only in eumetazoans. With respect to cyclins, cyclin C, H, L, Y subfamilies, and cyclin K and T as a whole subfamily, are generally conserved in animal, fungi, and amoeba Dictyostelium discoideum. In contrast, cyclin subfamilies B, A, E, and D, which are cell cycle-related, have distinct evolutionary histories. The cyclin B subfamily is generally conserved in D. discoideum, fungi, and animals, whereas cyclin A and E subfamilies are both present in animals and their unicellular relatives such as choanoflagellate Monosiga brevicollis and filasterean Capsaspora owczarzaki, but are absent in fungi and D. discoideum. Although absent in fungi and D. discoideum, cyclin D subfamily orthologs can be found in the early-emerging, non-opisthokont apusozoan Thecamonas trahens. Within opisthokonta, the cyclin D subfamily is conserved only in eumetazoans, and is absent in fungi, choanoflagellates, and the basal metazoan Amphimedon queenslandica. Conclusions Our data indicate that the CDK4/6 subfamily and eumetazoans emerged simultaneously, with the evolutionary conservation of the cyclin D subfamily also tightly linked with eumetazoan appearance. Establishment of the CDK4/6-cyclin D complex may have been the key step in the evolution of cell cycle control during eumetazoan emergence.
Collapse
Affiliation(s)
- Lihuan Cao
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai 200433, PR China.
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
Inteins are auto-processing domains found in organisms from all domains of life. These proteins carry out a process known as protein splicing, which is a multi-step biochemical reaction comprised of both the cleavage and formation of peptide bonds. While the endogenous substrates of protein splicing are specific essential proteins found in intein-containing host organisms, inteins are also functional in exogenous contexts and can be used to chemically manipulate virtually any polypeptide backbone. Given this, protein chemists have exploited various facets of intein reactivity to modify proteins in myriad ways for both basic biological research as well as potential therapeutic applications. Here, we review the intein field, first focusing on the biological context and phylogenetic diversity of inteins, followed by a description of intein structure and biochemical function. Finally, we discuss prevalent inteinbased technologies, focusing on their applications in chemical biology, followed by persistent caveats of intein chemistry and approaches to alleviate these shortcomings. The findings summarized herein describe two and a half decades of research, leading from a biochemical curiosity to the development of powerful protein engineering tools.
Collapse
Affiliation(s)
- Neel H Shah
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, NJ 08544, United States
| | - Tom W Muir
- Department of Chemistry, Princeton University, Frick Laboratory, Princeton, NJ 08544, United States
| |
Collapse
|
35
|
Ryan JF, Pang K, Schnitzler CE, Nguyen AD, Moreland RT, Simmons DK, Koch BJ, Francis WR, Havlak P, NISC Comparative Sequencing Program, Smith SA, Putnam NH, Haddock SHD, Dunn CW, Wolfsberg TG, Mullikin JC, Martindale MQ, Baxevanis AD. The genome of the ctenophore Mnemiopsis leidyi and its implications for cell type evolution. Science 2013; 342:1242592. [PMID: 24337300 PMCID: PMC3920664 DOI: 10.1126/science.1242592] [Citation(s) in RCA: 473] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
An understanding of ctenophore biology is critical for reconstructing events that occurred early in animal evolution. Toward this goal, we have sequenced, assembled, and annotated the genome of the ctenophore Mnemiopsis leidyi. Our phylogenomic analyses of both amino acid positions and gene content suggest that ctenophores rather than sponges are the sister lineage to all other animals. Mnemiopsis lacks many of the genes found in bilaterian mesodermal cell types, suggesting that these cell types evolved independently. The set of neural genes in Mnemiopsis is similar to that of sponges, indicating that sponges may have lost a nervous system. These results present a newly supported view of early animal evolution that accounts for major losses and/or gains of sophisticated cell types, including nerve and muscle cells.
Collapse
Affiliation(s)
- Joseph F. Ryan
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen Norway
| | - Kevin Pang
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen Norway
| | - Christine E. Schnitzler
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anh-Dao Nguyen
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - R. Travis Moreland
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - David K. Simmons
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Bernard J. Koch
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Warren R. Francis
- Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039, USA
| | - Paul Havlak
- Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77098, USA
| | | | - Stephen A. Smith
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Nicholas H. Putnam
- Department of Ecology and Evolutionary Biology, Rice University, Houston, TX 77098, USA
| | | | - Casey W. Dunn
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA
| | - Tyra G. Wolfsberg
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James C. Mullikin
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
- NIH Intramural Sequencing Center, National Human Genome Research Institute, National Institutes of Health, Rockville, MD 20852, USA
| | - Mark Q. Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL 32080, USA
| | - Andreas D. Baxevanis
- Genome Technology Branch, Division of Intramural Research, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
36
|
Akematsu T, Fukuda Y, Attiq R, Pearlman RE. Role of class III phosphatidylinositol 3-kinase during programmed nuclear death of Tetrahymena thermophila. Autophagy 2013; 10:209-25. [PMID: 24280724 PMCID: PMC5396089 DOI: 10.4161/auto.26929] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Programmed nuclear death (PND) in the ciliate protozoan Tetrahymena thermophila is a novel type of autophagy that occurs during conjugation, in which only the parental somatic macronucleus is destined to die and is then eliminated from the progeny cytoplasm. Other coexisting nuclei, however, such as new micro- and macronuclei are unaffected. PND starts with condensation in the nucleus followed by apoptotic DNA fragmentation, lysosomal acidification, and final resorption. Because of the peculiarity in the process and the absence of some ATG genes in this organism, the mechanism of PND has remained unclear. In this study, we focus on the role of class III phosphatidylinositol 3-kinase (PtdIns3K, corresponding to yeast Vps34) in order to identify central regulators of PND. We identified the sole Tetrahymena thermophila ortholog (TtVPS34) to yeast Vps34 and human PIK3C3 (the catalytic subunit of PtdIns3K), through phylogenetic analysis, and generated the gene knockdown mutant for functional analysis. Loss of TtVPS34 activity prevents autophagosome formation on the parental macronucleus, and this nucleus escapes from the lysosomal pathway. In turn, DNA fragmentation and final resorption of the nucleus are drastically impaired. These phenotypes are similar to the situation in the ATG8Δ mutants of Tetrahymena, implying an inextricable link between TtVPS34 and TtATG8s in controlling PND as well as general macroautophagy. On the other hand, TtVPS34 does not appear responsible for the nuclear condensation and does not affect the progeny nuclear development. These results demonstrate that TtVPS34 is critically involved in the nuclear degradation events of PND in autophagosome formation rather than with an involvement in commitment to the death program.
Collapse
Affiliation(s)
| | - Yasuhiro Fukuda
- Department of Biodiversity Science; Division of Biological Resource Science; Graduate School of Agricultural Science; Tohoku University, Oosaki, Japan
| | - Rizwan Attiq
- Department of Biology; York University; Toronto, CA
| | | |
Collapse
|
37
|
Vanderstraete M, Gouignard N, Ahier A, Morel M, Vicogne J, Dissous C. The venus kinase receptor (VKR) family: structure and evolution. BMC Genomics 2013; 14:361. [PMID: 23721482 PMCID: PMC3703292 DOI: 10.1186/1471-2164-14-361] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 05/24/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Receptor tyrosine kinases (RTK) form a family of transmembrane proteins widely conserved in Metazoa, with key functions in cell-to-cell communication and control of multiple cellular processes. A new family of RTK named Venus Kinase Receptor (VKR) has been described in invertebrates. The VKR receptor possesses a Venus Fly Trap (VFT) extracellular module, a bilobate structure that binds small ligands to induce receptor kinase activity. VKR was shown to be highly expressed in the larval stages and gonads of several invertebrates, suggesting that it could have functions in development and/or reproduction. RESULTS Analysis of recent genomic data has allowed us to extend the presence of VKR to five bilaterian phyla (Platyhelminthes, Arthropoda, Annelida, Mollusca, Echinodermata) as well as to the Cnidaria phylum. The presence of NveVKR in the early-branching metazoan Nematostella vectensis suggested that VKR arose before the bilaterian radiation. Phylogenetic and gene structure analyses showed that the 40 receptors identified in 36 animal species grouped monophyletically, and likely evolved from a common ancestor. Multiple alignments of tyrosine kinase (TK) and VFT domains indicated their important level of conservation in all VKRs identified up to date. We showed that VKRs had inducible activity upon binding of extracellular amino-acids and molecular modeling of the VFT domain confirmed the structure of the conserved amino-acid binding site. CONCLUSIONS This study highlights the presence of VKR in a large number of invertebrates, including primitive metazoans like cnidarians, but also its absence from nematodes and chordates. This little-known RTK family deserves to be further explored in order to determine its evolutionary origin, its possible interest for the emergence and specialization of Metazoa, and to understand its function in invertebrate development and/or reproductive biology.
Collapse
Affiliation(s)
- Mathieu Vanderstraete
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, Institut Pasteur de Lille, 59019 Lille, France
| | | | | | | | | | | |
Collapse
|
38
|
Funayama N. The stem cell system in demosponges: suggested involvement of two types of cells: archeocytes (active stem cells) and choanocytes (food-entrapping flagellated cells). Dev Genes Evol 2013; 223:23-38. [PMID: 23053625 DOI: 10.1007/s00427-012-0417-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 09/16/2012] [Indexed: 10/27/2022]
Abstract
Major questions about stem cell systems include what type(s) of stem cells are involved (unipotent/totipotent/pluripotent/multipotent stem cells) and how the self-renewal and differentiation of stem cells are regulated. Sponges, the sister group of all other animals and probably the earliest branching multicellular lineage of extant animals, are thought to possess totipotent stem cells. This review introduces what is known about the stem cells in sponges based on histological studies and also on recent molecular biological studies that have started to reveal the molecular and cellular mechanisms of the stem cell system in sponges (mainly in demosponges). The currently proposed model of the stem cell system in demosponges is described, and the possible applicability of this model to other classes of sponges is discussed. Finally, a possible scenario of the evolution of stem cells, including how migrating stem cells arose in the urmetazoan (the last common ancestor of metazoans) and the evolutionary origin of germ line cells in the urbilaterian (the last common ancestor of bilaterians), are discussed.
Collapse
Affiliation(s)
- Noriko Funayama
- Laboratory of Molecular Developmental Biology, Department of Biophysics, Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
39
|
Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S, Robertson HM, Begovic E, Richter DJ, Russ C, Westbrook MJ, Manning G, Lang BF, Haas B, Nusbaum C, King N. Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol 2013; 14:R15. [PMID: 23419129 PMCID: PMC4054682 DOI: 10.1186/gb-2013-14-2-r15] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/18/2013] [Indexed: 01/22/2023] Open
Abstract
Background Metazoan multicellularity is rooted in mechanisms of cell adhesion, signaling, and differentiation that first evolved in the progenitors of metazoans. To reconstruct the genome composition of metazoan ancestors, we sequenced the genome and transcriptome of the choanoflagellate Salpingoeca rosetta, a close relative of metazoans that forms rosette-shaped colonies of cells. Results A comparison of the 55 Mb S. rosetta genome with genomes from diverse opisthokonts suggests that the origin of metazoans was preceded by a period of dynamic gene gain and loss. The S. rosetta genome encodes homologs of cell adhesion, neuropeptide, and glycosphingolipid metabolism genes previously found only in metazoans and expands the repertoire of genes inferred to have been present in the progenitors of metazoans and choanoflagellates. Transcriptome analysis revealed that all four S. rosetta septins are upregulated in colonies relative to single cells, suggesting that these conserved cytokinesis proteins may regulate incomplete cytokinesis during colony development. Furthermore, genes shared exclusively by metazoans and choanoflagellates were disproportionately upregulated in colonies and the single cells from which they develop. Conclusions The S. rosetta genome sequence refines the catalog of metazoan-specific genes while also extending the evolutionary history of certain gene families that are central to metazoan biology. Transcriptome data suggest that conserved cytokinesis genes, including septins, may contribute to S. rosetta colony formation and indicate that the initiation of colony development may preferentially draw upon genes shared with metazoans, while later stages of colony maturation are likely regulated by genes unique to S. rosetta.
Collapse
|
40
|
Metazoan-like signaling in a unicellular receptor tyrosine kinase. BMC BIOCHEMISTRY 2013; 14:4. [PMID: 23398683 PMCID: PMC3584944 DOI: 10.1186/1471-2091-14-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 02/04/2013] [Indexed: 12/27/2022]
Abstract
Background Receptor tyrosine kinases (RTKs) are crucial components of signal transduction systems in multicellular animals. Surprisingly, numerous RTKs have been identified in the genomes of unicellular choanoflagellates and other protists. Here, we report the first biochemical study of a unicellular RTK, namely RTKB2 from Monosiga brevicollis. Results We cloned, expressed, and purified the RTKB2 kinase, and showed that it is enzymatically active. The activity of RTKB2 is controlled by autophosphorylation, as in metazoan RTKs. RTKB2 possesses six copies of a unique domain (designated RM2) in its C-terminal tail. An isolated RM2 domain (or a synthetic peptide derived from the RM2 sequence) served as a substrate for RTKB2 kinase. When phosphorylated, the RM2 domain bound to the Src homology 2 domain of MbSrc1 from M. brevicollis. NMR structural studies of the RM2 domain indicated that it is disordered in solution. Conclusions Our results are consistent with a model in which RTKB2 activation stimulates receptor autophosphorylation within the RM2 domains. This leads to recruitment of Src-like kinases (and potentially other M. brevicollis proteins) and further phosphorylation, which may serve to increase or dampen downstream signals. Thus, crucial features of signal transduction circuitry were established prior to the evolution of metazoans from their unicellular ancestors.
Collapse
|
41
|
The Evolutionary Origin of Animals and Fungi. SOCIAL AND ECOLOGICAL INTERACTIONS IN THE GALAPAGOS ISLANDS 2013. [DOI: 10.1007/978-1-4614-6732-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
42
|
Liu BA, Nash PD. Evolution of SH2 domains and phosphotyrosine signalling networks. Philos Trans R Soc Lond B Biol Sci 2012; 367:2556-73. [PMID: 22889907 DOI: 10.1098/rstb.2012.0107] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Src homology 2 (SH2) domains mediate selective protein-protein interactions with tyrosine phosphorylated proteins, and in doing so define specificity of phosphotyrosine (pTyr) signalling networks. SH2 domains and protein-tyrosine phosphatases expand alongside protein-tyrosine kinases (PTKs) to coordinate cellular and organismal complexity in the evolution of the unikont branch of the eukaryotes. Examination of conserved families of PTKs and SH2 domain proteins provides fiduciary marks that trace the evolutionary landscape for the development of complex cellular systems in the proto-metazoan and metazoan lineages. The evolutionary provenance of conserved SH2 and PTK families reveals the mechanisms by which diversity is achieved through adaptations in tissue-specific gene transcription, altered ligand binding, insertions of linear motifs and the gain or loss of domains following gene duplication. We discuss mechanisms by which pTyr-mediated signalling networks evolve through the development of novel and expanded families of SH2 domain proteins and the elaboration of connections between pTyr-signalling proteins. These changes underlie the variety of general and specific signalling networks that give rise to tissue-specific functions and increasingly complex developmental programmes. Examination of SH2 domains from an evolutionary perspective provides insight into the process by which evolutionary expansion and modification of molecular protein interaction domain proteins permits the development of novel protein-interaction networks and accommodates adaptation of signalling networks.
Collapse
Affiliation(s)
- Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | | |
Collapse
|
43
|
Wylezich C, Karpov SA, Mylnikov AP, Anderson R, Jürgens K. Ecologically relevant choanoflagellates collected from hypoxic water masses of the Baltic Sea have untypical mitochondrial cristae. BMC Microbiol 2012; 12:271. [PMID: 23171165 PMCID: PMC3579758 DOI: 10.1186/1471-2180-12-271] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 11/08/2012] [Indexed: 11/17/2022] Open
Abstract
Background Protist communities inhabiting oxygen depleted waters have so far been characterized through both microscopical observations and sequence based techniques. However, the lack of cultures for abundant taxa severely hampers our knowledge on the morphology, ecology and energy metabolism of hypoxic protists. Cultivation of such protists has been unsuccessful in most cases, and has never yet succeeded for choanoflagellates, even though these small bacterivorous flagellates are known to be ecologically relevant components of aquatic protist communities. Results Quantitative data for choanoflagellates and the vertical distribution of Codosiga spp. at Gotland and Landsort Deep (Baltic Sea) indicate its preference for oxygen-depleted zones. Strains isolated and cultivated from these habitats revealed ultrastructural peculiarities such as mitochondria showing tubular cristae never seen before for choanoflagellates, and the first observation of intracellular prokaryotes in choanoflagellates. Analysis of their partial 28S rRNA gene sequence complements the description of two new species, Codosiga minima n. sp. and C. balthica n. sp. These are closely related with but well separated from C. gracilis (C. balthica and C. minima p-distance to C. gracilis 4.8% and 11.6%, respectively). In phylogenetic analyses the 18S rRNA gene sequences branch off together with environmental sequences from hypoxic habitats resulting in a wide cluster of hypoxic Codosiga relatives so far only known from environmental sequencing approaches. Conclusions Here, we establish the morphological and ultrastructural identity of an environmental choanoflagellate lineage. Data from microscopical observations, supplemented by findings from previous culture-independent methods, indicate that C. balthica is likely an ecologically relevant player of Baltic Sea hypoxic waters. The possession of derived mitochondria could be an adaptation to life in hypoxic environments periodically influenced by small-scale mixing events and changing oxygen content allowing the reduction of oxygen consuming components. In view of the intricacy of isolating and cultivating choanoflagellates, the two new cultured species represent an important advance to the understanding of the ecology of this group, and mechanisms of adaptations to hypoxia in protists in general.
Collapse
Affiliation(s)
- Claudia Wylezich
- IOW-Leibniz Institute for Baltic Sea Research Warnemünde, Rostock, Germany.
| | | | | | | | | |
Collapse
|
44
|
Abstract
Proteomic studies of the composition of mammalian synapses have revealed a high degree of complexity. The postsynaptic and presynaptic terminals are molecular systems with highly organized protein networks producing emergent physiological and behavioral properties. The major classes of synapse proteins and their respective functions in intercellular communication and adaptive responses evolved in prokaryotes and eukaryotes prior to the origins of neurons in metazoa. In eukaryotes, the organization of individual proteins into multiprotein complexes comprising scaffold proteins, receptors, and signaling enzymes formed the precursor to the core adaptive machinery of the metazoan postsynaptic terminal. Multiplicative increases in the complexity of this protosynapse machinery secondary to genome duplications drove synaptic, neuronal, and behavioral novelty in vertebrates. Natural selection has constrained diversification in mammalian postsynaptic mechanisms and the repertoire of adaptive and innate behaviors. The evolution and organization of synapse proteomes underlie the origins and complexity of nervous systems and behavior.
Collapse
Affiliation(s)
- Richard D Emes
- School of Veterinary Medicine and Science, University of Nottingham, Leicestershire LE12 5RD, United Kingdom.
| | | |
Collapse
|
45
|
Alegado RA, Brown LW, Cao S, Dermenjian RK, Zuzow R, Fairclough SR, Clardy J, King N. A bacterial sulfonolipid triggers multicellular development in the closest living relatives of animals. eLife 2012; 1:e00013. [PMID: 23066504 PMCID: PMC3463246 DOI: 10.7554/elife.00013] [Citation(s) in RCA: 167] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 07/18/2012] [Indexed: 12/15/2022] Open
Abstract
Bacterially-produced small molecules exert profound influences on animal health, morphogenesis, and evolution through poorly understood mechanisms. In one of the closest living relatives of animals, the choanoflagellate Salpingoeca rosetta, we find that rosette colony development is induced by the prey bacterium Algoriphagus machipongonensis and its close relatives in the Bacteroidetes phylum. Here we show that a rosette inducing factor (RIF-1) produced by A. machipongonensis belongs to the small class of sulfonolipids, obscure relatives of the better known sphingolipids that play important roles in signal transmission in plants, animals, and fungi. RIF-1 has extraordinary potency (femtomolar, or 10(-15) M) and S. rosetta can respond to it over a broad dynamic range-nine orders of magnitude. This study provides a prototypical example of bacterial sulfonolipids triggering eukaryotic morphogenesis and suggests molecular mechanisms through which bacteria may have contributed to the evolution of animals.DOI:http://dx.doi.org/10.7554/eLife.00013.001.
Collapse
Affiliation(s)
- Rosanna A Alegado
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Laura W Brown
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Shugeng Cao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Renee K Dermenjian
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Richard Zuzow
- Department of Biochemistry, Stanford University School of Medicine, Stanford, United States
| | - Stephen R Fairclough
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Nicole King
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
46
|
Tucker RP. Horizontal gene transfer in choanoflagellates. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2012; 320:1-9. [PMID: 22997182 DOI: 10.1002/jez.b.22480] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 05/25/2012] [Accepted: 08/20/2012] [Indexed: 01/09/2023]
Abstract
Horizontal gene transfer (HGT), also known as lateral gene transfer, results in the rapid acquisition of genes from another organism. HGT has long been known to be a driving force in speciation in prokaryotes, and there is evidence for HGT from symbiotic and infectious bacteria to metazoans, as well as from protists to bacteria. Recently, it has become clear that as many as a 1,000 genes in the genome of the choanoflagellate Monosiga brevicollis may have been acquired by HGT. Interestingly, these genes reportedly come from algae, bacteria, and other choanoflagellate prey. Some of these genes appear to have allowed an ancestral choanoflagellate to exploit nutrient-poor environments and were not passed on to metazoan descendents. However, some of these genes are also found in animal genomes, suggesting that HGT into a common ancestor of choanozoans and animals may have contributed to metazoan evolution.
Collapse
Affiliation(s)
- Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, Davis, California 95616, USA.
| |
Collapse
|
47
|
Abstract
In this essay I describe my personal journey from reductionist to systems cell biology and describe how this in turn led to a 3-year sea voyage to explore complex ocean communities. In describing this journey, I hope to convey some important principles that I gleaned along the way. I realized that cellular functions emerge from multiple molecular interactions and that new approaches borrowed from statistical physics are required to understand the emergence of such complex systems. Then I wondered how such interaction networks developed during evolution. Because life first evolved in the oceans, it became a natural thing to start looking at the small organisms that compose the plankton in the world's oceans, of which 98% are … individual cells—hence the Tara Oceans voyage, which finished on 31 March 2012 in Lorient, France, after a 60,000-mile around-the-world journey that collected more than 30,000 samples from 153 sampling stations.
Collapse
Affiliation(s)
- Eric Karsenti
- European Molecular Biology Laboratory, D69117 Heidelberg, Germany.
| |
Collapse
|
48
|
Abstract
During development and tissue homeostasis, patterns of cellular organization, proliferation and movement are highly choreographed. Receptor tyrosine kinases (RTKs) have a crucial role in establishing these patterns. Individual cells and tissues exhibit tight spatial control of the RTKs that they express, enabling tissue morphogenesis and function, while preventing unwarranted cell division and migration that can contribute to tumorigenesis. Indeed, RTKs are deregulated in most human cancers and are a major focus of targeted therapeutics. A growing appreciation of the essential role of spatial RTK regulation during development prompts the realization that spatial deregulation of RTKs is likely to contribute broadly to cancer development and may affect the sensitivity and resistance of cancer to pharmacological RTK inhibitors.
Collapse
Affiliation(s)
- Jessica B. Casaletto
- MGH Center for Cancer Research and Harvard Medical School Department of Pathology, 149 13th Street Charlestown, MA 02129 United States
| | - Andrea I. McClatchey
- MGH Center for Cancer Research and Harvard Medical School Department of Pathology, 149 13th Street Charlestown, MA 02129 United States
- To whom correspondence should be addressed:
| |
Collapse
|
49
|
Suga H, Dacre M, de Mendoza A, Shalchian-Tabrizi K, Manning G, Ruiz-Trillo I. Genomic survey of premetazoans shows deep conservation of cytoplasmic tyrosine kinases and multiple radiations of receptor tyrosine kinases. Sci Signal 2012; 5:ra35. [PMID: 22550341 DOI: 10.1126/scisignal.2002733] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evolution of multicellular metazoans from a unicellular ancestor is one of the most important advances in the history of life. Protein tyrosine kinases play important roles in cell-to-cell communication, cell adhesion, and differentiation in metazoans; thus, elucidating their origins and early evolution is crucial for understanding the origin of metazoans. Although tyrosine kinases exist in choanoflagellates, few data are available about their existence in other premetazoan lineages. To unravel the origin of tyrosine kinases, we performed a genomic and polymerase chain reaction (PCR)-based survey of the genes that encode tyrosine kinases in the two described filasterean species, Capsaspora owczarzaki and Ministeria vibrans, the closest relatives to the Metazoa and Choanoflagellata clades. We present 103 tyrosine kinase-encoding genes identified in the whole genome sequence of C. owczarzaki and 15 tyrosine kinase-encoding genes cloned by PCR from M. vibrans. Through detailed phylogenetic analysis, comparison of the organizations of the protein domains, and resequencing and revision of tyrosine kinase sequences previously found in some whole genome sequences, we demonstrate that the basic repertoire of metazoan cytoplasmic tyrosine kinases was established before the divergence of filastereans from the Metazoa and Choanoflagellata clades. In contrast, the receptor tyrosine kinases diversified extensively in each of the filasterean, choanoflagellate, and metazoan clades. This difference in the divergence patterns between cytoplasmic tyrosine kinases and receptor tyrosine kinases suggests that receptor tyrosine kinases that had been used for receiving environmental cues were subsequently recruited as a communication tool between cells at the onset of metazoan multicellularity.
Collapse
Affiliation(s)
- Hiroshi Suga
- Institut de Biologia Evolutiva (UPF-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
50
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 234] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|