1
|
Kong X, Tan S, Guan M, Lin X, Shen J, Shi W, Wang D. Nanocarrier-mediated transdermal delivery of Lmidgf4 dsRNA expedites biological control of locusts by Beauveria bassiana. J Nanobiotechnology 2025; 23:272. [PMID: 40186278 PMCID: PMC11969711 DOI: 10.1186/s12951-025-03347-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025] Open
Abstract
Locusts have been a major global agricultural pest that poses a serious threat to crop and livestock production. Entomopathogenic fungi (EPF) provide an eco-friendly control method; however, their efficacy usually takes slow and is unstable. To achieve an enhancement of the biocontrol efficacy of Beauveria bassiana (B. bassiana) against locusts, we developed a new strategy by which B. bassiana and nanocarrier-mediated dsRNA are co-applied across the locust cuticle. The nanocarrier star polycation (SPc) effectively delivers Lmidgf4 dsRNA (dsLmidgf4) into the locust, which targets Locusta migratoria imaginal disc growth factor 4 (Lmidgf4). SPc protects dsLmidgf4 from degradation by the hemolymph and enables efficient gene silencing. Furthermore, SPc has no adverse effects on B. bassiana spore germination and growth. Lmidgf4 interference leads to a thinner layer of endocuticle, thus facilitates infection of B. bassiana, and finally reduces the median lethal time of locusts infected with B. bassiana. In conclusion, the combination of B. bassiana and dsRNA/SPc complex overcomes the slow action of fungi, providing a novel strategy for field control of locusts.
Collapse
Affiliation(s)
- Xue Kong
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shuqian Tan
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Mei Guan
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiaoxin Lin
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jie Shen
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Wangpeng Shi
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Wang
- State Key Laboratory of Agricultural and Forestry Biosecurity, MARA Key Lab of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
2
|
Xia J, Peng R, Fei S, Awais MM, Lai W, Huang Y, Wu H, Yu Y, Liang L, Swevers L, Sun J, Feng M. Systematic analysis of innate immune-related genes in the silkworm: Application to antiviral research. INSECT SCIENCE 2025; 32:151-171. [PMID: 38571329 DOI: 10.1111/1744-7917.13363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The silkworm, a crucial model organism of the Lepidoptera, offers an excellent platform for investigating the molecular mechanisms underlying the innate immune response of insects toward pathogens. Over the years, researchers worldwide have identified numerous immune-related genes in silkworms. However, these identified silkworm immune genes are not well classified and not well known to the scientific community. With the availability of the latest genome data of silkworms and the extensive research on silkworm immunity, it has become imperative to systematically categorize the immune genes of silkworms with different database IDs. In this study, we present a meticulous organization of prevalent immune-related genes in the domestic silkworm, using the SilkDB 3.0 database as a reliable source for updated gene information. Furthermore, utilizing the available data, we classify the collected immune genes into distinct categories: pattern recognition receptors, classical immune pathways, effector genes and others. In-depth data analysis has enabled us to predict some potential antiviral genes. Subsequently, we performed antiviral experiments on selected genes, exploring their impact on Bombyx mori nucleopolyhedrovirus replication. The outcomes of this research furnish novel insights into the immune genes of the silkworm, consequently fostering advancements in the field of silkworm immunity research by establishing a comprehensive classification and functional understanding of immune-related genes in the silkworm. This study contributes to the broader understanding of insect immune responses and opens up new avenues for future investigations in the domain of host-pathogen interactions.
Collapse
Affiliation(s)
- Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Ruoxuan Peng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Mian Muhammad Awais
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Wenxuan Lai
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yigui Huang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Hailin Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yue Yu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Lingying Liang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, National Center for Scientific Research Demokritos, Institute of Biosciences and Applications, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
3
|
Tang T, Sun S, Wang R, Li M, Wang Y, Li F, Wang Y, Liu F. MdSVWC1, a new pattern recognition receptor triggers multiple defense mechanisms against invading bacteria in Musca domestica. BMC Biol 2024; 22:242. [PMID: 39443921 PMCID: PMC11515477 DOI: 10.1186/s12915-024-02042-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Single-domain von Willebrand factor type C (SVWC) constitute a protein family predominantly identified in arthropods, characterized by a SVWC domain and involved in diverse physiological processes such as host defense, stress resistance, and nutrient metabolism. Nevertheless, the physiological mechanisms underlying these functions remain inadequately comprehended. RESULTS A massive expansion of the SVWC gene family in Musca domestica (MdSVWC) was discovered, with a count of 35. MdSVWC1 was selected as the representative of the SVWC family for functional analysis, which led to the identification of the immune function of MdSVWC1 as a novel pattern recognition receptor. MdSVWC1 is highly expressed in both the fat body and intestines and displays acute induction upon bacterial infection. Recombinant MdSVWC1 binds to surfaces of both bacteria and yeast through the recognition of multiple pathogen-associated molecular patterns and exhibits Ca2+-dependent agglutination activity. MdSVWC1 mutant flies exhibited elevated mortality and hindered bacterial elimination following bacterial infection as a result of reduced hemocyte phagocytic capability and weakened expression of antimicrobial peptide (AMP) genes. In contrast, administration of recombinant MdSVWC1 provided protection to flies from bacterial challenges by promoting phagocytosis and AMP genes expression, thereby preventing bacterial colonization. MdSPN16, a serine protease inhibitor, was identified as a target protein of MdSVWC1. It was postulated that the interaction of MdSVWC1 with MdSPN16 would result in the activation of an extracellular proteolytic cascade, which would then initiate the Toll signaling pathway and facilitate the expression of AMP genes. CONCLUSIONS MdSVWC1 displays activity as a soluble pattern recognition receptor that regulates cellular and humoral immunity by recognizing microbial components and facilitating host defense.
Collapse
Affiliation(s)
- Ting Tang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China
| | - Siyu Sun
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Ruirui Wang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Mengnan Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yongpeng Wang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Feifei Li
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Yun Wang
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China
| | - Fengsong Liu
- The Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding, 071002, China.
- Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding, 071002, China.
| |
Collapse
|
4
|
Fioriti F, Rifflet A, Gomperts Boneca I, Zugasti O, Royet J. Bacterial peptidoglycan serves as a critical modulator of the gut-immune-brain axis in Drosophila. Brain Behav Immun 2024; 119:878-897. [PMID: 38710338 DOI: 10.1016/j.bbi.2024.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024] Open
Abstract
Metabolites and compounds derived from gut-associated bacteria can modulate numerous physiological processes in the host, including immunity and behavior. Using a model of oral bacterial infection, we previously demonstrated that gut-derived peptidoglycan (PGN), an essential constituent of the bacterial cell envelope, influences female fruit fly egg-laying behavior by activating the NF-κB cascade in a subset of brain neurons. These findings underscore PGN as a potential mediator of communication between gut bacteria and the brain in Drosophila, prompting further investigation into its impact on all brain cells. Through high-resolution mass spectrometry, we now show that PGN fragments produced by gut bacteria can rapidly reach the central nervous system. In Addition, by employing a combination of whole-genome transcriptome analyses, comprehensive genetic assays, and reporter gene systems, we reveal that gut bacterial infection triggers a PGN dose-dependent NF-κB immune response in perineurial glia, forming the continuous outer cell layer of the blood-brain barrier. Furthermore, we demonstrate that persistent PGN-dependent NF-κB activation in perineurial glial cells correlates with a reduction in lifespan and early neurological decline. Overall, our findings establish gut-derived PGN as a critical mediator of the gut-immune-brain axis in Drosophila.
Collapse
Affiliation(s)
- Florent Fioriti
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS UMR 7288 Marseille, France
| | - Aline Rifflet
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, 75015 Paris, France
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, INSERM U1306, 75015 Paris, France
| | - Olivier Zugasti
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS UMR 7288 Marseille, France.
| | - Julien Royet
- Institut de Biologie du Développement de Marseille, Aix-Marseille Université, CNRS UMR 7288 Marseille, France.
| |
Collapse
|
5
|
Paliwal D, Rabiey M, Mauchline TH, Hassani-Pak K, Nauen R, Wagstaff C, Andrews S, Bass C, Jackson RW. Multiple toxins and a protease contribute to the aphid-killing ability of Pseudomonas fluorescens PpR24. Environ Microbiol 2024; 26:e16604. [PMID: 38561900 DOI: 10.1111/1462-2920.16604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024]
Abstract
Aphids are globally important pests causing damage to a broad range of crops. Due to insecticide resistance, there is an urgent need to develop alternative control strategies. In our previous work, we found Pseudomonas fluorescens PpR24 can orally infect and kill the insecticide-resistant green-peach aphid (Myzus persicae). However, the genetic basis of the insecticidal capability of PpR24 remains unclear. Genome sequencing of PpR24 confirmed the presence of various insecticidal toxins such as Tc (toxin complexes), Rhs (rearrangement hotspot) elements, and other insect-killing proteases. Upon aphids infection with PpR24, RNA-Seq analysis revealed 193 aphid genes were differentially expressed with down-regulation of 16 detoxification genes. In addition, 1325 PpR24 genes (542 were upregulated and 783 downregulated) were subject to differential expression, including genes responsible for secondary metabolite biosynthesis, the iron-restriction response, oxidative stress resistance, and virulence factors. Single and double deletion of candidate virulence genes encoding a secreted protease (AprX) and four toxin components (two TcA-like; one TcB-like; one TcC-like insecticidal toxins) showed that all five genes contribute significantly to aphid killing, particularly AprX. This comprehensive host-pathogen transcriptomic analysis provides novel insight into the molecular basis of bacteria-mediated aphid mortality and the potential of PpR24 as an effective biocontrol agent.
Collapse
Affiliation(s)
- Deepa Paliwal
- School of Biological Sciences, University of Reading, Reading, UK
| | - Mojgan Rabiey
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Tim H Mauchline
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, UK
| | | | | | - Carol Wagstaff
- School of Chemistry, Food and Pharmacy, University of Reading, Reading, UK
| | - Simon Andrews
- School of Biological Sciences, University of Reading, Reading, UK
| | | | - Robert W Jackson
- School of Biological Sciences, University of Reading, Reading, UK
- School of Biosciences and Birmingham Institute of Forest Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Lu M, Wei D, Shang J, Li S, Song S, Luo Y, Tang G, Wang C. Suppression of Drosophila antifungal immunity by a parasite effector via blocking GNBP3 and GNBP-like 3, the dual receptors for β-glucans. Cell Rep 2024; 43:113642. [PMID: 38175756 DOI: 10.1016/j.celrep.2023.113642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
The tactics used by animal pathogens to combat host immunity are largely unclear. Here, we report the depiction of the virulence-required effector Tge1 deployed by the entomopathogen Metarhizium robertsii to suppress Drosophila antifungal immunity. Tge1 can target both GNBP3 and GNBP-like 3 (GL3), and the latter can bind to β-glucans like GNBP3, whereas the glucan binding by both receptors can be attenuated by Tge1. As opposed to the surveillance GNBP3, GL3 is inducible in Drosophila depending on the Toll pathway via a positive feedback loop mechanism. Losses of GNBP3 and GL3 genes result in the deregulations of protease cascade, Spätzle maturation, and antimicrobial gene expressions in Drosophila upon fungal challenges. Fly survival assays confirm that GL3 plays a more essential role than GNBP3 in combating fungal infections. In addition to evidencing the gene-for-gene interactions between fungi and insects, our data advance insights into Drosophila antifungal immunity.
Collapse
Affiliation(s)
- Mengting Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Dongxiang Wei
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junmei Shang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Shiqin Li
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuangxiu Song
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yujuan Luo
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guirong Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
7
|
Adegoke A, Ribeiro JMC, Smith R, Karim S. Tick innate immune responses to hematophagy and Ehrlichia infection at single-cell resolution. Front Immunol 2024; 14:1305976. [PMID: 38274813 PMCID: PMC10808623 DOI: 10.3389/fimmu.2023.1305976] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/22/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction Ticks rely on robust cellular and humoral responses to control microbial infection. However, several aspects of the tick's innate immune system remain uncharacterized, most notably that of the immune cells (called hemocytes), which are known to play a significant role in cellular and humoral responses. Despite the importance of hemocytes in regulating microbial infection, our understanding of their basic biology and molecular mechanisms remains limited. Therefore, we believe that a more detailed understanding of the role of hemocytes in the interactions between ticks and tick-borne microbes is crucial to illuminating their function in vector competence and to help identify novel targets for developing new strategies to block tick-borne pathogen transmission. Methods This study examined hemocytes from the lone star tick (Amblyomma americanum) at the transcriptomic level using the 10X genomics single-cell RNA sequencing platform to analyze hemocyte populations from unfed, partially blood-fed, and Ehrlichia chaffeensis-infected ticks. The functional role of differentially expressed hemocyte markers in hemocyte proliferation and Ehrlichia dissemination was determined using an RNA interference approach. Results and discussion Our data exhibit the identification of fourteen distinct hemocyte populations. Our results uncover seven distinct lineages present in uninfected and Ehrlichia-infected hemocyte clusters. The functional characterization of hemocytin, cystatin, fibronectin, and lipocalin demonstrate their role in hemocyte population changes, proliferation, and Ehrlichia dissemination. Conclusion Our results uncover the tick immune responses to Ehrlichia infection and hematophagy at a single-cell resolution. This work opens a new field of tick innate immunobiology to understand the role of hemocytes, particularly in response to prolonged blood-feeding (hematophagy), and tick-microbial interactions.
Collapse
Affiliation(s)
- Abdulsalam Adegoke
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| | - Jose M. C. Ribeiro
- Vector Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Ryan C. Smith
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, United States
| | - Shahid Karim
- School of Biological, Environmental, and Earth Sciences, The University of Southern Mississippi, Hattiesburg, MS, United States
| |
Collapse
|
8
|
Li X, Karpac J. A distinct Acyl-CoA binding protein (ACBP6) shapes tissue plasticity during nutrient adaptation in Drosophila. Nat Commun 2023; 14:7599. [PMID: 37989752 PMCID: PMC10663470 DOI: 10.1038/s41467-023-43362-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 11/08/2023] [Indexed: 11/23/2023] Open
Abstract
Nutrient availability is a major selective force in the evolution of metazoa, and thus plasticity in tissue function and morphology is shaped by adaptive responses to nutrient changes. Utilizing Drosophila, we reveal that distinct calibration of acyl-CoA metabolism, mediated by Acbp6 (Acyl-CoA binding-protein 6), is critical for nutrient-dependent tissue plasticity. Drosophila Acbp6, which arose by evolutionary duplication and binds acyl-CoA to tune acetyl-CoA metabolism, is required for intestinal resizing after nutrient deprivation through activating intestinal stem cell proliferation from quiescence. Disruption of acyl-CoA metabolism by Acbp6 attenuation drives aberrant 'switching' of metabolic networks in intestinal enterocytes during nutrient adaptation, impairing acetyl-CoA metabolism and acetylation amid intestinal resizing. We also identified STAT92e, whose function is influenced by acetyl-CoA levels, as a key regulator of acyl-CoA and nutrient-dependent changes in stem cell activation. These findings define a regulatory mechanism, shaped by acyl-CoA metabolism, that adjusts proliferative homeostasis to coordinately regulate tissue plasticity during nutrient adaptation.
Collapse
Affiliation(s)
- Xiaotong Li
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, USA
| | - Jason Karpac
- Department of Cell Biology and Genetics, Texas A&M University, School of Medicine, Bryan, TX, USA.
| |
Collapse
|
9
|
Chen WW, Zeng WH, Shen DN, Feng SY, Li ZQ. Genome-wide identification of Coptotermes formosanus immune genes and their potential roles in termite control. Gene 2023; 877:147569. [PMID: 37330022 DOI: 10.1016/j.gene.2023.147569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/07/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
In recent years, the use of microbes to control termites has attracted increasing attention. It was found that pathogenic bacteria, nematodes, and fungi effectively control termites under laboratory conditions. However, their effects have not been replicated in the field, and one reason for this is the complex immune defense mechanisms of termites, which are mainly regulated by immune genes. Therefore, altering the expression of immune genes may have a positive influence on the biocontrol efficacy of termites. Coptotermes formosanus Shiraki is one of the most economically important termite pests worldwide. Currently, the large-scale identification of immune genes in C. formosanus is primarily based on cDNA library or transcriptome data rather than at the genomic level. In this study, we identified the immune genes of C. formosanus according to genome-wide analysis. In addition, our transcriptome analysis showed that immune genes were significantly downregulated when C. formosanus was exposed to the fungus Metarhizium anisopliae or nematodes.. Finally, we found that injecting dsRNA to inhibit three immune genes (CfPGRP-SC1, CfSCRB3, and CfHemocytin), which recognize infectious microbes, significantly increased the lethal effect of M. anisopliae on termites. These immune genes show great potential for C. formosanus management based on RNAi. These results also increase the number of known immune genes in C. formosanus which will provide a more comprehensive insight into the molecular basis of immunity in termites.
Collapse
Affiliation(s)
- Wei-Wen Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Wen-Hui Zeng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China
| | - Dan-Ni Shen
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shu-Yi Feng
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Qiang Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, China.
| |
Collapse
|
10
|
Chen D, Lan X, Huang X, Huang J, Zhou X, Miao Z, Ma Y, Goto A, Ji S, Hoffmann JA. Single Cell Analysis of the Fate of Injected Oncogenic RasV12 Cells in Adult Wild Type Drosophila. J Innate Immun 2023; 15:442-467. [PMID: 36996781 PMCID: PMC10066352 DOI: 10.1159/000529096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/09/2023] [Indexed: 04/01/2023] Open
Abstract
We have injected dish-cultured oncogenic RasV12 cells into adult male flies and analyzed by single cell transcriptomics their destiny within the host after 11 days. We identified in the preinjection samples and in the 11-day postinjection samples in all 16 clusters of cells, of which 5 disappeared during the experiment in the host. The other cell clusters expanded and expressed genes involved in the regulation of cell cycle, metabolism, and development. In addition, three clusters expressed genes related to inflammation and defense. Predominant among these were genes coding for phagocytosis and/or characteristic for plasmatocytes (the fly equivalent of macrophages). A pilot experiment indicated that the injection into flies of oncogenic cells, in which two of most strongly expressed genes had been previously silenced by RNA interference, into flies resulted in a dramatic reduction of their proliferation in the host flies as compared to controls. As we have shown earlier, the proliferation of the injected oncogenic cells in the adult flies is a hallmark of the disease and induces a wave of transcriptions in the experimental flies. We hypothesize that this results from a bitter dialogue between the injected cells and the host, while the experiments presented here should contribute to deciphering this dialogue.
Collapse
Affiliation(s)
- Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiao Lan
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiaoming Huang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Jieqing Huang
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Zhou
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Zhichao Miao
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
- Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology, Shanghai Fourth People’s Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
| | - Yuting Ma
- Institute of Systems Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Suzhou Institute of Systems Medicine, Suzhou, China
| | - Akira Goto
- Université de Strasbourg and CNRS, Insect Models of Innate Immunity (M3I; UPR9022), Strasbourg, France
| | - Shanming Ji
- Université de Strasbourg and CNRS, Insect Models of Innate Immunity (M3I; UPR9022), Strasbourg, France
| | - Jules A. Hoffmann
- Sino-French Hoffmann Institute, School of Basic Medical Science, State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg and CNRS, Insect Models of Innate Immunity (M3I; UPR9022), Strasbourg, France
- University of Strasbourg Institute for Advanced Study, Strasbourg, France
| |
Collapse
|
11
|
Huang J, Lou Y, Liu J, Bulet P, Cai C, Ma K, Jiao R, Hoffmann JA, Liégeois S, Li Z, Ferrandon D. A Toll pathway effector protects Drosophila specifically from distinct toxins secreted by a fungus or a bacterium. Proc Natl Acad Sci U S A 2023; 120:e2205140120. [PMID: 36917667 PMCID: PMC10041126 DOI: 10.1073/pnas.2205140120] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 01/09/2023] [Indexed: 03/16/2023] Open
Abstract
The Drosophila systemic immune response against many Gram-positive bacteria and fungi is mediated by the Toll pathway. How Toll-regulated effectors actually fulfill this role remains poorly understood as the known Toll-regulated antimicrobial peptide (AMP) genes are active only against filamentous fungi and not against Gram-positive bacteria or yeasts. Besides AMPs, two families of peptides secreted in response to infectious stimuli that activate the Toll pathway have been identified, namely Bomanins and peptides derived from a polyprotein precursor known as Baramicin A (BaraA). Unexpectedly, the deletion of a cluster of 10 Bomanins phenocopies the Toll mutant phenotype of susceptibility to infections. Here, we demonstrate that BaraA is required specifically in the host defense against Enterococcus faecalis and against the entomopathogenic fungus Metarhizium robertsii, albeit the fungal burden is not altered in BaraA mutants. BaraA protects the fly from the action of distinct toxins secreted by these Gram-positive and fungal pathogens, respectively, Enterocin V and Destruxin A. The injection of Destruxin A leads to the rapid paralysis of flies, whether wild type (WT) or mutant. However, a larger fraction of wild-type than BaraA flies recovers from paralysis within 5 to 10 h. BaraAs' function in protecting the host from the deleterious action of Destruxin is required in glial cells, highlighting a resilience role for the Toll pathway in the nervous system against microbial virulence factors. Thus, in complement to the current paradigm, innate immunity can cope effectively with the effects of toxins secreted by pathogens through the secretion of dedicated peptides, independently of xenobiotics detoxification pathways.
Collapse
Affiliation(s)
- Jianqiong Huang
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Yanyan Lou
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Jiyong Liu
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Philippe Bulet
- Université Grenoble Alpes, Institute for Advanced Biosciences, INSERM U1209, CNRS, UMR 5309, 38000Grenoble, France
- Platform BioPark Archamps, 74160Archamps, France
| | - Chuping Cai
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
| | - Kaiyu Ma
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Renjie Jiao
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Jules A. Hoffmann
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
- Université de Strasbourg Institute for Advanced Study, 67000Strasbourg, France
| | - Samuel Liégeois
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
| | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
| | - Dominique Ferrandon
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou511436, China
- Université de Strasbourg, Faculté des Sciences de la Vie, 67000Strasbourg, France
- Modèles Insectes d'Immunité Innée, Unité Propre de Recherche 9022 du CNRS, Institut de Biologie Moléculaire et Cellulaire du CNRS, 67084Strasbourg, France
| |
Collapse
|
12
|
Sustar AE, Strand LG, Zimmerman SG, Berg CA. Imaginal disk growth factors are Drosophila chitinase-like proteins with roles in morphogenesis and CO2 response. Genetics 2023; 223:iyac185. [PMID: 36576887 PMCID: PMC9910413 DOI: 10.1093/genetics/iyac185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 07/18/2022] [Accepted: 11/16/2022] [Indexed: 12/29/2022] Open
Abstract
Chitinase-like proteins (CLPs) are members of the family 18 glycosyl hydrolases, which include chitinases and the enzymatically inactive CLPs. A mutation in the enzyme's catalytic site, conserved in vertebrates and invertebrates, allowed CLPs to evolve independently with functions that do not require chitinase activity. CLPs normally function during inflammatory responses, wound healing, and host defense, but when they persist at excessive levels at sites of chronic inflammation and in tissue-remodeling disorders, they correlate positively with disease progression and poor prognosis. Little is known, however, about their physiological function. Drosophila melanogaster has 6 CLPs, termed Imaginal disk growth factors (Idgfs), encoded by Idgf1, Idgf2, Idgf3, Idgf4, Idgf5, and Idgf6. In this study, we developed tools to facilitate characterization of the physiological roles of the Idgfs by deleting each of the Idgf genes using the CRISPR/Cas9 system and assessing loss-of-function phenotypes. Using null lines, we showed that loss of function for all 6 Idgf proteins significantly lowers viability and fertility. We also showed that Idgfs play roles in epithelial morphogenesis, maintaining proper epithelial architecture and cell shape, regulating E-cadherin and cortical actin, and remarkably, protecting these tissues against CO2 exposure. Defining the normal molecular mechanisms of CLPs is a key to understanding how deviations tip the balance from a physiological to a pathological state.
Collapse
Affiliation(s)
- Anne E Sustar
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Liesl G Strand
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Sandra G Zimmerman
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| | - Celeste A Berg
- Department of Genome Sciences, University of Washington, Foege Bldg. S-250, 3720 15th Ave NE, Seattle, WA 98195-5065, USA
| |
Collapse
|
13
|
Cai Q, Guo H, Fang R, Hua Y, Zhu Y, Zheng X, Yan J, Wang J, Hu Y, Zhang C, Zhang C, Duan R, Kong F, Zhang S, Chen D, Ji S. A Toll-dependent Bre1/Rad6-cact feedback loop in controlling host innate immune response. Cell Rep 2022; 41:111795. [PMID: 36516751 DOI: 10.1016/j.celrep.2022.111795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 12/15/2022] Open
Abstract
The Toll signaling pathway was initially identified for its involvement in the control of early embryogenesis. It was later shown to be also part of a major innate immune pathway controlling the expression of anti-microbial peptides in many eukaryotes including humans; cactus, the essential negative regulator of this pathway in flies, was found to be induced in parallel to the Toll-dependent activation process during immune defenses. We were interested in the mechanisms of this dual effect and provide here evidence that upon pathogenic stimuli, dorsal, one of the transcription factors of the fly Toll pathway, can induce the expression of the E3 ligase Bre1. We further show that Bre1 complexes with the E2 Rad6 to mono-ubiquitinate histone H2B and to promote the transcription of cactus to achieve homeostasis of the Toll immune response. Our studies characterize a Toll signal-dependent regulatory machinery in governing the Toll pathway in Drosophila.
Collapse
Affiliation(s)
- Qingshuang Cai
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Huimin Guo
- Center for Biological Technology, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Rong Fang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yongzhi Hua
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yangyang Zhu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Xianrui Zheng
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou 363000, Fujian, China
| | - Jing Yan
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Jiale Wang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yixuan Hu
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Chuchu Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Chao Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Renjie Duan
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Fanrui Kong
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Shikun Zhang
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, Guangdong, China.
| | - Shanming Ji
- Center for Developmental Biology, School of Life Sciences, Anhui Agricultural University, Hefei 230036, Anhui, China.
| |
Collapse
|
14
|
Infection increases activity via Toll dependent and independent mechanisms in Drosophila melanogaster. PLoS Pathog 2022; 18:e1010826. [PMID: 36129961 PMCID: PMC9529128 DOI: 10.1371/journal.ppat.1010826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/03/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Host behavioural changes are among the most apparent effects of infection. ‘Sickness behaviour’ can involve a variety of symptoms, including anorexia, depression, and changed activity levels. Here, using a real-time tracking and behavioural profiling platform, we show that in Drosophila melanogaster, several systemic bacterial infections cause significant increases in physical activity, and that the extent of this activity increase is a predictor of survival time in some lethal infections. Using multiple bacteria and D. melanogaster immune and activity mutants, we show that increased activity is driven by at least two different mechanisms. Increased activity after infection with Micrococcus luteus, a Gram-positive bacterium rapidly cleared by the immune response, strictly requires the Toll ligand spätzle. In contrast, increased activity after infection with Francisella novicida, a Gram-negative bacterium that cannot be cleared by the immune response, is entirely independent of both Toll and the parallel IMD pathway. The existence of multiple signalling mechanisms by which bacterial infections drive increases in physical activity implies that this effect may be an important aspect of the host response. Sickness behaviours are often observed during infection. Animals have been shown to change their feeding, mating, social and resting (sleeping) behaviours in response to infection. We show here that fruit-flies infected with bacteria respond by increasing their physical activity and decreasing the amount of time spent sleeping. This increase in activity is seen in some, but not all, bacterial infections, and appears to be driven by at least two different mechanisms: with some bacteria, activating the immune response is the only requirement to induce increased activity, while other bacteria induce increased activity independently of known immune detection pathways. The biological role of increased activity is unclear; flies in the wild may be driven to flee sites where infection risk or pathogen burden is high. Alternatively, increased activity could serve a less direct anti-microbial function. For example, active animals may be more likely to encounter potential mates or food resource.
Collapse
|
15
|
Chen K, Wang X, Wei X, Chen J, Wei Y, Jiang H, Lu Z, Feng C. Nitric Oxide-Induced Calcineurin A Mediates Antimicrobial Peptide Production Through the IMD Pathway. Front Immunol 2022; 13:905419. [PMID: 35663981 PMCID: PMC9157438 DOI: 10.3389/fimmu.2022.905419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 04/20/2022] [Indexed: 12/22/2022] Open
Abstract
Nitric oxide (NO) at a high concentration is an effector to kill pathogens during insect immune responses, it also functions as a second messenger at a low concentration to regulate antimicrobial peptide (AMP) production in insects. Drosophila calcineurin subunit CanA1 is a ubiquitous serine/threonine protein phosphatase involved in NO-induced AMP production. However, it is unclear how NO regulates AMP expression. In this study, we used a lepidopteran pest Ostrinia furnacalis and Drosophila S2 cells to investigate how NO signaling affects the AMP production. Bacterial infections upregulated the transcription of nitric oxide synthase 1/2 (NOS1/2), CanA and AMP genes and increased NO concentration in larval hemolymph. Inhibition of NOS or CanA activity reduced the survival of bacteria-infected O. furnacalis. NO donor increased NO level in plasma and upregulated the production of CanA and certain AMPs. In S2 cells, killed Escherichia coli induced NOS transcription and boosted NO production, whereas knockdown of NOS blocked the NO level increase caused by E. coli. As in O. furnacalis larvae, supplementation of the NO donor increased NO level in the culture medium and AMP expression in S2 cells. Suppression of the key pathway genes showed that the IMD (but not Toll) pathway was involved in the upregulation of CecropinA1, Defensin, Diptericin, and Drosomycin by killed E. coli. Knockdown of NOS also reduced the expression of CanA1 and AMPs induced by E. coli, indicative of a role of NO in the AMP expression. Furthermore, CanA1 RNA interference and inhibition of its phosphatase activity significantly reduced NO-induced AMP expression, and knockdown of IMD suppressed NO-induced AMP expression. Together, these results suggest that NO-induced AMP production is mediated by CanA1 via the IMD pathway.
Collapse
Affiliation(s)
- Kangkang Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xinyan Wang
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Xiangyi Wei
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jiaqian Chen
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Youheng Wei
- Department of Biotechnology, College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, China
| | - Haobo Jiang
- Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, OK, United States
| | - Zhiqiang Lu
- Department of Entomology, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Congjing Feng
- Department of Plant Protection, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| |
Collapse
|
16
|
Waring AL, Hill J, Allen BM, Bretz NM, Le N, Kr P, Fuss D, Mortimer NT. Meta-Analysis of Immune Induced Gene Expression Changes in Diverse Drosophila melanogaster Innate Immune Responses. INSECTS 2022; 13:insects13050490. [PMID: 35621824 PMCID: PMC9147463 DOI: 10.3390/insects13050490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 12/05/2022]
Abstract
Simple Summary Organisms can be infected by a wide range of pathogens, including bacteria, viruses, and parasites. Following infection, the host mounts an immune response to attempt to eliminate the pathogen. These responses are often specific to the type of pathogen and mediated by the expression of specialized genes. We have characterized the expression changes induced in host Drosophila fruit flies following infection by multiple types of pathogens, and identified a small number of genes that show expression changes in each infection. This includes genes that are known to be involved in pathogen resistance, and others that have not been previously studied as immune response genes. These findings provide new insight into transcriptional changes that accompany Drosophila immunity. They may suggest possible roles for the differentially expressed genes in innate immune responses to diverse classes of pathogens, and serve to identify candidate genes for further empirical study of these processes. Abstract Organisms are commonly infected by a diverse array of pathogens and mount functionally distinct responses to each of these varied immune challenges. Host immune responses are characterized by the induction of gene expression, however, the extent to which expression changes are shared among responses to distinct pathogens is largely unknown. To examine this, we performed meta-analysis of gene expression data collected from Drosophila melanogaster following infection with a wide array of pathogens. We identified 62 genes that are significantly induced by infection. While many of these infection-induced genes encode known immune response factors, we also identified 21 genes that have not been previously associated with host immunity. Examination of the upstream flanking sequences of the infection-induced genes lead to the identification of two conserved enhancer sites. These sites correspond to conserved binding sites for GATA and nuclear factor κB (NFκB) family transcription factors and are associated with higher levels of transcript induction. We further identified 31 genes with predicted functions in metabolism and organismal development that are significantly downregulated following infection by diverse pathogens. Our study identifies conserved gene expression changes in Drosophila melanogaster following infection with varied pathogens, and transcription factor families that may regulate this immune induction.
Collapse
|
17
|
Meng F, Han H, Wang M, Jiang Y, Pi Z, Qu Y, Liu Z, Cai J. Characterized Gene Repertoires and Functional Gene Reference for Forensic Entomology: Genomic and Developmental Transcriptomic Analysis of Aldrichina grahami (Diptera: Calliphoridae). JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:810-819. [PMID: 35139213 DOI: 10.1093/jme/tjac004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Indexed: 06/14/2023]
Abstract
Many flies of Diptera are common entomological evidence employed in forensic investigation. Exploring the existence of inter- and intra-species genomic differences of forensically relevant insects is of great importance. Aldrichina grahami is a common blow fly species of forensic importance. The present study characterized the gene repertoires of A. grahami, and provides insights into issues related to forensic entomology, such as necrophagous behavior, gene family features, and developmental patterns. Gene families were clustered and classified according to their function in different aspects of the necrophagous lifestyle, generating several gene repertoires. The genes under positive selection pressure and evolutionary changes were screen and identified. Moreover, genes that exhibited potential prediction value in the post mortem interval (PMI) estimation and development of immature stages were subjected to analysis based on the developmental transcriptome. Related insect species were compared at the genomic level to reveal the genes associated with necrophagous behaviors. The expression of selected genes in separated repositories was verified using qPCR. This work was conducted using a high-quality chromosome-level genome assembly of A. grahami and its developmental transcriptome. The findings will facilitate future research on A. grahami and the other forensically important species.
Collapse
Affiliation(s)
- Fanming Meng
- School of Basic Medicine, Central South University, Changsha, China
| | - Han Han
- School of Basic Medicine, Central South University, Changsha, China
| | - Mo Wang
- Key Laboratory for Conserving Wildlife with Small Populations in Yunnan, Faculty of Biodiversity Conservation, Southwest Forestry University, Kunming, China
| | - Yangshuai Jiang
- School of Basic Medicine, Central South University, Changsha, China
| | - Zhiyun Pi
- School of Basic Medicine, Central South University, Changsha, China
| | - Yihong Qu
- School of Basic Medicine, Central South University, Changsha, China
| | - Zhuoying Liu
- School of Basic Medicine, Central South University, Changsha, China
| | - Jifeng Cai
- School of Basic Medicine, Central South University, Changsha, China
| |
Collapse
|
18
|
Yadav RK, Gautam DK, Muj C, Gajula Balija MB, Paddibhatla I. Methotrexate negatively acts on inflammatory responses triggered in Drosophila larva with hyperactive JAK/STAT pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 123:104161. [PMID: 34107277 DOI: 10.1016/j.dci.2021.104161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Drosophila is a valuable paradigm for studying tumorigenesis and cancer. Mutations causing hematopoietic aberrations and melanotic-blood-tumors found in Drosophila mutants are vastly studied. Clear understanding about the blood cells, signaling pathways and the tissues affected during hematopoietic tumor formation provide an opportunity to delineate the effects of cancer therapeutics. Using this simple hematopoietic archetype, we elucidated the effects of the anti-cancer drug, Methotrexate (MTX) on immune responses in two scenarios i.e. against wasp infection and in hematopoietic mutant, hopTum-l. Through this in vivo study we show that MTX impedes the immune responses against wasp infection including the encapsulation response. We further observed that MTX reduces the tumor penetrance in gain-of-function mutants of JAK/STAT pathway, hopTum-l. MTX is anti-inflammatory as it hinders not only the immune responses of acute inflammation as observed after wasp infestation, but also chronic inflammatory responses associated with constitutively activated JAK/STAT pathway mutant (hopTum-l) carrying blood tumors.
Collapse
Affiliation(s)
- Ravi Kant Yadav
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Dushyant Kumar Gautam
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Chukhu Muj
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, Telangana, India
| | - Madhu Babu Gajula Balija
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| | - Indira Paddibhatla
- Department of Biochemistry, University of Hyderabad, Hyderabad, 500046, Telangana, India.
| |
Collapse
|
19
|
Wan B, Belghazi M, Lemauf S, Poirié M, Gatti JL. Proteomics of purified lamellocytes from Drosophila melanogaster HopT um-l identifies new membrane proteins and networks involved in their functions. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2021; 134:103584. [PMID: 34033897 DOI: 10.1016/j.ibmb.2021.103584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/20/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
In healthy Drosophila melanogaster larvae, plasmatocytes and crystal cells account for 95% and 5% of the hemocytes, respectively. A third type of hemocytes, lamellocytes, are rare, but their number increases after oviposition by parasitoid wasps. The lamellocytes form successive layers around the parasitoid egg, leading to its encapsulation and melanization, and finally the death of this intruder. However, the total number of lamellocytes per larva remains quite low even after parasitoid infestation, making direct biochemical studies difficult. Here, we used the HopTum-l mutant strain that constitutively produces large numbers of lamellocytes to set up a purification method and analyzed their major proteins by 2D gel electrophoresis and their plasma membrane surface proteins by 1D SDS-PAGE after affinity purification. Mass spectrometry identified 430 proteins from 2D spots and 344 affinity-purified proteins from 1D bands, for a total of 639 unique proteins. Known lamellocyte markers such as PPO3 and the myospheroid integrin were among the components identified with specific chaperone proteins. Affinity purification detected other integrins, as well as a wide range of integrin-associated proteins involved in the formation and function of cell-cell junctions. Overall, the newly identified proteins indicate that these cells are highly adapted to the encapsulation process (recognition, motility, adhesion, signaling), but may also have several other physiological functions (such as secretion and internalization of vesicles) under different signaling pathways. These results provide the basis for further in vivo and in vitro studies of lamellocytes, including the development of new markers to identify coexisting populations and their respective origins and functions in Drosophila immunity.
Collapse
Affiliation(s)
- Bin Wan
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Maya Belghazi
- Institute of NeuroPhysiopathology (INP), UMR7051, CNRS, Aix-Marseille Université, Marseille, 13015, France
| | - Séverine Lemauf
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Marylène Poirié
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France
| | - Jean-Luc Gatti
- Université Côte d'Azur, INRAE, CNRS, Institute Sophia-Agrobiotech, Sophia Antipolis, France.
| |
Collapse
|
20
|
Microenvironmental innate immune signaling and cell mechanical responses promote tumor growth. Dev Cell 2021; 56:1884-1899.e5. [PMID: 34197724 DOI: 10.1016/j.devcel.2021.06.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 05/01/2021] [Accepted: 06/09/2021] [Indexed: 01/08/2023]
Abstract
Tissue homeostasis is achieved by balancing stem cell maintenance, cell proliferation and differentiation, as well as the purging of damaged cells. Elimination of unfit cells maintains tissue health; however, the underlying mechanisms driving competitive growth when homeostasis fails, for example, during tumorigenesis, remain largely unresolved. Here, using a Drosophila intestinal model, we find that tumor cells outcompete nearby enterocytes (ECs) by influencing cell adhesion and contractility. This process relies on activating the immune-responsive Relish/NF-κB pathway to induce EC delamination and requires a JNK-dependent transcriptional upregulation of the peptidoglycan recognition protein PGRP-LA. Consequently, in organisms with impaired PGRP-LA function, tumor growth is delayed and lifespan extended. Our study identifies a non-cell-autonomous role for a JNK/PGRP-LA/Relish signaling axis in mediating death of neighboring normal cells to facilitate tumor growth. We propose that intestinal tumors "hijack" innate immune signaling to eliminate enterocytes in order to support their own growth.
Collapse
|
21
|
Ozakman Y, Eleftherianos I. Nematode infection and antinematode immunity in Drosophila. Trends Parasitol 2021; 37:1002-1013. [PMID: 34154933 DOI: 10.1016/j.pt.2021.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022]
Abstract
The entomopathogenic nematodes Heterorhabditis and Steinernema form mutualistic complexes with Gram-negative bacteria. These insect parasites have emerged as excellent research tools for studying nematode pathogenicity and elucidating the features that allow them to persist and multiply within the host. A better understanding of the molecular mechanisms of nematode infection and host antinematode processes will lead to the development of novel means for parasitic nematode control. Recent work has demonstrated the power of using the Drosophila infection model to identify novel parasitic nematode infection factors and elucidate the genetic and functional bases of host antinematode defense. Here, we aim to highlight the recent advances and address their contribution to the development of novel means for parasitic nematode control.
Collapse
Affiliation(s)
- Yaprak Ozakman
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Lab, Department of Biological Sciences, Institute for Biomedical Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Washington, DC 20052, USA.
| |
Collapse
|
22
|
Sheehan G, Margalit A, Sheehan D, Kavanagh K. Proteomic profiling of bacterial and fungal induced immune priming in Galleria mellonella larvae. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104213. [PMID: 33662378 DOI: 10.1016/j.jinsphys.2021.104213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
Some insects display immunological priming as a result of elevated humoral and cellular responses which give enhanced survival against subsequent infection. The humoral immune response of Galleria mellonella larvae following pre-exposure to heat killed Staphylococcus aureus or Candida albicans cells was determined by quantitative mass spectrometry in order to assess the relationship between the humoral immune response and resistance to subsequent bacterial or fungal infection. Larvae pre-exposed to heat killed S. aureus showed increased resistance to subsequent bacterial and fungal infection. Larvae displayed an increased hemocyte density (14.08 ± 2.14 × 106 larva-1 (p < 0.05) compared to the PBS injected control [10.41 ± 1.67 × 106 larva-1]) and increased abundance of antimicrobial proteins (cecropin-D-like peptide (+22.23 fold), hdd11 (+12.61 fold) and prophenol oxidase activating enzyme 3 (+5.96 fold) in response to heat killed S. aureus. Larvae pre-exposed to heat killed C. albicans cells were resistant to subsequent fungal infection but not bacterial infection and showed a reduced hemocyte density (6.01 ± 1.63 × 106 larva-1 (p < 0.01) and increased abundance of hdd11 (+32.73 fold) and moricin-like peptide C1 (+16.76 fold). While immune priming is well recognised in G. mellonella larvae the results presented here indicate distinct differences in the response of larvae following exposure to heat killed bacterial and fungal cells.
Collapse
Affiliation(s)
- Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Anatte Margalit
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - David Sheehan
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
23
|
Schlamp F, Delbare SYN, Early AM, Wells MT, Basu S, Clark AG. Dense time-course gene expression profiling of the Drosophila melanogaster innate immune response. BMC Genomics 2021; 22:304. [PMID: 33902461 PMCID: PMC8074482 DOI: 10.1186/s12864-021-07593-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Immune responses need to be initiated rapidly, and maintained as needed, to prevent establishment and growth of infections. At the same time, resources need to be balanced with other physiological processes. On the level of transcription, studies have shown that this balancing act is reflected in tight control of the initiation kinetics and shutdown dynamics of specific immune genes. RESULTS To investigate genome-wide expression dynamics and trade-offs after infection at a high temporal resolution, we performed an RNA-seq time course on D. melanogaster with 20 time points post Imd stimulation. A combination of methods, including spline fitting, cluster analysis, and Granger causality inference, allowed detailed dissection of expression profiles, lead-lag interactions, and functional annotation of genes through guilt-by-association. We identified Imd-responsive genes and co-expressed, less well characterized genes, with an immediate-early response and sustained up-regulation up to 5 days after stimulation. In contrast, stress response and Toll-responsive genes, among which were Bomanins, demonstrated early and transient responses. We further observed a strong trade-off with metabolic genes, which strikingly recovered to pre-infection levels before the immune response was fully resolved. CONCLUSIONS This high-dimensional dataset enabled the comprehensive study of immune response dynamics through the parallel application of multiple temporal data analysis methods. The well annotated data set should also serve as a useful resource for further investigation of the D. melanogaster innate immune response, and for the development of methods for analysis of a post-stress transcriptional response time-series at whole-genome scale.
Collapse
Affiliation(s)
- Florencia Schlamp
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
| | | | - Angela M Early
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Martin T Wells
- Statistics and Data Science, Cornell University, Ithaca, NY, USA
| | - Sumanta Basu
- Statistics and Data Science, Cornell University, Ithaca, NY, USA.
| | - Andrew G Clark
- Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA.
- Statistics and Data Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
24
|
Regulators and signalling in insect antimicrobial innate immunity: Functional molecules and cellular pathways. Cell Signal 2021; 83:110003. [PMID: 33836260 DOI: 10.1016/j.cellsig.2021.110003] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/29/2022]
Abstract
Insects possess an immune system that protects them from attacks by various pathogenic microorganisms that would otherwise threaten their survival. Immune mechanisms may deal directly with the pathogens by eliminating them from the host organism or disarm them by suppressing the synthesis of toxins and virulence factors that promote the invasion and destructive action of the intruder within the host. Insects have been established as outstanding models for studying immune system regulation because innate immunity can be explored as an integrated system at the level of the whole organism. Innate immunity in insects consists of basal immunity that controls the constitutive synthesis of effector molecules such as antimicrobial peptides, and inducible immunity that is activated after detection of a microbe or its product(s). Activation and coordination of innate immune defenses in insects involve evolutionary conserved immune factors. Previous research in insects has led to the identification and characterization of distinct immune signalling pathways that modulate the response to microbial infections. This work has not only advanced the field of insect immunology, but it has also rekindled interest in the innate immune system of mammals. Here we review the current knowledge on key molecular components of insect immunity and discuss the opportunities they present for confronting infectious diseases in humans.
Collapse
|
25
|
Chen D, Roychowdhury-Sinha A, Prakash P, Lan X, Fan W, Goto A, Hoffmann JA. A time course transcriptomic analysis of host and injected oncogenic cells reveals new aspects of Drosophila immune defenses. Proc Natl Acad Sci U S A 2021; 118:e2100825118. [PMID: 33737397 PMCID: PMC8000351 DOI: 10.1073/pnas.2100825118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Oncogenic RasV12 cells [A. Simcox et al., PLoS Genet 4, e1000142 (2008)] injected into adult males proliferated massively after a lag period of several days, and led to the demise of the flies after 2 to 3 wk. The injection induced an early massive transcriptomic response that, unexpectedly, included more than 100 genes encoding chemoreceptors of various families. The kinetics of induction and the identities of the induced genes differed markedly from the responses generated by injections of microbes. Subsequently, hundreds of genes were up-regulated, attesting to intense catabolic activities in the flies, active tracheogenesis, and cuticulogenesis, as well as stress and inflammation-type responses. At 11 d after the injections, GFP-positive oncogenic cells isolated from the host flies exhibited a markedly different transcriptomic profile from that of the host and distinct from that at the time of their injection, including in particular up-regulated expression of genes typical for cells engaged in the classical antimicrobial response of Drosophila.
Collapse
Affiliation(s)
- Di Chen
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China;
- Insect Models of Innate Immunity (M3I; UPR9022), CNRS, University of Strasbourg, F-67084 Strasbourg, France
| | | | - Pragya Prakash
- Insect Models of Innate Immunity (M3I; UPR9022), CNRS, University of Strasbourg, F-67084 Strasbourg, France
| | - Xiao Lan
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China
| | - Wenmin Fan
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China
| | - Akira Goto
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China;
- Insect Models of Innate Immunity (M3I; UPR9022), CNRS, University of Strasbourg, F-67084 Strasbourg, France
| | - Jules A Hoffmann
- Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, 511436 Guangzhou, China;
- Insect Models of Innate Immunity (M3I; UPR9022), CNRS, University of Strasbourg, F-67084 Strasbourg, France
- University of Strasbourg Institute for Advanced Study, 67000 Strasbourg, France
| |
Collapse
|
26
|
Huang C, Xu R, Liégeois S, Chen D, Li Z, Ferrandon D. Differential Requirements for Mediator Complex Subunits in Drosophila melanogaster Host Defense Against Fungal and Bacterial Pathogens. Front Immunol 2021; 11:478958. [PMID: 33746938 PMCID: PMC7977287 DOI: 10.3389/fimmu.2020.478958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/29/2020] [Indexed: 01/08/2023] Open
Abstract
The humoral immune response to bacterial or fungal infections in Drosophila relies largely on a transcriptional response mediated by the Toll and Immune deficiency NF-κB pathways. Antimicrobial peptides are potent effectors of these pathways and allow the organism to attack invading pathogens. Dorsal-related Immune Factor (DIF), a transcription factor regulated by the Toll pathway, is required in the host defense against fungal and some Gram-positive bacterial infections. The Mediator complex is involved in the initiation of transcription of most RNA polymerase B (PolB)-dependent genes by forming a functional bridge between transcription factors bound to enhancer regions and the gene promoter region and then recruiting the PolB pre-initiation complex. Mediator is formed by several modules that each comprises several subunits. The Med17 subunit of the head module of Mediator has been shown to be required for the expression of Drosomycin, which encodes a potent antifungal peptide, by binding to DIF. Thus, Mediator is expected to mediate the host defense against pathogens controlled by the Toll pathway-dependent innate immune response. Here, we first focus on the Med31 subunit of the middle module of Mediator and find that it is required in host defense against Aspergillus fumigatus, Enterococcus faecalis, and injected but not topically-applied Metarhizium robertsii. Thus, host defense against M. robertsii requires Dif but not necessarily Med31 in the two distinct infection models. The induction of some Toll-pathway-dependent genes is decreased after a challenge of Med31 RNAi-silenced flies with either A. fumigatus or E. faecalis, while these flies exhibit normal phagocytosis and melanization. We have further tested most Mediator subunits using RNAi by monitoring their survival after challenges to several other microbial infections known to be fought off through DIF. We report that the host defense against specific pathogens involves a distinct set of Mediator subunits with only one subunit for C. glabrata or Erwinia carotovora carotovora, at least one for M. robertsii or a somewhat extended repertoire for A. fumigatus (at least eight subunits) and E. faecalis (eight subunits), with two subunits, Med6 and Med11 being required only against A. fumigatus. Med31 but not Med17 is required in fighting off injected M. robertsii conidia. Thus, the involvement of Mediator in Drosophila innate immunity is more complex than expected.
Collapse
Affiliation(s)
- Chuqin Huang
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Rui Xu
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| | - Samuel Liégeois
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| | - Di Chen
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Zi Li
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
| | - Dominique Ferrandon
- Sino-French Hoffman Institute, Guangzhou Medical University, Guangzhou, China
- Université de Strasbourg, UPR 9022 du CNRS, Strasbourg, France
| |
Collapse
|
27
|
Pal U, Kitsou C, Drecktrah D, Yaş ÖB, Fikrig E. Interactions Between Ticks and Lyme Disease Spirochetes. Curr Issues Mol Biol 2020; 42:113-144. [PMID: 33289683 PMCID: PMC8045411 DOI: 10.21775/cimb.042.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Borrelia burgdorferi sensu lato causes Lyme borreliosis in a variety of animals and humans. These atypical bacterial pathogens are maintained in a complex enzootic life cycle that primarily involves a vertebrate host and Ixodes spp. ticks. In the Northeastern United States, I. scapularis is the main vector, while wild rodents serve as the mammalian reservoir host. As B. burgdorferi is transmitted only by I. scapularis and closely related ticks, the spirochete-tick interactions are thought to be highly specific. Various borrelial and arthropod proteins that directly or indirectly contribute to the natural cycle of B. burgdorferi infection have been identified. Discrete molecular interactions between spirochetes and tick components also have been discovered, which often play critical roles in pathogen persistence and transmission by the arthropod vector. This review will focus on the past discoveries and future challenges that are relevant to our understanding of the molecular interactions between B. burgdorferi and Ixodes ticks. This information will not only impact scientific advancements in the research of tick- transmitted infections but will also contribute to the development of novel preventive measures that interfere with the B. burgdorferi life cycle.
Collapse
Affiliation(s)
- Utpal Pal
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
- Virginia-Maryland College of Veterinary Medicine, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Chrysoula Kitsou
- Department of Veterinary Medicine, University of Maryland, 8075 Greenmead Drive, College Park, MD 20742, USA
| | - Dan Drecktrah
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Özlem Büyüktanir Yaş
- Department of Microbiology and Clinical Microbiology, Faculty of Medicine, Istinye University, Zeytinburnu, İstanbul, 34010, Turkey
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
28
|
Sheehan G, Farrell G, Kavanagh K. Immune priming: the secret weapon of the insect world. Virulence 2020; 11:238-246. [PMID: 32079502 PMCID: PMC7051127 DOI: 10.1080/21505594.2020.1731137] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 01/26/2023] Open
Abstract
Insects are a highly successful group of animals that inhabit almost every habitat and environment on Earth. Part of their success is due to a rapid and highly effective immune response that identifies, inactivates, and eliminates pathogens. Insects possess an immune system that shows many similarities to the innate immune system of vertebrates, but they do not possess an equivalent system to the antibody-mediated adaptive immune response of vertebrates. However, some insect do display a process known as immune priming in which prior exposure to a sublethal dose of a pathogen, or pathogen-derived material, leads to an elevation in the immune response rendering the insect resistant to a subsequent lethal infection a short time later. This process is mediated by an increase in the density of circulating hemocytes and increased production of antimicrobial peptides. Immune priming is an important survival strategy for certain insects while other insects that do not show this response may have colony-level behaviors that may serve to limit the success of pathogens. Insects are now widely used as in vivo models for studying microbial pathogens of humans and for assessing the in vivo efficacy of antimicrobial agents. Knowledge of the process of immune priming in insects is essential in these applications as it may operate and augment the perceived in vivo antimicrobial activity of novel compounds.Abbreviations: 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene silver(I) acetate; SBC3: antimicrobial peptides; AMPs: dorsal-related immunity factor; DIF: Down syndrome cell adhesion molecule; Dscam: Lipopolysaccharide; LPS: Pathogen-associated molecular patterns; PAMPS: Patterns recognition receptors; PRR: Prophenoloxidase; PO: Toll-like receptors; TLRs: Toll/IL-1R; TIR, Transgenerational Immune Priming; TgIP: Tumor necrosis factor-α; TNF-α.
Collapse
Affiliation(s)
- Gerard Sheehan
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Gemma Farrell
- Department of Biology, Maynooth University, Maynooth, Ireland
| | - Kevin Kavanagh
- Department of Biology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
29
|
Finch G, Nandyal S, Perretta C, Davies B, Rosendale AJ, Holmes CJ, Gantz JD, Spacht DE, Bailey ST, Chen X, Oyen K, Didion EM, Chakraborty S, Lee RE, Denlinger DL, Matter SF, Attardo GM, Weirauch MT, Benoit JB. Multi-level analysis of reproduction in an Antarctic midge identifies female and male accessory gland products that are altered by larval stress and impact progeny viability. Sci Rep 2020; 10:19791. [PMID: 33188214 PMCID: PMC7666147 DOI: 10.1038/s41598-020-76139-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
The Antarctic midge, Belgica antarctica, is a wingless, non-biting midge endemic to Antarctica. Larval development requires at least 2 years, but adults live only 2 weeks. The nonfeeding adults mate in swarms and females die shortly after oviposition. Eggs are suspended in a gel of unknown composition that is expressed from the female accessory gland. This project characterizes molecular mechanisms underlying reproduction in this midge by examining differential gene expression in whole males, females, and larvae, as well as in male and female accessory glands. Functional studies were used to assess the role of the gel encasing the eggs, as well as the impact of stress on reproductive biology. RNA-seq analyses revealed sex- and development-specific gene sets along with those associated with the accessory glands. Proteomic analyses were used to define the composition of the egg-containing gel, which is generated during multiple developmental stages and derived from both the accessory gland and other female organs. Functional studies indicate the gel provides a larval food source as well as a buffer for thermal and dehydration stress. All of these function are critical to juvenile survival. Larval dehydration stress directly reduces production of storage proteins and key accessory gland components, a feature that impacts adult reproductive success. Modeling reveals that bouts of dehydration may have a significant impact on population growth. This work lays a foundation for further examination of reproduction in midges and provides new information related to general reproduction in dipterans. A key aspect of this work is that reproduction and stress dynamics, currently understudied in polar organisms, are likely to prove critical in determining how climate change will alter their survivability.
Collapse
Affiliation(s)
- Geoffrey Finch
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Sonya Nandyal
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Carlie Perretta
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Benjamin Davies
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew J Rosendale
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
| | - Christopher J Holmes
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - J D Gantz
- Department of Biology, Miami University, Oxford, OH, USA
- Department of Biology and Health Science, Hendrix College, Conway, AR, USA
| | - Drew E Spacht
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Samuel T Bailey
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Kennan Oyen
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Elise M Didion
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Souvik Chakraborty
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Richard E Lee
- Department of Biology, Miami University, Oxford, OH, USA
| | - David L Denlinger
- Departments of Entomology and Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH, USA
| | - Stephen F Matter
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, 95616, USA
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
30
|
Gupta I, Rizeq B, Elkord E, Vranic S, Al Moustafa AE. SARS-CoV-2 Infection and Lung Cancer: Potential Therapeutic Modalities. Cancers (Basel) 2020; 12:E2186. [PMID: 32764454 PMCID: PMC7464614 DOI: 10.3390/cancers12082186] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/07/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
Human coronaviruses, especially SARS-CoV-2, are emerging pandemic infectious diseases with high morbidity and mortality in certain group of patients. In general, SARS-CoV-2 causes symptoms ranging from the common cold to severe conditions accompanied by lung injury, acute respiratory distress syndrome in addition to other organs' destruction. The main impact upon SARS-CoV-2 infection is damage to alveolar and acute respiratory failure. Thus, lung cancer patients are identified as a particularly high-risk group for SARS-CoV-2 infection and its complications. On the other hand, it has been reported that SARS-CoV-2 spike (S) protein binds to angiotensin-converting enzyme 2 (ACE-2), that promotes cellular entry of this virus in concert with host proteases, principally transmembrane serine protease 2 (TMPRSS2). Today, there are no vaccines and/or effective drugs against the SARS-CoV-2 coronavirus. Thus, manipulation of key entry genes of this virus especially in lung cancer patients could be one of the best approaches to manage SARS-CoV-2 infection in this group of patients. We herein provide a comprehensive and up-to-date overview of the role of ACE-2 and TMPRSS2 genes, as key entry elements as well as therapeutic targets for SARS-CoV-2 infection, which can help to better understand the applications and capacities of various remedial approaches for infected individuals, especially those with lung cancer.
Collapse
Affiliation(s)
- Ishita Gupta
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| | - Balsam Rizeq
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| | - Eyad Elkord
- Qatar Biomedical Research Institute & 4Hamad Bin Khalifa University, 34110 Doha, Qatar;
- Biomedical Research Center, School of Science, Engineering and Environment, University of Salford, Manchester M5 4WT, UK
| | - Semir Vranic
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
| | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, 2713 Doha, Qatar; (I.G.); (B.R.); (S.V.)
- Biomedical Research Center, Qatar University, 2713 Doha, Qatar
| |
Collapse
|
31
|
Ramírez-Camejo LA, Bayman P. Gene expression on the fly: A transcriptome-level view of Drosophila's immune response to the opportunistic fungal pathogen Aspergillus flavus. INFECTION GENETICS AND EVOLUTION 2020; 82:104308. [PMID: 32240802 DOI: 10.1016/j.meegid.2020.104308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/23/2020] [Accepted: 03/28/2020] [Indexed: 10/24/2022]
Abstract
Aspergilloses are opportunistic infections in animals and humans caused by several Aspergillus species, including Aspergillus flavus. Although the immune system of Drosophila melanogaster is extensively studied, little is known about the fly's specific responses to infection by A. flavus. We compared gene expression levels during induced infections in D. melanogaster by a virulent A. flavus isolate and a less virulent isolate, as well as from uninfected flies as a control. We found that 1081 of the 14,554 gene regions detected were significantly differentially expressed among treatments. Some of these up- and down- regulated genes were previously shown to be involved in defense responses against pathogens. Some are known to be involved in vitelline membrane formation in flies. Other up- and down-regulated genes are of unknown function. Understanding expression of these genes during the process of infection in flies should improve our knowledge of innate immunity in invertebrates, and by extension, in vertebrates as well.
Collapse
Affiliation(s)
- Luis A Ramírez-Camejo
- Purdue University, Department of Botany and Plant Pathology, West Lafayette, IN 47901, USA; Department of Biology, University of Puerto Rico - Río Piedras, San Juan, PR, USA; Coiba Scientific Station (COIBA AIP), City of Knowledge, Clayton, Panama, Panama.
| | - Paul Bayman
- Department of Biology, University of Puerto Rico - Río Piedras, San Juan, PR, USA
| |
Collapse
|
32
|
Shrestha A, Champagne DE, Culbreath AK, Abney MR, Srinivasan R. Comparison of transcriptomes of an orthotospovirus vector and non-vector thrips species. PLoS One 2019; 14:e0223438. [PMID: 31600262 PMCID: PMC6786753 DOI: 10.1371/journal.pone.0223438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/20/2019] [Indexed: 11/22/2022] Open
Abstract
Thrips transmit one of the most devastating plant viruses worldwide–tomato spotted wilt tospovirus (TSWV). Tomato spotted wilt tospovirus is a type species in the genus Orthotospovirus and family Tospoviridae. Although there are more than 7,000 thrips species, only nine thrips species are known to transmit TSWV. In this study, we investigated the molecular factors that could affect thrips ability to transmit TSWV. We assembled transcriptomes of a vector, Frankliniella fusca [Hinds], and a non-vector, Frankliniella tritici [Fitch], and performed qualitative comparisons of contigs associated with virus reception, virus infection, and innate immunity. Annotations of F. fusca and F. tritici contigs revealed slight differences across biological process and molecular functional groups. Comparison of virus cell surface receptors revealed that homologs of integrin were present in both species. However, homologs of another receptor, heperan sulfate, were present in F. fusca alone. Contigs associated with virus replication were identified in both species, but a contig involved in inhibition of virus replication (radical s-adenosylmethionine) was only present in the non-vector, F. tritici. Additionally, some differences in immune signaling pathways were identified between vector and non-vector thrips. Detailed investigations are necessary to functionally characterize these differences between vector and non-vector thrips and assess their relevance in orthotospovirus transmission.
Collapse
Affiliation(s)
- Anita Shrestha
- Department of Entomology, University of Georgia, Griffin, GA, United States of America
| | - Donald E. Champagne
- Department of Entomology, University of Georgia, Athens, GA, United States of America
| | - Albert K. Culbreath
- Department of Plant Pathology, University of Georgia, Tifton, GA, United States of America
| | - Mark R. Abney
- Department of Entomology, University of Georgia, Tifton, GA, United States of America
| | | |
Collapse
|
33
|
Kim-Jo C, Gatti JL, Poirié M. Drosophila Cellular Immunity Against Parasitoid Wasps: A Complex and Time-Dependent Process. Front Physiol 2019; 10:603. [PMID: 31156469 PMCID: PMC6529592 DOI: 10.3389/fphys.2019.00603] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 04/29/2019] [Indexed: 11/13/2022] Open
Abstract
Host-parasitoid interactions are among the most studied interactions between invertebrates because of their fundamental interest - the evolution of original traits in parasitoids - and applied, parasitoids being widely used in biological control. Immunity, and in particular cellular immunity, is central in these interactions, the host encapsulation response being specific for large foreign bodies such as parasitoid eggs. Although already well studied in this species, recent data on Drosophila melanogaster have unquestionably improved knowledge of invertebrate cellular immunity. At the same time, the venomics of parasitoids has expanded, notably those of Drosophila. Here, we summarize and discuss these advances, with a focus on an emerging "time-dependent" view of interactions outcome at the intra- and interspecific level. We also present issues still in debate and prospects for study. Data on the Drosophila-parasitoid model paves the way to new concepts in insect immunity as well as parasitoid wasp strategies to overcome it.
Collapse
Affiliation(s)
| | | | - Marylène Poirié
- INRA, CNRS, Institut Sophia Agrobiotech, Université Côte d’Azur, Sophia Antipolis, France
| |
Collapse
|
34
|
Ding TB, Li J, Chen EH, Niu JZ, Chu D. Transcriptome Profiling of the Whitefly Bemisia tabaci MED in Response to Single Infection of Tomato yellow leaf curl virus, Tomato chlorosis virus, and Their Co-infection. Front Physiol 2019; 10:302. [PMID: 31001125 PMCID: PMC6457337 DOI: 10.3389/fphys.2019.00302] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 03/07/2019] [Indexed: 12/31/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV) and Tomato chlorosis virus (ToCV) are two of the most devastating cultivated tomato viruses, causing significant crop losses worldwide. As the vector of both TYLCV and ToCV, the whitefly Bemisia tabaci Mediterranean (MED) is mainly responsible for the rapid spread and mixed infection of TYLCV and ToCV in China. However, little is known concerning B. tabaci MED's molecular response to TYLCV and ToCV infection or their co-infection. We determined the transcriptional responses of the whitefly MED to TYLCV infection, ToCV infection, and TYLCV&ToCV co-infection using Illumina sequencing. In all, 78, 221, and 60 differentially expressed genes (DEGs) were identified in TYLCV-infected, ToCV-infected, and TYLCV&ToCV co-infected whiteflies, respectively, compared with non-viruliferous whiteflies. Differentially regulated genes were sorted according to their roles in detoxification, stress response, immune response, transport, primary metabolism, cell function, and total fitness in whiteflies after feeding on virus-infected tomato plants. Alterations in the transcription profiles of genes involved in transport and energy metabolism occurred between TYLCV&ToCV co-infection and single infection with TYLCV or ToCV; this may be associated with the adaptation of the insect vector upon co-infection of the two viruses. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses demonstrated that the single infection with TYLCV or ToCV and the TYLCV&ToCV co-infection could perturb metabolic processes and metabolic pathways. Taken together, our results provide basis for further exploration of the molecular mechanisms of the response to TYLCV, ToCV single infection, and TYLCV&ToCV co-infection in B. tabaci MED, which will add to our knowledge of the interactions between plant viruses and insect vectors.
Collapse
Affiliation(s)
- Tian-Bo Ding
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Er-Hu Chen
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Jin-Zhi Niu
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
| | - Dong Chu
- Key Laboratory of Integrated Crop Pest Management of Shandong Province, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
35
|
Nishide Y, Kageyama D, Yokoi K, Jouraku A, Tanaka H, Futahashi R, Fukatsu T. Functional crosstalk across IMD and Toll pathways: insight into the evolution of incomplete immune cascades. Proc Biol Sci 2019; 286:20182207. [PMID: 30963836 PMCID: PMC6408883 DOI: 10.1098/rspb.2018.2207] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 12/05/2018] [Indexed: 12/24/2022] Open
Abstract
In insects, antimicrobial humoral immunity is governed by two distinct gene cascades, IMD pathway mainly targeting Gram-negative bacteria and Toll pathway preferentially targeting Gram-positive bacteria, which are widely conserved among diverse metazoans. However, recent genomic studies uncovered that IMD pathway is exceptionally absent in some hemipteran lineages like aphids and assassin bugs. How the apparently incomplete immune pathways have evolved with functionality is of interest. Here we report the discovery that, in the hemipteran stinkbug Plautia stali, both IMD and Toll pathways are present but their functional differentiation is blurred. Injection of Gram-negative bacteria and Gram-positive bacteria upregulated effector genes of both pathways. Notably, RNAi experiments unveiled significant functional permeation and crosstalk between IMD and Toll pathways: RNAi of IMD pathway genes suppressed upregulation of effector molecules of both pathways, where the suppression was more remarkable for IMD effectors; and RNAi of Toll pathway genes reduced upregulation of effector molecules of both pathways, where the suppression was more conspicuous for Toll effectors. These results suggest the possibility that, in hemipterans and other arthropods, IMD and Toll pathways are intertwined to target wider and overlapping arrays of microbes, which might have predisposed and facilitated the evolution of incomplete immune pathways.
Collapse
Affiliation(s)
- Yudai Nishide
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ohwashi, Tsukuba 305-8634, Japan
| | - Daisuke Kageyama
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ohwashi, Tsukuba 305-8634, Japan
| | - Kakeru Yokoi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ohwashi, Tsukuba 305-8634, Japan
| | - Akiya Jouraku
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ohwashi, Tsukuba 305-8634, Japan
| | - Hiromitsu Tanaka
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Ohwashi, Tsukuba 305-8634, Japan
| | - Ryo Futahashi
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
| | - Takema Fukatsu
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566, Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| |
Collapse
|
36
|
Contreras G, Wang N, Schäfer H, Wink M. Oxidative stress and the presence of bacteria increase gene expression of the antimicrobial peptide aclasin, a fungal CSαβ defensin in Aspergillus clavatus. PeerJ 2019; 7:e6290. [PMID: 30828484 PMCID: PMC6394349 DOI: 10.7717/peerj.6290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 12/15/2018] [Indexed: 12/17/2022] Open
Abstract
Background Antimicrobial peptides (AMPs) represent a broad class of naturally occurring antimicrobial compounds. Plants, invertebrates and fungi produce various AMPs as, for example, defensins. Most of these defensins are characterised by the presence of a cysteine-stabilised α-helical and β-sheet (CSαβ) motif. The changes in gene expression of a fungal CSαβ defensin by stress conditions were investigated in Aspergillus clavatus. A. clavatus produces the CSαβ defensin Aclasin, which is encoded by the aclasin gene. Methods Aclasin expression was evaluated in submerged mycelium cultures under heat shock, osmotic stress, oxidative stress and the presence of bacteria by quantitative real-time PCR. Results Aclasin expression increased two fold under oxidative stress conditions and in the presence of viable and heat-killed Bacillus megaterium. Under heat shock and osmotic stress, aclasin expression decreased. Discussion The results suggest that oxidative stress and the presence of bacteria might regulate fungal defensin expression. Moreover, fungi might recognise microorganisms as plants and animals do.
Collapse
Affiliation(s)
- Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Nessa Wang
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Holger Schäfer
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
37
|
Sackton TB. Comparative genomics and transcriptomics of host-pathogen interactions in insects: evolutionary insights and future directions. CURRENT OPINION IN INSECT SCIENCE 2019; 31:106-113. [PMID: 31109663 DOI: 10.1016/j.cois.2018.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Classical evolutionary studies of protein-coding genes have established that genes in the canonical immune system are often among the most rapidly evolving within and between species. As more genomes and transcriptomes across insects are sequenced, it is becoming clear that duplications and losses of immune genes are also a likely consequence of host-pathogen interactions. Furthermore, particular species respond to diverse pathogenic challenges with a wide range of challenge-specific responses that are still poorly understood. Transcriptional studies, using RNA-seq to characterize the infection-regulated transcriptome of diverse insects, are crucial for additional progress in understanding the ecology and evolution of the full complexity of the host response.
Collapse
Affiliation(s)
- Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
38
|
Barajas-Azpeleta R, Wu J, Gill J, Welte R, Seidel C, McKinney S, Dissel S, Si K. Antimicrobial peptides modulate long-term memory. PLoS Genet 2018; 14:e1007440. [PMID: 30312294 PMCID: PMC6224176 DOI: 10.1371/journal.pgen.1007440] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/08/2018] [Accepted: 08/20/2018] [Indexed: 12/27/2022] Open
Abstract
Antimicrobial peptides act as a host defense mechanism and regulate the commensal microbiome. To obtain a comprehensive view of genes contributing to long-term memory we performed mRNA sequencing from single Drosophila heads following behavioral training that produces long-lasting memory. Surprisingly, we found that Diptericin B, an immune peptide with antimicrobial activity, is upregulated following behavioral training. Deletion and knock down experiments revealed that Diptericin B and another immune peptide, Gram-Negative Bacteria Binding Protein like 3, regulate long-term but not short-term memory or instinctive behavior in Drosophila. Interestingly, removal of DptB in the head fat body and GNBP-like3 in neurons results in memory deficit. That putative antimicrobial peptides influence memory provides an example of how some immune peptides may have been repurposed to influence the function of nervous system. It is becoming evident that the nervous system and immune system share not only some of the same molecular logic but also the same components. Here, we report a novel and unanticipated example of how immune genes influence nervous system function. Exploring how Drosophila form long-lasting memories of certain experiences, we have found that antimicrobial peptides that fight bacteria in the body, are expressed in the head, and control whether an animal will form long-term memory of a food source or an unsuccessful mating experience. Antimicrobial peptides are detected in the brain of many species and has often been associated with dysfunction of the nervous system. This and other recent works, provide an explanation to why antimicrobial peptides may be expressed in the head: they regulate normal functions of the brain. Both eating, and mating engage the immune system in preparation of exposure to external agents including bacteria. We speculate antimicrobial peptides were upregulated in the body to deal with immune challenges and over evolutionary time some of them are co-adopted to activate signaling pathways to convey specific information to the nervous system.
Collapse
Affiliation(s)
| | - Jianping Wu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Jason Gill
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Ryan Welte
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Chris Seidel
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sean McKinney
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Stephane Dissel
- Division of Molecular Biology and Biochemistry, University of Missouri, Kansas City, Missouri, United States of America
| | - Kausik Si
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
39
|
Shmueli A, Shalit T, Okun E, Shohat-Ophir G. The Toll Pathway in the Central Nervous System of Flies and Mammals. Neuromolecular Med 2018; 20:419-436. [PMID: 30276585 DOI: 10.1007/s12017-018-8515-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 09/26/2018] [Indexed: 12/20/2022]
Abstract
Toll receptors, first identified to regulate embryogenesis and immune responses in the adult fly and subsequently defined as the principal sensors of infection in mammals, are increasingly appreciated for their impact on the homeostasis of the central as well as the peripheral nervous systems. Whereas in the context of immunity, the fly Toll and the mammalian TLR pathways have been researched in parallel, the expression pattern and functionality have largely been researched disparately. Herein, we provide data on the expression pattern of the Toll homologues, signaling components, and downstream effectors in ten different cell populations of the adult fly central nervous system (CNS). We have compared the expression of the different Toll pathways in the fly to the expression of TLRs in the mouse brain and discussed the implications with respect to commonalities, differences, and future perspectives.
Collapse
Affiliation(s)
- Anat Shmueli
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Tali Shalit
- The Mantoux Bioinformatics institute of the Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Eitan Okun
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
- The Paul Feder Laboratory on Alzheimer's Disease Research, Ramat-Gan, Israel.
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Building 901, room 315, Ramat-Gan, 5290000, Israel.
| | - Galit Shohat-Ophir
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
- The Leslie and Susan Gonda Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
40
|
Yadav S, Eleftherianos I. The Imaginal Disc Growth Factors 2 and 3 participate in the Drosophila response to nematode infection. Parasite Immunol 2018; 40:e12581. [PMID: 30107045 DOI: 10.1111/pim.12581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 07/11/2018] [Accepted: 08/09/2018] [Indexed: 01/13/2023]
Abstract
The Drosophila imaginal disc growth factors (IDGFs) induce the proliferation of imaginal disc cells and terminate cell proliferation at the end of larval development. However, the participation of Idgf-encoding genes in other physiological processes of Drosophila including the immune response to infection is not fully understood. Here, we show the contribution of Idgf2 and Idgf3 in the Drosophila response to infection with Steinernema carpocapsae nematodes carrying or lacking their mutualistic Xenorhabdus nematophila bacteria (symbiotic or axenic nematodes, respectively). We find that Idgf2 and Idgf3 are upregulated in Drosophila larvae infected with symbiotic or axenic Steinernema and inactivation of Idgf2 confers a survival advantage to Drosophila larvae against axenic nematodes. Inactivation of Idgf2 induces the Imd and Jak/Stat pathways, whereas inactivation of Idgf3 induces the Imd, Toll and Jak/Stat pathways. We also show that inactivation of the Imd pathway receptor PGRP-LE upregulates Idgf2 against Steinernema nematode infection. Finally, we demonstrate that inactivation of Idgf3 induces the recruitment of larval haemocytes in response to Steinernema. Our results indicate that Idgf2 and Idgf3 might be involved in different yet crucial immune functions in the Drosophila antinematode immune response. Similar findings will promote the development of new targets for species-specific pest control strategies.
Collapse
Affiliation(s)
- Shruti Yadav
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| | - Ioannis Eleftherianos
- Department of Biological Sciences, The George Washington University, Washington, District of Columbia
| |
Collapse
|
41
|
Liu Y, Xin ZZ, Zhang DZ, Zhu XY, Wang Y, Chen L, Tang BP, Zhou CL, Chai XY, Tian JW, Liu QN. De novo transcriptome assembly and analysis of differential gene expression following peptidoglycan (PGN) challenge in Antheraea pernyi. Int J Biol Macromol 2018; 112:1199-1207. [DOI: 10.1016/j.ijbiomac.2018.02.085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Revised: 02/11/2018] [Accepted: 02/13/2018] [Indexed: 12/18/2022]
|
42
|
Kitsou C, Pal U. Ixodes Immune Responses Against Lyme Disease Pathogens. Front Cell Infect Microbiol 2018; 8:176. [PMID: 29896452 PMCID: PMC5986905 DOI: 10.3389/fcimb.2018.00176] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/08/2018] [Indexed: 12/15/2022] Open
Abstract
Although Ixodes scapularis and other related tick species are considered prolific vectors for a number of important human diseases, many aspects of their biology, microbial interactions, and immunity are largely unknown; in particular, how these ancient vectors recognize invading pathogens like Borrelia burgdorferi and influence their persistence. The analysis of the Ixodes genome and a limited set of transcriptomic data have established that ticks encode many components of classical immune pathways; yet at the same time, they lack many key orthologs of these recognition networks. Therefore, whether a given immune pathway is active in Ixodes ticks and how precisely they exert its microbicidal functions are only incompletely delineated. A few recent studies have suggested that classical pathways like the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) as well as immunodeficiency (IMD) pathways are fully functional in I. scapularis, and upon challenge with microbes, generate potent microbicidal responses against diverse tick-borne pathogens including B. burgdorferi. These studies also highlight novel concepts of vector immunity that include both a direct and an indirect mode of recognition of pathogens, as well as the influence of the gut microbiome, which ultimately dictates the outcome of a robust microbicidal response. Further understanding of how Ixodes ticks recognize and suppress invading microbes like B. burgdorferi will enrich our fundamental knowledge of vector immunobiology, thereby contributing to the development of future interventions to better control the tick-borne pathogen.
Collapse
Affiliation(s)
- Chrysoula Kitsou
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Utpal Pal
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| |
Collapse
|
43
|
Li H, Smigocki AC. Transcriptome analysis of sugar beet root maggot (Tetanops myopaeformis) genes modulated by the Beta vulgaris host. INSECT SCIENCE 2018; 25:222-234. [PMID: 27696738 DOI: 10.1111/1744-7917.12409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
Sugar beet root maggot (SBRM, Tetanops myopaeformis von Röder) is a major but poorly understood insect pest of sugar beet (Beta vulgaris L.). The molecular mechanisms underlying plant defense responses are well documented, however, little information is available about complementary mechanisms for insect adaptive responses to overcome host resistance. To date, no studies have been published on SBRM gene expression profiling. Suppressive subtractive hybridization (SSH) generated more than 300 SBRM ESTs differentially expressed in the interaction of the pest with a moderately resistant (F1016) and a susceptible (F1010) sugar beet line. Blast2GO v. 3.2 search indicated that over 40% of the differentially expressed genes had known functions, primarily driven by fruit fly D. melanogaster genes. Expression patterns of 18 selected EST clones were confirmed by RT-PCR analysis. Gene Ontology (GO) analysis predicted a dominance of metabolic and catalytic genes involved in the interaction of SBRM with its host. SBRM genes functioning during development, regulation, cellular process, signaling and under stress conditions were annotated. SBRM genes that were common or unique in response to resistant or susceptible interactions with the host were identified and their possible roles in insect responses to the host are discussed.
Collapse
Affiliation(s)
- Haiyan Li
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, Maryland, USA
| | - Ann C Smigocki
- USDA-ARS, Molecular Plant Pathology Laboratory, Beltsville, Maryland, USA
| |
Collapse
|
44
|
Haller S, Franchet A, Hakkim A, Chen J, Drenkard E, Yu S, Schirmeier S, Li Z, Martins N, Ausubel FM, Liégeois S, Ferrandon D. Quorum-sensing regulator RhlR but not its autoinducer RhlI enables Pseudomonas to evade opsonization. EMBO Rep 2018. [PMID: 29523648 DOI: 10.15252/embr.201744880] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
When Drosophila melanogaster feeds on Pseudomonas aeruginosa, some bacteria cross the intestinal barrier and eventually proliferate in the hemocoel. This process is limited by hemocytes through phagocytosis. P. aeruginosa requires the quorum-sensing regulator RhlR to elude the cellular immune response of the fly. RhlI synthesizes the autoinducer signal that activates RhlR. Here, we show that rhlI mutants are unexpectedly more virulent than rhlR mutants, both in fly and in nematode intestinal infection models, suggesting that RhlR has RhlI-independent functions. We also report that RhlR protects P. aeruginosa from opsonization mediated by the Drosophila thioester-containing protein 4 (Tep4). RhlR mutant bacteria show higher levels of Tep4-mediated opsonization, as compared to rhlI mutants, which prevents lethal bacteremia in the Drosophila hemocoel. In contrast, in a septic model of infection, in which bacteria are introduced directly into the hemocoel, Tep4 mutant flies are more resistant to wild-type P. aeruginosa, but not to the rhlR mutant. Thus, depending on the infection route, the Tep4 opsonin can either be protective or detrimental to host defense.
Collapse
Affiliation(s)
- Samantha Haller
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France
| | - Adrien Franchet
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France
| | - Abdul Hakkim
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Jing Chen
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Eliana Drenkard
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Shen Yu
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Zi Li
- Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| | - Nelson Martins
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France
| | - Frederick M Ausubel
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Samuel Liégeois
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France
| | - Dominique Ferrandon
- CNRS, M3I UPR 9022, Université de Strasbourg, Strasbourg, France .,Sino-French Hoffmann Institute, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
45
|
Lopez W, Page AM, Carlson DJ, Ericson BL, Cserhati MF, Guda C, Carlson KA. Analysis of immune-related genes during Nora virus infection of Drosophila melanogaster using next generation sequencing. AIMS Microbiol 2018; 4:123-139. [PMID: 29707694 PMCID: PMC5915338 DOI: 10.3934/microbiol.2018.1.123] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Drosophila melanogaster depends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages. This is particularly true for viruses that demonstrate chronic infection, as is seen with Nora virus. Nora virus is a persistent non-pathogenic virus that replicates in a horizontal manner in D. melanogaster. The genes involved in the regulation of the immune response to Nora virus infection are largely unknown. In addition, the temporal response of immune response genes as a result of infection has not been examined. In this study, D. melanogaster either infected with Nora virus or left uninfected were aged for 2, 10, 20 and 30 days. The RNA from these samples was analyzed by next generation sequencing (NGS) and the resulting immune-related genes evaluated by utilizing both the PANTHER and DAVID databases, as well as comparison to lists of immune related genes and FlyBase. The data demonstrate that Nora virus infected D. melanogaster exhibit an increase in immune related gene expression over time. In addition, at day 30, the data demonstrate that a persistent immune response may occur leading to an upregulation of specific immune response genes. These results demonstrate the utility of NGS in determining the potential immune system genes involved in Nora virus replication, chronic infection and involvement of antiviral pathways.
Collapse
Affiliation(s)
- Wilfredo Lopez
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Alexis M Page
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Darby J Carlson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Brad L Ericson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Matyas F Cserhati
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kimberly A Carlson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| |
Collapse
|
46
|
Sadekuzzaman M, Kim Y. Nitric oxide mediates antimicrobial peptide gene expression by activating eicosanoid signaling. PLoS One 2018; 13:e0193282. [PMID: 29466449 PMCID: PMC5821394 DOI: 10.1371/journal.pone.0193282] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022] Open
Abstract
Nitric oxide (NO) mediates both cellular and humoral immune responses in insects. Its mediation of cellular immune responses uses eicosanoids as a downstream signal. However, the cross-talk with two immune mediators was not known in humoral immune responses. This study focuses on cross-talk between two immune mediators in inducing gene expression of anti-microbial peptides (AMPs) of a lepidopteran insect, Spodoptera exigua. Up-regulation of eight AMPs was observed in S. exigua against bacterial challenge. However, the AMP induction was suppressed by injection of an NO synthase inhibitor, L-NAME, while little expressional change was observed on injecting its enantiomer, D-NAME. The functional association between NO biosynthesis and AMP gene expression was further supported by RNA interference (RNAi) against NO synthase (SeNOS), which suppressed AMP gene expression under the immune challenge. The AMP induction was also mimicked by NO alone because injecting an NO analog, SNAP, without bacterial challenge significantly induced the AMP gene expression. Interestingly, an eicosanoid biosynthesis inhibitor, dexamethasone (DEX), suppressed the NO induction of AMP expression. The inhibitory activity of DEX was reversed by the addition of arachidonic acid, a precursor of eicosanoid biosynthesis. AMP expression of S. exigua was also controlled by the Toll/IMD signal pathway. The RNAi of Toll receptors or Relish suppressed AMP gene expression by suppressing NO levels and subsequently reducing PLA2 enzyme activity. These results suggest that eicosanoids are a downstream signal of NO mediation of AMP expression against bacterial challenge.
Collapse
Affiliation(s)
- Md. Sadekuzzaman
- Department of Plant Medicals, Andong National University, Andong, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Korea
| |
Collapse
|
47
|
Troha K, Im JH, Revah J, Lazzaro BP, Buchon N. Comparative transcriptomics reveals CrebA as a novel regulator of infection tolerance in D. melanogaster. PLoS Pathog 2018; 14:e1006847. [PMID: 29394281 PMCID: PMC5812652 DOI: 10.1371/journal.ppat.1006847] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 02/14/2018] [Accepted: 01/01/2018] [Indexed: 12/15/2022] Open
Abstract
Host responses to infection encompass many processes in addition to activation of the immune system, including metabolic adaptations, stress responses, tissue repair, and other reactions. The response to bacterial infection in Drosophila melanogaster has been classically described in studies that focused on the immune response elicited by a small set of largely avirulent microbes. Thus, we have surprisingly limited knowledge of responses to infection that are outside the canonical immune response, of how the response to pathogenic infection differs from that to avirulent bacteria, or even of how generic the response to various microbes is and what regulates that core response. In this study, we addressed these questions by profiling the D. melanogaster transcriptomic response to 10 bacteria that span the spectrum of virulence. We found that each bacterium triggers a unique transcriptional response, with distinct genes making up to one third of the response elicited by highly virulent bacteria. We also identified a core set of 252 genes that are differentially expressed in response to the majority of bacteria tested. Among these, we determined that the transcription factor CrebA is a novel regulator of infection tolerance. Knock-down of CrebA significantly increased mortality from microbial infection without any concomitant change in bacterial number. Upon infection, CrebA is upregulated by both the Toll and Imd pathways in the fat body, where it is required to induce the expression of secretory pathway genes. Loss of CrebA during infection triggered endoplasmic reticulum (ER) stress and activated the unfolded protein response (UPR), which contributed to infection-induced mortality. Altogether, our study reveals essential features of the response to bacterial infection and elucidates the function of a novel regulator of infection tolerance.
Collapse
Affiliation(s)
- Katia Troha
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Joo Hyun Im
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Jonathan Revah
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Brian P. Lazzaro
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Nicolas Buchon
- Cornell Institute of Host-Microbe Interactions and Disease, Department of Entomology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
48
|
Differential Microbial Diversity in Drosophila melanogaster: Are Fruit Flies Potential Vectors of Opportunistic Pathogens? Int J Microbiol 2017; 2017:8526385. [PMID: 29234354 PMCID: PMC5694983 DOI: 10.1155/2017/8526385] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/30/2017] [Accepted: 09/24/2017] [Indexed: 12/01/2022] Open
Abstract
Drosophila melanogaster has become a model system to study interactions between innate immunity and microbial pathogens, yet many aspects regarding its microbial community and interactions with pathogens remain unclear. In this study wild D. melanogaster were collected from tropical fruits in Puerto Rico to test how the microbiota is distributed and to compare the culturable diversity of fungi and bacteria. Additionally, we investigated whether flies are potential vectors of human and plant pathogens. Eighteen species of fungi and twelve species of bacteria were isolated from wild flies. The most abundant microorganisms identified were the yeast Candida inconspicua and the bacterium Klebsiella sp. The yeast Issatchenkia hanoiensis was significantly more common internally than externally in flies. Species richness was higher in fungi than in bacteria, but diversity was lower in fungi than in bacteria. The microbial composition of flies was similar internally and externally. We identified a variety of opportunistic human and plant pathogens in flies such as Alcaligenes faecalis, Aspergillus flavus, A. fumigatus, A. niger, Fusarium equiseti/oxysporum, Geotrichum candidum, Klebsiella oxytoca, Microbacterium oxydans, and Stenotrophomonas maltophilia. Despite its utility as a model system, D. melanogaster can be a vector of microorganisms that represent a potential risk to plant and public health.
Collapse
|
49
|
Arp AP, Martini X, Pelz-Stelinski KS. Innate immune system capabilities of the Asian citrus psyllid, Diaphorina citri. J Invertebr Pathol 2017. [DOI: 10.1016/j.jip.2017.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Morris O, Liu X, Domingues C, Runchel C, Chai A, Basith S, Tenev T, Chen H, Choi S, Pennetta G, Buchon N, Meier P. Signal Integration by the IκB Protein Pickle Shapes Drosophila Innate Host Defense. Cell Host Microbe 2017; 20:283-295. [PMID: 27631699 PMCID: PMC5026699 DOI: 10.1016/j.chom.2016.08.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 07/17/2016] [Accepted: 08/12/2016] [Indexed: 12/12/2022]
Abstract
Pattern recognition receptors are activated following infection and trigger transcriptional programs important for host defense. Tight regulation of NF-κB activation is critical to avoid detrimental and misbalanced responses. We describe Pickle, a Drosophila nuclear IκB that integrates signaling inputs from both the Imd and Toll pathways by skewing the transcriptional output of the NF-κB dimer repertoire. Pickle interacts with the NF-κB protein Relish and the histone deacetylase dHDAC1, selectively repressing Relish homodimers while leaving other NF-κB dimer combinations unscathed. Pickle's ability to selectively inhibit Relish homodimer activity contributes to proper host immunity and organismal health. Although loss of pickle results in hyper-induction of Relish target genes and improved host resistance to pathogenic bacteria in the short term, chronic inactivation of pickle causes loss of immune tolerance and shortened lifespan. Pickle therefore allows balanced immune responses that protect from pathogenic microbes while permitting the establishment of beneficial commensal host-microbe relationships.
Collapse
Affiliation(s)
- Otto Morris
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| | - Xi Liu
- Department of Entomology, Cornell University, 5124 Comstock Hall, 129 Garden Avenue, Ithaca, NY 14853, USA
| | - Celia Domingues
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Christopher Runchel
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Andrea Chai
- Euan MacDonald Centre for Motor Neuron Disease Research, Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Shaherin Basith
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea; National Leading Research Laboratory of Molecular Modeling & Drug Design, College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea
| | - Tencho Tenev
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK
| | - Haiyang Chen
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Giuseppa Pennetta
- Euan MacDonald Centre for Motor Neuron Disease Research, Centre for Integrative Physiology, The University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Nicolas Buchon
- Department of Entomology, Cornell University, 5124 Comstock Hall, 129 Garden Avenue, Ithaca, NY 14853, USA
| | - Pascal Meier
- The Breast Cancer Now Toby Robins Research Centre, Institute of Cancer Research, Mary-Jean Mitchell Green Building, Chester Beatty Laboratories, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|