1
|
Amereh M, Seyfoori A, Shojaei S, Lane S, Zhao T, Shokrollahi Barough M, Lum JJ, Walter P, Akbari M. Tumoroid Model Reveals Synergistic Impairment of Metabolism by Iron Chelators and Temozolomide in Chemo-Resistant Patient-derived Glioblastoma Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412505. [PMID: 40285641 PMCID: PMC12120723 DOI: 10.1002/advs.202412505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/18/2025] [Indexed: 04/29/2025]
Abstract
Chemoresistance poses a significant clinical challenge in managing glioblastoma (GBM), limiting the long-term success of traditional treatments. Here, a 3D tumoroid model is used to investigate the metabolic sensitivity of temozolomide (TMZ)-resistant GBM cells to iron chelation by deferoxamine (DFO) and deferiprone (DFP). This work shows that TMZ-resistant GBM cells acquire stem-like characteristics, higher intracellular iron levels, higher expression of aconitase, and elevated reliance on oxidative phosphorylation and proteins associated with iron metabolism. Using a microphysiological model of GBM-on-a-chip consisting of extracellular matrix (ECM)-incorporated tumoroids, this work demonstrates that the combination of iron chelators with TMZ induces a synergistic effect on an in vitro tumoroid model of newly diagnosed and recurrent chemo-resistant patient-derived GBM and reduced their size and invasion. Investigating downstream metabolic variations reveal reduced intracellular iron, increased reactive oxygen species (ROS), upregulated hypoxia-inducible factor-1α, reduced viability, increased autophagy, upregulated ribonucleotide reductase (RRM2), arrested proliferation, and induced cell death in normoxic TMZ-resistant cells. Hypoxic cells, while showing similar results, display reduced responses to iron deficiency, less blebbing, and an induced autophagic flux, suggesting an adaptive mechanism associated with hypoxia. These findings show that co-treatment with iron chelators and TMZ induces a synergistic effect, making this combination a promising GBM therapy.
Collapse
Affiliation(s)
- Meitham Amereh
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Amir Seyfoori
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Shahla Shojaei
- Department of Human Anatomy and Cell ScienceMax Rady College of MedicineRady Faculty of Health SciencesUniversity of ManitobaWinnipegMBR3T 2N2Canada
| | - Sarah Lane
- Department of BiologyUniversity of VictoriaBCCanada
| | - Tian Zhao
- Trev and Joyce Deeley Research CentreBC CancerVictoriaBCV8R 6V5Canada
| | - Mahdieh Shokrollahi Barough
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
| | - Julian J. Lum
- Trev and Joyce Deeley Research CentreBC CancerVictoriaBCV8R 6V5Canada
- Department of Biochemistry and MicrobiologyUniversity of VictoriaVictoriaBCV8W 2Y2Canada
| | | | - Mohsen Akbari
- Laboratory for Innovations in Micro Engineering (LiME)Department of Mechanical EngineeringUniversity of VictoriaVictoriaBCV8P 5C2Canada
- Terasaki Institute for Biomedical InnovationsLos AngelesCA91367USA
| |
Collapse
|
2
|
Ren Q, Xu X, Dong Z, Qiu J, Shan Q, Chen R, Liu Y, Ma J, Liu S. Iron Deficiency Impairs Dendritic Cell Development and Function, Compromising Host Anti-Infection Capacity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408348. [PMID: 40305750 PMCID: PMC12120711 DOI: 10.1002/advs.202408348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 03/23/2025] [Indexed: 05/02/2025]
Abstract
The prevalence of acute lower respiratory infections in individuals with iron deficiency (ID) has significantly increased, and is correlated with reduced numbers of immune cells and impaired immune function. Dendritic cells (DCs) play a crucial role in combating the influenza A virus (IAV) by initiating adaptive immune responses. However, the impact of ID on DCs and their response to IAV infection remain unclear. This study showed that ID impairs the antigen-presenting ability of DCs, thereby hindering their capacity to mediate T-cell proliferation and clear viruses. The restrictive effects of ID on DCs begin in the bone marrow and specifically affect the monocyte DC progenitor (MDP) stage. A reduction in the number of MDPs and compromised immune potential lead to a decrease in the population and functionality of DCs in the subsequent common DC precursor (CDP) stage in the blood, spleen, and lungs. This study highlights the previously unrecognized impact of ID on DCs and provides valuable insights into immune cell responses and the application of iron supplementation in the fight against viral infections.
Collapse
Affiliation(s)
- Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- JST sarcopenia Research CentreNational Center for OrthopaedicsBeijing Research Institute of Traumatology and OrthopaedicsBeijing Jishuitan HospitalCapital Medical UniversityBeijing100035P. R. China
| | - Xiaotong Xu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Zheng Dong
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qing'e Shan
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Rui Chen
- Department of Toxicology and Sanitary ChemistrySchool of Public HealthCapital Medical UniversityBeijing100069P. R. China
| | - Yajun Liu
- JST sarcopenia Research CentreNational Center for OrthopaedicsBeijing Research Institute of Traumatology and OrthopaedicsBeijing Jishuitan HospitalCapital Medical UniversityBeijing100035P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| |
Collapse
|
3
|
Sripetchwandee J, Kongkaew A, Kumfu S, Chattipakorn N, Chattipakorn SC. Modulating mitochondrial dynamics preserves cognitive performance via ameliorating iron-mediated brain toxicity in iron-overload rats. Eur J Pharmacol 2025; 993:177379. [PMID: 39954841 DOI: 10.1016/j.ejphar.2025.177379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/28/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
This study aimed to demonstrate the pharmacological efficacy of mitochondrial dynamics modulators, including the fission inhibitor Mdivi-1 and the fusion promoter M1, on parameters in brain and cognitive performance in rats with iron overload condition. Forty male Wistar rats were randomly categorized into two groups to receive either 10% dextrose in normal saline (control, n = 8) or iron dextran (100 mg/kg, Fe group, n = 32) via intraperitoneal injection for six weeks. During the fifth week of injection, rats in the Fe group were further categorized into four groups (n = 8 each) to subcutaneously injected with 1) vehicle (10% DMSO in normal saline), 2) deferoxamine (DFO) (25 mg/kg), 3) Mdivi-1 (1.2 mg/kg), or 4) M1 (2 mg/kg) for further two weeks. Behavioral tests, such as novel object recognition and Morris water maze, were performed post-treatment. Non-heme iron levels in plasma and parameters in the brain, including tight junction-related blood-brain barrier proteins, lipocalin-2, iron levels, ferroptosis, inflammation, mitochondrial function, dynamics, mitophagy, and Alzheimer-like proteins, were assessed. DFO mitigated iron overload condition and brain abnormalities, partially ameliorating cognitive decline. Mdivi-1 and M1 showed superior effects by preventing brain inflammation, LCN2 elevation, and mitochondrial dysfunction, restoring memory function (hippocampal-dependent manner) and spatial cognition (recognition manner). These findings indicate that modulating mitochondrial dynamics via fission inhibitor and fusion promoter could be promising novel pharmacological interventions for the brain in iron overload condition.
Collapse
Affiliation(s)
- Jirapas Sripetchwandee
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Sirinart Kumfu
- Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand; Department of Physiology, Faculty of Medicine, Chiang Mai University, 50200, Chiang Mai, Thailand; Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, 50200, Chiang Mai, Thailand.
| |
Collapse
|
4
|
Nevoit G, Jarusevicius G, Potyazhenko M, Mintser O, Bumblyte IA, Vainoras A. Mitochondrial Dysfunction and Atherosclerosis: The Problem and the Search for Its Solution. Biomedicines 2025; 13:963. [PMID: 40299559 PMCID: PMC12024619 DOI: 10.3390/biomedicines13040963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/24/2025] [Accepted: 04/09/2025] [Indexed: 05/01/2025] Open
Abstract
Background/Objectives: This review has been prepared to promote interest in the interdisciplinary study of mitochondrial dysfunction (MD) and atherosclerosis. This review aims to describe the state of this problem and indicate the direction for further implementation of this knowledge in clinical medicine. Methods: Extensive research of the literature was implemented to elucidate the role of the molecular mechanisms of MD in the pathogenesis of atherosclerosis. Results: A view on the pathogenesis of atherosclerosis through the prism of knowledge about MD is presented. MD is the cause and primary mechanism of the onset and progression of atherosclerosis. It is proposed that this problem be considered in the context of a continuum. Conclusions: MD and atherosclerosis are united by common molecular mechanisms of pathogenesis. Knowledge of MD should be used to argue for a healthy lifestyle as the primary way to prevent atherosclerosis. The development of new approaches to diagnosing and treating MD in atherosclerosis is an urgent task and challenge for modern science.
Collapse
Affiliation(s)
- Ganna Nevoit
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Gediminas Jarusevicius
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Maksim Potyazhenko
- Department of Internal Medicine and Emergency Medicine, Poltava State Medical University, 36011 Poltava, Ukraine
| | - Ozar Mintser
- Department of Fundamental Disciplines and Informatics, Shupyk National Healthcare University of Ukraine, 04112 Kyiv, Ukraine
| | - Inga Arune Bumblyte
- Department of Nephrology, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| | - Alfonsas Vainoras
- Laboratory for Automatization of Cardiovascular Investigations, Cardiology Institute, Lithuanian University of Health Sciences, LT-44307 Kaunas, Lithuania
| |
Collapse
|
5
|
Mao N, Zhang M, Shen M, Yuan J, Lin Z. Research progress on ferroptosis in cerebral hemorrhage. Biomed Pharmacother 2025; 185:117932. [PMID: 40015051 DOI: 10.1016/j.biopha.2025.117932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/06/2025] [Accepted: 02/15/2025] [Indexed: 03/01/2025] Open
Abstract
The pathophysiology of intracerebral hemorrhage (ICH) is complex and can cause variable degrees of cell death. Recently, ferroptosis, an emerging cell death mechanism, has garnered significant attention in cerebral hemorrhage disorder. This study aimed to examine iron mortality after cerebral hemorrhage and current targets for potential therapeutic interventions. We specifically focused on iron metabolism abnormalities, lipid peroxidation, and related neuroinflammation and introduced molecular mechanisms, including transcription factors, to gain a better understanding of the underlying mechanisms of ferroptosis and investigate possible therapeutic options for ICH.
Collapse
Affiliation(s)
- Niping Mao
- Department of Neonatology, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Min Zhang
- Department of Neonatology, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ming Shen
- Department of Neonatology, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Junhui Yuan
- Department of Neonatology, Wenling maternal and child health care hospital, Wenling, Zhejiang, China.
| | - Zhenlang Lin
- Department of Neonatology, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
6
|
Fisher AL, Phillips S, Wang CY, Paulo JA, Xiao X, Xu Y, Moschetta GA, Xue Y, Mancias JD, Babitt JL. The hepcidin-ferroportin axis modulates liver endothelial cell BMP expression to influence iron homeostasis in mice. Blood 2025; 145:625-634. [PMID: 39437541 DOI: 10.1182/blood.2024024795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/18/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024] Open
Abstract
ABSTRACT The liver hormone hepcidin regulates systemic iron homeostasis to provide enough iron for vital processes while limiting toxicity. Hepcidin acts by degrading its receptor ferroportin (encoded by Slc40a1) to decrease iron export to plasma. Iron controls hepcidin production in part by inducing liver endothelial cells (LECs) to produce bone morphogenetic proteins (BMPs) that activate hepcidin transcription in hepatocytes. Here, we used in vitro and in vivo models to investigate whether ferroportin contributes to LEC intracellular iron content to modulate BMP expression and, thereby, hepcidin. Quantitative proteomics of LECs from mice fed different iron diets demonstrated an inverse relationship between dietary iron and endothelial ferroportin expression. Slc40a1 knockdown primary mouse LECs and endothelial Slc40a1 knockout mice exhibited increased LEC iron and BMP ligand expression. Endothelial Slc40a1 knockout mice also exhibited altered systemic iron homeostasis with decreased serum and total liver iron but preserved erythropoiesis. Although endothelial Slc40a1 knockout mice had similar hepcidin expression to control mice, hepcidin levels were inappropriately high relative to iron levels. Moreover, when iron levels were equalized with iron treatment, hepcidin levels were higher in endothelial Slc40a1 knockout mice than in controls. Finally, LEC ferroportin levels were inversely correlated with hepcidin levels in multiple mouse models, and treatment of hepcidin-deficient mice with mini-hepcidin decreased LEC ferroportin expression. Overall, these data show that LEC ferroportin modulates LEC iron and consequently BMP expression to influence hepcidin production. Furthermore, LEC ferroportin expression is regulated by hepcidin, demonstrating a bidirectional communication between LECs and hepatocytes to orchestrate systemic iron homeostasis.
Collapse
Affiliation(s)
- Allison L Fisher
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Sydney Phillips
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Chia-Yu Wang
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA
| | - Xia Xiao
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yang Xu
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gillian A Moschetta
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Yongqiang Xue
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Joseph D Mancias
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Jodie L Babitt
- Nephrology Division and Endocrine Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
7
|
Hollings AL, Ellison GC, Willans M, Lam V, Munyard T, Remy AR, Takechi R, Mamo JCL, Webb S, New EJ, James SA, Glover C, Klein A, Vongsvivut J, Howard D, Hackett MJ. Subventricular Accumulation of Cu in the Aging Mouse Brain Does Not Associate with Anticipated Increases in Markers of Oxidative Stress. ACS Chem Neurosci 2025; 16:292-302. [PMID: 39873122 DOI: 10.1021/acschemneuro.4c00320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
Natural aging is associated with mild memory loss and cognitive decline, and age is the greatest risk factor for neurodegenerative diseases, such as Alzheimer's disease. There is substantial evidence that oxidative stress is a major contributor to both natural aging and neurodegenerative disease, and coincidently, levels of redox active metals such as Fe and Cu are known to be elevated later in life. Recently, a pronounced age-related increase in Cu content has been reported to occur in mice and rats around a vital regulatory brain region, the subventricular zone of lateral ventricles. In our study herein, we have characterized lateral ventricle Cu content in a unique murine model of accelerated aging, senescence accelerated mouse-prone 8 (SAMP8) mice. Our results confirm an age-related increase in ventricle Cu content, consistent with the studies by others in wild-type mice and rats. Specifically, we observed Cu content to increase over the time frame 1 to 5 months and 5 to 9 months, but interestingly, no significant increase occurred between 9 and 12 months (although brain Cu content at 12 months was significantly elevated relative to 1 and 5 month-old animals). Despite the magnitude of Cu increase observed within the cells that comprise the subventricular zone of lateral ventricles (average 3 mM Cu, with isolated subcellular concentrations of 17 mM), we did not detect spectroscopic markers of thiol oxidation, protein aggregation, or lipid oxidation. The lack of evidence for oxidative stress in ex vivo animal tissue is in contrast to in vitro studies demonstrating that thiol, protein, and lipid oxidation is pronounced at these Cu concentrations. We suggest that our findings most likely indicate that the Cu ions in this brain region are sequestered in an unreactive form, possibly extended chains of Cu-thiolate complexes, which do not readily redox cycle in the aqueous cytosol. These results also appear to partially challenge the long-held view that age-related increases in brain metal content drive oxidative stress as we did not observe a concomitant association between age-related Cu increase and markers of oxidative stress, nor did we observe a net increase in Cu content between mice aged 9 and 12 months.
Collapse
Affiliation(s)
- Ashley L Hollings
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6845, Australia
- Curtin Medical Research Institute, Curtin University, Bentley, WA 6845, Australia
| | - Gaewyn C Ellison
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6845, Australia
- Curtin Medical Research Institute, Curtin University, Bentley, WA 6845, Australia
| | - Meg Willans
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6845, Australia
- Curtin Medical Research Institute, Curtin University, Bentley, WA 6845, Australia
| | - Virginie Lam
- Curtin Medical Research Institute, Curtin University, Bentley, WA 6845, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6845, Australia
- Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Thomas Munyard
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6845, Australia
| | - Aedena-Raquel Remy
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
| | - Ryu Takechi
- Curtin Medical Research Institute, Curtin University, Bentley, WA 6845, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6845, Australia
- Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - John C L Mamo
- Curtin Medical Research Institute, Curtin University, Bentley, WA 6845, Australia
- School of Population Health, Faculty of Health Sciences, Curtin University, Bentley, WA 6845, Australia
- Perron Institute for Neurological and Translational Sciences, 8 Verdun Street, Nedlands, WA 6009, Australia
| | - Sam Webb
- SLAC National Accelerator Laboratory, Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Elizabeth J New
- School of Chemistry, The University of Sydney, Sydney, NSW 2006, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, The University of Sydney, Sydney, NSW 2006, Australia
| | - Simon A James
- Medium Energy X-ray Absorption Spectroscopy (MEX) Beamline, ANSTO-Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Chris Glover
- Medium Energy X-ray Absorption Spectroscopy (MEX) Beamline, ANSTO-Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Annaleise Klein
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Jitraporn Vongsvivut
- Infrared Microspectroscopy (IRM) Beamline, ANSTO-Australian Synchrotron, 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Daryl Howard
- X-ray Fluorescence Microscopy (XFM) Beamline, ANSTO-Australian Synchrotron, 800 Blackburn Road, Clayton, VIC3168Australia
| | - Mark J Hackett
- School of Molecular and Life Sciences, Faculty of Science and Engineering, Curtin University, Bentley, WA 6845, Australia
- Curtin Medical Research Institute, Curtin University, Bentley, WA 6845, Australia
| |
Collapse
|
8
|
Teh MR, Armitage AE, Drakesmith H. Why cells need iron: a compendium of iron utilisation. Trends Endocrinol Metab 2024; 35:1026-1049. [PMID: 38760200 PMCID: PMC11616622 DOI: 10.1016/j.tem.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Iron deficiency is globally prevalent, causing an array of developmental, haematological, immunological, neurological, and cardiometabolic impairments, and is associated with symptoms ranging from chronic fatigue to hair loss. Within cells, iron is utilised in a variety of ways by hundreds of different proteins. Here, we review links between molecular activities regulated by iron and the pathophysiological effects of iron deficiency. We identify specific enzyme groups, biochemical pathways, cellular functions, and cell lineages that are particularly iron dependent. We provide examples of how iron deprivation influences multiple key systems and tissues, including immunity, hormone synthesis, and cholesterol metabolism. We propose that greater mechanistic understanding of how cellular iron influences physiological processes may lead to new therapeutic opportunities across a range of diseases.
Collapse
Affiliation(s)
- Megan R Teh
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Andrew E Armitage
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Hal Drakesmith
- MRC Translational Immune Discovery Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
9
|
LeVine SM. The Azalea Hypothesis of Alzheimer Disease: A Functional Iron Deficiency Promotes Neurodegeneration. Neuroscientist 2024; 30:525-544. [PMID: 37599439 PMCID: PMC10876915 DOI: 10.1177/10738584231191743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
Chlorosis in azaleas is characterized by an interveinal yellowing of leaves that is typically caused by a deficiency of iron. This condition is usually due to the inability of cells to properly acquire iron as a consequence of unfavorable conditions, such as an elevated pH, rather than insufficient iron levels. The causes and effects of chlorosis were found to have similarities with those pertaining to a recently presented hypothesis that describes a pathogenic process in Alzheimer disease. This hypothesis states that iron becomes sequestered (e.g., by amyloid β and tau), causing a functional deficiency of iron that disrupts biochemical processes leading to neurodegeneration. Additional mechanisms that contribute to iron becoming unavailable include iron-containing structures not undergoing proper recycling (e.g., disrupted mitophagy and altered ferritinophagy) and failure to successfully translocate iron from one compartment to another (e.g., due to impaired lysosomal acidification). Other contributors to a functional deficiency of iron in patients with Alzheimer disease include altered metabolism of heme or altered production of iron-containing proteins and their partners (e.g., subunits, upstream proteins). A review of the evidence supporting this hypothesis is presented. Also, parallels between the mechanisms underlying a functional iron-deficient state in Alzheimer disease and those occurring for chlorosis in plants are discussed. Finally, a model describing the generation of a functional iron deficiency in Alzheimer disease is put forward.
Collapse
Affiliation(s)
- Steven M. LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, US
| |
Collapse
|
10
|
Yang J, Shi L, Cubito AL, Collins JF, Cheng Z. A liver-fat crosstalk for iron flux during healthy beiging of adipose tissue. AUTOPHAGY REPORTS 2024; 3:2396696. [PMID: 40395518 PMCID: PMC11864716 DOI: 10.1080/27694127.2024.2396696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/21/2024] [Indexed: 05/22/2025]
Abstract
Beiging of adipocytes is characteristic of a higher number of mitochondria, the central hub of metabolism in the cell. However, studies show that beiging can improve metabolic health or cause metabolic disorders. Here we discuss a liver-fat crosstalk for iron flux associated with healthy beiging of adipocytes. Deletion of the transcription factor FoxO1 in adipocytes (adO1KO mice) induces a higher iron flux from the liver to white adipose tissue, concurrent with augmented mitochondrial biogenesis that increases iron demands. In addition, adO1KO mice adopt an alternate mechanism to sustain mitophagy, which enhances mitochondrial quality control, thereby improving mitochondrial respiratory capacity and metabolic health. However, the liver-fat crosstalk is not detectable in adipose Atg7 knockout (ad7KO) mice, which undergo beiging of adipocytes but have metabolic dysregulation. Autophagic clearance of mitochondria is blocked in ad7KO mice, which accumulates dysfunctional mitochondria and elevates mitochondrial content but lowers mitochondrial respiratory capacity. Mitochondrial biogenesis is comparable in the control and ad7KO mice, and the iron influx into adipocytes and iron efflux from the liver remain unchanged. Therefore, activation of the liver-fat crosstalk is critical for mitochondrial quality control that underlies healthy beiging of adipocytes.
Collapse
Affiliation(s)
- Jinying Yang
- Food Science and Human Nutrition Department, University of Florida, Gainesville, USA
- Interdisciplinary Nutritional Sciences Doctoral Program, Center for Nutritional Sciences, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, USA
| | - Limin Shi
- Food Science and Human Nutrition Department, University of Florida, Gainesville, USA
| | - Anna L. Cubito
- Food Science and Human Nutrition Department, University of Florida, Gainesville, USA
| | - James F. Collins
- Food Science and Human Nutrition Department, University of Florida, Gainesville, USA
- Interdisciplinary Nutritional Sciences Doctoral Program, Center for Nutritional Sciences, University of Florida, Gainesville, USA
| | - Zhiyong Cheng
- Food Science and Human Nutrition Department, University of Florida, Gainesville, USA
- Interdisciplinary Nutritional Sciences Doctoral Program, Center for Nutritional Sciences, University of Florida, Gainesville, USA
- Center for Integrative Cardiovascular and Metabolic Diseases, University of Florida, Gainesville, USA
| |
Collapse
|
11
|
Czarnecka-Herok J, Zhu K, Flaman JM, Goehrig D, Vernier M, Makulyte G, Lamboux A, Dragic H, Rhinn M, Médard JJ, Faury G, Bertolino P, Balter V, Debret R, Adnot S, Martin N, Bernard D. A non-canonical role of ELN protects from cellular senescence by limiting iron-dependent regulation of gene expression. Redox Biol 2024; 73:103204. [PMID: 38810421 PMCID: PMC11167390 DOI: 10.1016/j.redox.2024.103204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 05/20/2024] [Indexed: 05/31/2024] Open
Abstract
The ELN gene encodes tropoelastin which is used to generate elastic fibers that insure proper tissue elasticity. Decreased amounts of elastic fibers and/or accumulation of bioactive products of their cleavage, named elastokines, are thought to contribute to aging. Cellular senescence, characterized by a stable proliferation arrest and by the senescence-associated secretory phenotype (SASP), increases with aging, fostering the onset and progression of age-related diseases and overall aging, and has so far never been linked with elastin. Here, we identified that decrease in ELN either by siRNA in normal human fibroblasts or by knockout in mouse embryonic fibroblasts results in premature senescence. Surprisingly this effect is independent of elastic fiber degradation or elastokines production, but it relies on the rapid increase in HMOX1 after ELN downregulation. Moreover, the induction of HMOX1 depends on p53 and NRF2 transcription factors, and leads to an increase in iron, further mediating ELN downregulation-induced senescence. Screening of iron-dependent DNA and histones demethylases revealed a role for histone PHF8 demethylase in mediating ELN downregulation-induced senescence. Collectively, these results unveil a role for ELN in protecting cells from cellular senescence through a non-canonical mechanism involving a ROS/HMOX1/iron accumulation/PHF8 histone demethylase pathway reprogramming gene expression towards a senescence program.
Collapse
Affiliation(s)
- Joanna Czarnecka-Herok
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Kexin Zhu
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Jean-Michel Flaman
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Delphine Goehrig
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Mathieu Vernier
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Gabriela Makulyte
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Aline Lamboux
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnements, CNRS UMR 5276, Ecole Normale supérieure de Lyon, Lyon, France
| | - Helena Dragic
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France
| | - Muriel Rhinn
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR7104, Inserm U1258, Université de Strasbourg, Illkirch, 67404, France
| | - Jean-Jacques Médard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Gilles Faury
- Université Grenoble Alpes, Inserm, CHU Grenoble Alpes, HP2, Inserm U1300, 38000, Grenoble, France
| | - Philippe Bertolino
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France
| | - Vincent Balter
- Laboratoire de Géologie de Lyon: Terre, Planètes, Environnements, CNRS UMR 5276, Ecole Normale supérieure de Lyon, Lyon, France
| | - Romain Debret
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR5305 CNRS/ Université Claude Bernard Lyon 1, 7 passage du Vercors, 69007, Lyon, France
| | - Serge Adnot
- Inserm U955, Département de Physiologie - Explorations fonctionnelles, Hôpital Henri Mondor, AP-HP, FHU SENEC, Créteil, France; Institute of Lung Health, Justus Liebig University, Giessen, Germany
| | - Nadine Martin
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France.
| | - David Bernard
- Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR 5286, Centre Léon Bérard, Université de Lyon, Lyon, France; Equipe Labellisée la Ligue Contre le Cancer, Lyon, France.
| |
Collapse
|
12
|
Klag KA, Bell R, Jia X, Seguin A, Maschek JA, Bronner M, Cox JE, Round JL, Ward DM. Low-Iron Diet-Induced Fatty Liver Development Is Microbiota Dependent and Exacerbated by Loss of the Mitochondrial Iron Importer Mitoferrin2. Nutrients 2024; 16:1804. [PMID: 38931165 PMCID: PMC11206261 DOI: 10.3390/nu16121804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
Iron deficiency is the number one nutritional problem worldwide. Iron uptake is regulated at the intestine and is highly influenced by the gut microbiome. Blood from the intestines drains directly into the liver, informing iron status and gut microbiota status. Changes in either iron or the microbiome are tightly correlated with the development of metabolic dysfunction-associated steatotic liver disease (MASLD). To investigate the underlying mechanisms of the development of MASLD that connect altered iron metabolism and gut microbiota, we compared specific pathogen free (SPF) or germ-free (GF) mice, fed a normal or low-iron diet. SPF mice on a low-iron diet showed reduced serum triglycerides and MASLD. In contrast, GF low-iron diet-fed mice showed increased serum triglycerides and did not develop hepatic steatosis. SPF mice showed significant changes in liver lipid metabolism and increased insulin resistance that was dependent upon the presence of the gut microbiota. We report that total body loss of mitochondrial iron importer Mitoferrin2 (Mfrn2-/-) exacerbated the development of MASLD on a low-iron diet with significant lipid metabolism alterations. Our study demonstrates a clear contribution of the gut microbiome, dietary iron, and Mfrn2 in the development of MASLD and metabolic syndrome.
Collapse
Affiliation(s)
- Kendra A. Klag
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (K.A.K.); (R.B.); (X.J.); (A.S.); (M.B.); (J.L.R.)
| | - Rickesha Bell
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (K.A.K.); (R.B.); (X.J.); (A.S.); (M.B.); (J.L.R.)
| | - Xuan Jia
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (K.A.K.); (R.B.); (X.J.); (A.S.); (M.B.); (J.L.R.)
| | - Alexandra Seguin
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (K.A.K.); (R.B.); (X.J.); (A.S.); (M.B.); (J.L.R.)
| | - J. Alan Maschek
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT 84112, USA; (J.A.M.); (J.E.C.)
| | - Mary Bronner
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (K.A.K.); (R.B.); (X.J.); (A.S.); (M.B.); (J.L.R.)
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - James E. Cox
- Metabolomics Core Research Facility, University of Utah, Salt Lake City, UT 84112, USA; (J.A.M.); (J.E.C.)
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - June L. Round
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (K.A.K.); (R.B.); (X.J.); (A.S.); (M.B.); (J.L.R.)
| | - Diane M. Ward
- Department of Pathology, Division of Microbiology and Immunology, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (K.A.K.); (R.B.); (X.J.); (A.S.); (M.B.); (J.L.R.)
| |
Collapse
|
13
|
Zhi HT, Lu Z, Chen L, Wu JQ, Li L, Hu J, Chen WH. Anticancer efficacy triggered by synergistically modulating the homeostasis of anions and iron: Design, synthesis and biological evaluation of dual-functional squaramide-hydroxamic acid conjugates. Bioorg Chem 2024; 147:107421. [PMID: 38714118 DOI: 10.1016/j.bioorg.2024.107421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/12/2024] [Accepted: 04/29/2024] [Indexed: 05/09/2024]
Abstract
Targeting the homeostasis of anions and iron has emerged as a promising therapeutic approach for the treatment of cancers. However, single-targeted agents often fall short of achieving optimal treatment efficacy. Herein we designed and synthesized a series of novel dual-functional squaramide-hydroxamic acid conjugates that are capable of synergistically modulating the homeostasis of anions and iron. Among them, compound 16 exhibited the most potent antiproliferative activity against a panel of selected cancer cell lines, and strong in vivo anti-tumor efficacy. This compound effectively elevated lysosomal pH through anion transport, and reduced the levels of intracellular iron. Compound 16 could disturb autophagy in A549 cells and trigger robust apoptosis. This compound caused cell cycle arrest at the G1/S phase, altered the mitochondrial function and elevated ROS levels. The present findings clearly demonstrated that synergistic modulation of anion and iron homeostasis has high potentials in the development of promising chemotherapeutic agents with dual action against cancers.
Collapse
Affiliation(s)
- Hai-Tao Zhi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Zhonghui Lu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Li Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jia-Qiang Wu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Lanqing Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China
| | - Jinhui Hu
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China.
| | - Wen-Hua Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
14
|
Mendola RJ, Biswas L, Schindler K, Walmsley RH, Russell H, Angle M, Garrisi GJ. Influx of zwitterionic buffer after intracytoplasmic sperm injection (ICSI) membrane piercing alters the transcriptome of human oocytes. J Assist Reprod Genet 2024; 41:1341-1356. [PMID: 38436798 PMCID: PMC11143126 DOI: 10.1007/s10815-024-03064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
PURPOSE/STUDY QUESTION Does piercing oocyte membranes during ICSI allow the influx of surrounding zwitterionic buffer into human oocytes and result in altered developmental competence? METHODS Human oocytes directed to IRB-approved research were used to determine the unrestricted influx of surrounding buffer into the oocyte after piercing of membranes via confocal fluorescence microscopy (n = 80 human MII oocytes) and the influence of the select buffer influx of HEPES, MOPS, and bicarbonate buffer on the oocyte transcriptome using ultra-low input RNA sequencing (n = 40 human MII oocytes). RESULTS Piercing membranes of human MII oocytes during sham-ICSI resulted in the unrestricted influx of surrounding culture buffer into the oocyte that was beyond technician control. Transcriptome analysis revealed statistically significant decreased cytoskeletal transcripts in the pierced buffer cohorts, higher levels of embryo competency transcripts (IGF2 and G6PD) in the bicarbonate buffer cohort, higher levels of stress-induced transcriptional repressor transcripts (MAF1) in the HEPES and MOPS cohorts, and decreased levels of numerous chromosomal maintenance transcripts (SMC3) in the HEPES buffer cohort. The HEPES buffer cohort also revealed higher levels of transcripts suggesting increased oxidative (GPX1) and lysosomal stress (LAMP1). CONCLUSION The influence of zwitterionic buffer on intrinsic cellular mechanisms provides numerous concerns for their use in IVF clinical applications. The primary concern is the ICSI procedure, in which the surrounding buffer is allowed influx into the oocytes after membrane piercing. Selecting a physiological bicarbonate buffer may reduce imposed stress on oocytes, resulting in improved embryo development and clinical results because intracellular MOPS, and especially HEPES, may negatively impact intrinsic biological mechanisms, as revealed by transcriptome changes. These findings further support the utilization of bicarbonate buffer as the oocyte-holding medium during ICSI.
Collapse
Affiliation(s)
- Robert J Mendola
- Institute for Reproductive Medicine and Science (IRMS) at Saint Barnabas, Livingston, NJ, USA.
| | - Leelabati Biswas
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
- Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Karen Schindler
- Department of Genetics, Rutgers University, Piscataway, NJ, USA
| | - Renee H Walmsley
- Institute for Reproductive Medicine and Science (IRMS) at Saint Barnabas, Livingston, NJ, USA
| | - Helena Russell
- Eastern Virginia Medical School (EVMS), Norfolk, VA, USA
| | - Marlane Angle
- Eastern Virginia Medical School (EVMS), Norfolk, VA, USA
| | - G John Garrisi
- Institute for Reproductive Medicine and Science (IRMS) at Saint Barnabas, Livingston, NJ, USA
| |
Collapse
|
15
|
Marcora MS, Mattera VS, Goñi P, Aybar F, Correale JD, Pasquini JM. Iron deficiency in astrocytes alters cellular status and impacts on oligodendrocyte differentiation. J Neurosci Res 2024; 102:e25334. [PMID: 38656648 DOI: 10.1002/jnr.25334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
Iron deficiency (ID) has been shown to affect central nervous system (CNS) development and induce hypomyelination. Previous work from our laboratory in a gestational ID model showed that both oligodendrocyte (OLG) and astrocyte (AST) maturation was impaired. To explore the contribution of AST iron to the myelination process, we generated an in vitro ID model by silencing divalent metal transporter 1 (DMT1) in AST (siDMT1 AST) or treating AST with Fe3+ chelator deferoxamine (DFX; DFX AST). siDMT1 AST showed no changes in proliferation but remained immature. Co-cultures of oligodendrocyte precursors cells (OPC) with siDMT1 AST and OPC cultures incubated with siDMT1 AST-conditioned media (ACM) rendered a reduction in OPC maturation. These findings correlated with a decrease in the expression of AST-secreted factors IGF-1, NRG-1, and LIF, known to promote OPC differentiation. siDMT1 AST also displayed increased mitochondrial number and reduced mitochondrial size as compared to control cells. DFX AST also remained immature and DFX AST-conditioned media also hampered OPC maturation in culture, in keeping with a decrease in the expression of AST-secreted growth factors IGF-1, NRG-1, LIF, and CNTF. DFX AST mitochondrial morphology and number showed results similar to those observed in siDMT1 AST. In sum, our results show that ID, induced through two different methods, impacts AST maturation and mitochondrial functioning, which in turn hampers OPC differentiation.
Collapse
Affiliation(s)
- María Silvina Marcora
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Vanesa Soledad Mattera
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Pilar Goñi
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Florencia Aybar
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Jorge Daniel Correale
- Departamento de Neurología, Fleni e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Juana Maria Pasquini
- Departamento de Química Biológica e Instituto de Química y Fisicoquímica Biológicas (IQUIFIB), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
16
|
Berendes LS, Westhoff PS, Wittkowski H, Seelhöfer A, Varga G, Marquardt T, Park JH. Clinical and molecular analysis of a novel variant in heme oxygenase-1 deficiency: Unraveling its role in inflammation, heme metabolism, and pulmonary phenotype. Mol Genet Metab Rep 2024; 38:101038. [PMID: 38178812 PMCID: PMC10764348 DOI: 10.1016/j.ymgmr.2023.101038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/06/2024] Open
Abstract
Heme oxygenase 1 (HO-1) is the pivotal catalyst for the primary and rate-determining step in heme catabolism, playing a crucial role in mitigating heme-induced oxidative damage. Pathogenic variants in the HMOX1 gene which encodes HO-1, are responsible for a severe, multisystem disease characterized by recurrent inflammatory episodes, organ failure, and an ultimately fatal course. Chronic hemolysis and abnormally low bilirubin levels are cardinal laboratory features of this disorder. In this study, we describe a patient with severe interstitial lung disease, frequent episodes of hyperinflammation non-responsive to immunosuppression, and fatal pulmonary hemorrhage. Employing exome sequencing, we identified two protein truncating variants in HMOX1, c.262_268delinsCC (p.Ala88Profs*51) and a previously unreported variant, c.55dupG (p.Glu19Glyfs*14). Functional analysis in patient-derived lymphoblastoid cells unveiled the complete absence of HO-1 protein expression and a marked reduction in cell viability upon exposure to hemin. These findings confirm the pathogenicity of the identified HMOX1 variants, further underscoring their association with severe pulmonary manifestations . This study describes the profound clinical consequences stemming from disruptions in redox metabolism.
Collapse
Affiliation(s)
| | | | - Helmut Wittkowski
- University of Münster, Department of Pediatric Rheumatology and Immunology, Münster, Germany
| | - Anja Seelhöfer
- University of Münster, Department of General Pediatrics, Münster, Germany
| | - Georg Varga
- University of Münster, Department of Pediatric Rheumatology and Immunology, Münster, Germany
| | - Thorsten Marquardt
- University of Münster, Department of General Pediatrics, Münster, Germany
| | - Julien H. Park
- University of Münster, Department of General Pediatrics, Münster, Germany
| |
Collapse
|
17
|
Li Z, Zhao B, Zhang Y, Fan W, Xue Q, Chen X, Wang J, Qi X. Mitochondria-mediated ferroptosis contributes to the inflammatory responses of bovine viral diarrhea virus (BVDV) in vitro. J Virol 2024; 98:e0188023. [PMID: 38226812 PMCID: PMC10878082 DOI: 10.1128/jvi.01880-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 01/17/2024] Open
Abstract
Bovine viral diarrhea virus (BVDV) belongs to the family Flaviviridae and includes two biotypes in cell culture: cytopathic (CP) or non-cytopathic (NCP) effects. Ferroptosis is a non-apoptotic form of programmed cell death that contributes to inflammatory diseases. However, whether BVDV induces ferroptosis and the role of ferroptosis in viral infection remain unclear. Here, we provide evidence that both CP and NCP BVDV can induce ferroptosis in Madin-Darby bovine kidney cells at similar rate. Mechanistically, biotypes of BVDV infection downregulate cytoplasmic and mitochondrial GPX4 via Nrf2-GPX4 pathway, thereby resulting in lethal lipid peroxidation and promoting ferroptosis. In parallel, BVDV can degrade ferritin heavy chain and mitochondrial ferritin via NCOA4-mediated ferritinophagy to promote the accumulation of Fe2+ and initiate ferroptosis. Importantly, CP BVDV-induced ferroptosis is tightly associated with serious damage of mitochondria and hyperactivation of inflammatory responses. In contrast, mild or unapparent damage of mitochondria and slight inflammatory responses were detected in NCP BVDV-infected cells. More importantly, different mitophagy pathways in response to mitochondria damage by both biotypes of BVDV are involved in inflammatory responses. Overall, this study is the first to show that mitochondria may play key roles in mediating ferroptosis and inflammatory responses induced by biotypes of BVDV in vitro.IMPORTANCEBovine viral diarrhea virus (BVDV) threatens a wide range of domestic and wild cattle population worldwide. BVDV causes great economic loss in cattle industry through its immunosuppression and persistent infection. Despite extensive research, the mechanism underlying the pathogenesis of BVDV remains elusive. Our data provide the first direct evidence that mitochondria-mediated ferroptosis and mitophagy are involved in inflammatory responses in both biotypes of BVDV-infected cells. Importantly, we demonstrate that the different degrees of injury of mitochondria and inflammatory responses may attribute to different mitophagy pathways induced by biotypes of BVDV. Overall, our findings uncover the interaction between BVDV infection and mitochondria-mediated ferroptosis, which shed novel light on the physiological impacts of ferroptosis on the pathogenesis of BVDV infection, and provide a promising therapeutic strategy to treat this important infectious disease with a worldwide distribution.
Collapse
Affiliation(s)
- Zhijun Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Bao Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Shaanxi Animal Disease Control Center, Xi'an, China
| | - Ying Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Wenqi Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Qinghong Xue
- China Institute of Veterinary Drug Control, Beijing, China
| | - Xiwen Chen
- Animal Disease Prevention and Control, Healthy Breeding Engineering Technology Research Center, Mianyang Normal University, Mianyang, Sichuan, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agriculture and Rural Affairs, Xi'an, China
| |
Collapse
|
18
|
Schildroth S, Valeri L, Kordas K, Shi B, Friedman A, Smith D, Placidi D, Wright RO, Lucchini RG, White RF, Horton M, Claus Henn B. Assessing the mediating role of iron status on associations between an industry-relevant metal mixture and verbal learning and memory in Italian adolescents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167435. [PMID: 37774885 PMCID: PMC10918745 DOI: 10.1016/j.scitotenv.2023.167435] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Metals, including lead (Pb), manganese (Mn), chromium (Cr) and copper (Cu), have been associated with neurodevelopment; iron (Fe) plays a role in the metabolism and neurotoxicity of metals, suggesting Fe may mediate metal-neurodevelopment associations. However, no study to date has examined Fe as a mediator of the association between metal mixtures and neurodevelopment. OBJECTIVE We assessed Fe status as a mediator of a mixture of Pb, Mn, Cr and Cu in relation to verbal learning and memory in a cohort of Italian adolescents. METHODS We used cross-sectional data from 383 adolescents (10-14 years) in the Public Health Impact of Metals Exposure Study. Metals were quantified in blood (Pb) or hair (Mn, Cr, Cu) using ICP-MS, and three markers of Fe status (blood hemoglobin, serum ferritin and transferrin) were quantified using luminescence assays or immunoassays. Verbal learning and memory were assessed using the California Verbal Learning Test for Children (CVLT-C). We used Bayesian Kernel Machine Regression Causal Mediation Analysis to estimate four mediation effects: the natural direct effect (NDE), natural indirect effect (NIE), controlled direct effect (CDE) and total effect (TE). Beta (β) coefficients and 95 % credible intervals (CIs) were estimated for all effects. RESULTS The metal mixture was jointly associated with a greater number of words recalled on the CVLT-C, but these associations were not mediated by Fe status. For example, when ferritin was considered as the mediator, the NIE for long delay free recall was null (β = 0.00; 95 % CI = -0.22, 0.23). Conversely, the NDE (β = 0.23; 95 % CI = 0.01, 0.44) indicated a beneficial association of the mixture with recall that operated independently of Fe status. CONCLUSION An industry-relevant metal mixture was associated with learning and memory, but there was no evidence of mediation by Fe status. Further studies in populations with Fe deficiency and greater variation in metal exposure are warranted.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA.
| | - Linda Valeri
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Baoyi Shi
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Alexa Friedman
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| | - Donald Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Donatella Placidi
- Department of Occupational Health, University of Brescia, Brescia, Italy
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Occupational Health, University of Brescia, Brescia, Italy; Department of Environmental Health Sciences, Florida International University, Miami, FL, USA
| | - Roberta F White
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA; Department of Neurology, Boston University, Boston, MA, USA
| | - Megan Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
19
|
Shen C, Yuan M, Zhao S, Chen Y, Xu M, Zhang Y, Gu W, Wang W, Liu R, Wang J, Hong J. Association of iron status with all-cause and cause-specific mortality in individuals with diabetes. Diabetes Res Clin Pract 2024; 207:111058. [PMID: 38104902 DOI: 10.1016/j.diabres.2023.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/19/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
AIMS Current evidence regarding iron status and mortality risk among patients with diabetes is limited. This study aimed to evaluate association of iron indices with all-cause and cause-specific mortality risk among patients with diabetes. METHODS The current study included 2080 (with ferritin data), 1974 (with transferrin saturation (Tsat) data), and 1106 (with soluble transferrin receptor (sTfR) data) adults with diabetes from NHANES 1999-2018. Death outcomes were obtained from National Death Index through December 31, 2019. Cox proportional hazards models were employed to calculate hazard ratios and 95% confidence intervals for mortality. RESULTS Association with all-cause mortality was demonstrated to be J-shaped for serum ferritin (Pnonlinearity < 0.01), U-shaped for Tsat (Pnonlinearity < 0.01) and linear for sTfR (Plinearity < 0.01). Ferritin 300-500 ng/mL possessed lower all-cause mortality risk than ferritin ≤ 100 ng/mL, 100-300 ng/mL, and > 500 ng/mL. Tsat 25-32 % showed a protective effect on all-cause mortality risk compared with Tsat ≤ 20 %, 20-25 %, and > 32 %. Individuals with sTfR < 4 mg/L were associated with a lower risk of all-cause mortality than those with higher sTfR. CONCLUSIONS Moderate levels of serum ferritin (300-500 ng/mL), Tsat (25 %-32 %) and a lower concentration of sTfR (< 4 mg/L) identified adults with diabetes with lower all-cause mortality risk, adding novel modifiers to diabetes management.
Collapse
Affiliation(s)
- Chongrong Shen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, PR China
| | - Miaomiao Yuan
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, PR China
| | - Shaoqian Zhao
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, PR China
| | - Yufei Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, PR China
| | - Min Xu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, PR China
| | - Yifei Zhang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, PR China
| | - Weiqiong Gu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, PR China
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, PR China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, PR China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, PR China.
| | - Jie Hong
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, PR China; Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai 200025, PR China.
| |
Collapse
|
20
|
Loveikyte R, Bourgonje AR, van Goor H, Dijkstra G, van der Meulen-de Jong AE. The effect of iron therapy on oxidative stress and intestinal microbiota in inflammatory bowel diseases: A review on the conundrum. Redox Biol 2023; 68:102950. [PMID: 37918126 PMCID: PMC10643537 DOI: 10.1016/j.redox.2023.102950] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 10/28/2023] [Indexed: 11/04/2023] Open
Abstract
One in five patients with Inflammatory Bowel Disease (IBD) suffers from anemia, most frequently caused by iron deficiency. Anemia and iron deficiency are associated with worse disease outcomes, reduced quality of life, decreased economic participation, and increased healthcare costs. International guidelines and consensus-based recommendations have emphasized the importance of treating anemia and iron deficiency. In this review, we draw attention to the rarely discussed effects of iron deficiency and iron therapy on the redox status, the intestinal microbiota, and the potential interplay between them, focusing on the clinical implications for patients with IBD. Current data are scarce, inconsistent, and do not provide definitive answers. Nevertheless, it is imperative to rule out infections and discern iron deficiency anemia from other types of anemia to prevent untargeted oral or intravenous iron supplementation and potential side effects, including oxidative stress. Further research is necessary to establish the clinical significance of changes in the redox status and the intestinal microbiota following iron supplementation.
Collapse
Affiliation(s)
- R Loveikyte
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands; Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - A R Bourgonje
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - H van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - G Dijkstra
- Department of Gastroenterology and Hepatology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - A E van der Meulen-de Jong
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
21
|
Jorgenson MC, Aguree S, Schalinske KL, Reddy MB. Effects of green tea polyphenols on inflammation and iron status. J Nutr Sci 2023; 12:e119. [PMID: 38155809 PMCID: PMC10753450 DOI: 10.1017/jns.2023.107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 11/03/2023] [Indexed: 12/30/2023] Open
Abstract
Inflammation is an underlying problem for many disease states and has been implicated in iron deficiency (ID). This study aimed to determine whether iron status is improved by epigallocatechin-3-gallate (EGCG) through reducing inflammation. Thirty-two male Sprague-Dawley rats were fed an iron-deficient diet for 2 weeks and then randomly divided into four groups (n 8 each): positive controls, negative controls, lipopolysaccharide (LPS, 0⋅5 mg/kg body weight), and LPS + EGCG (LPS plus 600 mg EGCG/kg diet) for 3 additional weeks. The study involved testing two control groups, both treated with saline. One group (positive control) was fed a regular diet containing standard iron, while the negative control was fed an iron-deficient diet. Additionally, two treatment groups were tested. The first group was given LPS, while the second group was administered LPS and fed an EGCG diet. Iron status, hepcidin, C-reactive protein (CRP), serum amyloid A (SAA), and interleukin-6 (IL-6) were measured. There were no differences in treatment groups compared with control in CRP, hepcidin, and liver iron concentrations. Serum iron concentrations were significantly lower in the LPS (P = 0⋅02) and the LPS + EGCG (P = 0⋅01) than in the positive control group. Compared to the positive control group, spleen iron concentrations were significantly lower in the negative control (P < 0⋅001) but not with both LPS groups. SAA concentrations were significantly lower in the LPS + EGCG group compared to LPS alone group. EGCG reduced SAA concentrations but did not affect hepcidin or improve serum iron concentration or other iron markers.
Collapse
Affiliation(s)
| | - Sixtus Aguree
- Department of Applied Health Science, Indiana University School of Public Health—Bloomington, Bloomington, IN, USA
| | - Kevin L. Schalinske
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| | - Manju B. Reddy
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, USA
| |
Collapse
|
22
|
Li HY, Wei TT, Zhuang M, Tan CY, Xie TH, Cai J, Yao Y, Zhu L. Iron derived from NCOA4-mediated ferritinophagy causes cellular senescence via the cGAS-STING pathway. Cell Death Discov 2023; 9:419. [PMID: 37980349 PMCID: PMC10657394 DOI: 10.1038/s41420-023-01712-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 11/20/2023] Open
Abstract
Cellular senescence is a hallmark of aging and has been linked to age-related diseases. Age-related macular degeneration (AMD), the most common aging-related retinal disease, is prospectively associated with retinal pigment epithelial (RPE) senescence. However, the mechanism of RPE cell senescence remains unknown. In this study, tert-butyl hydroperoxide (TBH)-induced ARPE-19 cells and D-galactose-treated C57 mice were used to examine the cause of elevated iron in RPE cell senescence. Ferric ammonium citrate (FAC)-treated ARPE-19 cells and C57 mice were used to elucidated the mechanism of iron overload-induced RPE cell senescence. Molecular biology techniques for the assessment of iron metabolism, cellular senescence, autophagy, and mitochondrial function in vivo and in vitro. We found that iron level was increased during the senescence process. Ferritin, a major iron storage protein, is negatively correlated with intracellular iron levels and cell senescence. NCOA4, a cargo receptor for ferritinophagy, mediates degradation of ferritin and contributes to iron accumulation. Besides, we found that iron overload leads to mitochondrial dysfunction. As a result, mitochondrial DNA (mtDNA) is released from damaged mitochondria to cytoplasm. Cytoplasm mtDNA activates the cGAS-STING pathway and promotes inflammatory senescence-associated secretory phenotype (SASP) and cell senescence. Meanwhile, iron chelator Deferoxamine (DFO) significantly rescues RPE senescence and retinopathy induced by FAC or D-gal in mice. Taken together, these findings imply that iron derived from NCOA4-mediated ferritinophagy causes cellular senescence via the cGAS-STING pathway. Inhibiting iron accumulation may represent a promising therapeutic approach for age-related diseases such as AMD.
Collapse
Affiliation(s)
- Hong-Ying Li
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Ting-Ting Wei
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Miao Zhuang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Cheng-Ye Tan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Tian-Hua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| | - Lingpeng Zhu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China.
| |
Collapse
|
23
|
Liu Y, Liu S, Tomar A, Yen FS, Unlu G, Ropek N, Weber RA, Wang Y, Khan A, Gad M, Peng J, Terzi E, Alwaseem H, Pagano AE, Heissel S, Molina H, Allwein B, Kenny TC, Possemato RL, Zhao L, Hite RK, Vinogradova EV, Mansy SS, Birsoy K. Autoregulatory control of mitochondrial glutathione homeostasis. Science 2023; 382:820-828. [PMID: 37917749 PMCID: PMC11170550 DOI: 10.1126/science.adf4154] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Mitochondria must maintain adequate amounts of metabolites for protective and biosynthetic functions. However, how mitochondria sense the abundance of metabolites and regulate metabolic homeostasis is not well understood. In this work, we focused on glutathione (GSH), a critical redox metabolite in mitochondria, and identified a feedback mechanism that controls its abundance through the mitochondrial GSH transporter, SLC25A39. Under physiological conditions, SLC25A39 is rapidly degraded by mitochondrial protease AFG3L2. Depletion of GSH dissociates AFG3L2 from SLC25A39, causing a compensatory increase in mitochondrial GSH uptake. Genetic and proteomic analyses identified a putative iron-sulfur cluster in the matrix-facing loop of SLC25A39 as essential for this regulation, coupling mitochondrial iron homeostasis to GSH import. Altogether, our work revealed a paradigm for the autoregulatory control of metabolic homeostasis in organelles.
Collapse
Affiliation(s)
- Yuyang Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Shanshan Liu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Anju Tomar
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
- Department of Cellular, Computational and Integrative Biology, Università di Trento, Trento, TN, Italy
| | - Frederick S. Yen
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Gokhan Unlu
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Nathalie Ropek
- Laboratory of Chemical Immunology and Proteomics, The Rockefeller University, New York, NY, USA
| | - Ross A. Weber
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Ying Wang
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Artem Khan
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Mark Gad
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Junhui Peng
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Erdem Terzi
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hanan Alwaseem
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Alexandra E. Pagano
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Søren Heissel
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Henrik Molina
- The Proteomics Resource Center, The Rockefeller University, New York, NY, USA
| | - Benjamin Allwein
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy C. Kenny
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| | - Richard L. Possemato
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Li Zhao
- Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Richard K. Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Sheref S. Mansy
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, New York, NY, USA
| |
Collapse
|
24
|
LeVine SM. Examining the Role of a Functional Deficiency of Iron in Lysosomal Storage Disorders with Translational Relevance to Alzheimer's Disease. Cells 2023; 12:2641. [PMID: 37998376 PMCID: PMC10670892 DOI: 10.3390/cells12222641] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 11/25/2023] Open
Abstract
The recently presented Azalea Hypothesis for Alzheimer's disease asserts that iron becomes sequestered, leading to a functional iron deficiency that contributes to neurodegeneration. Iron sequestration can occur by iron being bound to protein aggregates, such as amyloid β and tau, iron-rich structures not undergoing recycling (e.g., due to disrupted ferritinophagy and impaired mitophagy), and diminished delivery of iron from the lysosome to the cytosol. Reduced iron availability for biochemical reactions causes cells to respond to acquire additional iron, resulting in an elevation in the total iron level within affected brain regions. As the amount of unavailable iron increases, the level of available iron decreases until eventually it is unable to meet cellular demands, which leads to a functional iron deficiency. Normally, the lysosome plays an integral role in cellular iron homeostasis by facilitating both the delivery of iron to the cytosol (e.g., after endocytosis of the iron-transferrin-transferrin receptor complex) and the cellular recycling of iron. During a lysosomal storage disorder, an enzyme deficiency causes undigested substrates to accumulate, causing a sequelae of pathogenic events that may include cellular iron dyshomeostasis. Thus, a functional deficiency of iron may be a pathogenic mechanism occurring within several lysosomal storage diseases and Alzheimer's disease.
Collapse
Affiliation(s)
- Steven M LeVine
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
25
|
Das J, Ghosh M, Ghosh B, Mandal P, Maji S, Das D. A single probe for solvent dependent optical recognition of iron(II/III) and arsenite: discrimination between iron redox states with single crystal X-ray structure evidence. Sci Rep 2023; 13:18039. [PMID: 37865670 PMCID: PMC10590385 DOI: 10.1038/s41598-023-43154-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/20/2023] [Indexed: 10/23/2023] Open
Abstract
The detection and discrimination of Fe2+ and Fe3+ ions have been investigated using a simple probe (L), produced by the condensation of ethylenediamine and 3-ethoxysalicyaldehyde. Single crystal X-ray structures demonstrate that L interacts with Fe2+ and Fe3+. In aqueous-DMSO media, the L recognises AsO2- by fluorescence and colorimetry techniques. The AsO2- aided PET inhibition and H-bond assisted chelation enhanced fluorescence (CHEF) boost fluorescence by 91-fold. The L can detect 0.354 ppb Fe2+, 0.22 ppb Fe3+ and 0.235 ppt AsO2-.
Collapse
Affiliation(s)
- Jayanta Das
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Milan Ghosh
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Biplab Ghosh
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Prasenjit Mandal
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Sangita Maji
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Debasis Das
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
26
|
Hilton C, Sabaratnam R, Drakesmith H, Karpe F. Iron, glucose and fat metabolism and obesity: an intertwined relationship. Int J Obes (Lond) 2023; 47:554-563. [PMID: 37029208 PMCID: PMC10299911 DOI: 10.1038/s41366-023-01299-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/09/2023]
Abstract
A bidirectional relationship exists between adipose tissue metabolism and iron regulation. Total body fat, fat distribution and exercise influence iron status and components of the iron-regulatory pathway, including hepcidin and erythroferrone. Conversely, whole body and tissue iron stores associate with fat mass and distribution and glucose and lipid metabolism in adipose tissue, liver, and muscle. Manipulation of the iron-regulatory proteins erythroferrone and erythropoietin affects glucose and lipid metabolism. Several lines of evidence suggest that iron accumulation and metabolism may play a role in the development of metabolic diseases including obesity, type 2 diabetes, hyperlipidaemia and non-alcoholic fatty liver disease. In this review we summarise the current understanding of the relationship between iron homoeostasis and metabolic disease.
Collapse
Affiliation(s)
- Catriona Hilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK.
| | - Rugivan Sabaratnam
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
- Steno Diabetes Center Odense, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Hal Drakesmith
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
McClorry S, Ji P, Parenti MG, Slupsky CM. Antibiotics augment the impact of iron deficiency on metabolism in a piglet model. J Nutr Biochem 2023:109405. [PMID: 37311489 DOI: 10.1016/j.jnutbio.2023.109405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/02/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
Infancy and childhood represent a high-risk period for developing iron deficiency (ID) and is a period of increased susceptibility to infectious disease. Antibiotic use is high in children from low-, middle-, and high-income countries, and thus we sought to determine the impact of antibiotics in the context of ID. In this study, a piglet model was used to assess the impact of ID and antibiotics on systemic metabolism. ID was induced by withholding a ferrous sulfate injection after birth to piglets in the ID group and providing an iron deficient diet upon weaning on postnatal day (PD) 25. Antibiotics (gentamicin and spectinomycin) were administered on PD34-36 to a set of control (Con*+Abx) and ID piglets (ID+Abx) after weaning. Blood was analyzed on PD30 (before antibiotic administration) and PD43 (7 days after antibiotic administration). All ID piglets exhibited growth faltering and had lower hemoglobin and hematocrit compared to control (Con) and Con*+Abx throughout. The metabolome of ID piglets at weaning and sacrifice exhibited elevated markers of oxidative stress, ketosis, and ureagenesis compared to Con. The impact of antibiotics on Con*+Abx piglets did not result in significant changes to the serum metabolome 7-days after treatment; however, the impact of antibiotics on ID+Abx piglets resulted in the same metabolic changes observed in ID piglets, but with a greater magnitude when compared to Con. These results suggest that antibiotic administration in the context of ID exacerbates the negative metabolic impacts of ID and may have long lasting impacts on development.
Collapse
Affiliation(s)
- Shannon McClorry
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Peng Ji
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Mariana G Parenti
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA
| | - Carolyn M Slupsky
- Department of Nutrition, UC Davis, One Shields Ave, Davis, CA, 95616, USA; Department of Food Science and Technology, UC Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
28
|
Cavaliere G, Cimmino F, Trinchese G, Catapano A, Petrella L, D'Angelo M, Lucchin L, Mollica MP. From Obesity-Induced Low-Grade Inflammation to Lipotoxicity and Mitochondrial Dysfunction: Altered Multi-Crosstalk between Adipose Tissue and Metabolically Active Organs. Antioxidants (Basel) 2023; 12:1172. [PMID: 37371902 DOI: 10.3390/antiox12061172] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a major risk factor for several metabolic diseases, including type 2 diabetes, hyperlipidemia, cardiovascular diseases, and brain disorders. Growing evidence suggests the importance of inter-organ metabolic communication for the progression of obesity and the subsequent onset of related disorders. This review provides a broad overview of the pathophysiological processes that from adipose tissue dysfunction leading to altered multi-tissue crosstalk relevant to regulating energy homeostasis and the etiology of obesity. First, a comprehensive description of the role of adipose tissue was reported. Then, attention was turned toward the unhealthy expansion of adipose tissue, low-grade inflammatory state, metabolic inflexibility, and mitochondrial dysfunction as root causes of systemic metabolic alterations. In addition, a short spot was devoted to iron deficiency in obese conditions and the role of the hepcidin-ferroportin relationship in the management of this issue. Finally, different classes of bioactive food components were described with a perspective to enhance their potential preventive and therapeutic use against obesity-related diseases.
Collapse
Affiliation(s)
- Gina Cavaliere
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Fabiano Cimmino
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Giovanna Trinchese
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Angela Catapano
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Lidia Petrella
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Margherita D'Angelo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
| | - Lucio Lucchin
- Dietetics and Clinical Nutrition, Bolzano Health District, 39100 Bolzano, Italy
| | - Maria Pina Mollica
- Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, 80138 Naples, Italy
| |
Collapse
|
29
|
Ding W, Lin L, Yue K, He Y, Xu B, Shaukat A, Huang S. Ferroptosis as a Potential Therapeutic Target of Traditional Chinese Medicine for Mycotoxicosis: A Review. TOXICS 2023; 11:395. [PMID: 37112624 PMCID: PMC10142935 DOI: 10.3390/toxics11040395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Mycotoxin contamination has become one of the biggest hidden dangers of food safety, which seriously threatens human health. Understanding the mechanisms by which mycotoxins exert toxicity is key to detoxification. Ferroptosis is an adjustable cell death characterized by iron overload and lipid reactive oxygen species (ROS) accumulation and glutathione (GSH) depletion. More and more studies have shown that ferroptosis is involved in organ damage from mycotoxins exposure, and natural antioxidants can alleviate mycotoxicosis as well as effectively regulate ferroptosis. In recent years, research on the treatment of diseases by Chinese herbal medicine through ferroptosis has attracted more attention. This article reviews the mechanism of ferroptosis, discusses the role of ferroptosis in mycotoxicosis, and summarizes the current status of the regulation of various mycotoxicosis through ferroptosis by Chinese herbal interventions, providing a potential strategy for better involvement of Chinese herbal medicine in the treatment of mycotoxicosis in the future.
Collapse
Affiliation(s)
- Wenli Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Luxi Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Ke Yue
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Yanfeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Bowen Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| |
Collapse
|
30
|
Li X, Duan X, Tan D, Zhang B, Xu A, Qiu N, Chen Z. Iron deficiency and iron overload in men and woman of reproductive age, and pregnant women. Reprod Toxicol 2023; 118:108381. [PMID: 37023911 DOI: 10.1016/j.reprotox.2023.108381] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/06/2023] [Accepted: 04/02/2023] [Indexed: 04/08/2023]
Abstract
Iron is an essential micronutrient for human biology and health, but high iron levels can be dangerous. Both iron deficiency and iron overload have been linked to reproductive health. This review summarizes the effects of iron deficiency and iron overload on men of reproductive age, women of reproductive age, and pregnant women. In addition, appropriate iron levels and the need for iron and nutritional supplements at different stages of life and pregnancy are discussed. In general, men should be aware of the risk of iron overload at any stage of life; women should take appropriate iron supplements before menopause; postmenopausal women should pay attention to the risk of iron overload; and pregnant women should receive reasonable iron supplementation in middle and late pregnancy. By summarizing evidence on the relationship between iron and reproductive health, this review aims to promote the development of strategies to optimize reproductive capacity from the perspective of nutrition. However, additional detailed experimental investigations and clinical studies are needed to assess the underlying causes and mechanisms of the observed associations between iron and reproductive health.
Collapse
Affiliation(s)
- Xiuyun Li
- Maternal and Child Health Development Research Center, Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Xuexia Duan
- Physical Examination Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Dongmei Tan
- Traditional Chinese Medicine Department, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Bin Zhang
- Department of Ophthalmology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Anran Xu
- Reproductive Medicine Center, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Ningning Qiu
- Department of Anesthesiology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China.
| | - Zhaowen Chen
- Obstetrics Department, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China.
| |
Collapse
|
31
|
Kalani K, Chaturvedi P, Chaturvedi P, Kumar Verma V, Lal N, Awasthi SK, Kalani A. Mitochondrial mechanisms in Alzheimer's disease: Quest for therapeutics. Drug Discov Today 2023; 28:103547. [PMID: 36871845 DOI: 10.1016/j.drudis.2023.103547] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/05/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Mitochondrial function is essential for maintaining neuronal integrity, because neurons have a high energy demand. Neurodegenerative diseases, such as Alzheimer's disease (AD), are exacerbated by mitochondrial dysfunction. Mitochondrial autophagy (mitophagy) attenuates neurodegenerative diseases by eradicating dysfunctional mitochondria. In neurodegenerative disorders, there is disruption of the mitophagy process. High levels of iron also interfere with the mitophagy process and the mtDNA released after mitophagy is proinflammatory and triggers the cGAS-STING pathway that aids AD pathology. In this review, we critically discuss the factors that affect mitochondrial impairment and different mitophagy processes in AD. Furthermore, we discuss the molecules used in mouse studies as well as clinical trials that could result in potential therapeutics in the future.
Collapse
Affiliation(s)
- Komal Kalani
- Department of Chemistry, The University of Texas at San Antonio, San Antonio 78249, TX, USA; Regulatory Scientist, Vestaron Cooperation, Durham 27703, NC, USA
| | - Poonam Chaturvedi
- Department of Physiotherapy, Lovely Professional University, Phagwara 144402, Punjab, India
| | - Pankaj Chaturvedi
- Department of Physiology, University of Louisville, Louisville 40202, KY, USA
| | - Vinod Kumar Verma
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Nand Lal
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Sudhir K Awasthi
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, Uttar Pradesh, India
| | - Anuradha Kalani
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur 208024, Uttar Pradesh, India.
| |
Collapse
|
32
|
Vargas J, Gómez I, Vidal EA, Lee CP, Millar AH, Jordana X, Roschzttardtz H. Growth Developmental Defects of Mitochondrial Iron Transporter 1 and 2 Mutants in Arabidopsis in Iron Sufficient Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:1176. [PMID: 36904036 PMCID: PMC10007191 DOI: 10.3390/plants12051176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/25/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Iron is the most abundant micronutrient in plant mitochondria, and it has a crucial role in biochemical reactions involving electron transfer. It has been described in Oryza sativa that Mitochondrial Iron Transporter (MIT) is an essential gene and that knockdown mutant rice plants have a decreased amount of iron in their mitochondria, strongly suggesting that OsMIT is involved in mitochondrial iron uptake. In Arabidopsis thaliana, two genes encode MIT homologues. In this study, we analyzed different AtMIT1 and AtMIT2 mutant alleles, and no phenotypic defects were observed in individual mutant plants grown in normal conditions, confirming that neither AtMIT1 nor AtMIT2 are individually essential. When we generated crosses between the Atmit1 and Atmit2 alleles, we were able to isolate homozygous double mutant plants. Interestingly, homozygous double mutant plants were obtained only when mutant alleles of Atmit2 with the T-DNA insertion in the intron region were used for crossings, and in these cases, a correctly spliced AtMIT2 mRNA was generated, although at a low level. Atmit1 Atmit2 double homozygous mutant plants, knockout for AtMIT1 and knockdown for AtMIT2, were grown and characterized in iron-sufficient conditions. Pleiotropic developmental defects were observed, including abnormal seeds, an increased number of cotyledons, a slow growth rate, pinoid stems, defects in flower structures, and reduced seed set. A RNA-Seq study was performed, and we could identify more than 760 genes differentially expressed in Atmit1 Atmit2. Our results show that Atmit1 Atmit2 double homozygous mutant plants misregulate genes involved in iron transport, coumarin metabolism, hormone metabolism, root development, and stress-related response. The phenotypes observed, such as pinoid stems and fused cotyledons, in Atmit1 Atmit2 double homozygous mutant plants may suggest defects in auxin homeostasis. Unexpectedly, we observed a possible phenomenon of T-DNA suppression in the next generation of Atmit1 Atmit2 double homozygous mutant plants, correlating with increased splicing of the AtMIT2 intron containing the T-DNA and the suppression of the phenotypes observed in the first generation of the double mutant plants. In these plants with a suppressed phenotype, no differences were observed in the oxygen consumption rate of isolated mitochondria; however, the molecular analysis of gene expression markers, AOX1a, UPOX, and MSM1, for mitochondrial and oxidative stress showed that these plants express a degree of mitochondrial perturbation. Finally, we could establish by a targeted proteomic analysis that a protein level of 30% of MIT2, in the absence of MIT1, is enough for normal plant growth under iron-sufficient conditions.
Collapse
Affiliation(s)
- Joaquín Vargas
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Isabel Gómez
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Elena A. Vidal
- ANID-Millennium Science Initiative Program-Millennium Institute for Integrative Biology (iBio), Santiago 8331150, Chile
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago 8580745, Chile
| | - Chun Pong Lee
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Bayliss Building M316, Crawley, WA 6009, Australia
| | - A. Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Bayliss Building M316, Crawley, WA 6009, Australia
| | - Xavier Jordana
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| | - Hannetz Roschzttardtz
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8331150, Chile
| |
Collapse
|
33
|
Taniya S, Khanra S, Salam N, Das D. Exploring a Bis‐imine Derived Azide Containing Dinuclear Iron(III) Complex: Fluorescence Recognition of F
−
and Atmospheric CO
2
Fixation. ChemistrySelect 2023. [DOI: 10.1002/slct.202204787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Seikh Taniya
- Department of Chemistry The University of Burdwan Burdwan 713104 W.B. India
| | - Somnath Khanra
- Department of Chemistry The University of Burdwan Burdwan 713104 W.B. India
- Department of Chemistry A. B. N. Seal College Cooch Behar 736101 W.B. India
| | - Noor Salam
- Department of Chemistry The University of Burdwan Burdwan 713104 W.B. India
- Department of Chemistry Surendranath College Kolkata W.B. India
| | - Debasis Das
- Department of Chemistry The University of Burdwan Burdwan 713104 W.B. India
| |
Collapse
|
34
|
Minigalieva IA, Ryabova YV, Shelomencev IG, Amromin LA, Minigalieva RF, Sutunkova YM, Privalova LI, Sutunkova MP. Analysis of Experimental Data on Changes in Various Structures and Functions of the Rat Brain following Intranasal Administration of Fe 2O 3 Nanoparticles. Int J Mol Sci 2023; 24:ijms24043572. [PMID: 36834983 PMCID: PMC9967545 DOI: 10.3390/ijms24043572] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/12/2023] Open
Abstract
Particulate matter, including iron nanoparticles, is one of the constituents of ambient air pollution. We assessed the effect of iron oxide (Fe2O3) nanoparticles on the structure and function of the brain of rats. Electron microscopy showed Fe2O3 nanoparticles in the tissues of olfactory bulbs but not in the basal ganglia of the brain after their subchronic intranasal administration. We observed an increase in the number of axons with damaged myelin sheaths and in the proportion of pathologically altered mitochondria in the brains of the exposed animals against the background of almost stable blood parameters. We conclude that the central nervous system can be a target for toxicity of low-dose exposure to Fe2O3 nanoparticles.
Collapse
Affiliation(s)
- Ilzira A. Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, 51 Lenin Avenue, 620002 Yekaterinburg, Russia
- Correspondence:
| | - Yuliya V. Ryabova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, 51 Lenin Avenue, 620002 Yekaterinburg, Russia
| | - Ivan G. Shelomencev
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
| | - Lev A. Amromin
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
| | - Regina F. Minigalieva
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, 51 Lenin Avenue, 620002 Yekaterinburg, Russia
| | - Yuliya M. Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, 51 Lenin Avenue, 620002 Yekaterinburg, Russia
| | - Larisa I. Privalova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
- Laboratory of Stochastic Transport of Nanoparticles in Living Systems, Laboratory of Multi-Scale Mathematical Modeling, Ural Federal University, 51 Lenin Avenue, 620002 Yekaterinburg, Russia
| | - Marina P. Sutunkova
- Yekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers, 30 Popov Street, 620014 Yekaterinburg, Russia
| |
Collapse
|
35
|
Kong Y, Liu P, Li Y, Nolan ND, Quinn PMJ, Hsu C, Jenny LA, Zhao J, Cui X, Chang Y, Wert KJ, Sparrow JR, Wang N, Tsang SH. HIF2α activation and mitochondrial deficit due to iron chelation cause retinal atrophy. EMBO Mol Med 2023; 15:e16525. [PMID: 36645044 PMCID: PMC9906391 DOI: 10.15252/emmm.202216525] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 12/10/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Iron accumulation causes cell death and disrupts tissue functions, which necessitates chelation therapy to reduce iron overload. However, clinical utilization of deferoxamine (DFO), an iron chelator, has been documented to give rise to systemic adverse effects, including ocular toxicity. This study provided the pathogenic and molecular basis for DFO-related retinopathy and identified retinal pigment epithelium (RPE) as the target tissue in DFO-related retinopathy. Our modeling demonstrated the susceptibility of RPE to DFO compared with the neuroretina. Intriguingly, we established upregulation of hypoxia inducible factor (HIF) 2α and mitochondrial deficit as the most prominent pathogenesis underlying the RPE atrophy. Moreover, suppressing hyperactivity of HIF2α and preserving mitochondrial dysfunction by α-ketoglutarate (AKG) protects the RPE against lesions both in vitro and in vivo. This supported our observation that AKG supplementation alleviates visual impairment in a patient undergoing DFO-chelation therapy. Overall, our study established a significant role of iron deficiency in initiating DFO-related RPE atrophy. Inhibiting HIF2α and rescuing mitochondrial function by AKG protect RPE cells and can potentially ameliorate patients' visual function.
Collapse
Affiliation(s)
- Yang Kong
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Pei‐Kang Liu
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
- Department of OphthalmologyKaohsiung Medical University Hospital, Kaohsiung Medical UniversityKaohsiungTaiwan
- School of Medicine, College of MedicineKaohsiung Medical UniversityKaohsiungTaiwan
- Institute of Biomedical SciencesNational Sun Yat‐sen UniversityKaohsiungTaiwan
| | - Yao Li
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Nicholas D Nolan
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
- Department of Biomedical Engineering, The Fu Foundation School of Engineering and Applied ScienceColumbia UniversityNew YorkNYUSA
| | - Peter M J Quinn
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Chun‐Wei Hsu
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Laura A Jenny
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Jin Zhao
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Xuan Cui
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Ya‐Ju Chang
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Katherine J Wert
- Departments of Ophthalmology and Molecular BiologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
- The Hamon Center for Regenerative Science and MedicineUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Janet R Sparrow
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Nan‐Kai Wang
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| | - Stephen H Tsang
- Department of Ophthalmology, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
- Jonas Children's Vision Care, and Bernard and Shirlee Brown Glaucoma Laboratory, Columbia Stem Cell Initiative, Pathology and Cell Biology, Institute of Human Nutrition, Vagelos College of Physicians and SurgeonsColumbia UniversityNew YorkNYUSA
| |
Collapse
|
36
|
Liu L, Yan F, Yan H, Wang Z. Impact of iron supplementation on gestational diabetes mellitus: A literature review. Diabetes Obes Metab 2023; 25:342-353. [PMID: 36200449 DOI: 10.1111/dom.14886] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/23/2022] [Accepted: 10/03/2022] [Indexed: 02/02/2023]
Abstract
Gestational diabetes mellitus (GDM) is a common complication of pregnancy, affecting 14% of pregnancies worldwide, and the prevention of pathological hyperglycaemia during pregnancy is meaningful for global public health. The role of iron supplementation in the progression of GDM has been of significant interest in recent years. Iron is a micronutrient that is vital during pregnancy; however, given the toxic properties of excess iron, it is probable that prophylactic iron supplementation will increase the risk of adverse pregnancy outcomes, including GDM. It is critical to clarify the effect of iron supplementation on the risk of GDM. Therefore, in this review, we comprehensively assess the role of iron in pregnancy. This review aimed to analyse the necessity of iron supplementation and maintenance of iron homeostasis during pregnancy, particularly reviewing the role and function of iron in beta cells and examining the mechanisms of excess iron contributing to the pathogenesis of GDM. Moreover, we aimed to discuss the association of haemoglobin and ferritin with GDM and identify priority areas for research.
Collapse
Affiliation(s)
- Lulu Liu
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
| | - Feng Yan
- Department of Gynecology, Baoding Maternal and Child Health Hospital, Baoding, China
| | - Hongyuan Yan
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of Ministry of Education, College of Pharmaceutical Sciences, Hebei University, Baoding, China
| | - Zhiqiang Wang
- Key Laboratory of Public Health Safety of Hebei Province, School of Public Health, Hebei University, Baoding, China
| |
Collapse
|
37
|
Ghosh S, Thomas T, Kurpad A, Sachdev HS. Is iron status associated with markers of non-communicable disease in adolescent Indian children? Eur J Clin Nutr 2023; 77:173-181. [PMID: 36280731 DOI: 10.1038/s41430-022-01222-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND High body iron status has been associated with non-communicable diseases (NCD) like diabetes (high fasting blood glucose, FBG), hypertension (HTN) or dyslipidaemia (high total cholesterol, TC) in adults, but this has not been examined in adolescent children. This is relevant to iron supplementation and food iron fortification programs that are directed at Indian children. METHODS The association of NCD with Serum Ferritin (SF) was examined using logistic additive models, adjusted for confounders such as age, body mass index, C-Reactive Protein, haemoglobin and sex, in adolescent (10-19 years old) participants of the Indian Comprehensive National Nutrition Survey. The interaction of these associations with wealth and co-existing prediabetes was also examined. A scenario analysis was also done to understand the impact of iron fortification of cereals on the prevalence NCD among adolescents. RESULTS The odds ratio (OR) of high FBG, HTN and TC were 1.05 (95% CI: 1.01-1.08), 1.02 (95% CI: 1.001-1.03) and 1.04 (95% CI: 1.01-1.06) respectively for every 10 µg/L increase in SF. The odds for high TC increased with co-existing prediabetes. The scenario analysis showed that providing 10 mg of iron/day by fortification could increase the prevalence of high FBG by 2-14% across states of India. Similar increments in HTN and TC can also be expected. CONCLUSIONS High SF is significantly associated with NCD in adolescents, dependent on wealth and co-existing prediabetes. This should be considered when enhancing iron intake in anaemia prevention programs, and the NCD relationship with body iron stores should be studied.
Collapse
Affiliation(s)
- S Ghosh
- St John's Medical College, Bengaluru, India
| | - T Thomas
- St John's Medical College, Bengaluru, India
| | - A Kurpad
- St John's Medical College, Bengaluru, India.
| | - H S Sachdev
- Sitaram Bhartia Institute of Science and Research, New Delhi, India.
| |
Collapse
|
38
|
Okekunle AP, Asowata O, Akpa OM, Ovbiagele B, Fakunle A, Komolafe M, Arulogun O, Sarfo FS, Akpalu A, Obiako R, Wahab K, Osaigbovo G, Owolabi L, Ogbole G, Akinyemi J, Adeniyi S, Calys-Tagoe B, Aridegbe M, Adebowale A, Dambatta H, Agunloye A, Oyinloye O, Aderibigbe A, Suleiman I, Adeoye AM, Akpalu J, Agbogu-Ike O, Tiwari HK, Arnett D, Akinyemi R, Owolabi MO. Dietary patterns associated with stroke among West Africans: A case-control study. Int J Stroke 2023; 18:193-200. [PMID: 35377255 DOI: 10.1177/17474930221094933] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The relationship of diet with stroke risk among Africans is not well understood. AIM The aim of this study was to investigate the association between dietary patterns and stroke risk among West Africans. METHODS In this multi-center case-control study, 3684 stroke patients matched (for age and sex) with 3684 healthy controls were recruited from Nigeria and Ghana. Food consumption was assessed using a food frequency questionnaire, and dietary patterns were summarized using principal component analysis. Stroke was defined using predefined criteria primarily on clinical evaluation following standard guidelines. Conditional logistic regression was applied to compute odds ratio (OR) and 95% confidence interval (CI) for stroke risk by tertiles of dietary patterns adjusting for relevant confounders. RESULTS Overall, mean age was 59.0 ± 13.9 years, and 3992 (54.2%) were males. Seven dietary patterns were identified. Multivariable-adjusted OR (95% CI) for risk of stroke by second and third tertiles (using the lowest and first tertile as reference) of dietary patterns was 1.65 (1.43, 1.90) and 1.74 (1.51, 2.02), for "poultry product and organ meat"; 1.69 (1.47, 1.96) and 1.51 (1.31, 1.75) for "red meat"; 1.07 (0.92, 1.23) and 1.21 (1.04, 1.40) for "fried foods and sweetened drinks"; 0.69 (0.60, 0.80) and 0.45 (0.39, 0.53) for "vegetables"; 0.84 (0.72, 0.97) and 0.81 (0.70, 0.93) for "whole-grain and fruit drinks"; and 0.97 (0.84, 1.12) and 0.85 (0.73, 0.98) for "fruits" respectively (p < 0.05). CONCLUSION These data suggest that plant-based diets are associated with a lower risk of stroke and might be a beneficial dietary recommendation for the primary prevention of stroke among Africans.
Collapse
Affiliation(s)
- Akinkunmi P Okekunle
- Department of Medicine, University of Ibadan, Ibadan, Nigeria.,Department of Food and Nutrition, Seoul National University, Seoul, South Korea
| | - Osahon Asowata
- Department of Epidemiology and Medical Statistics, University of Ibadan, Ibadan, Nigeria
| | - Onoja M Akpa
- Department of Epidemiology and Medical Statistics, University of Ibadan, Ibadan, Nigeria.,Institute of Cardiovascular Diseases, University of Ibadan, Ibadan, Nigeria
| | - Bruce Ovbiagele
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | | | - Morenikeji Komolafe
- Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria
| | - Oyedunni Arulogun
- Department of Health Promotion and Education, University of Ibadan, Ibadan, Nigeria
| | - Fred S Sarfo
- Department of Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Albert Akpalu
- Department of Community Health, University of Ghana Medical School, Accra, Ghana
| | - Reginald Obiako
- Department of Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Kolawole Wahab
- Department of Medicine, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | | | - Lukman Owolabi
- Department of Medicine, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Godwin Ogbole
- Department of Radiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Joshua Akinyemi
- Department of Epidemiology and Medical Statistics, University of Ibadan, Ibadan, Nigeria
| | - Sunday Adeniyi
- Department of Medicine, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Benedict Calys-Tagoe
- Department of Community Health, University of Ghana Medical School, Accra, Ghana
| | - Mayowa Aridegbe
- Department of Medicine, Federal Medical Centre Abeokuta, Abeokuta, Nigeria
| | - Akintunde Adebowale
- Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria
| | - Hamisu Dambatta
- Department of Medicine, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Atinuke Agunloye
- Department of Radiology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olalekan Oyinloye
- Department of Medicine, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| | - Adeniyi Aderibigbe
- Department of Medicine, Obafemi Awolowo University Teaching Hospital, Ile-Ife, Nigeria
| | - Isah Suleiman
- Department of Medicine, Aminu Kano Teaching Hospital, Kano, Nigeria
| | - Abiodun M Adeoye
- Department of Medicine, University of Ibadan, Ibadan, Nigeria.,Institute of Cardiovascular Diseases, University of Ibadan, Ibadan, Nigeria
| | - Josephine Akpalu
- Department of Community Health, University of Ghana Medical School, Accra, Ghana
| | | | - Hemant K Tiwari
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Donna Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Rufus Akinyemi
- Department of Medicine, Federal Medical Centre Abeokuta, Abeokuta, Nigeria.,Center for Genomic and Precision Medicine, University of Ibadan, Ibadan, Nigeria
| | - Mayowa O Owolabi
- Department of Medicine, University of Ibadan, Ibadan, Nigeria.,Center for Genomic and Precision Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
39
|
Wu Z, Fang ZX, Hou YY, Wu BX, Deng Y, Wu HT, Liu J. Review of ferroptosis in colorectal cancer: Friends or foes? World J Gastroenterol 2023; 29:469-486. [PMID: 36688016 PMCID: PMC9850932 DOI: 10.3748/wjg.v29.i3.469] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/30/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023] Open
Abstract
Ferroptosis is a newly discovered type of cell-regulated death. It is characterized by the accumulation of iron-dependent lipid peroxidation and can be distinguished from other forms of cell-regulated death by different morphology, biochemistry, and genetics. Recently, studies have shown that ferroptosis is associated with a variety of diseases, including liver, kidney and neurological diseases, as well as cancer. Ferroptosis has been shown to be associated with colorectal epithelial disorders, which can lead to cancerous changes in the gut. However, the potential role of ferroptosis in the occurrence and development of colorectal cancer (CRC) is still controversial. To elucidate the underlying mechanisms of ferroptosis in CRC, this article systematically reviews ferroptosis, and its cellular functions in CRC, for furthering the understanding of the pathogenesis of CRC to aid clinical treatment.
Collapse
Affiliation(s)
- Zheng Wu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Ze-Xuan Fang
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yan-Yu Hou
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Bing-Xuan Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Yu Deng
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Hua-Tao Wu
- Department of General Surgery, First Affiliated Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| | - Jing Liu
- Guangdong Provincial Key Laboratory for Diagnosis and Treatment of Breast Cancer, Cancer Hospital of Shantou University Medical College, Shantou 515041, Guangdong Province, China
| |
Collapse
|
40
|
Quezada-Pinedo HG, Jaddoe V, Duijts L, Muka T, Vermeulen MJ, Reiss IKM, Santos S. Maternal iron status in early pregnancy and childhood body fat measures and cardiometabolic risk factors: A population-based prospective cohort. Am J Clin Nutr 2023; 117:191-198. [PMID: 36789938 PMCID: PMC10131616 DOI: 10.1016/j.ajcnut.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/04/2022] [Accepted: 10/28/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Whether maternal iron status during pregnancy is associated with cardiometabolic health in the offspring is poorly known. OBJECTIVES We aimed to assess the associations of maternal iron status during early pregnancy with body fat measures and cardiometabolic risk factors in children aged 10 y. METHODS In a population-based cohort study among 3718 mother-child pairs, we measured ferritin, transferrin, and transferrin saturation during early pregnancy. We obtained child BMI, fat mass index, and android/gynoid fat mass ratio by DXA, subcutaneous fat index, visceral fat index, pericardial fat index, and liver fat fraction by magnetic resonance imaging and assessed systolic and diastolic blood pressure, serum lipids, glucose, insulin, and CRP at 10 y. RESULTS A one-standard deviation score (SDS) higher maternal ferritin was associated with lower fat mass index [difference -0.05 (95% CI: -0.08, -0.02) SDS] and subcutaneous fat index [difference -0.06 (95% CI: -0.10, -0.02) SDS] in children. One-SDS higher maternal transferrin was associated with higher fat mass index [difference 0.04 (95% CI: 0.01, 0.07) SDS], android/gynoid fat mass ratio [difference 0.05 (95% CI: 0.02, 0.08) SDS], and subcutaneous fat index [difference 0.06 (95% CI: 0.02, 0.10) SDS] in children. Iron status during pregnancy was not consistently associated with organ fat and cardiometabolic risk factors at 10 y. CONCLUSIONS Maternal lower ferritin and higher transferrin in early pregnancy are associated with body fat accumulation and distribution but are not associated with cardiometabolic risk factors in childhood. Underlying mechanisms and long-term consequences warrant further study.
Collapse
Affiliation(s)
- Hugo G Quezada-Pinedo
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Vincent Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Liesbeth Duijts
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics, Division of Respiratory Medicine and Allergology, Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland; Epistudia, Bern, Switzerland
| | - Marijn J Vermeulen
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Irwin K M Reiss
- Department of Pediatrics, Division of Neonatology, Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Susana Santos
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Pediatrics Erasmus MC-Sophia Children's Hospital, University Medical Center Rotterdam, Rotterdam, the Netherlands; EPIUnit-Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
41
|
Regner A, Szepannek N, Wiederstein M, Fakhimahmadi A, Paciosis LF, Blokhuis BR, Redegeld FA, Hofstetter G, Dvorak Z, Jensen-Jarolim E, Hufnagl K, Roth-Walter F. Binding to Iron Quercetin Complexes Increases the Antioxidant Capacity of the Major Birch Pollen Allergen Bet v 1 and Reduces Its Allergenicity. Antioxidants (Basel) 2022; 12:42. [PMID: 36670905 PMCID: PMC9854910 DOI: 10.3390/antiox12010042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Bet v 1 is the major allergen in birch pollen to which up to 95% of patients sensitized to birch respond. As a member of the pathogenesis-related PR 10 family, its natural function is implicated in plant defense, with a member of the PR10 family being reported to be upregulated under iron deficiency. As such, we assessed the function of Bet v 1 to sequester iron and its immunomodulatory properties on human immune cells. Binding of Bet v 1 to iron quercetin complexes FeQ2 was determined in docking calculations and by spectroscopy. Serum IgE-binding to Bet v 1 with (holoBet v1) and without ligands (apoBet v 1) were assessed by ELISA, blocking experiments and Western Blot. Crosslinking-capacity of apo/holoBet v 1 were assessed on human mast cells and Arylhydrocarbon receptor (AhR) activation with the human reporter cellline AZ-AHR. Human PBMCs were stimulated and assessed for labile iron and phenotypic changes by flow cytometry. Bet v 1 bound to FeQ2 strongly with calculated Kd values of 1 nm surpassing affinities to quercetin alone nearly by a factor of 1000. Binding to FeQ2 masked IgE epitopes and decreased IgE binding up to 80% and impaired degranulation of sensitized human mast cells. Bet v 1 facilitated the shuttling of quercetin, which activated the anti-inflammatory AhR pathway and increased the labile iron pool of human monocytic cells. The increase of labile iron was associated with an anti-inflammatory phenotype in CD14+monocytes and downregulation of HLADR. To summarize, we reveal for the first time that FeQ2 binding reduces the allergenicity of Bet v 1 due to ligand masking, but also actively contributes anti-inflammatory stimuli to human monocytes, thereby fostering tolerance. Nourishing immune cells with complex iron may thus represent a promising antigen-independent immunotherapeutic approach to improve efficacy in allergen immunotherapy.
Collapse
Affiliation(s)
- Andreas Regner
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, 1210 Vienna, Austria
| | - Nathalie Szepannek
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, 1210 Vienna, Austria
| | - Markus Wiederstein
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria
| | - Aila Fakhimahmadi
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, 1210 Vienna, Austria
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Luis F. Paciosis
- Center for Plant Biotechnology and Genomics, Biotechnology Department, ETSIAAB, CBGP (UPM-INIA), Universidad Politécnica de Madrid, 28040 Madrid, Spain
| | - Bart R. Blokhuis
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Frank A. Redegeld
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Gerlinde Hofstetter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, 1210 Vienna, Austria
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, 78371 Olomouc, Czech Republic
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, 1210 Vienna, Austria
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, 1210 Vienna, Austria
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| | - Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University of Vienna, 1210 Vienna, Austria
- Center of Pathophysiology, Infectiology and Immunology, Institute of Pathophysiology and Allergy Research, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
42
|
Tkaczyszyn M, Górniak KM, Lis WH, Ponikowski P, Jankowska EA. Iron Deficiency and Deranged Myocardial Energetics in Heart Failure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:17000. [PMID: 36554881 PMCID: PMC9778731 DOI: 10.3390/ijerph192417000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/10/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Among different pathomechanisms involved in the development of heart failure, adverse metabolic myocardial remodeling closely related to ineffective energy production, constitutes the fundamental feature of the disease and translates into further progression of both cardiac dysfunction and maladaptations occurring within other organs. Being the component of key enzymatic machineries, iron plays a vital role in energy generation and utilization, hence the interest in whether, by correcting systemic and/or cellular deficiency of this micronutrient, we can influence the energetic efficiency of tissues, including the heart. In this review we summarize current knowledge on disturbed energy metabolism in failing hearts as well as we analyze experimental evidence linking iron deficiency with deranged myocardial energetics.
Collapse
Affiliation(s)
- Michał Tkaczyszyn
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| | | | - Weronika Hanna Lis
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| | - Ewa Anita Jankowska
- Institute of Heart Diseases, Wroclaw Medical University, 50-556 Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, 50-566 Wroclaw, Poland
| |
Collapse
|
43
|
Kassianides X, White S, Bhandari S. Markers of Oxidative Stress, Inflammation and Endothelial Function following High-Dose Intravenous Iron in Patients with Non-Dialysis-Dependent Chronic Kidney Disease-A Pooled Analysis. Int J Mol Sci 2022; 23:16016. [PMID: 36555659 PMCID: PMC9787941 DOI: 10.3390/ijms232416016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Chronic kidney disease (CKD) represents a state of oxidative stress imbalance, which is potentially amplified by iron deficiency. Intravenous iron is considered safe and efficacious in the treatment of iron deficiency anemia, however, concerns remain regarding its potential pro-oxidant effect, leading to inflammatory and endothelial consequences. This pooled analysis of two pilot randomized controlled trials aimed to group and analyze the potential effect of high-dose intravenous iron (ferric derisomaltose, 1000 mg) on markers of oxidative stress (thiobarbituric acid reactive substance), inflammation (C-reactive protein, interleukins 6 and 10) and endothelial response (E-selectin, P-selectin) in patients with non-dialysis-dependent CKD and iron deficiency with/without anemia. Pulse wave velocity as a surrogate measure of arterial stiffness was measured. Thirty-six patients were included. No statistically significant trend was identified for any of the aforementioned markers. Stratification and comparison of data based on CKD stage did not yield statistically significant trajectories with the exception of the C-reactive protein in CKD stage 3b. These results suggest that high-dose intravenous iron does not impact measures of oxidative stress or inflammation; however, the results are not conclusive. Further research in a larger cohort is necessary to characterize the effect of intravenous iron on oxidative status and inflammation and its potential sequela in CKD.
Collapse
Affiliation(s)
- Xenophon Kassianides
- Academic Renal Research, Hull University Teaching Hospitals NHS Trust and the Hull York Medical School, Kingston upon Hull HU3 2JZ, UK
| | - Steven White
- School of Physician Associate Studies, Hull York Medical School, Kingston upon Hull HU6 7RU, UK
| | - Sunil Bhandari
- Academic Renal Research, Hull University Teaching Hospitals NHS Trust and the Hull York Medical School, Kingston upon Hull HU3 2JZ, UK
| |
Collapse
|
44
|
Tade G, Hsu HC, Woodiwiss AJ, Peters F, Robinson C, Dlongolo N, Teckie G, Solomon A, Norton GR, Dessein PH. Uric Acid, Ferritin, Albumin, Parathyroid Hormone and Gamma-Glutamyl Transferase Concentrations are Associated with Uremic Cardiomyopathy Characteristics in Non-Dialysis and Dialysis Chronic Kidney Disease Patients. Int J Nephrol Renovasc Dis 2022; 15:353-369. [PMID: 36514309 PMCID: PMC9741815 DOI: 10.2147/ijnrd.s389539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction Circulating uric acid, ferritin, albumin, intact parathyroid hormone and gamma-glutamyl transferase each participate in biochemical reactions that reduce or/and enhance oxidative stress, which is considered the final common pathway through which pathophysiological mechanisms cause uremic cardiomyopathy. We hypothesized that the respective biomarkers may be involved in the development of uremic cardiomyopathy characteristics and can be useful in their identification among chronic kidney disease patients. Methods We assessed traditional and non-traditional cardiovascular risk factors including biomarker concentrations and determined central systolic blood pressure using SphygmoCor software and cardiac structure and function by echocardiography in 109 (64 non-dialysis and 45 dialysis) patients. Associations were evaluated in multivariate regression models and receiver operator characteristic (ROC) curve analysis. Results Each biomarker concentration was associated with left ventricular mass beyond stroke work and/or inappropriate left ventricular mass in all, non-dialysis and/or dialysis patients. Ferritin, albumin and gamma-glutamyl transferase levels were additionally associated with E/e' in all, non-dialysis and/or dialysis patients. Dialysis status influenced the relationship of uric acid concentrations with inappropriate left ventricular mass and those of gamma-glutamyl transferase levels with left ventricular mass and inappropriate left ventricular mass. In stratified analysis, low uric acid levels were related to inappropriate left ventricular mass in dialysis but not non-dialysis patients (interaction p=0.001) whereas gamma-glutamyl transferase concentrations were associated with left ventricular mass and inappropriate left ventricular mass in non-dialysis but not dialysis patients (interaction p=0.020 to 0.036). In ROC curve analysis, uric acid (area under the curve (AUC)=0.877), ferritin (AUC=0.703) and albumin (AUC=0.728) concentrations effectively discriminated between dialysis patients with and without inappropriate left ventricular hypertrophy, left ventricular hypertrophy, and increased E/e,' respectively. Conclusion Uric acid, ferritin, albumin, parathyroid hormone and gamma-glutamyl transferase were associated with uremic cardiomyopathy characteristics and could be useful in their identification. Our findings merit validation in future longitudinal studies.
Collapse
Affiliation(s)
- Grace Tade
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Hon-Chun Hsu
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Nephrology Unit, Milpark Hospital, Johannesburg, South Africa
| | - Angela J Woodiwiss
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Ferande Peters
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chanel Robinson
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Noluntu Dlongolo
- Rheumatology Unit, Rosebank Hospital, Johannesburg, South Africa
| | - Gloria Teckie
- Division of Nephrology, Department of Medicine, Chris Hani Baragwanath Hospital and Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Ahmed Solomon
- Rheumatology Department, University of the Witwatersrand, Johannesburg, South Africa
| | - Gavin R Norton
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Patrick H Dessein
- Cardiovascular Pathophysiology and Genomics Research Unit, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa,Rheumatology Department, University of the Witwatersrand, Johannesburg, South Africa,Internal Medicine Department, University of the Witwatersrand, Johannesburg, South Africa,Correspondence: Patrick H Dessein, Departments of Medicine, Rheumatology and Physiology, Charlotte Maxeke Johannesburg Academic Hospital, University of the Witwatersrand Medical School, 7 York Road, Parktown, Johannnesburg, 2193, South Africa, Tel +27 662491468, Email
| |
Collapse
|
45
|
Schildroth S, Kordas K, Bauer JA, Wright RO, Claus Henn B. Environmental Metal Exposure, Neurodevelopment, and the Role of Iron Status: a Review. Curr Environ Health Rep 2022; 9:758-787. [PMID: 35997893 DOI: 10.1007/s40572-022-00378-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Exposure to environmental metals, like lead (Pb), manganese (Mn), and methylmercury (Me-Hg), has consistently been implicated in neurodevelopmental dysfunction. Recent research has focused on identifying modifying factors of metal neurotoxicity in childhood, such as age, sex, and co-exposures. Iron (Fe) status is critical for normal cognitive development during childhood, and current mechanistic, animal, and human evidence suggests that Fe status may be a modifier or mediator of associations between environmental metals and neurodevelopment. The goals of this review are to describe the current state of the epidemiologic literature on the role of Fe status (i.e., hemoglobin, ferritin, blood Fe concentrations) and Fe supplementation in the relationship between metals and children's neurodevelopment, and to identify research gaps. RECENT FINDINGS We identified 30 studies in PubMed and EMBASE that assessed Fe status as a modifier, mediator, or co-exposure of associations of Pb, Me-Hg, Mn, copper (Cu), zinc (Zn), arsenic (As), or metal mixtures measured in early life (prenatal period through 8 years of age) with cognition in children. In experimental studies, co-supplementation of Fe and Zn was associated with better memory and cognition than supplementation with either metal alone. Several observational studies reported interactions between Fe status and Pb, Mn, Zn, or As in relation to developmental indices, memory, attention, and behavior, whereby adverse associations of metals with cognition were worse among Fe-deficient children compared to Fe-sufficient children. Only two studies quantified joint associations of complex metal mixtures that included Fe with neurodevelopment, though findings from these studies were not consistent. Findings support memory and attention as two possible cognitive domains that may be both vulnerable to Fe deficiency and a target of metals toxicity. Major gaps in the literature remain, including evaluating Fe status as a modifier or mediator of metal mixtures and cognition. Given that Fe deficiency is the most common nutritional deficiency worldwide, characterizing Fe status in studies of metals toxicity is important for informing public health interventions.
Collapse
Affiliation(s)
- Samantha Schildroth
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St., Boston, MA, 02118, USA.
| | - Katarzyna Kordas
- Department of Epidemiology and Environmental Health, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Julia Anglen Bauer
- Department of Epidemiology, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Birgit Claus Henn
- Department of Environmental Health, School of Public Health, Boston University, 715 Albany St., Boston, MA, 02118, USA
| |
Collapse
|
46
|
Vanreusel I, Vermeulen D, Goovaerts I, Stoop T, Ectors B, Cornelis J, Hens W, de Bliek E, Heuten H, Van Craenenbroeck EM, Van Berendoncks A, Segers VFM, Briedé JJ. Circulating Reactive Oxygen Species in Adults with Congenital Heart Disease. Antioxidants (Basel) 2022; 11:antiox11122369. [PMID: 36552576 PMCID: PMC9774177 DOI: 10.3390/antiox11122369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
Oxidative stress is an important pathophysiological mechanism in the development of numerous cardiovascular disorders, but few studies have examined the levels of oxidative stress in adults with congenital heart disease (CHD). The objective of this study was to investigate oxidative stress levels in adults with CHD and the association with inflammation, exercise capacity and endothelial function. To this end, 36 adults with different types of CHD and 36 age- and gender-matched healthy controls were enrolled. Blood cell counts, hs-CRP, NT-proBNP, fasting glucose, cholesterol levels, iron saturation and folic acid concentrations were determined in venous blood samples. Levels of superoxide anion radical in whole blood were determined using electron paramagnetic resonance spectroscopy in combination with the spin probe CMH. Physical activity was assessed with the IPAQ-SF questionnaire. Vascular function assessment (EndoPAT) and cardiopulmonary exercise testing were performed in the patient group. Superoxide anion radical levels were not statistically significantly different between adults with CHD and the matched controls. Moreover, oxidative stress did not correlate with inflammation, or with endothelial function or cardiorespiratory fitness in CHD; however, a significant negative correlation with iron saturation was observed. Overall, whole blood superoxide anion radical levels in adults with CHD were not elevated, but iron levels seem to play a more important role in oxidative stress mechanisms in CHD than in healthy controls. More research will be needed to improve our understanding of the underlying pathophysiology of CHD.
Collapse
Affiliation(s)
- Inne Vanreusel
- Department of Cardiology, Antwerp University Hospital, 2650 Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2000 Antwerp, Belgium
- Correspondence: ; Tel.: +32-3-821-38-47
| | - Dorien Vermeulen
- Department of Cardiology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Inge Goovaerts
- Department of Cardiology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Tibor Stoop
- Department of Cardiology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Bert Ectors
- Department of Cardiology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Jacky Cornelis
- Department of Cardiology, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Wendy Hens
- Department of Cardiology, Antwerp University Hospital, 2650 Edegem, Belgium
- Cardiac Rehabilitation Centre, Antwerp University Hospital, 2650 Edegem, Belgium
- Department of Rehabilitation Sciences and Physiotherapy, Faculty of Medicine and Health Sciences, MOVANT Research Group, University of Antwerp, 2000 Antwerp, Belgium
| | - Erwin de Bliek
- Department of Cardiology, Antwerp University Hospital, 2650 Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2000 Antwerp, Belgium
- Cardiac Rehabilitation Centre, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Hilde Heuten
- Department of Cardiology, Antwerp University Hospital, 2650 Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2000 Antwerp, Belgium
| | - Emeline M. Van Craenenbroeck
- Department of Cardiology, Antwerp University Hospital, 2650 Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2000 Antwerp, Belgium
| | - An Van Berendoncks
- Department of Cardiology, Antwerp University Hospital, 2650 Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2000 Antwerp, Belgium
| | - Vincent F. M. Segers
- Department of Cardiology, Antwerp University Hospital, 2650 Edegem, Belgium
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, 2000 Antwerp, Belgium
| | - Jacob J. Briedé
- Department of Toxicogenomics, School of Oncology and Developmental Biology (GROW), Maastricht University, 6211 MD Maastricht, The Netherlands
| |
Collapse
|
47
|
Khatami F, Muka T, Groothof D, de Borst MH, Buttia C, van Hassel G, Baumgartner I, Kremer D, Bakker SJL, Bano A, Eisenga MF. Sex and N-terminal pro B-type natriuretic peptide: The potential mediating role of iron biomarkers. Front Cardiovasc Med 2022; 9:897148. [PMID: 36451923 PMCID: PMC9703058 DOI: 10.3389/fcvm.2022.897148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 10/24/2022] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Levels of N-terminal pro B-type natriuretic peptide (NT-proBNP), a marker of heart failure and cardiovascular risk, are generally higher in women than men. We explored whether iron biomarkers mediate sex differences in NT-proBNP levels. METHODS We included 5,343 community-dwelling individuals from the Prevention of Renal and Vascular Endstage Disease study. With linear regression analyses, we investigated the association of sex and iron biomarkers with NT-proBNP levels, independent of adjustment for potential confounders. The assessed iron biomarkers included ferritin, transferrin saturation (TSAT), hepcidin, and soluble transferrin receptor (sTfR). Next, we performed mediation analyses to investigate to which extent iron biomarkers influence the association between sex and NT-proBNP. RESULTS Of the included 5,343 participants, the mean standard deviation age was 52.2 ± 11.6 years and 52% were females. After adjustment for potential confounders, women compared to men, had higher NT-proBNP (β = 0.31; 95%CI = 0.29, 0.34), but lower ferritin (β = -0.37; 95%CI = -0.39, -0.35), hepcidin (β = -0.22, 95%CI = -0.24, -0.20), and TSAT (β = -0.07, 95% CI = -0.08, -0.06). Lower ferritin (β = -0.05, 95%CI = -0.08, -0.02), lower hepcidin (β = -0.04, 95%CI = -0.07, -0.006), and higher TSAT (β = 0.07; 95%CI = 0.01, 0.13) were associated with higher NT-proBNP. In mediation analyses, ferritin and hepcidin explained 6.5 and 3.1% of the association between sex and NT-proBNP, respectively, while TSAT minimally suppressed (1.9%) this association. CONCLUSION Our findings suggest that iron biomarkers marginally explain sex differences in levels of NT-proBNP. Future studies are needed to explore causality and potential mechanisms underlying these pathways.
Collapse
Affiliation(s)
- Farnaz Khatami
- Institute of Social and Preventive Medicine (ISPM), Graduate School of Health Sciences, University of Bern, Bern, Switzerland
- Department of Community Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Taulant Muka
- Institute of Social and Preventive Medicine (ISPM), Graduate School of Health Sciences, University of Bern, Bern, Switzerland
- Epistudia, Bern, Switzerland
| | - Dion Groothof
- Division of Nephrology, Department of Internal Medicine, University of Groningen, Groningen, Netherlands
| | - Martin H. de Borst
- Division of Nephrology, Department of Internal Medicine, University of Groningen, Groningen, Netherlands
| | - Chepkoech Buttia
- Institute of Social and Preventive Medicine (ISPM), Graduate School of Health Sciences, University of Bern, Bern, Switzerland
| | - Gaston van Hassel
- Division of Nephrology, Department of Internal Medicine, University of Groningen, Groningen, Netherlands
| | - Iris Baumgartner
- Department of Angiology, Swiss Cardiovascular Center, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Daan Kremer
- Division of Nephrology, Department of Internal Medicine, University of Groningen, Groningen, Netherlands
| | - Stephan J. L. Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, Groningen, Netherlands
| | - Arjola Bano
- Institute of Social and Preventive Medicine (ISPM), Graduate School of Health Sciences, University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Michele F. Eisenga
- Division of Nephrology, Department of Internal Medicine, University of Groningen, Groningen, Netherlands
| |
Collapse
|
48
|
Iron: Not Just a Passive Bystander in AITD. Nutrients 2022; 14:nu14214682. [PMID: 36364944 PMCID: PMC9658435 DOI: 10.3390/nu14214682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Autoimmune thyroid disease (AITD) is the most prevalent autoimmune disease all over the world and the most frequent cause of hypothyroidism in areas of iodine sufficiency. The pathogenesis of AITD is multifactorial and depends on complex interactions between genetic and environmental factors, with epigenetics being the crucial link. Iron deficiency (ID) can reduce the activities of thyroid peroxidase and 5′-deiodinase, inhibit binding of triiodothyronine to its nuclear receptor, and cause slower utilization of T3 from the serum pool. Moreover, ID can disturb the functioning of the immune system, increasing the risk of autoimmune disorders. ID can be responsible for residual symptoms that may persist in patients with AITD, even if their thyrometabolic status has been controlled. The human lifestyle in the 21st century is inevitably associated with exposure to chemical compounds, pathogens, and stress, which implies an increased risk of autoimmune disorders and thyroid dysfunction. To summarize, in our paper we discuss how iron deficiency can impair the functions of the immune system, cause epigenetic changes in human DNA, and potentiate tissue damage by chemicals acting as thyroid disruptors.
Collapse
|
49
|
Is bariatric surgery improving mitochondrial function in the renal cells of patients with obesity-induced kidney disease? Pharmacol Res 2022; 185:106488. [DOI: 10.1016/j.phrs.2022.106488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/22/2022]
|
50
|
Cui Y, Gutierrez S, Ariai S, Öberg L, Thörn K, Gehrmann U, Cloonan SM, Naessens T, Olsson H. Non-heme iron overload impairs monocyte to macrophage differentiation via mitochondrial oxidative stress. Front Immunol 2022; 13:998059. [PMID: 36341326 PMCID: PMC9634638 DOI: 10.3389/fimmu.2022.998059] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
Iron is a key element for systemic oxygen delivery and cellular energy metabolism. Thus regulation of systemic and local iron metabolism is key for maintaining energy homeostasis. Significant changes in iron levels due to malnutrition or hemorrhage, have been associated with several diseases such as hemochromatosis, liver cirrhosis and COPD. Macrophages are key cells in regulating iron levels in tissues as they sequester excess iron. How iron overload affects macrophage differentiation and function remains a subject of debate. Here we used an in vitro model of monocyte-to-macrophage differentiation to study the effect of iron overload on macrophage function. We found that providing excess iron as soluble ferric ammonium citrate (FAC) rather than as heme-iron complexes derived from stressed red blood cells (sRBC) interferes with macrophage differentiation and phagocytosis. Impaired macrophage differentiation coincided with increased expression of oxidative stress-related genes. Addition of FAC also led to increased levels of cellular and mitochondrial reactive oxygen species (ROS) and interfered with mitochondrial function and ATP generation. The effects of iron overload were reproduced by the mitochondrial ROS-inducer rotenone while treatment with the ROS-scavenger N-Acetylcysteine partially reversed FAC-induced effects. Finally, we found that iron-induced oxidative stress interfered with upregulation of M-CSFR and MAFB, two crucial determinants of macrophage differentiation and function. In summary, our findings suggest that high levels of non-heme iron interfere with macrophage differentiation by inducing mitochondrial oxidative stress. These findings might be important to consider in the context of diseases like chronic obstructive pulmonary disease (COPD) where both iron overload and defective macrophage function have been suggested to play a role in disease pathogenesis.
Collapse
Affiliation(s)
- Yue Cui
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- *Correspondence: Yue Cui, ; Saray Gutierrez,
| | - Saray Gutierrez
- Bioscience Cardiovascular, Early Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- *Correspondence: Yue Cui, ; Saray Gutierrez,
| | - Sheller Ariai
- Early Product Development, Pharmaceutical Sciences, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lisa Öberg
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Kristofer Thörn
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Ulf Gehrmann
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Suzanne M. Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- School of Medicine, Trinity Biomedical Sciences Institute and Tallaght University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Thomas Naessens
- Bioscience Cough & In vivo, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Henric Olsson
- Translational Science & Experimental Medicine, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| |
Collapse
|