1
|
Shahshahani L, King M, Nettekoven C, Ivry RB, Diedrichsen J. Selective recruitment of the cerebellum evidenced by task-dependent gating of inputs. eLife 2024; 13:RP96386. [PMID: 38980147 PMCID: PMC11233132 DOI: 10.7554/elife.96386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies have documented cerebellar activity across a wide array of tasks. However, the functional contribution of the cerebellum within these task domains remains unclear because cerebellar activity is often studied in isolation. This is problematic, as cerebellar fMRI activity may simply reflect the transmission of neocortical activity through fixed connections. Here, we present a new approach that addresses this problem. Rather than focus on task-dependent activity changes in the cerebellum alone, we ask if neocortical inputs to the cerebellum are gated in a task-dependent manner. We hypothesize that input is upregulated when the cerebellum functionally contributes to a task. We first validated this approach using a finger movement task, where the integrity of the cerebellum has been shown to be essential for the coordination of rapid alternating movements but not for force generation. While both neocortical and cerebellar activity increased with increasing speed and force, the speed-related changes in the cerebellum were larger than predicted by an optimized cortico-cerebellar connectivity model. We then applied the same approach in a cognitive domain, assessing how the cerebellum supports working memory. Enhanced gating was associated with the encoding of items in working memory, but not with the manipulation or retrieval of the items. Focusing on task-dependent gating of neocortical inputs to the cerebellum offers a promising approach for using fMRI to understand the specific contributions of the cerebellum to cognitive function.
Collapse
Affiliation(s)
- Ladan Shahshahani
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Cognitive, Linguistics, & Psychological Science, Brown University, Providence, United States
| | - Maedbh King
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, United Kingdom
| | - Caroline Nettekoven
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Richard B Ivry
- Department of Psychology, University of California, Berkeley, Berkeley, United States
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, United States
| | - Jörn Diedrichsen
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
- Department of Statistical and Actuarial Sciences, Western University London, Ontario, Canada
- Department of Computer Science, Western University, London, Ontario, Canada
| |
Collapse
|
2
|
Wakid M, Almeida D, Aouabed Z, Rahimian R, Davoli MA, Yerko V, Leonova-Erko E, Richard V, Zahedi R, Borchers C, Turecki G, Mechawar N. Universal method for the isolation of microvessels from frozen brain tissue: A proof-of-concept multiomic investigation of the neurovasculature. Brain Behav Immun Health 2023; 34:100684. [PMID: 37822873 PMCID: PMC10562768 DOI: 10.1016/j.bbih.2023.100684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/29/2023] [Accepted: 09/06/2023] [Indexed: 10/13/2023] Open
Abstract
The neurovascular unit, comprised of vascular cell types that collectively regulate cerebral blood flow to meet the needs of coupled neurons, is paramount for the proper function of the central nervous system. The neurovascular unit gatekeeps blood-brain barrier properties, which experiences impairment in several central nervous system diseases associated with neuroinflammation and contributes to pathogenesis. To better understand function and dysfunction at the neurovascular unit and how it may confer inflammatory processes within the brain, isolation and characterization of the neurovascular unit is needed. Here, we describe a singular, standardized protocol to enrich and isolate microvessels from archived snap-frozen human and frozen mouse cerebral cortex using mechanical homogenization and centrifugation-separation that preserves the structural integrity and multicellular composition of microvessel fragments. For the first time, microvessels are isolated from postmortem ventromedial prefrontal cortex tissue and are comprehensively investigated as a structural unit using both RNA sequencing and Liquid Chromatography with tandem mass spectrometry (LC-MS/MS). Both the transcriptome and proteome are obtained and compared, demonstrating that the isolated brain microvessel is a robust model for the NVU and can be used to generate highly informative datasets in both physiological and disease contexts.
Collapse
Affiliation(s)
- Marina Wakid
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
| | - Zahia Aouabed
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Reza Rahimian
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | | | - Volodymyr Yerko
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Elena Leonova-Erko
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
| | - Vincent Richard
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - René Zahedi
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Christoph Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montréal, Quebec, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| | - Naguib Mechawar
- McGill Group for Suicide Studies, Douglas Research Centre, Montréal, Quebec, Canada
- Integrated Program in Neuroscience, McGill University, Montréal, Quebec, Canada
- Department of Psychiatry, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
3
|
Katz BM, Walton LR, Houston KM, Cerri DH, Shih YYI. Putative neurochemical and cell type contributions to hemodynamic activity in the rodent caudate putamen. J Cereb Blood Flow Metab 2023; 43:481-498. [PMID: 36448509 PMCID: PMC10063835 DOI: 10.1177/0271678x221142533] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/28/2022] [Accepted: 10/21/2022] [Indexed: 12/02/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is widely used by researchers to noninvasively monitor brain-wide activity. The traditional assumption of a uniform relationship between neuronal and hemodynamic activity throughout the brain has been increasingly challenged. This relationship is now believed to be impacted by heterogeneously distributed cell types and neurochemical signaling. To date, most cell-type- and neurotransmitter-specific influences on hemodynamics have been examined within the cortex and hippocampus of rodent models, where glutamatergic signaling is prominent. However, neurochemical influences on hemodynamics are relatively unknown in largely GABAergic brain regions such as the rodent caudate putamen (CPu). Given the extensive contribution of CPu function and dysfunction to behavior, and the increasing focus on this region in fMRI studies, improved understanding of CPu hemodynamics could have broad impacts. Here we discuss existing findings on neurochemical contributions to hemodynamics as they may relate to the CPu with special consideration for how these contributions could originate from various cell types and circuits. We hope this review can help inform the direction of future studies as well as interpretation of fMRI findings in the CPu.
Collapse
Affiliation(s)
- Brittany M Katz
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lindsay R Walton
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kaiulani M Houston
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, New York University Grossman School of Medicine, New York, NY, USA
| | - Domenic H Cerri
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Neuroscience Curriculum, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Gaucher Q, Yger P, Edeline JM. Increasing excitation versus decreasing inhibition in auditory cortex: consequences on the discrimination performance between communication sounds. J Physiol 2020; 598:3765-3785. [PMID: 32538485 DOI: 10.1113/jp279902] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Enhancing cortical excitability can be achieved by either reducing intracortical inhibition or by enhancing intracortical excitation. Here we compare the consequences of reducing intracortical inhibition and of enhancing intracortical excitation on the processing of communication sounds in the primary auditory cortex. Local application of gabazine and of AMPA enlarged the spectrotemporal receptive fields and increased the responses to communication to the same extent. The Mutual Information (an index of the cortical neurons' ability to discriminate between natural sounds) was increased in both cases, as were the noise and signal correlations. Spike-timing reliability was only increased after gabazine application and post-excitation suppression was affected in the opposite way: it was increased when reducing the intracortical inhibition but was eliminated by enhancing the excitation. A computational model suggests that these results can be explained by an additive effect vs. a multiplicative effect ABSTRACT: The level of excitability of cortical circuits is often viewed as one of the critical factors controlling perceptive performance. In theory, enhancing cortical excitability can be achieved either by reducing inhibitory currents or by increasing excitatory currents. Here, we evaluated whether reducing inhibitory currents or increasing excitatory currents in auditory cortex similarly affects the neurons' ability to discriminate between communication sounds. We attenuated the inhibitory currents by application of gabazine (GBZ), and increased the excitatory currents by applying AMPA in the auditory cortex while testing frequency receptive fields and responses to communication sounds. GBZ and AMPA enlarged the receptive fields and increased the responses to communication sounds to the same extent. The spike-timing reliability of neuronal responses was largely increased when attenuating the intracortical inhibition but not after increasing the excitation. The discriminative abilities of cortical cells increased in both cases but this increase was more pronounced after attenuating the inhibition. The shape of the response to communication sounds was modified in the opposite direction: reducing inhibition increased post-excitation suppression whereas this suppression tended to disappear when increasing the excitation. A computational model indicates that the additive effect promoted by AMPA vs. the multiplicative effect of GBZ on neuronal responses, together with the dynamics of spontaneous cortical activity, can explain these differences. Thus, although apparently equivalent for increasing cortical excitability, acting on inhibition vs. on excitation impacts differently the cortical ability to discriminate natural stimuli, and only modulating inhibition changed efficiently the cortical representation of communication sounds.
Collapse
Affiliation(s)
- Quentin Gaucher
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), Department Cognition and Behaviour, CNRS UMR 9197, Orsay Cedex, 91405, France.,Université Paris-Sud, Bâtiment 446, Orsay Cedex, 91405, France
| | - Pierre Yger
- Institut de la Vision, INSERM UMRS 968, UPMC UM 80, CNRS UMR 7210, Paris, France
| | - Jean-Marc Edeline
- Paris-Saclay Institute of Neurosciences (Neuro-PSI), Department Cognition and Behaviour, CNRS UMR 9197, Orsay Cedex, 91405, France.,Université Paris-Sud, Bâtiment 446, Orsay Cedex, 91405, France
| |
Collapse
|
5
|
Yeates DCM, Ussling A, Lee ACH, Ito R. Double dissociation of learned approach–avoidance conflict processing and spatial pattern separation along the dorsoventral axis of the dentate gyrus. Hippocampus 2019; 30:596-609. [DOI: 10.1002/hipo.23182] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Dylan C. M. Yeates
- Department of Psychology (Scarborough)University of Toronto Toronto Canada
| | - Alicia Ussling
- Department of Psychology (Scarborough)University of Toronto Toronto Canada
| | - Andy C. H. Lee
- Department of Psychology (Scarborough)University of Toronto Toronto Canada
- Rotman Research InstituteBaycrest Centre Toronto Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough)University of Toronto Toronto Canada
- Department of Cell and Systems BiologyUniversity of Toronto Toronto Canada
| |
Collapse
|
6
|
Denfield GH, Fahey PG, Reimer J, Tolias AS. Investigating the Limits of Neurovascular Coupling. Neuron 2017; 91:954-956. [PMID: 27608758 DOI: 10.1016/j.neuron.2016.08.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
O'Herron et al. (2016) perform two-photon imaging of vascular and neural responses in cat and rodent primary visual cortex to investigate the limits of neurovascular coupling. Their results suggest important constraints on making inferences about neuronal responses from hemodynamic activity.
Collapse
Affiliation(s)
- George H Denfield
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Paul G Fahey
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jacob Reimer
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Computational and Applied Mathematics, Rice University, Houston, TX 77005, USA.
| |
Collapse
|
7
|
Granular Layer Neurons Control Cerebellar Neurovascular Coupling Through an NMDA Receptor/NO-Dependent System. J Neurosci 2016; 37:1340-1351. [PMID: 28039371 DOI: 10.1523/jneurosci.2025-16.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/28/2016] [Accepted: 12/03/2016] [Indexed: 01/14/2023] Open
Abstract
Neurovascular coupling (NVC) is the process whereby neuronal activity controls blood vessel diameter. In the cerebellum, the molecular layer is regarded as the main NVC determinant. However, the granular layer is a region with variable metabolic demand caused by large activity fluctuations that shows a prominent expression of NMDA receptors (NMDARs) and nitric oxide synthase (NOS) and is therefore much more suitable for effective NVC. Here, we show, in the granular layer of acute rat cerebellar slices, that capillary diameter changes rapidly after mossy fiber stimulation. Vasodilation required neuronal NMDARs and NOS stimulation and subsequent guanylyl cyclase activation that probably occurred in pericytes. Vasoconstriction required metabotropic glutamate receptors and CYP ω-hydroxylase, the enzyme regulating 20-hydroxyeicosatetraenoic acid production. Therefore, granular layer capillaries are controlled by the balance between vasodilating and vasoconstricting systems that could finely tune local blood flow depending on neuronal activity changes at the cerebellar input stage. SIGNIFICANCE STATEMENT The neuronal circuitry and the biochemical pathways that control local blood flow supply in the cerebellum are unclear. This is surprising given the emerging role played by this brain structure, not only in motor behavior, but also in cognitive functions. Although previous studies focused on the molecular layer, here, we shift attention onto the mossy fiber granule cell (GrC) relay. We demonstrate that GrC activity causes a robust vasodilation in nearby capillaries via the NMDA receptors-neuronal nitric oxide synthase signaling pathway. At the same time, metabotropic glutamate receptors mediate 20-hydroxyeicosatetraenoic acid-dependent vasoconstriction. These results reveal a complex signaling network that hints for the first time at the granular layer as a major determinant of cerebellar blood-oxygen-level-dependent signals.
Collapse
|
8
|
Li J, Schwarz AJ, Gilmour G. Relating Translational Neuroimaging and Amperometric Endpoints: Utility for Neuropsychiatric Drug Discovery. Curr Top Behav Neurosci 2016; 28:397-421. [PMID: 27023366 DOI: 10.1007/7854_2016_1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Measures of neuronal activation are a natural and parsimonious translational biomarker to consider in the context of neuropsychiatric drug discovery studies. In this regard, functional neuroimaging using the BOLD fMRI technique is becoming more frequently employed to not only probe aberrant brain regions and circuits in disease, but also to assess the effects of novel pharmacological agents on these processes. In the ideal situation, these types of studies would first be conducted pre-clinically in rodents to confirm a measurable functional response on relevant brain circuits before seeking to replicate the findings in an analogous fMRI paradigm in humans. However, the need for animal immobilization during the scanning procedure precludes all but the simplest behavioural task-based paradigms in rodent BOLD fMRI. This chapter considers how in vivo oxygen amperometry may represent a viable and valid proxy for BOLD fMRI in freely moving rodents engaged in behavioural tasks. The amperometric technique and several examples of emerging evidence are described to show how the technique can deliver results that translate to pharmacological, event-related and functional connectivity variants of fMRI. In vivo oxygen amperometry holds great promise as a technique that may help to bridge the gap between basic drug discovery research in rodents and applied efficacy testing in humans.
Collapse
Affiliation(s)
- Jennifer Li
- In Vivo Pharmacology, Eli Lilly and Company, Erl Wood Manor, Sunninghill Road, Windlesham, UK
| | - Adam J Schwarz
- Translational Imaging, Eli Lilly and Company, Indianapolis, IN, 46285, USA
| | - Gary Gilmour
- In Vivo Pharmacology, Eli Lilly and Company, Erl Wood Manor, Sunninghill Road, Windlesham, UK.
| |
Collapse
|
9
|
Gaucher Q, Edeline JM. Stimulus-specific effects of noradrenaline in auditory cortex: implications for the discrimination of communication sounds. J Physiol 2014; 593:1003-20. [PMID: 25398527 DOI: 10.1113/jphysiol.2014.282855] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 11/02/2014] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Many studies have described the action of Noradrenaline (NA) on the properties of cortical receptive fields, but none has assessed how NA affects the discrimination abilities of cortical cells between natural stimuli. In the present study, we compared the consequences of NA topical application on spectro-temporal receptive fields (STRFs) and responses to communication sounds in the primary auditory cortex. NA application reduced the STRFs (an effect replicated by the alpha1 agonist Phenylephrine) but did not change, on average, the responses to communication sounds. For cells exhibiting increased evoked responses during NA application, the discrimination abilities were enhanced as quantified by Mutual Information. The changes induced by NA on parameters extracted from the STRFs and from responses to communication sounds were not related. ABSTRACT The alterations exerted by neuromodulators on neuronal selectivity have been the topic of a vast literature in the visual, somatosensory, auditory and olfactory cortices. However, very few studies have investigated to what extent the effects observed when testing these functional properties with artificial stimuli can be transferred to responses evoked by natural stimuli. Here, we tested the effect of noradrenaline (NA) application on the responses to pure tones and communication sounds in the guinea-pig primary auditory cortex. When pure tones were used to assess the spectro-temporal receptive field (STRF) of cortical cells, NA triggered a transient reduction of the STRFs in both the spectral and the temporal domain, an effect replicated by the α1 agonist phenylephrine whereas α2 and β agonists induced STRF expansion. When tested with communication sounds, NA application did not produce significant effects on the firing rate and spike timing reliability, despite the fact that α1, α2 and β agonists by themselves had significant effects on these measures. However, the cells whose evoked responses were increased by NA application displayed enhanced discriminative abilities. These cells had initially smaller STRFs than the rest of the population. A principal component analysis revealed that the variations of parameters extracted from the STRF and those extracted from the responses to natural stimuli were not correlated. These results suggest that probing the action of neuromodulators on cortical cells with artificial stimuli does not allow us to predict their action on responses to natural stimuli.
Collapse
Affiliation(s)
- Quentin Gaucher
- Centre de Neurosciences Paris-Sud (CNPS), CNRS UMR 8195, , Université Paris-Sud, Bâtiment 446, 91405, Orsay cedex, France
| | | |
Collapse
|
10
|
Abstract
Hemodynamic signals are widely used to infer neural activity in the brain. We tested the hypothesis that hemodynamic signals faithfully report neural activity during voluntary behaviors by measuring cerebral blood volume (CBV) and neural activity in the somatosensory cortex and frontal cortex of head-fixed mice during locomotion. Locomotion induced a large and robust increase in firing rate and gamma-band (40-100 Hz) power in the local field potential in the limb representations in somatosensory cortex, and was accompanied by increases in CBV, demonstrating that hemodynamic signals are coupled with neural activity in this region. However, in the frontal cortex, CBV did not change during locomotion, but firing rate and gamma-band power both increased, indicating a decoupling of neural activity from the hemodynamic signal. These results show that hemodynamic signals are not faithful indicators of the mean neural activity in the frontal cortex during locomotion; thus, the results from fMRI and other hemodynamic imaging methodologies for studying neural processes must be interpreted with caution.
Collapse
|
11
|
Martin C. Contributions and complexities from the use of in vivo animal models to improve understanding of human neuroimaging signals. Front Neurosci 2014; 8:211. [PMID: 25191214 PMCID: PMC4137227 DOI: 10.3389/fnins.2014.00211] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 07/01/2014] [Indexed: 01/18/2023] Open
Abstract
Many of the major advances in our understanding of how functional brain imaging signals relate to neuronal activity over the previous two decades have arisen from physiological research studies involving experimental animal models. This approach has been successful partly because it provides opportunities to measure both the hemodynamic changes that underpin many human functional brain imaging techniques and the neuronal activity about which we wish to make inferences. Although research into the coupling of neuronal and hemodynamic responses using animal models has provided a general validation of the correspondence of neuroimaging signals to specific types of neuronal activity, it is also highlighting the key complexities and uncertainties in estimating neural signals from hemodynamic markers. This review will detail how research in animal models is contributing to our rapidly evolving understanding of what human neuroimaging techniques tell us about neuronal activity. It will highlight emerging issues in the interpretation of neuroimaging data that arise from in vivo research studies, for example spatial and temporal constraints to neuroimaging signal interpretation, or the effects of disease and modulatory neurotransmitters upon neurovascular coupling. We will also give critical consideration to the limitations and possible complexities of translating data acquired in the typical animals models used in this area to the arena of human fMRI. These include the commonplace use of anesthesia in animal research studies and the fact that many neuropsychological questions that are being actively explored in humans have limited homologs within current animal models for neuroimaging research. Finally we will highlighting approaches, both in experimental animals models (e.g. imaging in conscious, behaving animals) and human studies (e.g. combined fMRI-EEG), that mitigate against these challenges.
Collapse
Affiliation(s)
- Chris Martin
- Department of Psychology, The University of Sheffield Sheffield, UK
| |
Collapse
|
12
|
Jessen SB, Brazhe A, Lind BL, Mathiesen C, Thomsen K, Jensen K, Lauritzen M. GABAA Receptor-Mediated Bidirectional Control of Synaptic Activity, Intracellular Ca2+, Cerebral Blood Flow, and Oxygen Consumption in Mouse Somatosensory Cortex In Vivo. Cereb Cortex 2014; 25:2594-609. [PMID: 24692513 DOI: 10.1093/cercor/bhu058] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neural activity regulates local increases in cerebral blood flow (ΔCBF) and the cortical metabolic rate of oxygen (ΔCMRO2) that constitutes the basis of BOLD functional neuroimaging signals. Glutamate signaling plays a key role in brain vascular and metabolic control; however, the modulatory effect of GABA is incompletely understood. Here we performed in vivo studies in mice to investigate how THIP (which tonically activates extrasynaptic GABAARs) and Zolpidem (a positive allosteric modulator of synaptic GABAARs) impact stimulation-induced ΔCBF, ΔCMRO2, local field potentials (LFPs), and fluorescent cytosolic Ca(2+) transients in neurons and astrocytes. Low concentrations of THIP increased ΔCBF and ΔCMRO2 at low stimulation frequencies. These responses were coupled to increased synaptic activity as indicated by LFP responses, and to Ca(2+) activities in neurons and astrocytes. Intermediate and high concentrations of THIP suppressed ΔCBF and ΔCMRO2 at high stimulation frequencies. Zolpidem had similar but less-pronounced effects, with similar dependence on drug concentration and stimulation frequency. Our present findings suggest that slight increases in both synaptic and extrasynaptic GABAAR activity might selectively gate and amplify transient low-frequency somatosensory inputs, filter out high-frequency inputs, and enhance vascular and metabolic responses that are likely to be reflected in BOLD functional neuroimaging signals.
Collapse
Affiliation(s)
- Sanne Barsballe Jessen
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen N, Denmark Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Alexey Brazhe
- Biological Faculty Moscow State University, 119234 Moscow, Russia
| | - Barbara Lykke Lind
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Claus Mathiesen
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen N, Denmark Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kirsten Thomsen
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Kimmo Jensen
- Synaptic Physiology Laboratory, Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark
| | - Martin Lauritzen
- Department of Neuroscience and Pharmacology, University of Copenhagen, 2200 Copenhagen N, Denmark Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen N, Denmark Department of Clinical Neurophysiology, Glostrup Hospital, 2600 Glostrup, Denmark
| |
Collapse
|
13
|
Dexamethasone induced changes of neural activity in the auditory cortex of rats. Neurosci Res 2014; 80:38-44. [DOI: 10.1016/j.neures.2014.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/22/2013] [Accepted: 01/06/2014] [Indexed: 11/16/2022]
|
14
|
Li N, van Zijl P, Thakor N, Pelled G. Study of the spatial correlation between neuronal activity and BOLD fMRI responses evoked by sensory and channelrhodopsin-2 stimulation in the rat somatosensory cortex. J Mol Neurosci 2014; 53:553-61. [PMID: 24443233 DOI: 10.1007/s12031-013-0221-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 12/22/2013] [Indexed: 12/11/2022]
Abstract
In this work, we combined optogenetic tools with high-resolution blood oxygenation level-dependent functional MRI (BOLD fMRI), electrophysiology, and optical imaging of cerebral blood flow (CBF), to study the spatial correlation between the hemodynamic responses and neuronal activity. We first investigated the spatial and temporal characteristics of BOLD fMRI and the underlying neuronal responses evoked by sensory stimulations at different frequencies. The results demonstrated that under dexmedetomidine anesthesia, BOLD fMRI and neuronal activity in the rat primary somatosensory cortex (S1) have different frequency-dependency and distinct laminar activation profiles. We then found that localized activation of channelrhodopsin-2 (ChR2) expressed in neurons throughout the cortex induced neuronal responses that were confined to the light stimulation S1 region (<500 μm) with distinct laminar activation profile. However, the spatial extent of the hemodynamic responses measured by CBF and BOLD fMRI induced by both ChR2 and sensory stimulation was greater than 3 mm. These results suggest that due to the complex neurovascular coupling, it is challenging to determine specific characteristics of the underlying neuronal activity exclusively from the BOLD fMRI signals.
Collapse
Affiliation(s)
- Nan Li
- F. M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | | | | | | |
Collapse
|
15
|
Cortical inhibition reduces information redundancy at presentation of communication sounds in the primary auditory cortex. J Neurosci 2013; 33:10713-28. [PMID: 23804094 DOI: 10.1523/jneurosci.0079-13.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In all sensory modalities, intracortical inhibition shapes the functional properties of cortical neurons but also influences the responses to natural stimuli. Studies performed in various species have revealed that auditory cortex neurons respond to conspecific vocalizations by temporal spike patterns displaying a high trial-to-trial reliability, which might result from precise timing between excitation and inhibition. Studying the guinea pig auditory cortex, we show that partial blockage of GABAA receptors by gabazine (GBZ) application (10 μm, a concentration that promotes expansion of cortical receptive fields) increased the evoked firing rate and the spike-timing reliability during presentation of communication sounds (conspecific and heterospecific vocalizations), whereas GABAB receptor antagonists [10 μm saclofen; 10-50 μm CGP55845 (p-3-aminopropyl-p-diethoxymethyl phosphoric acid)] had nonsignificant effects. Computing mutual information (MI) from the responses to vocalizations using either the evoked firing rate or the temporal spike patterns revealed that GBZ application increased the MI derived from the activity of single cortical site but did not change the MI derived from population activity. In addition, quantification of information redundancy showed that GBZ significantly increased redundancy at the population level. This result suggests that a potential role of intracortical inhibition is to reduce information redundancy during the processing of natural stimuli.
Collapse
|
16
|
Airan RD, Li N, Gilad AA, Pelled G. Genetic tools to manipulate MRI contrast. NMR IN BIOMEDICINE 2013; 26:803-809. [PMID: 23355411 PMCID: PMC3669659 DOI: 10.1002/nbm.2907] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/21/2012] [Indexed: 06/01/2023]
Abstract
Advances in molecular biology in the early 1970s revolutionized research strategies for the study of complex biological processes, which, in turn, created a high demand for new means to visualize these dynamic biological changes noninvasively and in real time. In this respect, MRI was a perfect fit, because of the versatile possibility to alter the different contrast mechanisms. Genetic manipulations are now being translated to MRI through the development of reporters and sensors, as well as the imaging of transgenic and knockout mice. In the past few years, a new molecular biology toolset, namely optogenetics, has emerged, which allows for the manipulation of cellular behavior using light. This technology provides a few particularly attractive features for combination with newly developed MRI techniques for the probing of in vivo cellular and, in particular, neural processes, specifically the ability to control focal, genetically defined cellular populations with high temporal resolution using equipment that is magnetically inert and does not interact with radiofrequency pulses. Recent studies have demonstrated that the combination of optogenetics and functional MRI (fMRI) can provide an appropriate platform to investigate in vivo, at the cellular and molecular levels, the neuronal basis of fMRI signals. In addition, this novel combination of optogenetics with fMRI has the potential to resolve pre-synaptic versus post-synaptic changes in neuronal activity and changes in the activity of large neuronal networks in the context of plasticity associated with development, learning and pathophysiology.
Collapse
Affiliation(s)
- Raag D. Airan
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nan Li
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Assaf A. Gilad
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Cellular Imaging Section and Vascular Biology Program, Institute for Cell Engineering, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Galit Pelled
- Russell H. Morgan Department of Radiology The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J Neurosci 2012; 32:8940-51. [PMID: 22745494 DOI: 10.1523/jneurosci.0026-12.2012] [Citation(s) in RCA: 320] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Neural activity has been suggested to initially trigger ATP production by glycolysis, rather than oxidative phosphorylation, for three reasons: glycolytic enzymes are associated with ion pumps; neurons may increase their energy supply by activating glycolysis in astrocytes to generate lactate; and activity increases glucose uptake more than O₂ uptake. In rat hippocampal slices, neuronal activity rapidly decreased the levels of extracellular O₂ and intracellular NADH (reduced nicotinamide adenine dinucleotide), even with lactate dehydrogenase blocked to prevent lactate generation, or with only 20% superfused O₂ to mimic physiological O₂ levels. Pharmacological analysis revealed an energy budget in which 11% of O₂ use was on presynaptic action potentials, 17% was on presynaptic Ca²⁺ entry and transmitter release, 46% was on postsynaptic glutamate receptors, and 26% was on postsynaptic action potentials, in approximate accord with theoretical brain energy budgets. Thus, the major mechanisms mediating brain information processing are all initially powered by oxidative phosphorylation, and an astrocyte-neuron lactate shuttle is not needed for this to occur.
Collapse
|
18
|
Fan X, Hughes KE, Jinnah HA, Hess EJ. Selective and sustained α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor activation in cerebellum induces dystonia in mice. J Pharmacol Exp Ther 2012; 340:733-41. [PMID: 22171094 PMCID: PMC3286315 DOI: 10.1124/jpet.111.190082] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 12/13/2011] [Indexed: 12/14/2022] Open
Abstract
Dystonia is a neurological disorder characterized by involuntary muscle contractions that cause twisting movements and abnormal postures. Functional imaging consistently reveals cerebellar overactivity in dystonic patients regardless of the type or etiology of the disorder. To explore mechanisms that might explain the basis for the cerebellar overactivity in dystonia, normal mice were challenged with intracerebellar application of a variety of agents that induce hyperexcitability. A nonspecific increase in cerebellar excitability, such as that produced by picrotoxin, was not associated with dystonia. Instead, glutamate receptor activation, specifically AMPA receptor activation, was necessary to evoke dystonia. AMPA receptor agonists induced dystonia, and AMPA receptor antagonists reduced the dystonia induced by glutamate receptor agonists. AMPA receptor antagonists also ameliorated the dystonia exhibited by the dystonic mouse mutant tottering, suggesting that AMPA receptors may play a role in some other genetic models of dystonia. Furthermore, AMPA receptor desensitization mediated the expression of dystonia. Preventing AMPA receptor desensitization with cyclothiazide or the nondesensitizing agonist kainic acid exacerbated the dystonic response. These results suggest the novel hypothesis that the cerebellar overactivity observed in neuroimaging studies of patients with dystonia may be an indirect reflection of abnormal glutamate signaling. In addition, these results imply that reducing AMPA receptor activation by blocking AMPA receptors and promoting AMPA receptor desensitization or negative allosteric modulators may prove to be beneficial for treating dystonia.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- 4-Aminopyridine/pharmacology
- Animals
- Benzothiadiazines/pharmacology
- Cerebellum/drug effects
- Cerebellum/physiology
- Dose-Response Relationship, Drug
- Dystonia/chemically induced
- Dystonia/drug therapy
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Quisqualic Acid/pharmacology
- Receptors, AMPA/drug effects
- Receptors, AMPA/physiology
- Receptors, Kainic Acid/drug effects
- Receptors, Kainic Acid/physiology
Collapse
Affiliation(s)
- Xueliang Fan
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | |
Collapse
|
19
|
Activity-dependent increases in local oxygen consumption correlate with postsynaptic currents in the mouse cerebellum in vivo. J Neurosci 2012; 31:18327-37. [PMID: 22171036 DOI: 10.1523/jneurosci.4526-11.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Evoked neural activity correlates strongly with rises in cerebral metabolic rate of oxygen (CMRO(2)) and cerebral blood flow (CBF). Activity-dependent rises in CMRO(2) fluctuate with ATP turnover due to ion pumping. In vitro studies suggest that increases in cytosolic Ca(2+) stimulate oxidative metabolism via mitochondrial signaling, but whether this also occurs in the intact brain is unknown. Here we applied a pharmacological approach to dissect the effects of ionic currents and cytosolic Ca(2+) rises of neuronal origin on activity-dependent rises in CMRO(2). We used two-photon microscopy and current source density analysis to study real-time Ca(2+) dynamics and transmembrane ionic currents in relation to CMRO(2) in the mouse cerebellar cortex in vivo. We report a direct correlation between CMRO(2) and summed (i.e., the sum of excitatory, negative currents during the whole stimulation period) field EPSCs (∑fEPSCs) in Purkinje cells (PCs) in response to stimulation of the climbing fiber (CF) pathway. Blocking stimulus-evoked rises in cytosolic Ca(2+) in PCs with the P/Q-type channel blocker ω-agatoxin-IVA (ω-AGA), or the GABA(A) receptor agonist muscimol, did not lead to a time-locked reduction in CMRO(2), and excitatory synaptic or action potential currents. During stimulation, neither ω-AGA or (μ-oxo)-bis-(trans-formatotetramine-ruthenium) (Ru360), a mitochondrial Ca(2+) uniporter inhibitor, affected the ratio of CMRO(2) to fEPSCs or evoked local field potentials. However, baseline CBF and CMRO(2) decreased gradually with Ru360. Our data suggest that in vivo activity-dependent rises in CMRO(2) are correlated with synaptic currents and postsynaptic spiking in PCs. Our study did not reveal a unique role of neuronal cytosolic Ca(2+) signals in controlling CMRO(2) increases during CF stimulation.
Collapse
|
20
|
Schäfer K, Blankenburg F, Kupers R, Grüner JM, Law I, Lauritzen M, Larsson HB. Negative BOLD signal changes in ipsilateral primary somatosensory cortex are associated with perfusion decreases and behavioral evidence for functional inhibition. Neuroimage 2012; 59:3119-27. [DOI: 10.1016/j.neuroimage.2011.11.085] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/21/2011] [Accepted: 11/22/2011] [Indexed: 11/25/2022] Open
|
21
|
Neuronal inhibition and excitation, and the dichotomic control of brain hemodynamic and oxygen responses. Neuroimage 2012; 62:1040-50. [PMID: 22261372 DOI: 10.1016/j.neuroimage.2012.01.040] [Citation(s) in RCA: 114] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/27/2011] [Accepted: 01/01/2012] [Indexed: 12/30/2022] Open
Abstract
Brain's electrical activity correlates strongly to changes in cerebral blood flow (CBF) and the cerebral metabolic rate of oxygen (CMRO(2)). Subthreshold synaptic processes correlate better than the spike rates of principal neurons to CBF, CMRO(2) and positive BOLD signals. Stimulation-induced rises in CMRO(2) are controlled by the ATP turnover, which depends on the energy used to fuel the Na,K-ATPase to reestablish ionic gradients, while stimulation-induced CBF responses to a large extent are controlled by mechanisms that depend on Ca(2+) rises in neurons and astrocytes. This dichotomy of metabolic and vascular control explains the gap between the stimulation-induced rises in CMRO(2) and CBF, and in turn the BOLD signal. Activity-dependent rises in CBF and CMRO(2) vary within and between brain regions due to differences in ATP turnover and Ca(2+)-dependent mechanisms. Nerve cells produce and release vasodilators that evoke positive BOLD signals, while the mechanisms that control negative BOLD signals by activity-dependent vasoconstriction are less well understood. Activation of both excitatory and inhibitory neurons produces rises in CBF and positive BOLD signals, while negative BOLD signals under most conditions correlate to excitation of inhibitory interneurons, but there are important exceptions to that rule as described in this paper. Thus, variations in the balance between synaptic excitation and inhibition contribute dynamically to the control of metabolic and hemodynamic responses, and in turn the amplitude and polarity of the BOLD signal. Therefore, it is not possible based on a negative or positive BOLD signal alone to decide whether the underlying activity goes on in principal or inhibitory neurons.
Collapse
|
22
|
Columnar specificity of microvascular oxygenation and blood flow response in primary visual cortex: evaluation by local field potential and spiking activity. J Cereb Blood Flow Metab 2012; 32:6-16. [PMID: 22027939 PMCID: PMC3323306 DOI: 10.1038/jcbfm.2011.152] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The relation of cortical microcirculation, oxygen metabolism, and underlying neuronal network activity remains poorly understood. Anatomical distribution of cortical microvasculature and its relationship to cortical functional domains suggests that functional organizations may be revealed by mapping cerebral blood flow responses. However, there is little direct experimental evidence and a lack of electrophysiological evaluation. In this study, we mapped ocular-dominance columns in primary visual cortex (V1) of anesthetized macaques with capillary flow-based laser speckle contrast imaging and deoxyhemoglobin-based intrinsic optical imaging. In parallel, the local field potentials (LFPs) and spikes were recorded from a linear array of eight microelectrodes, carefully positioned into left and right eye columns in V1. We found differential activation maps of blood flow, after masking large superficial draining vessels, exhibited a column-like pattern similar as the oximetric maps. Both the activated spikes and γ-band LFP demonstrated corresponding eye preference, consistent with the imaging maps. Our results present direct support in favor of previous proposals that the regulation of microcirculation can be as fine as the submillimeter scale, suggesting that cortical vasculature is functionally organized at the columnar level in a manner appropriate for supplying energy demands of functionally specific neuronal populations.
Collapse
|
23
|
Nicoletti C, Offenhauser N, Jorks D, Major S, Dreier JP. Assessment of Neurovascular Coupling. SPRINGER PROTOCOLS HANDBOOKS 2012. [DOI: 10.1007/978-1-61779-576-3_24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
24
|
Goloshevsky AG, Wu CWH, Dodd SJ, Koretsky AP. Mapping cortical representations of the rodent forepaw and hindpaw with BOLD fMRI reveals two spatial boundaries. Neuroimage 2011; 57:526-38. [PMID: 21504796 PMCID: PMC4199081 DOI: 10.1016/j.neuroimage.2011.04.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2011] [Revised: 02/25/2011] [Accepted: 04/01/2011] [Indexed: 10/18/2022] Open
Abstract
Electrical stimulation of the rat forepaw and hindpaw was employed to study the spatial distribution of BOLD fMRI. Averaging of multiple fMRI sessions significantly improved the spatial stability of the BOLD signal and enabled quantitative determination of the boundaries of the BOLD fMRI maps. The averaged BOLD fMRI signal was distributed unevenly over the extent of the map and the data at the boundaries could be modeled with major and minor spatial components. Comparison of three-dimensional echo-planar imaging (EPI) fMRI at isotropic 300 μm resolution demonstrated that the border locations of the major spatial component of BOLD signal did not overlap between the forepaw and hindpaw maps. Interestingly, the border positions of the minor BOLD fMRI spatial components extended significantly into neighboring representations. Similar results were found for cerebral blood volume (CBV) weighted fMRI obtained using iron oxide particles, suggesting that the minor spatial components may not be due to vascular mislocalization typically associated with BOLD fMRI. Comparison of the BOLD fMRI maps of the forepaw and hindpaw to histological determination of these representations using cytochrome oxidase (CO) staining demonstrated that the major spatial component of the BOLD fMRI activation maps accurately localizes the borders. Finally, 2-3 weeks following peripheral nerve denervation, cortical reorganization/plasticity at the boundaries of somatosensory limb representations in adult rat brain was studied. Denervation of the hindpaw caused a growth in the major component of forepaw representation into the adjacent border of hindpaw representation, such that fitting to two components no longer led to a better fit as compared to using one major component. The border of the representation after plasticity was the same as the border of its minor component in the absence of any plasticity. It is possible that the minor components represent either vascular effects that extend from the real neuronal representations or the neuronal communication between neighboring regions. Either way the results will be useful for studying mechanisms of plasticity that cause alterations in the boundaries of neuronal representations.
Collapse
Affiliation(s)
- Artem G. Goloshevsky
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Carolyn W.-H. Wu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Stephen J. Dodd
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alan P. Koretsky
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
25
|
Franconville R, Revet G, Astorga G, Schwaller B, Llano I. Somatic calcium level reports integrated spiking activity of cerebellar interneurons in vitro and in vivo. J Neurophysiol 2011; 106:1793-805. [PMID: 21734102 DOI: 10.1152/jn.00133.2011] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the relationship between somatic Ca²⁺ signals and spiking activity of cerebellar molecular layer interneurons (MLIs) in adult mice. Using two-photon microscopy in conjunction with cell-attached recordings in slices, we show that in tonically firing MLIs loaded with high-affinity Ca²⁺ probes, Ca²⁺-dependent fluorescence transients are absent. Spike-triggered averages of fluorescence traces for MLIs spiking at low rates revealed that the fluorescence change associated with an action potential is small (1% of the basal fluorescence). To uncover the relationship between intracellular Ca²⁺ concentration ([Ca²⁺](i)) and firing rates, spikes were transiently silenced with puffs of the GABA(A) receptor agonist muscimol. [Ca²⁺](i) relaxed toward basal levels following a single exponential whose amplitude correlated to the preceding spike frequency. The relaxation time constant was slow (2.5 s) and independent of the probe concentration. Data from parvalbumin (PV)-/- animals indicate that PV controls the amplitude and decay time of spike-triggered averages as well as the time course of [Ca²⁺](i) relaxations following spike silencing. The [Ca²⁺](i) signals were sensitive to the L-type Ca²⁺ channel blocker nimodipine and insensitive to ryanodine. In anesthetized mice, as in slices, fluorescence traces from most MLIs did not show spontaneous transients. They nonetheless responded to muscimol iontophoresis with relaxations similar to those obtained in vitro, suggesting a state of tonic firing with estimated spiking rates ranging from 2 to 30 Hz. Altogether, the [Ca²⁺](i) signal appears to reflect the integral of the spiking activity in MLIs. We propose that the muscimol silencing strategy can be extended to other tonically spiking neurons with similar [Ca²⁺](i) homeostasis.
Collapse
Affiliation(s)
- Romain Franconville
- Centre National de la Recherche Scientifique, Laboratoire de Physiologie Cérébrale, Université Paris Descartes, Paris, France
| | | | | | | | | |
Collapse
|
26
|
Radhakrishnan H, Wu W, Boas D, Franceschini MA. Study of neurovascular coupling by modulating neuronal activity with GABA. Brain Res 2011; 1372:1-12. [PMID: 21145313 PMCID: PMC3037022 DOI: 10.1016/j.brainres.2010.11.082] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 11/05/2010] [Accepted: 11/24/2010] [Indexed: 10/18/2022]
Abstract
Fundamental to the interpretation of neurovascular coupling is determining the neuronal activity that accounts for functional hyperemia. Recently, synaptic and not spiking activity has been found to be responsible for the hemodynamic response. Using pharmacological manipulation in rats, we want to further determine whether the cortical synaptic activity generated by the thalamic input or the subsequent synaptic activity related to secondary cortical processing is driving the hemodynamic response. In this study, we topically applied γ-aminobutyric acid (GABA) in the somatosensory cortex and used electrical forepaw stimulation to evoke neural and vascular activity. In a group of 8 animals, using laminar electrophysiology, we verified that topical application of GABA for 20min does not affect layer IV synaptic activity but reduces subsequent activity in the supragranular and infragranular layers. In another group of 8 animals, we simultaneously measured the electrical and vascular responses with scalp electroencephalography (EEG) and diffuse optical imaging (DOI), respectively. We decomposed somatosensory evoked potentials (SEP) into three major components: P1, N1, and P2, where P1 represents the thalamic input activity originating in layer IV and N1 and P2 represent the subsequent cortical transmissions. We verified that GABA infusion in the somatosensory cortex does not significantly reduce the P1 SEP component but strongly reduces the N1 and P2 components. We found that GABA also elicits a large reduction in the hemodynamic responses, which correlate with the reduction in N1 and P2 components. These results suggest that the hemodynamic response is predominantly driven by cortico-cortical interactions and not by the initial thalamocortical activity in layer IV.
Collapse
Affiliation(s)
- Harsha Radhakrishnan
- MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA 02129, USA.
| | | | | | | |
Collapse
|
27
|
Harris S, Jones M, Zheng Y, Berwick J. Does neural input or processing play a greater role in the magnitude of neuroimaging signals? FRONTIERS IN NEUROENERGETICS 2010; 2:15. [PMID: 20740075 PMCID: PMC2927268 DOI: 10.3389/fnene.2010.00015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 06/25/2010] [Indexed: 11/13/2022]
Abstract
An important constraint on how hemodynamic neuroimaging signals such as fMRI can be interpreted in terms of the underlying evoked activity is an understanding of neurovascular coupling mechanisms that actually generate hemodynamic responses. The predominant view at present is that the hemodynamic response is most correlated with synaptic input and subsequent neural processing rather than spiking output. It is still not clear whether input or processing is more important in the generation of hemodynamics responses. In order to investigate this we measured the hemodynamic and neural responses to electrical whisker pad stimuli in rat whisker barrel somatosensory cortex both before and after the local cortical injections of the GABA(A) agonist muscimol. Muscimol would not be expected to affect the thalamocortical input into the cortex but would inhibit subsequent intra-cortical processing. Pre-muscimol infusion whisker stimuli elicited the expected neural and accompanying hemodynamic responses to that reported previously. Following infusion of muscimol, although the temporal profile of neural responses to each pulse of the stimulus train was similar, the average response was reduced in magnitude by approximately 79% compared to that elicited pre-infusion. The whisker-evoked hemodynamic responses were reduced by a commensurate magnitude suggesting that, although the neurovascular coupling relationships were similar for synaptic input as well as for cortical processing, the magnitude of the overall response is dominated by processing rather than from that produced from the thalamocortical input alone.
Collapse
Affiliation(s)
- Sam Harris
- Department of Psychology, University of SheffieldSheffield, UK
| | - Myles Jones
- Department of Psychology, University of SheffieldSheffield, UK
| | - Ying Zheng
- Department of Psychology, University of SheffieldSheffield, UK
| | - Jason Berwick
- Department of Psychology, University of SheffieldSheffield, UK
| |
Collapse
|
28
|
Schumacher JF, Olman CA. High-resolution BOLD fMRI measurements of local orientation-dependent contextual modulation show a mismatch between predicted V1 output and local BOLD response. Vision Res 2010; 50:1214-24. [PMID: 20382175 PMCID: PMC2904084 DOI: 10.1016/j.visres.2010.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2009] [Revised: 01/01/2010] [Accepted: 04/03/2010] [Indexed: 11/28/2022]
Abstract
The blood oxygenation level-dependent (BOLD) functional MRI response to suppressive neural activity has not been tested on a fine spatial scale. Using Gabor patches placed in the near periphery, we precisely localized individual regions of interest in primary visual cortex and measured the response at a range of contrasts in two different contexts: with parallel and with orthogonal flanking Gabor patches. Psychophysical measurements confirmed strong suppression of the target Gabor response when flanked by parallel Gabors. However, the BOLD response to the target with parallel flankers decreased as the target contrast increased, which contradicts psychophysical estimates of local neural activity.
Collapse
Affiliation(s)
- Jennifer F Schumacher
- Department of Neuroscience, University of Minnesota, N-218 Elliott Hall, 75 East River Parkway, Minneapolis, MN 55455, USA.
| | | |
Collapse
|
29
|
Lippert MT, Steudel T, Ohl F, Logothetis NK, Kayser C. Coupling of neural activity and fMRI-BOLD in the motion area MT. Magn Reson Imaging 2010; 28:1087-94. [PMID: 20171035 DOI: 10.1016/j.mri.2009.12.028] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Revised: 12/16/2009] [Accepted: 12/21/2009] [Indexed: 12/28/2022]
Abstract
The fMRI-BOLD contrast is widely used to study the neural basis of sensory perception and cognition. This signal, however, reflects neural activity only indirectly, and the detailed mechanisms of neurovascular coupling and the neurophysiological correlates of the BOLD signal remain debated. Here we investigate the coupling of BOLD and electrophysiological signals in the motion area MT of the macaque monkey by simultaneously recording both signals. Our results demonstrate that a prominent neuronal response property of area MT, so-called motion opponency, can be used to induce dissociations of BOLD and neuronal firing. During the presentation of a stimulus optimally driving the local neurons, both field potentials [local field potentials (LFPs)] and spiking activity [multi-unit activity (MUA)] correlated with the BOLD signal. When introducing the motion opponency stimulus, however, correlations of MUA with BOLD were much reduced, and LFPs were a much better predictor of the BOLD signal than MUA. In addition, for a subset of recording sites we found positive BOLD and LFP responses in the presence of decreases in MUA, regardless of the stimulus used. Together, these results demonstrate that correlations between BOLD and MUA are dependent on the particular site and stimulus paradigm, and foster the notion that the fMRI-BOLD signal reflects local dendrosomatic processing and synaptic activity rather than principal neuron spiking responses.
Collapse
Affiliation(s)
- Michael T Lippert
- Max Planck Institute for Biological Cybernetics, Spemannstrasse 38, Tübingen, Germany.
| | | | | | | | | |
Collapse
|
30
|
How and when the fMRI BOLD signal relates to underlying neural activity: the danger in dissociation. ACTA ACUST UNITED AC 2009; 62:233-44. [PMID: 20026191 DOI: 10.1016/j.brainresrev.2009.12.004] [Citation(s) in RCA: 213] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2009] [Revised: 12/09/2009] [Accepted: 12/10/2009] [Indexed: 11/27/2022]
Abstract
Functional magnetic resonance imaging (fMRI) has become the dominant means of measuring behavior-related neural activity in the human brain. Yet the relation between the blood oxygen-level dependent (BOLD) signal and underlying neural activity remains an open and actively researched question. A widely accepted model, established for sensory neo-cortex, suggests that the BOLD signal reflects peri-synaptic activity in the form of the local field potential rather than the spiking rate of individual neurons. Several recent experimental results, however, suggest situations in which BOLD, spiking, and the local field potential dissociate. Two different models are discussed, based on the literature reviewed to account for this dissociation, a circuitry-based and vascular-based explanation. Both models are found to account for existing data under some testing situations and in certain brain regions. Because both the vascular and local circuitry-based explanations challenge the BOLD-LFP coupling model, these models provide guidance in predicting when BOLD can be expected to reflect neural processing and when the underlying relation with BOLD may be more complex than a direct correspondence.
Collapse
|
31
|
Pelled G, Bergstrom DA, Tierney PL, Conroy RS, Chuang KH, Yu D, Leopold DA, Walters JR, Koretsky AP. Ipsilateral cortical fMRI responses after peripheral nerve damage in rats reflect increased interneuron activity. Proc Natl Acad Sci U S A 2009; 106:14114-9. [PMID: 19666522 PMCID: PMC2720851 DOI: 10.1073/pnas.0903153106] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Indexed: 11/18/2022] Open
Abstract
In the weeks following unilateral peripheral nerve injury, the deprived primary somatosensory cortex (SI) responds to stimulation of the ipsilateral intact limb as demonstrated by functional magnetic resonance imaging (fMRI) responses. The neuronal basis of these responses was studied by using high-resolution fMRI, in vivo electrophysiological recordings, and juxtacellular neuronal labeling in rats that underwent an excision of the forepaw radial, median, and ulnar nerves. These nerves were exposed but not severed in control rats. Significant bilateral increases of fMRI responses in SI were observed in denervated rats. In the healthy SI of the denervated rats, increases in fMRI responses were concordant with increases in local field potential (LFP) amplitude and an increased incidence of single units responding compared with control rats. In contrast, in the deprived SI, increases in fMRI responses were associated with a minimal change in LFP amplitude but with increased incidence of single units responding. Based on action potential duration, juxtacellular labeling, and immunostaining results, neurons responding to intact forepaw stimulation in the deprived cortex were identified as interneurons. These results suggest that the increases in fMRI responses in the deprived cortex reflect increased interneuron activity.
Collapse
Affiliation(s)
- Galit Pelled
- Laboratory of Functional and Molecular Imaging and Neurophysiological Pharmacology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Ou W, Nissilä I, Radhakrishnan H, Boas DA, Hämäläinen MS, Franceschini MA. Study of neurovascular coupling in humans via simultaneous magnetoencephalography and diffuse optical imaging acquisition. Neuroimage 2009; 46:624-32. [PMID: 19286463 PMCID: PMC2848457 DOI: 10.1016/j.neuroimage.2009.03.008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 02/11/2009] [Accepted: 03/01/2009] [Indexed: 10/21/2022] Open
Abstract
By combining diffuse optical imaging (DOI) and magnetoencephalography (MEG) we investigate neurovascular coupling non-invasively in human subjects using median-nerve stimulation. Previous fMRI studies have shown a habituation effect in the hemodynamic blood oxygen level-dependent (BOLD) response for stimulation periods longer than 2 s. With DOI and MEG we can test whether this effect in hemodynamic response can be accounted for by a habituation effect in the neural response. Our experimental results show that the habituation effect in the hemodynamic response is stronger than that in the earliest cortical neural response (N20). Using a linear convolution model to predict hemodynamic responses we found that including late neural components (> or = 30 ms) improves the prediction of the hemoglobin response. This finding suggests that in addition to the initial evoked-response deflections related to the talamic afferent input, later cortical activity is needed to predict the hemodynamic response.
Collapse
Affiliation(s)
- Wanmei Ou
- Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | | | | | | | | | | |
Collapse
|
33
|
Thomsen K, Piilgaard H, Gjedde A, Bonvento G, Lauritzen M. Principal cell spiking, postsynaptic excitation, and oxygen consumption in the rat cerebellar cortex. J Neurophysiol 2009; 102:1503-12. [PMID: 19571198 DOI: 10.1152/jn.00289.2009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
One contention within the field of neuroimaging concerns the character of the depicted activity: Does it represent neuronal action potential generation (i.e., spiking) or postsynaptic excitation? This question is related to the metabolic costs of different aspects of neurosignaling. The cerebellar cortex is well suited for addressing this problem because synaptic input to and spiking of the principal cell, the Purkinje cell (PC), are spatially segregated. Also, PCs are pacemakers, able to generate spikes endogenously. We examined the contributions to cerebellar cortical oxygen consumption (CMRO2) of postsynaptic excitation and PC spiking during evoked and ongoing neuronal activity in the rat. By inhibiting excitatory synaptic input using ionotropic glutamate receptor blockers, we found that the increase in CMRO2 evoked by parallel fiber (PF) stimulation depended entirely on postsynaptic excitation. In contrast, PC spiking was largely responsible for the increase in CMRO2 when ongoing neuronal activity was increased by gamma-aminobutyric acid type A receptor blockade. In this case, CMRO2 increased equally during PC spiking with excitatory synaptic activity as during PC pacemaker spiking without excitatory synaptic input. Subsequent inhibition of action potential propagation and neurotransmission by blocking voltage-gated Na+-channels eliminated the increases in CMRO2 due to PF stimulation and increased PC spiking, but left a large fraction of CMRO2, i.e., basal CMRO2, intact. In conclusion, whereas basal CMRO2 in anesthetized animals did not seem to be related to neurosignaling, increases in CMRO2 could be induced by all aspects of neurosignaling. Our findings imply that CMRO2 responses cannot a priori be assigned to specific neuronal activities.
Collapse
Affiliation(s)
- Kirsten Thomsen
- Institute of Neuroscience and Pharmacology, University of Copenhagen, and Department of Clinical Neurophysiology, Glostrup Hospital, Panum Institute 12.5, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | | | | | | | |
Collapse
|
34
|
Ekstrom A, Suthana N, Millett D, Fried I, Bookheimer S. Correlation between BOLD fMRI and theta-band local field potentials in the human hippocampal area. J Neurophysiol 2009; 101:2668-78. [PMID: 19244353 PMCID: PMC2681439 DOI: 10.1152/jn.91252.2008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 02/20/2009] [Indexed: 11/22/2022] Open
Abstract
The relation between the blood-oxygen-level-dependent (BOLD) signal, which forms the basis of functional magnetic resonance imaging (fMRI), and underlying neural activity is not well understood. We performed high-resolution fMRI in patients scheduled for implantation with depth electrodes for seizure monitoring while they navigated a virtual environment. We then recorded local field potentials (LFPs) and neural firing rate directly from the hippocampal area of the same subjects during the same task. Comparing BOLD signal changes with 396 LFP and 185 neuron recordings in the hippocampal area, we found that BOLD signal changes correlated positively with LFP power changes in the theta-band (4-8 Hz). This correlation, however, was largely present for parahippocampal BOLD signal changes; BOLD changes in the hippocampus correlated weakly or not at all with LFP power changes. We did not find a significant relationship between BOLD activity and neural firing rate in either region, which could not be accounted for by a lesser tendency for neurons to respond or a greater tendency for neurons to habituate to the task. Strengthening the idea of a dissociation between LFP power and neural firing rate in their relation to the BOLD signal, simultaneously recorded LFP power and neural firing rate changes were uncorrelated across electrodes. Together, our results suggest that the BOLD signal in the human hippocampal area has a more heterogenous relationship with underlying neural activity than has been described previously in other brain regions.
Collapse
Affiliation(s)
- Arne Ekstrom
- Center for Cognitive Neuroscience, Semel Institute, Department of Psychiatry, University of California, Davis, 1544 Newton Ct., Davis, CA 95618, USA.
| | | | | | | | | |
Collapse
|
35
|
|
36
|
Martin C, Sibson NR. Pharmacological MRI in animal models: a useful tool for 5-HT research? Neuropharmacology 2008; 55:1038-47. [PMID: 18789342 DOI: 10.1016/j.neuropharm.2008.08.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2008] [Revised: 08/06/2008] [Accepted: 08/07/2008] [Indexed: 01/19/2023]
Abstract
Pharmacological magnetic resonance imaging (phMRI) offers the potential to provide novel insights into the functioning of neurotransmitter systems and drug action in the central nervous system. To date, much of the neuropharmacological research that has applied phMRI techniques has focused on the dopaminergic system with relatively few studies into serotonergic function. In this article, we discuss the current capabilities of, and future potential for phMRI to address fundamental questions in serotonergic research using animal models. Firstly we review existing literature on the application of phMRI to the serotonergic system by exploring 3 broad research themes: (i) the functional anatomy of the serotonergic system; (ii) drug-receptor targeting and distribution; and (iii) disease models and drug development. Subsequently, we discuss the interpretation of phMRI data in terms of neuropharmacological action with a focus on issues specific to neuroimaging studies of the serotonergic system. Unlike other neuroimaging approaches such as positron emission tomography, phMRI methods do not currently offer sensitivity to markers of specific pharmacological action. However, they can provide in vivo markers of the neuropharmacological modulation of neuronal activity across the whole brain with unparalleled spatial and temporal resolution. Furthermore, due to the non-invasive nature of MRI, these markers are readily translatable to human studies. Whilst there are a number of constraints and limitations to phMRI methods that necessitate careful data interpretation, we argue that phMRI could become a valuable research tool in neuropharmacological studies of the serotonergic system.
Collapse
Affiliation(s)
- Chris Martin
- Experimental Neuroimaging Group, Department of Radiation Oncology and Biology, Radiobiology Research Institute, Churchill Hospital, Headington, Oxford OX3 7LJ, UK
| | | |
Collapse
|
37
|
Kelley MH, Taguchi N, Ardeshiri A, Kuroiwa M, Hurn PD, Traystman RJ, Herson PS. Ischemic insult to cerebellar Purkinje cells causes diminished GABAA receptor function and allopregnanolone neuroprotection is associated with GABAA receptor stabilization. J Neurochem 2008; 107:668-78. [PMID: 18699862 PMCID: PMC2692389 DOI: 10.1111/j.1471-4159.2008.05617.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Cerebellar Purkinje cells (PC) are particularly vulnerable to ischemic injury and excitotoxicity, although the molecular basis of this sensitivity remains unclear. We tested the hypothesis that ischemia causes rapid down-regulation of GABA(A) receptors in cerebellar PC, thereby increasing susceptibility to excitotoxicity. Oxygen-glucose deprivation (OGD) caused a decline in functional GABA(A) receptors, within the first hour of re-oxygenation. Decreased amplitude of miniature inhibitory post-synaptic potentials confirmed that OGD caused a significant decrease in functional synaptic GABA(A) receptors and quantitative Western blot analysis demonstrated the loss of GABA(A) receptor current was associated with a decline in total receptor protein. Interestingly, the potent neuroprotectant allopregnanolone (ALLO) prevented the decline in GABA(A) receptor current and protein. Consistent with our in vitro data, global ischemia in mice caused a significant decline in total cerebellar GABA(A) receptor protein and PC specific immunoreactivity. Moreover, ALLO provided strong protection of PC and prevented ischemia-induced decline in GABA(A) receptor protein. Our findings indicate that ischemia causes a rapid and sustained loss of GABA(A) receptors in PC, whereas ALLO prevents the decline in GABA(A) receptors and protects against ischemia-induced damage. Thus, interventions which prevent ischemia-induced decline in GABA(A) receptors may represent a novel neuroprotective strategy.
Collapse
Affiliation(s)
- Melissa H Kelley
- Department of Anesthesiology and Peri-Operative Medicine, Oregon Health & Science University, Portland, Oregon 97201, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Ritter P, Freyer F, Curio G, Villringer A. High-frequency (600 Hz) population spikes in human EEG delineate thalamic and cortical fMRI activation sites. Neuroimage 2008; 42:483-90. [PMID: 18586526 DOI: 10.1016/j.neuroimage.2008.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2008] [Revised: 04/30/2008] [Accepted: 05/17/2008] [Indexed: 10/22/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) measures neural activity indirectly via its slow vascular/metabolic consequences. At a temporal resolution on the order of seconds, fMRI does not reveal the real 'language of neurons', spelt out by fast electrical discharges ('spikes') which occur on a time scale of milliseconds. In animal studies, these limitations have been addressed by adding invasive electrode measurements to fMRI. Here, we propose to circumvent this 'inverse problem of fMRI' by deriving a noninvasive spike measure from recordings of ultrafast electroencephalography (EEG) signals during fMRI. We demonstrate how in response to median nerve stimulation 600 Hz oscillatory EEG signals can be measured reliably during fMRI. These high-frequency bursts (HFBs) are supposed to reflect population spikes in the thalamus and the somatosensory cortex, respectively. We show that distinct fMRI activations in these two generator structures can be attributed to spontaneous HFB fluctuations. Thus, our approach allowed the noninvasive identification of neural processes along the thalamocortical pathway unfolding at a millisecond time scale.
Collapse
Affiliation(s)
- Petra Ritter
- Berlin Neuroimaging Center and Department of Neurology, Charité Universitaetsmedizin Berlin, Germany.
| | | | | | | |
Collapse
|
39
|
Gamma-aminobutyric acid modulates local brain oxygen consumption and blood flow in rat cerebellar cortex. J Cereb Blood Flow Metab 2008; 28:906-15. [PMID: 18000512 DOI: 10.1038/sj.jcbfm.9600581] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the awake brain, the global metabolic rate of oxygen consumption is largely constant, while variations exist between regions dependent on the ongoing activity. This suggests that control mechanisms related to activity, that is, neuronal signaling, may redistribute metabolism in favor of active networks. This study examined the influence of gamma-aminobutyric acid (GABA) tone on local increases in cerebellar metabolic rate of oxygen (CeMR(O(2))) evoked by stimulation of the excitatory, glutamatergic climbing fiber-Purkinje cell synapse in rat cerebellum. In this network, the postsynaptic depolarization produced by synaptic excitation is preserved despite variations in GABAergic tone. Climbing fiber stimulation induced frequency-dependent increases in synaptic activity and CeMR(O(2)) under control conditions. Topical application of the GABA(A) receptor agonist muscimol blocked the increase in CeMR(O(2)) evoked by synaptic excitation concomitant with attenuation of cerebellar blood flow (CeBF) responses. The effect was reversed by the GABA(A) receptor antagonist bicuculline, which also reversed the effect of muscimol on synaptic activity and CeBF. Climbing fiber stimulation during bicuculline application alone produced a delayed undershoot in CeBF concomitant with a prolonged rise in CeMR(O(2)). The findings are consistent with the hypothesis that activity-dependent rises in CeBF and CeMR(O(2)) are controlled by a common feed-forward pathway and provide evidence for modification of cerebral blood flow and CMR(O(2)) by GABA.
Collapse
|
40
|
Caesar K, Hashemi P, Douhou A, Bonvento G, Boutelle MG, Walls AB, Lauritzen M. Glutamate receptor-dependent increments in lactate, glucose and oxygen metabolism evoked in rat cerebellum in vivo. J Physiol 2008; 586:1337-49. [PMID: 18187464 DOI: 10.1113/jphysiol.2007.144154] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Neuronal activity is tightly coupled with brain energy metabolism. Numerous studies have suggested that lactate is equally important as an energy substrate for neurons as glucose. Lactate production is reportedly triggered by glutamate uptake, and independent of glutamate receptor activation. Here we show that climbing fibre stimulation of cerebellar Purkinje cells increased extracellular lactate by 30% within 30 s of stimulation, but not for briefer stimulation periods. To explore whether lactate production was controlled by pre- or postsynaptic events we silenced AMPA receptors with CNQX. This blocked all evoked rises in postsynaptic activity, blood flow, and glucose and oxygen consumption. CNQX also abolished rises in lactate concomitantly with marked reduction in postsynaptic currents. Rises in lactate were unaffected by inhibition of glycogen phosphorylase, suggesting that lactate production was independent of glycogen breakdown. Stimulated lactate production in cerebellum is derived directly from glucose uptake, and coupled to neuronal activity via AMPA receptor activation.
Collapse
Affiliation(s)
- Kirsten Caesar
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The temporal relationship between cerebral electro-physiological activities, higher brain functions and brain energy metabolism is reviewed. The duration of action potentials and transmission through glutamate and GABA are most often less than 5 ms. Subjects may perform complex psycho-physiological tasks within 50 to 200 ms, and perception of conscious experience requires 0.5 to 2 s. Activation of cerebral oxygen consumption starts after at least 100 ms and increases of local blood flow become maximal after about 1 s. Current imaging technologies are unable to detect rapid physiological brain functions. We introduce the concepts of potential and metabolic brain energy to distinguish trans-membrane gradients of ions or neurotransmitters and the capacity to generate energy from intra- or extra-cerebral substrates, respectively. Higher brain functions, such as memory retrieval, speaking, consciousness and self-consciousness are so fast that their execution depends primarily on fast neurotransmission (in the millisecond range) and action-potentials. In other words: brain functioning requires primarily maximal potential energy. Metabolic brain energy is necessary to restore and maintain the potential energy.
Collapse
Affiliation(s)
- Jakob Korf
- Department of Psychiatry and Graduate School of Behavioural and Cognitive Neurosciences, Groningen University, Groningen, The Netherlands.
| | | |
Collapse
|
42
|
Viswanathan A, Freeman RD. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nat Neurosci 2007; 10:1308-12. [PMID: 17828254 DOI: 10.1038/nn1977] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 08/14/2007] [Indexed: 11/09/2022]
Abstract
In noninvasive neuroimaging, neural activity is inferred from local fluctuations in deoxyhemoglobin. A fundamental question of functional magnetic resonance imaging (fMRI) is whether the inferred neural activity is driven primarily by synaptic or spiking activity. The answer is critical for the interpretation of the blood oxygen level-dependent (BOLD) signal in fMRI. Here, we have used well-established visual-system circuitry to create a stimulus that elicits synaptic activity without associated spike discharge. In colocalized recordings of neural and metabolic activity in cat primary visual cortex, we observed strong coupling between local field potentials (LFPs) and changes in tissue oxygen concentration in the absence of spikes. These results imply that the BOLD signal is more closely coupled to synaptic activity.
Collapse
Affiliation(s)
- Ahalya Viswanathan
- Group in Vision Science, School of Optometry, Helen Wills Neurosciences Institute, University of California, Berkeley, California 94720-2020, USA
| | | |
Collapse
|
43
|
Abstract
A theoretical neural model is developed, along with supportive evidence, to explain how the medial preoptic area (MPOA) of the hypothalamus can regulate maternal responsiveness toward infant-related stimuli. It is proposed that efferents from a hormone-primed MPOA (a) depress a central aversion system (composed of neural circuits between the amygdala, medial hypothalamus, and midbrain) so that novel infant stimuli do not activate defensive or avoidance behavior and (b) excite the mesolimbic dopamine system so that active, voluntary maternal responses are promoted. The effects of oxytocin and maternal experience are included in the model, and the specificity of MPOA effects are discussed. The model may be relevant to the mechanisms through which other hypothalamic nuclei regulate other basic motivational states. In addition, aspects of the model may define a core neural circuitry for maternal behavior in mammals.
Collapse
Affiliation(s)
- Michael Numan
- Department of Psychology, Boston College, Chestnut Hill, MA 02467, USA.
| |
Collapse
|
44
|
Stockwell PB. Abstracts of papers presented at the 2007 pittsburgh conference. JOURNAL OF AUTOMATED METHODS & MANAGEMENT IN CHEMISTRY 2007; 2007:71943. [PMID: 18528514 PMCID: PMC2391256 DOI: 10.1155/2007/71943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2007] [Accepted: 06/07/2007] [Indexed: 05/26/2023]
Affiliation(s)
- Peter B. Stockwell
- P S Analytical, Arthur House, Crayfields Industrial Estate, Main Road, Orpington, Kent BR5 3Hp, UK
| |
Collapse
|
45
|
Ardeshiri A, Kelley MH, Korner IP, Hurn PD, Herson PS. Mechanism of progesterone neuroprotection of rat cerebellar Purkinje cells following oxygen-glucose deprivation. Eur J Neurosci 2006; 24:2567-74. [PMID: 17100844 PMCID: PMC2831653 DOI: 10.1111/j.1460-9568.2006.05142.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The survival of rat Purkinje cell (PCs) cerebellar cultures was used to test the hypothesis that progesterone is protective against oxygen-glucose deprivation through potentiation of GABA(A) receptor activity. Electrophysiological recordings confirm that PCs develop robust excitatory and inhibitory synapses in culture. Exposure of cultured PCs to increasing concentrations of progesterone during oxygen-glucose deprivation revealed a concentration-dependent protection by progesterone, with significant protection observed at physiological concentrations, as low as 10 nm. The concurrent application of the GABA(A) receptor antagonist picrotoxin (100 microm) completely abolished the neuroprotection afforded by progesterone, indicating that progesterone is neuroprotective through activation of GABA(A) receptors. Progesterone potentiates GABA(A) receptor activity indirectly through its metabolites, such as allopregnanolone (ALLO). Therefore, ALLO was applied to PC cultures and was observed to produce significant protection at all concentrations tested, from 10 to 1000 nm. Finally, the inhibition of progesterone metabolism with finasteride abolished the protection afforded by progesterone without having any effect on the neuroprotection caused by ALLO. These data indicate that progesterone protects cerebellar PCs at physiological concentrations through a GABA-active metabolite.
Collapse
Affiliation(s)
- A Ardeshiri
- Department of Anesthesioloy and Peri-Operative Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97201, USA
| | | | | | | | | |
Collapse
|
46
|
Santamaria F, Tripp PG, Bower JM. Feedforward inhibition controls the spread of granule cell-induced Purkinje cell activity in the cerebellar cortex. J Neurophysiol 2006; 97:248-63. [PMID: 17050824 DOI: 10.1152/jn.01098.2005] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synapses associated with the parallel fiber (pf) axons of cerebellar granule cells constitute the largest excitatory input onto Purkinje cells (PCs). Although most theories of cerebellar function assume these synapses produce an excitatory sequential "beamlike" activation of PCs, numerous physiological studies have failed to find such beams. Using a computer model of the cerebellar cortex we predicted that the lack of PCs beams is explained by the concomitant pf activation of feedforward molecular layer inhibition. This prediction was tested, in vivo, by recording PCs sharing a common set of pfs before and after pharmacologically blocking inhibitory inputs. As predicted by the model, pf-induced beams of excitatory PC responses were seen only when inhibition was blocked. Blocking inhibition did not have a significant effect in the excitability of the cerebellar cortex. We conclude that pfs work in concert with feedforward cortical inhibition to regulate the excitability of the PC dendrite without directly influencing PC spiking output. This conclusion requires a significant reassessment of classical interpretations of the functional organization of the cerebellar cortex.
Collapse
Affiliation(s)
- Fidel Santamaria
- Research Imaging Center, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78284-6240, USA
| | | | | |
Collapse
|
47
|
Gao W, Chen G, Reinert KC, Ebner TJ. Cerebellar cortical molecular layer inhibition is organized in parasagittal zones. J Neurosci 2006; 26:8377-87. [PMID: 16899733 PMCID: PMC6673795 DOI: 10.1523/jneurosci.2434-06.2006] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular layer inhibitory interneurons generate on-beam and off-beam inhibition in the cerebellar cortex that is hypothesized to control the timing and/or spatial patterning of Purkinje cell discharge. On- and off-beam inhibition has been assumed to be spatially uniform and continuous within a folium. Using flavoprotein autofluorescence optical imaging in the mouse cerebellar cortex in vivo, this study demonstrates that the inhibition evoked by parallel fiber and peripheral stimulation results in parasagittal bands of decreases in fluorescence that correspond to zebrin II-positive bands. The parasagittal bands of decreased fluorescence are abolished by GABA(A) antagonists and reflect the activity of molecular layer interneurons on their targets. The same banding pattern was observed using Ca2+ imaging. The bands produce spatially specific decreases in the responses to peripheral input. Therefore, molecular layer inhibition is compartmentalized into zebrin II parasagittal domains that differentially modulate the spatial pattern of cerebellar cortical activity.
Collapse
|
48
|
Matthews PM, Honey GD, Bullmore ET. Applications of fMRI in translational medicine and clinical practice. Nat Rev Neurosci 2006; 7:732-44. [PMID: 16924262 DOI: 10.1038/nrn1929] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Functional MRI (fMRI) has had a major impact in cognitive neuroscience. fMRI now has a small but growing role in clinical neuroimaging, with initial applications to neurosurgical planning. Current clinical research has emphasized novel concepts for clinicians, such as the role of plasticity in recovery and the maintenance of brain functions in a broad range of diseases. There is a wider potential for clinical fMRI in applications ranging from presymptomatic diagnosis, through drug development and individualization of therapies, to understanding functional brain disorders. Realization of this potential will require changes in the way clinical neuroimaging services are planned and delivered.
Collapse
Affiliation(s)
- Paul M Matthews
- Centre for Functional Magnetic Resonance Imaging of the Brain, Dept. of Clinical Neurology, University of Oxford, UK.
| | | | | |
Collapse
|
49
|
Law JR, Flanery MA, Wirth S, Yanike M, Smith AC, Frank LM, Suzuki WA, Brown EN, Stark CEL. Functional magnetic resonance imaging activity during the gradual acquisition and expression of paired-associate memory. J Neurosci 2006; 25:5720-9. [PMID: 15958738 PMCID: PMC6724878 DOI: 10.1523/jneurosci.4935-04.2005] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Recent neurophysiological findings from the monkey hippocampus showed dramatic changes in the firing rate of individual hippocampal cells as a function of learning new associations. To extend these findings to humans, we used blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) to examine the patterns of brain activity during learning of an analogous associative task. We observed bilateral, monotonic increases in activity during learning not only in the hippocampus but also in the parahippocampal and right perirhinal cortices. In addition, activity related to simple novelty signals was observed throughout the medial temporal lobe (MTL) memory system and in several frontal regions. A contrasting pattern was observed in a frontoparietal network in which a high level of activity was sustained until the association was well learned, at which point the activity decreased to baseline. Thus, we found that associative learning in humans is accompanied by striking increases in BOLD fMRI activity throughout the MTL as well as in the cingulate cortex and frontal lobe, consistent with neurophysiological findings in the monkey hippocampus. The finding that both the hippocampus and surrounding MTL cortex exhibited similar associative learning and novelty signals argues strongly against the view that there is a clear division of labor in the MTL in which the hippocampus is essential for forming associations and the cortex is involved in novelty detection. A second experiment addressed a striking aspect of the data from the first experiment by demonstrating a substantial effect of baseline task difficulty on MTL activity capable of rendering mnemonic activity as either "positive" or "negative."
Collapse
Affiliation(s)
- Jon R Law
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Harel N, Lin J, Moeller S, Ugurbil K, Yacoub E. Combined imaging–histological study of cortical laminar specificity of fMRI signals. Neuroimage 2006; 29:879-87. [PMID: 16194614 DOI: 10.1016/j.neuroimage.2005.08.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Revised: 06/22/2005] [Accepted: 08/11/2005] [Indexed: 11/24/2022] Open
Abstract
Since the commencement of functional magnetic resonance imaging (fMRI), great effort has been put into increasing its spatial resolution and signal specificity from vessel-weighted to more tissue-specific signals. The working assumption is that the "tissue" signals closely mirror changes at the neuronal level. While great progress has been made, the basic and most fundamental questions remain unanswered: where in the gray matter do these "tissue fMRI" changes occur? Recently, the temporal correspondence of hemodynamic-based fMRI signals and neurophysiological activity was explored. The data suggest, although not conclusively, that the local field potential (LFP) response gives a better estimate of changes that accompany increased neuronal activity. LFP are thought to be generated by synaptic activity reflecting input signals into layer IV within a cortical region. If so, the spatial distribution of the fMRI signal should be specific to the corresponding cortical lamina. Here, in a combined imaging and histological study, the spatial characteristics of fMRI signals across the lamina were explored. In a high-resolution fMRI study (0.15 x 0.15 x 2 mm3), the spatial specificity of fMRI signals was correlated with the underlying cortical laminar cytoarchitectonic obtained within the same animal and tissue region. We demonstrate that when surface vessels are excluded high-resolution fMRI signals peak at cortical layer IV.
Collapse
Affiliation(s)
- Noam Harel
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, 2021 6th Street SE Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|