1
|
Zuo F, Gao Z, Chen X, Yang Y. Fluorescent RNAs: new opportunities for drug discovery. Trends Pharmacol Sci 2025:S0165-6147(25)00096-3. [PMID: 40517044 DOI: 10.1016/j.tips.2025.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 05/14/2025] [Accepted: 05/14/2025] [Indexed: 06/16/2025]
Abstract
Fluorescent RNAs (FRs), RNA mimics of fluorescent proteins (FPs), have emerged as a promising approach for tagging RNAs and investigating their complex spatiotemporal dynamics and biological functions. Moreover, FR-derived biosensors (FRBs) also provide useful tools for point-of-care testing of a wide range of targets, from small molecules, nucleic acids, and proteins to various pathogens. However, it is still unclear whether and how FRs and FRBs can be used to accelerate drug discovery. In this review article, we briefly summarize the recent advances in FRs and FRBs and focus on recent works showing how FRs and FRBs can be used during different stages of RNA and small-molecule drug discovery. Furthermore, we discuss limitations of current technologies and potential pathways for moving forward.
Collapse
Affiliation(s)
- Fangting Zuo
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Ziheng Gao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| | - Yi Yang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
2
|
Liehr T, Padutsch N, Kankel S. Hapten-labeled DNA probes can be stored and used in fluorescence in situ hybridization for decades. Front Genet 2025; 16:1569308. [PMID: 40520232 PMCID: PMC12163036 DOI: 10.3389/fgene.2025.1569308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/18/2025] [Indexed: 06/18/2025] Open
Abstract
In molecular cytogenetics, fluorescence in situ hybridization (FISH) is the main technique used. In both research and diagnostics, FISH depends on well-defined and mapped DNA probes that produce brilliant signals with minimal background, visible in metaphases and/or interphases. Such probes are either ready-to-use and commercially available or provided as unlabeled DNA. The latter can be obtained by flow sorting, microdissection, or by cloning DNA segments into appropriate bacterial vectors. Labeling can be done with either nonfluorescent or fluorescent haptens. According to international guidelines, such FISH probes must have a minimum shelf life, which is only between 2 and 3 years in human genetic diagnostics. The Molecular Cytogenetics Laboratory reporting here has been purchasing, producing, using, and storing FISH probes since the 1990s. For this study, the available stock of approximately 25,000 labeled probes was screened. A total of 581 FISH probes, labeled and approved 1-30 years before reuse, were selected for this study; of these, 75 were commercially available probes labeled 1-20 years ago. All of these probes, stored in the dark at -20°C, worked perfectly well in the FISH method. Although only slight to no differences in exposure times were observed over the years for self-labeled homemade probes, commercial probes labeled with SpectrumOrange had shorter exposure times and maintained them over the years. DNA probes labeled with SpectrumAqua/diethylaminocoumarin showed bright labeling for the first 3 years and then faded. Accordingly, it can be assumed that self-labeled homemade and commercial FISH probes can be stored stably in the dark and at -20°C for at least 30 years or longer. There is no need to test approved probes on a slide after the official expiry date. In practice, this suggests that a FISH probe tube that has been approved can be used in diagnostics until it is empty; there is no need to dispose of these expensive probes at any point due to their age.
Collapse
Affiliation(s)
- Thomas Liehr
- Jena University Hospital, Institute of Human Genetics, Friedrich Schiller University, Jena, Germany
| | | | | |
Collapse
|
3
|
Wang H, Cheng P, Wang J, Lv H, Han J, Hou Z, Xu R, Chen W. Advances in spatial transcriptomics and its application in the musculoskeletal system. Bone Res 2025; 13:54. [PMID: 40379648 DOI: 10.1038/s41413-025-00429-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 05/19/2025] Open
Abstract
While bulk RNA sequencing and single-cell RNA sequencing have shed light on cellular heterogeneity and potential molecular mechanisms in the musculoskeletal system in both physiological and various pathological states, the spatial localization of cells and molecules and intercellular interactions within the tissue context require further elucidation. Spatial transcriptomics has revolutionized biological research by simultaneously capturing gene expression profiles and in situ spatial information of tissues, gradually finding applications in musculoskeletal research. This review provides a summary of recent advances in spatial transcriptomics and its application to the musculoskeletal system. The classification and characteristics of data acquisition techniques in spatial transcriptomics are briefly outlined, with an emphasis on widely-adopted representative technologies and the latest technological breakthroughs, accompanied by a concise workflow for incorporating spatial transcriptomics into musculoskeletal system research. The role of spatial transcriptomics in revealing physiological mechanisms of the musculoskeletal system, particularly during developmental processes, is thoroughly summarized. Furthermore, recent discoveries and achievements of this emerging omics tool in addressing inflammatory, traumatic, degenerative, and tumorous diseases of the musculoskeletal system are compiled. Finally, challenges and potential future directions for spatial transcriptomics, both as a field and in its applications in the musculoskeletal system, are discussed.
Collapse
Affiliation(s)
- Haoyu Wang
- Department of Orthopedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment, Shijiazhuang, Hebei, China
| | - Peng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Juan Wang
- Department of Orthopedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment, Shijiazhuang, Hebei, China
| | - Hongzhi Lv
- Department of Orthopedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment, Shijiazhuang, Hebei, China
| | - Jie Han
- State Key Laboratory of Cellular Stress Biology, Cancer Research Center, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhiyong Hou
- Department of Orthopedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China
- NHC Key Laboratory of Intelligent Orthopedic Equipment, Shijiazhuang, Hebei, China
| | - Ren Xu
- The First Affiliated Hospital of Xiamen University-ICMRS Collaborating Center for Skeletal Stem Cells, State Key Laboratory of Cellular Stress Biology, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Wei Chen
- Department of Orthopedic Surgery, Hebei Medical University Third Hospital, Shijiazhuang, Hebei, China.
- Key Laboratory of Biomechanics of Hebei Province, Shijiazhuang, Hebei, China.
- NHC Key Laboratory of Intelligent Orthopedic Equipment, Shijiazhuang, Hebei, China.
| |
Collapse
|
4
|
Galkina S, Matveeva K, Takki O, Volodkina V, Kulak M, Shalutina J, Gaginskaya E. Coilin-containing nuclear biomolecular condensates in zebra finch Taeniopygia guttata growing oocytes. Dev Biol 2025; 524:144-151. [PMID: 40374142 DOI: 10.1016/j.ydbio.2025.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/17/2025]
Abstract
In most animals, oocyte growth is accompanied by genome activation, an increase in nuclear volume, and the formation of various biomolecular condensates (BioMCs) through multivalent interactions involving intrinsically disordered protein regions (IDRs) and phase separation. In this study, we characterize specific nuclear biomolecular condensates (NBioMCs) detectable by light microscopy in the oocytes of the zebra finch (Taeniopygia guttata, Passeriformes, Aves), a model species in genomics and neurobiology. We identified a nucleolus in oocytes at the early diplotene stage and observed numerous NBioMCs that tested positive for coilin in oocytes at the lampbrush stage, a period of active transcription. The coilin-positive NBioMCs may be freely distributed within the nucleus or associated with chromosome centromeres. They share characteristics with several known nuclear structures, including nucleoli (due to the presence of fibrillarin and nucleolin), Cajal bodies (marked by coilin and scaRNA2), interchromatin granule clusters (containing SRSF2), and centromeric protein bodies (CPBs) described in other avian species (exhibiting centromeric localization when chromosome-associated and containing STAG2 and SMC5). However, their specific function in zebra finch oocytes remains unclear and requires further investigation.
Collapse
Affiliation(s)
| | | | - Olga Takki
- Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Maria Kulak
- Saint Petersburg State University, Saint Petersburg, Russia
| | | | | |
Collapse
|
5
|
Hui T, Zhou J, Yao M, Xie Y, Zeng H. Advances in Spatial Omics Technologies. SMALL METHODS 2025; 9:e2401171. [PMID: 40099571 DOI: 10.1002/smtd.202401171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 03/03/2025] [Indexed: 03/20/2025]
Abstract
Rapidly developing spatial omics technologies provide us with new approaches to deeply understanding the diversity and functions of cell types within organisms. Unlike traditional approaches, spatial omics technologies enable researchers to dissect the complex relationships between tissue structure and function at the cellular or even subcellular level. The application of spatial omics technologies provides new perspectives on key biological processes such as nervous system development, organ development, and tumor microenvironment. This review focuses on the advancements and strategies of spatial omics technologies, summarizes their applications in biomedical research, and highlights the power of spatial omics technologies in advancing the understanding of life sciences related to development and disease.
Collapse
Affiliation(s)
- Tianxiao Hui
- State Key Laboratory of Gene Function and Modulation Research, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Jian Zhou
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Muchen Yao
- College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Yige Xie
- School of Nursing, Peking University, Beijing, 100871, China
| | - Hu Zeng
- State Key Laboratory of Gene Function and Modulation Research, College of Future Technology, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Wang Q, Zhu H, Deng L, Xu S, Xie W, Li M, Wang R, Tie L, Zhan L, Yu G. Spatial Transcriptomics: Biotechnologies, Computational Tools, and Neuroscience Applications. SMALL METHODS 2025; 9:e2401107. [PMID: 39760243 DOI: 10.1002/smtd.202401107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 12/22/2024] [Indexed: 01/07/2025]
Abstract
Spatial transcriptomics (ST) represents a revolutionary approach in molecular biology, providing unprecedented insights into the spatial organization of gene expression within tissues. This review aims to elucidate advancements in ST technologies, their computational tools, and their pivotal applications in neuroscience. It is begun with a historical overview, tracing the evolution from early image-based techniques to contemporary sequence-based methods. Subsequently, the computational methods essential for ST data analysis, including preprocessing, cell type annotation, spatial clustering, detection of spatially variable genes, cell-cell interaction analysis, and 3D multi-slices integration are discussed. The central focus of this review is the application of ST in neuroscience, where it has significantly contributed to understanding the brain's complexity. Through ST, researchers advance brain atlas projects, gain insights into brain development, and explore neuroimmune dysfunctions, particularly in brain tumors. Additionally, ST enhances understanding of neuronal vulnerability in neurodegenerative diseases like Alzheimer's and neuropsychiatric disorders such as schizophrenia. In conclusion, while ST has already profoundly impacted neuroscience, challenges remain issues such as enhancing sequencing technologies and developing robust computational tools. This review underscores the transformative potential of ST in neuroscience, paving the way for new therapeutic insights and advancements in brain research.
Collapse
Affiliation(s)
- Qianwen Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Hongyuan Zhu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lin Deng
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Shuangbin Xu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Wenqin Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ming Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rui Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Liang Tie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Li Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| |
Collapse
|
7
|
Nitz A, Giraldez Chavez JH, Eliason ZG, Payne SH. Are We There Yet? Assessing the Readiness of Single-Cell Proteomics to Answer Biological Hypotheses. J Proteome Res 2025; 24:1482-1492. [PMID: 38981598 PMCID: PMC11976870 DOI: 10.1021/acs.jproteome.4c00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/02/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Single-cell analysis is an active area of research in many fields of biology. Measurements at single-cell resolution allow researchers to study diverse populations without losing biologically meaningful information to sample averages. Many technologies have been used to study single cells, including mass spectrometry-based single-cell proteomics (SCP). SCP has seen a lot of growth over the past couple of years through improvements in data acquisition and analysis, leading to greater proteomic depth. Because method development has been the main focus in SCP, biological applications have been sprinkled in only as proof-of-concept. However, SCP methods now provide significant coverage of the proteome and have been implemented in many laboratories. Thus, a primary question to address in our community is whether the current state of technology is ready for widespread adoption for biological inquiry. In this Perspective, we examine the potential for SCP in three thematic areas of biological investigation: cell annotation, developmental trajectories, and spatial mapping. We identify that the primary limitation of SCP is sample throughput. As proteome depth has been the primary target for method development to date, we advocate for a change in focus to facilitate measuring tens of thousands of single-cell proteomes to enable biological applications beyond proof-of-concept.
Collapse
Affiliation(s)
- Alyssa
A. Nitz
- Biology Department, Brigham Young University, Provo, Utah 84602, United States
| | | | - Zachary G. Eliason
- Biology Department, Brigham Young University, Provo, Utah 84602, United States
| | - Samuel H. Payne
- Biology Department, Brigham Young University, Provo, Utah 84602, United States
| |
Collapse
|
8
|
Lukhtanov VA, Pazhenkova EA. Cytogenetics of insects in the era of chromosome-level genome assemblies. Vavilovskii Zhurnal Genet Selektsii 2025; 29:230-237. [PMID: 40297294 PMCID: PMC12036569 DOI: 10.18699/vjgb-25-26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 04/30/2025] Open
Abstract
Over the past few years, a revolution has occurred in cytogenetics, driven by the emergence and spread of methods for obtaining high-quality chromosome-level genome assemblies. In fact, this has led to a new tool for studying chromosomes and chromosomal rearrangements, and this tool is thousands of times more powerful than light microscopy. This tool has revolutionized the cytogenetics of many groups of insects for which previously karyotype information, if available at all, was limited to the chromosome number. Even more impressive are the achievements of the genomic approach for studying the general patterns of chromosome organization and evolution in insects. Thus, it has been shown that rapid transformations of chromosomal numbers, which are often found in the order Lepidoptera, are most often carried out in the most parsimonious way, as a result of simple fusions and fissions of chromosomes. It has been established that these fusions and fissions are not random and occur independently in different phylogenetic lineages due to the reuse of the same ancestral chromosomal breakpoints. It has been shown that the tendency for chromosome fissions is correlated with the presence in chromosomes of the so-called interstitial telomeres, i. e. telomere-like structures located not at the ends of chromosomes, but inside them. It has been revealed that, in most insects, telomeric DNA is not just a set of short repeats, but a very long sequence consisting of (TTAGG)n (or other telomeric motifs), regularly and specifically interrupted by retrotransposons, and the telomeric motifs are diverse in terms of their length and nucleotide composition. The number of high-quality chromosome-level genome assemblies available for insects in the GenBank database is growing exponentially and now exceeds a thousand species. Therefore, the exceptional prospects for using genomic data for karyotype analysis are beyond doubt.
Collapse
Affiliation(s)
- V A Lukhtanov
- Zoological Institute of the Russian Academy of Sciences, St. Petersburg, Russia
| | | |
Collapse
|
9
|
J B, J S, M D. The history of ankylosing spondylitis/axial spondyloarthritis - what is the driving force of new knowledge? Semin Arthritis Rheum 2025; 71:152611. [PMID: 39827646 DOI: 10.1016/j.semarthrit.2024.152611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/29/2024] [Accepted: 12/16/2024] [Indexed: 01/22/2025]
Abstract
The history of (axial) spondyloarthritis has started several centuries ago. Since the end of the 19th century major achievements have been made. This historical review tries to show how closely the advances in clinical medicine in rheumatology have been related to advances made in basic sciences.
Collapse
Affiliation(s)
- Braun J
- Ruhr University, Bochum, and Rheumatologisches Versorgungszentrum Steglitz, Berlin, Germany.
| | - Sieper J
- Universitätsmedizin Charité Berlin, Germany
| | | |
Collapse
|
10
|
Lee CYC, McCaffrey J, McGovern D, Clatworthy MR. Profiling immune cell tissue niches in the spatial -omics era. J Allergy Clin Immunol 2025; 155:663-677. [PMID: 39522655 DOI: 10.1016/j.jaci.2024.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Immune responses require complex, spatially coordinated interactions between immune cells and their tissue environment. For decades, we have imaged tissue sections to visualize a limited number of immune-related macromolecules in situ, functioning as surrogates for cell types or processes of interest. However, this inevitably provides a limited snapshot of the tissue's immune landscape. Recent developments in high-throughput spatial -omics technologies, particularly spatial transcriptomics, and its application to human samples has facilitated a more comprehensive understanding of tissue immunity by mapping fine-grained immune cell states to their precise tissue location while providing contextual information about their immediate cellular and tissue environment. These data provide opportunities to investigate mechanisms underlying the spatial distribution of immune cells and its functional implications, including the identification of immune niches, although the criteria used to define this term have been inconsistent. Here, we review recent technological and analytic advances in multiparameter spatial profiling, focusing on how these methods have generated new insights in translational immunology. We propose a 3-step framework for the definition and characterization of immune niches, which is powerfully facilitated by new spatial profiling methodologies. Finally, we summarize current approaches to analyze adaptive immune repertoires and lymphocyte clonal expansion in a spatially resolved manner.
Collapse
Affiliation(s)
- Colin Y C Lee
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom
| | - James McCaffrey
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Dominic McGovern
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Menna R Clatworthy
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, United Kingdom; Cellular Genetics, the Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, United Kingdom; Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom.
| |
Collapse
|
11
|
Kumaran G, Carroll L, Muirhead N, Bottomley MJ. How Can Spatial Transcriptomic Profiling Advance Our Understanding of Skin Diseases? J Invest Dermatol 2025; 145:522-535. [PMID: 39177547 DOI: 10.1016/j.jid.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/23/2024] [Accepted: 07/04/2024] [Indexed: 08/24/2024]
Abstract
Spatial transcriptomic (ST) profiling is the mapping of gene expression within cell populations with preservation of positional context and represents an exciting new approach to develop our understanding of local and regional influences upon skin biology in health and disease. With the ability to probe from a few hundred transcripts to the entire transcriptome, multiple ST approaches are now widely available. In this paper, we review the ST field and discuss its application to dermatology. Its potential to advance our understanding of skin biology in health and disease is highlighted through the illustrative examples of 3 research areas: cutaneous aging, tumorigenesis, and psoriasis.
Collapse
Affiliation(s)
- Girishkumar Kumaran
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Liam Carroll
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Matthew J Bottomley
- Chinese Academy of Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
12
|
Miyamoto AT, Shimagami H, Kumanogoh A, Nishide M. Spatial transcriptomics in autoimmune rheumatic disease: potential clinical applications and perspectives. Inflamm Regen 2025; 45:6. [PMID: 39980019 PMCID: PMC11841260 DOI: 10.1186/s41232-025-00369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Spatial transcriptomics is a cutting-edge technology that analyzes gene expression at the cellular level within tissues while integrating spatial location information. This concept, which combines high-plex RNA sequencing with spatial data, emerged in the early 2010s. Spatial transcriptomics has rapidly expanded with the development of technologies such as in situ hybridization, in situ sequencing, in situ spatial barcoding, and microdissection-based methods. Each technique offers advanced mapping resolution and precise spatial assessments at the single-cell level. Over the past decade, the use of spatial transcriptomics on clinical samples has enabled researchers to identify gene expressions in specific diseased foci, significantly enhancing our understanding of cellular interactions and disease processes. In the field of rheumatology, the complex and elusive pathophysiology of diseases such as rheumatoid arthritis, systemic lupus erythematosus, and Sjögren's syndrome remains a challenge for personalized treatment. Spatial transcriptomics provides insights into how different cell populations interact within disease foci, such as the synovial tissue, kidneys, and salivary glands. This review summarizes the development of spatial transcriptomics and current insights into the pathophysiology of autoimmune rheumatic diseases, focusing on immune cell distribution and cellular interactions within tissues. We also explore the potential of spatial transcriptomics from a clinical perspective and discuss the possibilities for translating this technology to the bedside.
Collapse
Affiliation(s)
- Atsuko Tsujii Miyamoto
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (Ifrec), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroshi Shimagami
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (Ifrec), Osaka University, Suita, Osaka, Japan
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (Ifrec), Osaka University, Suita, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases for Education and Research (Cider), Osaka University, Suita, Osaka, Japan
- Osaka University, Suita, Osaka, Japan
- Center for Advanced Modalities and DDS (Camad), Osaka University, Suita, Osaka, Japan
| | - Masayuki Nishide
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
- Department of Immunopathology, World Premier International Research Center Initiative (WPI), Immunology Frontier Research Center (Ifrec), Osaka University, Suita, Osaka, Japan.
- Department of Advanced Clinical and Translational Immunology, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
13
|
Herzog J, Jäkel AC, Simmel FC, Weuster-Botz D. Immobilization and Monitoring of Clostridium carboxidivorans and Clostridium kluyveri in Synthetic Biofilms. Microorganisms 2025; 13:387. [PMID: 40005753 PMCID: PMC11858013 DOI: 10.3390/microorganisms13020387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 01/22/2025] [Accepted: 01/24/2025] [Indexed: 02/27/2025] Open
Abstract
The growing need for sustainable biotechnological solutions to address environmental challenges, such as climate change and resource depletion, has intensified interest in microbial-based production systems. Synthetic biofilms, which mimic natural microbial consortia, offer a promising platform for optimizing complex metabolic processes that can convert renewable feedstocks into valuable chemicals. In this context, understanding and harnessing the interactions between co-immobilized microorganisms are critical for advancing bioprocesses that contribute to circular bioeconomy goals. In this study, we investigated the viability and metabolic activity of Clostridium carboxidivorans and Clostridium kluyveri within a synthetic, dual-layered biofilm composed of agar hydrogel. This setup compartmentalized each bacterial species. Embedding the bacteria in a structured biofilm offers numerous opportunities for bioproduction, but the inability to monitor cell growth or movement within the immobilization matrix limits process insights. To address this, we adapted a fluorescence in situ hybridization (FISH) protocol, enabling precise, species-specific visualization of bacterial distribution and growth within the gel matrix. Batch processes with the dual-layered biofilm in anaerobic flasks, designed with a metabolic advantage for C. kluyveri, revealed distinct growth dynamics. C. kluyveri exhibited significant metabolic activity, forming clusters at low initial cell concentrations and converting ethanol and acetate into 1-butyrate and 1-hexanoate, indicating viability and cell growth. C. carboxidivorans remained evenly distributed without significant growth or product formation, suggesting that while the cells were viable, they were not metabolically active under the experimental conditions. Both bacterial species were confined to their respective compartments throughout the process, with C. kluyveri showing enhanced substrate conversion at higher initial cell densities in the hydrogel. The pH drop throughout the batch experiment likely contributed to incomplete substrate consumption, particularly for C. kluyveri, which thrives within a narrow pH range. These findings highlight synthetic biofilms as a promising platform for optimizing microbial interactions and improving bioprocess efficiency, especially in applications involving complex metabolic exchanges between co-immobilized microorganisms. Further research will focus on applying conditions to support the growth and metabolic activity of C. carboxidivorans to explore spatial dynamics of bacterial migration and cooperative relationships in the synthetic biofilm.
Collapse
Affiliation(s)
- Josha Herzog
- Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, D-85748 Garching, Germany;
| | - Anna C. Jäkel
- Physics of Synthetic Biological Systems, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, D-85748 Garching, Germany; (A.C.J.); (F.C.S.)
| | - Friedrich C. Simmel
- Physics of Synthetic Biological Systems, Department of Bioscience, TUM School of Natural Sciences, Technical University of Munich, Am Coulombwall 4a, D-85748 Garching, Germany; (A.C.J.); (F.C.S.)
| | - Dirk Weuster-Botz
- Biochemical Engineering, Department of Energy and Process Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, D-85748 Garching, Germany;
| |
Collapse
|
14
|
Monette A, Aguilar-Mahecha A, Altinmakas E, Angelos MG, Assad N, Batist G, Bommareddy PK, Bonilla DL, Borchers CH, Church SE, Ciliberto G, Cogdill AP, Fattore L, Hacohen N, Haris M, Lacasse V, Lie WR, Mehta A, Ruella M, Sater HA, Spatz A, Taouli B, Tarhoni I, Gonzalez-Kozlova E, Tirosh I, Wang X, Gnjatic S. The Society for Immunotherapy of Cancer Perspective on Tissue-Based Technologies for Immuno-Oncology Biomarker Discovery and Application. Clin Cancer Res 2025; 31:439-456. [PMID: 39625818 DOI: 10.1158/1078-0432.ccr-24-2469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 02/04/2025]
Abstract
With immuno-oncology becoming the standard of care for a variety of cancers, identifying biomarkers that reliably classify patient response, resistance, or toxicity becomes the next critical barrier toward improving care. Multiparametric, multi-omics, and computational platforms generating an unprecedented depth of data are poised to usher in the discovery of increasingly robust biomarkers for enhanced patient selection and personalized treatment approaches. Deciding which developing technologies to implement in clinical settings ultimately, applied either alone or in combination, relies on weighing pros and cons, from minimizing patient sampling to maximizing data outputs, and assessing the reproducibility and representativeness of findings, while lessening data fragmentation toward harmonization. These factors are all assessed while taking into consideration the shortest turnaround time. The Society for Immunotherapy of Cancer Biomarkers Committee convened to identify important advances in biomarker technologies and to address advances in biomarker discovery using multiplexed IHC and immunofluorescence, their coupling to single-cell transcriptomics, along with mass spectrometry-based quantitative and spatially resolved proteomics imaging technologies. We summarize key metrics obtained, ease of interpretation, limitations and dependencies, technical improvements, and outward comparisons of these technologies. By highlighting the most interesting recent data contributed by these technologies and by providing ways to improve their outputs, we hope to guide correlative research directions and assist in their evolution toward becoming clinically useful in immuno-oncology.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Adriana Aguilar-Mahecha
- Lady Davis Institute for Medical Research, The Segal Cancer Center, Jewish General Hospital, Montreal, Quebec, Canada
| | - Emre Altinmakas
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Radiology, Koç University School of Medicine, Istanbul, Turkey
| | - Mathew G Angelos
- Division of Hematology and Oncology, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nima Assad
- Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gerald Batist
- McGill Centre for Translational Research, Jewish General Hospital, Montreal, Quebec, Canada
| | | | | | - Christoph H Borchers
- Gerald Bronfman Department of Oncology, Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
- Division of Experimental Medicine, Department of Pathology, McGill University, Montreal, Quebec, Canada
| | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Luigi Fattore
- SAFU Laboratory, Department of Research, Advanced Diagnostics and Technological Innovation, Translational Research Area, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Nir Hacohen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Mohammad Haris
- Department of Radiology, Center for Advanced Metabolic Imaging in Precision Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Vincent Lacasse
- Segal Cancer Proteomics Centre, Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
| | | | - Arnav Mehta
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Marco Ruella
- Division of Hematology-Oncology, Center for Cellular Immunotherapies, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Alan Spatz
- Lady Davis Institute for Medical Research, Jewish General Hospital, McGill University, McGill University Health Center, Montreal, Quebec, Canada
| | - Bachir Taouli
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Imad Tarhoni
- Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois
| | | | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
15
|
Beliveau BJ, Akilesh S. A guide to studying 3D genome structure and dynamics in the kidney. Nat Rev Nephrol 2025; 21:97-114. [PMID: 39406927 PMCID: PMC12023896 DOI: 10.1038/s41581-024-00894-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/30/2024] [Indexed: 10/19/2024]
Abstract
The human genome is tightly packed into the 3D environment of the cell nucleus. Rapidly evolving and sophisticated methods of mapping 3D genome architecture have shed light on fundamental principles of genome organization and gene regulation. The genome is physically organized on different scales, from individual genes to entire chromosomes. Nuclear landmarks such as the nuclear envelope and nucleoli have important roles in compartmentalizing the genome within the nucleus. Genome activity (for example, gene transcription) is also functionally partitioned within this 3D organization. Rather than being static, the 3D organization of the genome is tightly regulated over various time scales. These dynamic changes in genome structure over time represent the fourth dimension of the genome. Innovative methods have been used to map the dynamic regulation of genome structure during important cellular processes including organism development, responses to stimuli, cell division and senescence. Furthermore, disruptions to the 4D genome have been linked to various diseases, including of the kidney. As tools and approaches to studying the 4D genome become more readily available, future studies that apply these methods to study kidney biology will provide insights into kidney function in health and disease.
Collapse
Affiliation(s)
- Brian J Beliveau
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Shreeram Akilesh
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Zheng H, Liu X, Liu L, Hu J, Chen X. Imaging of endogenous RNA in live cells using sequence-activated fluorescent RNA probes. Nucleic Acids Res 2025; 53:gkae1209. [PMID: 39657756 PMCID: PMC11754654 DOI: 10.1093/nar/gkae1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024] Open
Abstract
RNA performs a remarkable range of functions, such as RNA processing, chromosome maintenance and dosage compensation. Technologies that robustly and specifically image RNA in its native state are highly desirable, as these technologies can help researchers clarify the localization and functionality of diverse RNAs. Here, we describe the development of a sequence-activated fluorescent RNA (SaFR) technique. In SaFR, in the absence of target RNA, the structure of fluorogenic RNA is disrupted by the invader sequence, and the ability to activate the Pepper's cognate fluorophores is lost as a result. In the presence of target RNA, SaFR undergoes conformational reorganization and transforms into the fluorogenic conformation of Pepper, enabling the activation of fluorophores to produce fluorescent signals. SaFR exhibits favourable properties, such as large dynamic ranges, high specificity and fast fluorescence generation. Further studies showed that exogenous or endogenous RNAs can be tracked in live and fixed cells through SaFR. We further demonstrated the usefulness of SaFR in monitoring the assembly and disassembly of stress granules in real-time. Overall, this study offers a robust and versatile tool for labelling and imaging endogenous RNA in cells, which will be useful for clarifying the functionality and molecular mechanism of RNA.
Collapse
Affiliation(s)
- Haifeng Zheng
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xiyu Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Luhui Liu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Jiarui Hu
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| | - Xianjun Chen
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
- Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Mei Long Road, Shanghai 200237, China
| |
Collapse
|
17
|
Liu JL. Seven Theorems of Joseph G. Gall. Exp Cell Res 2025; 444:114343. [PMID: 39566878 DOI: 10.1016/j.yexcr.2024.114343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 11/16/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
On June 30, 2020, Professor Joseph Grafton Gall announced his retirement at 92. On August 13, 2020, Joe's former trainees and colleagues held a retirement celebration online to celebrate Joe's "Remarkable Career with Astonishing Discoveries", covering Joe's nearly 70 years of education and research. As a representative of Joe's trainees in the 2000s, I gave a speech titled "Seven Theorems of Joe". On September 12, 2024, Joe passed away peacefully, at 96. In memoriam, here I expand and update my previous speech and explain the "Seven Theorems of Joseph G. Gall", a scientists' scientist.
Collapse
Affiliation(s)
- Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK.
| |
Collapse
|
18
|
Groben G, Salgado-Salazar C, Crouch JA. Fluorescence In Situ Hybridization Protocol for Visualization of Oomycetes In Vitro and In Planta. Methods Mol Biol 2025; 2892:83-91. [PMID: 39729270 DOI: 10.1007/978-1-0716-4330-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Fluorescence in situ hybridization enables the visualization of organisms in the environment without having to culture them. Here, we describe a FISH protocol to visualize oomycete structures (mycelia, sporangiophores, sporangia, and oospores) directly as well as from colonized plant material. The protocol utilizes organic compounds with low toxicities and does not require a permeabilization step. The protocol was used to visualize impatiens downy mildew Plasmopara destructor sporangiophores colonizing an Impatiens walleriana leaf.
Collapse
Affiliation(s)
- Glen Groben
- United States Department of Agriculture, Agricultural Research Service, Foreign Disease/Weed Science Research Unit, Frederick, MD, USA
- Oak Ridge Institute for Science and Education, Agricultural Research Service Research Participation Program, Oak Ridge, TN, USA
| | - Catalina Salgado-Salazar
- United States Department of Agriculture, Agriculture Research Service, Mycology and Nematology Genetic Diversity and Biology Laboratory, Beltsville, MD, USA
| | - Jo Anne Crouch
- United States Department of Agriculture, Agricultural Research Service, Foreign Disease/Weed Science Research Unit, Frederick, MD, USA.
| |
Collapse
|
19
|
Zhu H, Huangfu L, Chen J, Ji J, Xing X. Exploring the potential of extrachromosomal DNA as a novel oncogenic driver. SCIENCE CHINA. LIFE SCIENCES 2025; 68:144-157. [PMID: 39349791 DOI: 10.1007/s11427-024-2710-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/13/2024] [Indexed: 01/03/2025]
Abstract
Extrachromosomal DNA (ecDNA) is a form of circular DNA mostly found in tumor cells. Unlike the typical chromosomal DNA, ecDNA is circular, self-replicating, and carries complete or partial gene fragments. Although ecDNA occurrence remains a rare event in cancer, recent studies have shown that oncogene amplification on ecDNA is widespread throughout many types of cancer, implying that ecDNA plays a central role in accelerating tumor evolution. ecDNA has also been associated with increased tumor mutation burden, chromosomal instability, and even tumor microenvironment remodeling. ecDNA may be crucial in influencing tumor heterogeneity, drug sensitivity, oncogenic senescence, and tumor immunogenicity, leading to a worsening prognosis for tumor patients. In this way, several clinical trials have been conducted to investigate the importance of ecDNA in clinical treatment. In this review, we summarize the biogenesis, characteristics, and current research methods of ecDNA, discuss the vital role of ecDNA-caused tumor heterogeneity in cancers, and highlight the potential role of ecDNA in cancer therapy.
Collapse
Affiliation(s)
- Huanbo Zhu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Longtao Huangfu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Junbing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Jiafu Ji
- Department of Gastrointestinal Cancer Center, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| | - Xiaofang Xing
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Beijing Key Laboratory of Carcinogenesis and Translational Research, Division of Gastrointestinal Cancer Translational Research Laboratory, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
| |
Collapse
|
20
|
An J, Lu Y, Chen Y, Chen Y, Zhou Z, Chen J, Peng C, Huang R, Peng F. Spatial transcriptomics in breast cancer: providing insight into tumor heterogeneity and promoting individualized therapy. Front Immunol 2024; 15:1499301. [PMID: 39749323 PMCID: PMC11693744 DOI: 10.3389/fimmu.2024.1499301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/05/2024] [Indexed: 01/04/2025] Open
Abstract
A comprehensive understanding of tumor heterogeneity, tumor microenvironment and the mechanisms of drug resistance is fundamental to advancing breast cancer research. While single-cell RNA sequencing has resolved the issue of "temporal dynamic expression" of genes at the single-cell level, the lack of spatial information still prevents us from gaining a comprehensive understanding of breast cancer. The introduction and application of spatial transcriptomics addresses this limitation. As the annual technical method of 2020, spatial transcriptomics preserves the spatial location of tissues and resolves RNA-seq data to help localize and differentiate the active expression of functional genes within a specific tissue region, enabling the study of spatial location attributes of gene locations and cellular tissue environments. In the context of breast cancer, spatial transcriptomics can assist in the identification of novel breast cancer subtypes and spatially discriminative features that show promise for individualized precise treatment. This article summarized the key technical approaches, recent advances in spatial transcriptomics and its applications in breast cancer, and discusses the limitations of current spatial transcriptomics methods and the prospects for future development, with a view to advancing the application of this technology in clinical practice.
Collapse
Affiliation(s)
- Junsha An
- West China School of Pharmacy, Sichuan University, Chengdu, China
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Cardiovascular Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yajie Lu
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yuxi Chen
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Yuling Chen
- West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Zhaokai Zhou
- Department of Clinical Medicine, Zhengzhou University, Zhengzhou, China
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ruizhen Huang
- Cardiovascular Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- West China School of Pharmacy, Sichuan University, Chengdu, China
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, Sichuan University, Chengdu, China
| |
Collapse
|
21
|
Gerbi SA, Zakian VA, Blackburn EH. Joseph G. Gall (1928-2024): Cell biologist, naturalist, and mentor extraordinaire. J Cell Biol 2024; 223:e202410071. [PMID: 39545956 DOI: 10.1083/jcb.202410071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Joseph Grafton Gall (1928-2024), a founder of modern cell biology, made foundational discoveries on eukaryotic chromosomes and RNA biogenesis. His major contributions include the development of in situ hybridization (later called FISH), demonstration of one DNA double helix/chromosome, isolation of the first eukaryote gene, localization of satellite DNA to centromeric heterochromatin, determination of the first telomeric DNA sequence, and elucidating the structure and functions of Cajal bodies. He was an expert microscopist, a scholar of science history, and an avid naturalist. These attributes, together with his ready embrace of new technologies, contributed to his remarkable success. He was also an early and strong supporter of women in science. His contributions to science and mentoring were recognized by numerous awards including the American Society for Cell Biology's E.B. Wilson Medal, the Society for Developmental Biology's Lifetime Achievement Award, the Albert Lasker Special Achievement Award in Medical Research, and the AAAS Mentor Award for Lifetime Achievement.
Collapse
Affiliation(s)
- Susan A Gerbi
- Division of Biology and Medicine, Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Lewis-Sigler Institute, Princeton University, Princeton, NJ, USA
| | - Elizabeth H Blackburn
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
22
|
Olivares-Abril J, Joha J, Lee JY, Davis I. Optimization of hybridization chain reaction for imaging single RNA molecules in Drosophila larvae. Fly (Austin) 2024; 18:2409968. [PMID: 39351922 PMCID: PMC11446410 DOI: 10.1080/19336934.2024.2409968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 10/03/2024] Open
Abstract
In situ hybridization techniques are powerful methods for exploring gene expression in a wide range of biological contexts, providing spatial information that is most often lost in traditional biochemical techniques. However, many in situ hybridization methods are costly and time-inefficient, particularly for screening-based projects that follow on from single-cell RNA sequencing data, which rely on of tens of custom-synthetized probes against each specific RNA of interest. Here we provide an optimized pipeline for Hybridization Chain Reaction (HCR)-based RNA visualization, including an open-source code for optimized probe design. Our method achieves high specificity and sensitivity with the option of multiplexing using only five pairs of probes, which greatly lowers the cost and time of the experiment. These features of our HCR protocol are particularly useful and convenient for projects involving screening several genes at medium throughput, especially as the method include an amplification step, which makes the signal readily visible at low magnification imaging.
Collapse
Affiliation(s)
| | - Jana Joha
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Jeffrey Y Lee
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Ilan Davis
- School of Molecular Biosciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
23
|
Pederson T. In remembrance: Joseph Gall. Nucleus 2024; 15:2426552. [PMID: 39648637 PMCID: PMC11556269 DOI: 10.1080/19491034.2024.2426552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/01/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
A 14-year boy is given a microscope by his parents. It is not a toy - but a real microscope. He deploys it to rediscover the biology he had known before, but now in a magnified world. With extraordinary intellectual gifts he then, and manifestly later becomes absorbed by the idea that all this, however mysterious at first glance, might be subject to rational understanding, with painstaking study. Thus, was the genesis of one of the greatest cell biologists of the 20th century, Joseph Grafton Gall, who died 12 September 2024, at 96. He had been professionally active up until only a few years ago. There was no one like him in the modern era of cell biology and there will not be another figure like him anytime soon.
Collapse
Affiliation(s)
- Thoru Pederson
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
24
|
Gerbi SA, Spradling AC. Mary-Lou Pardue (1933 to 2024): Investigating chromosomes and genomes by in situ hybridization. Proc Natl Acad Sci U S A 2024; 121:e2416551121. [PMID: 39365829 DOI: 10.1073/pnas.2416551121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024] Open
Affiliation(s)
- Susan A Gerbi
- Division of Biology and Medicine, Brown University, Providence, RI 02912
| | - Allan C Spradling
- HHMI, Carnegie Institution for Science, Baltimore, MD 21218
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD 21218
| |
Collapse
|
25
|
Alf V, Tirrito F, Fischer A, Cappello R, Kiviranta AM, Steinberg TA, Poli F, Stotz F, Del Vecchio OV, Dörfelt S, Falzone C, Knittel A, Loderstedt S, Mercuriali E, Tabanez J, Zagarella P, Matiasek K, Rosati M. A multimodal approach to diagnosis of neuromuscular neosporosis in dogs. J Vet Intern Med 2024; 38:2561-2570. [PMID: 39016150 PMCID: PMC11423454 DOI: 10.1111/jvim.17145] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/26/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Early diagnosis of neosporosis in dogs is challenging. OBJECTIVES To evaluate the feasibility of a compound multimodal testing approach for diagnosing in dogs neuromuscular and combined forms of neosporosis. ANIMALS A total of 16 dogs diagnosed with solely neuromuscular neosporosis or with a combination of neuromuscular and central nervous system neosporosis. METHODS Retrospective review of clinical signs, laboratory findings, treatment, and outcome with focus on the diagnostic utility of different tests. Development of a chromogenic in situ hybridization (ISH) assay for the identification of Neospora caninum in paraffin-embedded muscle samples. RESULTS 13/16 dogs had only neuromuscular signs of neosporosis, 3/16 had disease signs with concomitant central nervous system (CNS) involvement. Serology was performed in 15/16, with 10/15 showing titers >1 : 160 at admission. PCR on muscle samples detected N. caninum DNA in 11/16. Immunohistochemistry (IHC) detected N. caninum in 9/16 and ISH in 9/16. Histopathology revealed inflammatory myopathy in 10/16, necrotizing myopathy in 5/16, borderline changes in 1/16 and tachyzoites in 9/16. In 4 cases, N. caninum infection was confirmed with all 5 diagnostic methods, 3 cases with 4, 2 with 3, 6 with 2, and 1 animal with 1. CONCLUSIONS AND CLINICAL IMPORTANCE Diagnosis of N. caninum infection should rely on a multimodal diagnostic approach and negativity of 1 single test should not allow for exclusion. Serology in combination with direct parasite identification via histopathology, DNA via PCR, or both modalities, appears a reliable diagnostic approach.
Collapse
Affiliation(s)
- Vanessa Alf
- Section of Clinical and Comparative Neuropathology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Federica Tirrito
- Clinica Neurologica Veterinaria NVA, Milano, Italy
- AniCura Istituto Veterinario di Novara, Novara, Italy
| | - Andrea Fischer
- Section of Neurology, Centre for Clinical Veterinary Medicine, Ludwig-Maximilians University, Munich, Germany
| | | | - Anna-Mariam Kiviranta
- Department of Equine and Small Animal Medicine, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | | | - Federica Poli
- Clinica Veterinaria Valdinievole, Monsummano Terme, Italy
| | - Felix Stotz
- EVIDENSIA Tierarztpraxen und -kliniken Nordrhein GmbH, Düsseldorf, Germany
| | | | - Stefanie Dörfelt
- Neurology Referral Service, AniCura Tierklinik Haar, Haar, Germany
| | - Cristian Falzone
- Clinica Veterinaria Pedrani Diagnostica Piccoli Animali, Zugliano, Italy
| | - André Knittel
- Klinik für Kleintiere - Chirurgie, Universität Gießen, Gießen, Germany
| | - Shenja Loderstedt
- Neurologie - Klinik für Kleintiere, Universität Leipzig, Leipzig, Germany
| | | | | | - Paolo Zagarella
- Centro Traumatologico Ortopedico Veterinario, Arenzano, Italy
| | - Kaspar Matiasek
- Section of Clinical and Comparative Neuropathology, Ludwig-Maximilians-Universität, Munich, Germany
| | - Marco Rosati
- Section of Clinical and Comparative Neuropathology, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
26
|
Song Q, Tai X, Ren Q, Ren A. Structure-based insights into fluorogenic RNA aptamers. Acta Biochim Biophys Sin (Shanghai) 2024; 57:108-118. [PMID: 39148467 PMCID: PMC11802350 DOI: 10.3724/abbs.2024142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
Fluorogenic RNA aptamers are in vitro-selected RNA molecules capable of binding to specific fluorophores, significantly increasing their intrinsic fluorescence. Over the past decade, the color palette of fluorescent RNA aptamers has greatly expanded. The emergence and development of these fluorogenic RNA aptamers has introduced a powerful approach for visualizing RNA localization and transport with high spatiotemporal resolution in live cells. To date, a variety of tertiary structures of fluorogenic RNA aptamers have been determined using X-ray crystallography or NMR spectroscopy. Many of these fluorogenic RNA aptamers feature base quadruples or base triples in their fluorophore-binding sites. This review summarizes the structure-based investigations of fluorogenic RNA aptamers, with a focus on their overall folds, ligand-binding pockets and fluorescence activation mechanisms. Additionally, the exploration of how structures guide rational optimization to enhance RNA visualization techniques is discussed.
Collapse
Affiliation(s)
- Qianqian Song
- Life Sciences InstituteSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
| | - Xiaoqing Tai
- Life Sciences InstituteSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
| | - Qianyu Ren
- Agricultural CollegeYangzhou UniversityYangzhou225009China
| | - Aiming Ren
- Life Sciences InstituteSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
| |
Collapse
|
27
|
Greitens C, Leroux JC, Burger M. The intracellular visualization of exogenous DNA in fluorescence microscopy. Drug Deliv Transl Res 2024; 14:2242-2261. [PMID: 38526634 PMCID: PMC11208204 DOI: 10.1007/s13346-024-01563-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2024] [Indexed: 03/27/2024]
Abstract
In the development of non-viral gene delivery vectors, it is essential to reliably localize and quantify transfected DNA inside the cell. To track DNA, fluorescence microscopy methods are commonly applied. These mostly rely on fluorescently labeled DNA, DNA binding proteins fused to a fluorescent protein, or fluorescence in situ hybridization (FISH). In addition, co-stainings are often used to determine the colocalization of the DNA in specific cellular compartments, such as the endolysosomes or the nucleus. We provide an overview of these DNA tracking methods, advice on how they should be combined, and indicate which co-stainings or additional methods are required to draw precise conclusions from a DNA tracking experiment. Some emphasis is given to the localization of exogenous DNA inside the nucleus, which is the last step of DNA delivery. We argue that suitable tools which allow for the nuclear detection of faint signals are still missing, hampering the rational development of more efficient non-viral transfection systems.
Collapse
Affiliation(s)
- Christina Greitens
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland.
| |
Collapse
|
28
|
Liberali P, Schier AF. The evolution of developmental biology through conceptual and technological revolutions. Cell 2024; 187:3461-3495. [PMID: 38906136 DOI: 10.1016/j.cell.2024.05.053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/23/2024]
Abstract
Developmental biology-the study of the processes by which cells, tissues, and organisms develop and change over time-has entered a new golden age. After the molecular genetics revolution in the 80s and 90s and the diversification of the field in the early 21st century, we have entered a phase when powerful technologies provide new approaches and open unexplored avenues. Progress in the field has been accelerated by advances in genomics, imaging, engineering, and computational biology and by emerging model systems ranging from tardigrades to organoids. We summarize how revolutionary technologies have led to remarkable progress in understanding animal development. We describe how classic questions in gene regulation, pattern formation, morphogenesis, organogenesis, and stem cell biology are being revisited. We discuss the connections of development with evolution, self-organization, metabolism, time, and ecology. We speculate how developmental biology might evolve in an era of synthetic biology, artificial intelligence, and human engineering.
Collapse
Affiliation(s)
- Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; University of Basel, Basel, Switzerland.
| | | |
Collapse
|
29
|
Yang JH, Hansen AS. Enhancer selectivity in space and time: from enhancer-promoter interactions to promoter activation. Nat Rev Mol Cell Biol 2024; 25:574-591. [PMID: 38413840 PMCID: PMC11574175 DOI: 10.1038/s41580-024-00710-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2024] [Indexed: 02/29/2024]
Abstract
The primary regulators of metazoan gene expression are enhancers, originally functionally defined as DNA sequences that can activate transcription at promoters in an orientation-independent and distance-independent manner. Despite being crucial for gene regulation in animals, what mechanisms underlie enhancer selectivity for promoters, and more fundamentally, how enhancers interact with promoters and activate transcription, remain poorly understood. In this Review, we first discuss current models of enhancer-promoter interactions in space and time and how enhancers affect transcription activation. Next, we discuss different mechanisms that mediate enhancer selectivity, including repression, biochemical compatibility and regulation of 3D genome structure. Through 3D polymer simulations, we illustrate how the ability of 3D genome folding mechanisms to mediate enhancer selectivity strongly varies for different enhancer-promoter interaction mechanisms. Finally, we discuss how recent technical advances may provide new insights into mechanisms of enhancer-promoter interactions and how technical biases in methods such as Hi-C and Micro-C and imaging techniques may affect their interpretation.
Collapse
Affiliation(s)
- Jin H Yang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Anders S Hansen
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA.
| |
Collapse
|
30
|
Lakadamyali M. From feulgen to modern methods: marking a century of DNA imaging advances. Histochem Cell Biol 2024; 162:13-22. [PMID: 38753186 PMCID: PMC11227465 DOI: 10.1007/s00418-024-02291-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 07/07/2024]
Abstract
The mystery of how human DNA is compactly packaged into a nucleus-a space a hundred thousand times smaller-while still allowing for the regulation of gene function, has long been one of the greatest enigmas in cell biology. This puzzle is gradually being solved, thanks in part to the advent of new technologies. Among these, innovative genome-labeling techniques combined with high-resolution imaging methods have been pivotal. These methods facilitate the visualization of DNA within intact nuclei and have significantly contributed to our current understanding of genome organization. This review will explore various labeling and imaging approaches that are revolutionizing our understanding of the three-dimensional organization of the genome, shedding light on the relationship between its structure and function.
Collapse
Affiliation(s)
- Melike Lakadamyali
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
- Perelman School of Medicine, Epigenetics Institute, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
31
|
Williams CG, Moreira ML, Asatsuma T, Lee HJ, Li S, Barrera I, Murray E, Soon MSF, Engel JA, Khoury DS, Le S, Wanrooy BJ, Schienstock D, Alexandre YO, Skinner OP, Joseph R, Beattie L, Mueller SN, Chen F, Haque A. Plasmodium infection induces phenotypic, clonal, and spatial diversity among differentiating CD4 + T cells. Cell Rep 2024; 43:114317. [PMID: 38848213 DOI: 10.1016/j.celrep.2024.114317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/21/2024] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Naive CD4+ T cells must differentiate in order to orchestrate immunity to Plasmodium, yet understanding of their emerging phenotypes, clonality, spatial distributions, and cellular interactions remains incomplete. Here, we observe that splenic polyclonal CD4+ T cells differentiate toward T helper 1 (Th1) and T follicular helper (Tfh)-like states and exhibit rarer phenotypes not elicited among T cell receptor (TCR) transgenic counterparts. TCR clones present at higher frequencies exhibit Th1 skewing, suggesting that variation in major histocompatibility complex class II (MHC-II) interaction influences proliferation and Th1 differentiation. To characterize CD4+ T cell interactions, we map splenic microarchitecture, cellular locations, and molecular interactions using spatial transcriptomics at near single-cell resolution. Tfh-like cells co-locate with stromal cells in B cell follicles, while Th1 cells in red pulp co-locate with activated monocytes expressing multiple chemokines and MHC-II. Spatial mapping of individual transcriptomes suggests that proximity to chemokine-expressing monocytes correlates with stronger effector phenotypes in Th1 cells. Finally, CRISPR-Cas9 gene disruption reveals a role for CCR5 in promoting clonal expansion and Th1 differentiation. A database of cellular locations and interactions is presented: https://haquelab.mdhs.unimelb.edu.au/spatial_gui/.
Collapse
Affiliation(s)
- Cameron G Williams
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Marcela L Moreira
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Takahiro Asatsuma
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Shihan Li
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Irving Barrera
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Megan S F Soon
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - Jessica A Engel
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD 4006, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Kensington, NSW 2052, Australia
| | - Shirley Le
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Brooke J Wanrooy
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Dominick Schienstock
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Oliver P Skinner
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Rainon Joseph
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Lynette Beattie
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne, located at the Peter Doherty Institute for Infection and Immunity, Parkville, VIC 3000, Australia.
| |
Collapse
|
32
|
Cao J, Li C, Cui Z, Deng S, Lei T, Liu W, Yang H, Chen P. Spatial Transcriptomics: A Powerful Tool in Disease Understanding and Drug Discovery. Theranostics 2024; 14:2946-2968. [PMID: 38773973 PMCID: PMC11103497 DOI: 10.7150/thno.95908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024] Open
Abstract
Recent advancements in modern science have provided robust tools for drug discovery. The rapid development of transcriptome sequencing technologies has given rise to single-cell transcriptomics and single-nucleus transcriptomics, increasing the accuracy of sequencing and accelerating the drug discovery process. With the evolution of single-cell transcriptomics, spatial transcriptomics (ST) technology has emerged as a derivative approach. Spatial transcriptomics has emerged as a hot topic in the field of omics research in recent years; it not only provides information on gene expression levels but also offers spatial information on gene expression. This technology has shown tremendous potential in research on disease understanding and drug discovery. In this article, we introduce the analytical strategies of spatial transcriptomics and review its applications in novel target discovery and drug mechanism unravelling. Moreover, we discuss the current challenges and issues in this research field that need to be addressed. In conclusion, spatial transcriptomics offers a new perspective for drug discovery.
Collapse
Affiliation(s)
- Junxian Cao
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Analysis of Complex Effects of Proprietary Chinese Medicine, Hunan Provincial Key Laboratory, Yongzhou City, Hunan Province, China
| | - Caifeng Li
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhao Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Shiwen Deng
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Analysis of Complex Effects of Proprietary Chinese Medicine, Hunan Provincial Key Laboratory, Yongzhou City, Hunan Province, China
| | - Tong Lei
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Liu
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Hongjun Yang
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Analysis of Complex Effects of Proprietary Chinese Medicine, Hunan Provincial Key Laboratory, Yongzhou City, Hunan Province, China
| | - Peng Chen
- Beijing Key Laboratory of Traditional Chinese Medicine Basic Research on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Analysis of Complex Effects of Proprietary Chinese Medicine, Hunan Provincial Key Laboratory, Yongzhou City, Hunan Province, China
| |
Collapse
|
33
|
Meschichi A, Rosa S. Plant chromatin on the move: an overview of chromatin mobility during transcription and DNA repair. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:953-962. [PMID: 36811211 DOI: 10.1111/tpj.16159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/16/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
It has become increasingly clear in recent years that chromosomes are highly dynamic entities. Chromatin mobility and re-arrangement are involved in many biological processes, including gene regulation and the maintenance of genome stability. Despite extensive studies on chromatin mobility in yeast and animal systems, up until recently, not much had been investigated at this level in plants. For plants to achieve proper growth and development, they need to respond rapidly and appropriately to environmental stimuli. Therefore, understanding how chromatin mobility can support plant responses may offer profound insights into the functioning of plant genomes. In this review, we discuss the state of the art related to chromatin mobility in plants, including the available technologies for their role in various cellular processes.
Collapse
Affiliation(s)
- Anis Meschichi
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Almas Allé 5, Uppsala, Sweden
| | - Stefanie Rosa
- Plant Biology Department, Swedish University of Agricultural Sciences (SLU), Almas Allé 5, Uppsala, Sweden
| |
Collapse
|
34
|
Sahoo R, Jadhav S, Nema V. Journey of technological advancements in the detection of antimicrobial resistance. J Formos Med Assoc 2024; 123:430-441. [PMID: 37598038 DOI: 10.1016/j.jfma.2023.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023] Open
Abstract
Increased uses rather an extensive misuse of antibiotics due to easy availability and easy access have resulted in antibiotic resistance as a global crisis. The speed of discovery of new antibiotics has slowed down recently. Therefore, there is a need to reduce the rate of increase in resistance against the presently available antibiotics, or else many infections may be left untreatable or difficult to be treated due to the high prevalence of resistance. The judicious use of broad-spectrum antibiotics can control the increase in resistance profile. Various techniques are presently being used for the detection of antibiotic resistance. Conventional phenotypic methods are preferred that are highly reliable but are much more time-consuming. The patients cannot spare more time as the infection keeps increasing. The results with genotypic methods are obtained within 24 h as compared to phenotypic methods. Hence, recent molecular methods like qPCR can be used for detection. In this review, we present an overview of various methods useful for the detection of antibiotic resistance, with emphasis on their advantages and limitations. The review also emphasizes qPCR to be the most preferred method out of all because of various advantageous factors.
Collapse
Affiliation(s)
- Rituparna Sahoo
- ICMR-National AIDS Research Institute, 73 G MIDC Bhosari, Pune, 411 026, India
| | - Sushama Jadhav
- ICMR-National AIDS Research Institute, 73 G MIDC Bhosari, Pune, 411 026, India
| | - Vijay Nema
- ICMR-National AIDS Research Institute, 73 G MIDC Bhosari, Pune, 411 026, India.
| |
Collapse
|
35
|
Yuan CU, Quah FX, Hemberg M. Single-cell and spatial transcriptomics: Bridging current technologies with long-read sequencing. Mol Aspects Med 2024; 96:101255. [PMID: 38368637 DOI: 10.1016/j.mam.2024.101255] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/30/2024] [Accepted: 02/07/2024] [Indexed: 02/20/2024]
Abstract
Single-cell technologies have transformed biomedical research over the last decade, opening up new possibilities for understanding cellular heterogeneity, both at the genomic and transcriptomic level. In addition, more recent developments of spatial transcriptomics technologies have made it possible to profile cells in their tissue context. In parallel, there have been substantial advances in sequencing technologies, and the third generation of methods are able to produce reads that are tens of kilobases long, with error rates matching the second generation short reads. Long reads technologies make it possible to better map large genome rearrangements and quantify isoform specific abundances. This further improves our ability to characterize functionally relevant heterogeneity. Here, we show how researchers have begun to combine single-cell, spatial transcriptomics, and long-read technologies, and how this is resulting in powerful new approaches to profiling both the genome and the transcriptome. We discuss the achievements so far, and we highlight remaining challenges and opportunities.
Collapse
Affiliation(s)
- Chengwei Ulrika Yuan
- Department of Biochemistry, University of Cambridge, Cambridge, UK; Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK
| | - Fu Xiang Quah
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Martin Hemberg
- Gene Lay Institute, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Todisco M, Ding D, Szostak JW. Transient states during the annealing of mismatched and bulged oligonucleotides. Nucleic Acids Res 2024; 52:2174-2187. [PMID: 38348869 PMCID: PMC10954449 DOI: 10.1093/nar/gkae091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/29/2024] [Indexed: 03/22/2024] Open
Abstract
Oligonucleotide hybridization is crucial in various biological, prebiotic and nanotechnological processes, including gene regulation, non-enzymatic primer extension and DNA nanodevice assembly. Although extensive research has focused on the thermodynamics and kinetics of nucleic acid hybridization, the behavior of complex mixtures and the outcome of competition for target binding remain less well understood. In this study, we investigate the impact of mismatches and bulges in a 12 bp DNA or RNA duplex on its association (kon) and dissociation (koff) kinetics. We find that such defects have relatively small effects on the association kinetics, while the dissociation kinetics vary in a position-dependent manner by up to 6 orders of magnitude. Building upon this observation, we explored a competition scenario involving multiple oligonucleotides, and observed a transient low specificity of probe hybridization to fully versus partially complementary targets in solution. We characterize these long-lived metastable states and their evolution toward equilibrium, and show that sufficiently long-lived mis-paired duplexes can serve as substrates for prebiotically relevant chemical copying reactions. Our results suggest that transient low accuracy states may spontaneously emerge within all complex nucleic acid systems comprising a large enough number of competing strands, with potential repercussions for gene regulation in the realm of modern biology and the prebiotic preservation of genetic information.
Collapse
Affiliation(s)
- Marco Todisco
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Dian Ding
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | - Jack W Szostak
- Howard Hughes Medical Institute, Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
37
|
Su F, Chen S, Liu Y, Zhou J, Du Z, Luo X, Wen S, Jin D. Lanthanide Complex for Single-Molecule Fluorescent in Situ Hybridization and Background-Free Imaging. Anal Chem 2024; 96:4430-4436. [PMID: 38447029 DOI: 10.1021/acs.analchem.3c04530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Traditional single-molecule fluorescence in situ hybridization (smFISH) methods for RNA detection often face sensitivity challenges due to the low fluorescence intensity of the probe. Also, short-lived autofluorescence complicates obtaining clear signals from tissue sections. In response, we have developed an smFISH probe using highly grafted lanthanide complexes to address both concentration quenching and autofluorescence background. Our approach involves an oligo PCR incorporating azide-dUTP, enabling conjugation with lanthanide complexes. This method has proven to be stable, convenient, and cost-effective. Notably, for the mRNA detection in SKBR3 cells, the lanthanide probe group exhibited 2.5 times higher luminescence intensity and detected 3 times more signal points in cells compared with the Cy3 group. Furthermore, we successfully applied the probe to image HER2 mRNA molecules in breast cancer FFPE tissue sections, achieving a 2.7-fold improvement in sensitivity compared to Cy3-based probes. These results emphasize the potential of time-resolved smFISH as a highly sensitive method for nucleic acid detection, free of background fluorescence interference.
Collapse
Affiliation(s)
- Fei Su
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sidney, NSW 2007, Australia
| | - Shiyu Chen
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Yuanhua Liu
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Jiajia Zhou
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sidney, NSW 2007, Australia
| | - Zhongbo Du
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Xiongjian Luo
- UTS-SUStech Joint Research Centre for Biomedical Materials and Devices, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| | - Shihui Wen
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sidney, NSW 2007, Australia
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China
| | - Dayong Jin
- Institute for Biomedical Materials and Devices (IBMD), Faculty of Science, University of Technology Sydney, Sidney, NSW 2007, Australia
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang 315200, P. R. China
| |
Collapse
|
38
|
Xue X, Persson H, Ye L. Polydopamine functionalized dendritic fibrous silica nanoparticles as a generic platform for nucleic acid-based biosensing. Mikrochim Acta 2024; 191:180. [PMID: 38443718 PMCID: PMC10914921 DOI: 10.1007/s00604-024-06234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 02/13/2024] [Indexed: 03/07/2024]
Abstract
Accurate and rapid detection of nucleic acid sequences is of utmost importance in various fields, including disease monitoring, clinical treatment, gene analysis and drug discovery. In this study, we developed a "turn-on" fluorescence biosensor that enables simple and highly efficient detection of nucleic acid biomarkers. Our approach involves the utilization of 6-carboxyfluorescein modified single-stranded DNA (FAM-ssDNA) as molecular recognition element, along with polydopamine-functionalized dendritic fibrous nanosilica (DFNS). FAM-ssDNA serves as both specific molecular recognition element for the target analyte and reporter capable of transducing a detectable signal through Watson-Crick base pairing. The polydopamine-functionalized DFNS (DFNS@DA) exhibits strong binding to FAM-ssDNA via polyvalent metal mediated coordination leading to effective quenching by fluorescence resonance energy transfer. In the presence of a complementary target sequence, FAM-ssDNA forms hybridized structure and detaches from DFNS@DA, which causes an increased fluorescence emission. The analytical system based on FAM-ssDNA and DFNS@DA demonstrates exceptional sensitivity, selectivity, and rapid response for the detection of nucleic acid sequences, leveraging the high adsorption and quenching properties of DFNS@DA. For the first proof of concept, we demonstrated the successful detection of microRNA (miR-21) in cancer cells using the FAM-ssDNA/DFNS@DA system. Our results highlight the promising capabilities of DFNS@DA and nucleic acid-based biosensors, offering a generic and cost-effective solution for the detection of nucleic acid-related biomarkers.
Collapse
Affiliation(s)
- Xiaoting Xue
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden
| | - Helena Persson
- Division of Oncology, Department of Clinical Sciences, Lund University Cancer Center, 22381, Lund, Sweden
| | - Lei Ye
- Division of Pure and Applied Biochemistry, Department of Chemistry, Lund University, 22100, Lund, Sweden.
| |
Collapse
|
39
|
Li R, Chen X, Yang X. Navigating the landscapes of spatial transcriptomics: How computational methods guide the way. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1839. [PMID: 38527900 DOI: 10.1002/wrna.1839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/27/2024]
Abstract
Spatially resolved transcriptomics has been dramatically transforming biological and medical research in various fields. It enables transcriptome profiling at single-cell, multi-cellular, or sub-cellular resolution, while retaining the information of geometric localizations of cells in complex tissues. The coupling of cell spatial information and its molecular characteristics generates a novel multi-modal high-throughput data source, which poses new challenges for the development of analytical methods for data-mining. Spatial transcriptomic data are often highly complex, noisy, and biased, presenting a series of difficulties, many unresolved, for data analysis and generation of biological insights. In addition, to keep pace with the ever-evolving spatial transcriptomic experimental technologies, the existing analytical theories and tools need to be updated and reformed accordingly. In this review, we provide an overview and discussion of the current computational approaches for mining of spatial transcriptomics data. Future directions and perspectives of methodology design are proposed to stimulate further discussions and advances in new analytical models and algorithms. This article is categorized under: RNA Methods > RNA Analyses in Cells RNA Evolution and Genomics > Computational Analyses of RNA RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Runze Li
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xu Chen
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuerui Yang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic & Systems Biology, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
40
|
Park J, Moon SS, Song S, Cheng H, Im C, Du L, Kim GD. Comparative review of muscle fiber characteristics between porcine skeletal muscles. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2024; 66:251-265. [PMID: 38628685 PMCID: PMC11016745 DOI: 10.5187/jast.2023.e126] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 04/19/2024]
Abstract
Meat derived from skeletal muscles of animals is a highly nutritious type of food, and different meat types differ in nutritional, sensory, and quality properties. This study was conducted to compare the results of previous studies on the muscle fiber characteristics of major porcine skeletal muscles to the end of providing basic data for understanding differences in physicochemical and nutritional properties between different porcine muscle types (or meat cuts). Specifically, the muscle fiber characteristics between 19 major porcine skeletal muscles were compared. The muscle fibers that constitute porcine skeletal muscle can be classified into several types based on their contractile and metabolic characteristics. In addition, the muscle fiber characteristics, including size, composition, and density, of each muscle type were investigated and a technology based on these muscle fiber characteristics for improving meat quality or preventing quality deterioration was briefly discussed. This comparative review revealed that differences in muscle fiber characteristics are primarily responsible for the differences in quality between pork cuts (muscle types) and also suggested that data on muscle fiber characteristics can be used to develop optimal meat storage and packaging technologies for each meat cut (or muscle type).
Collapse
Affiliation(s)
- Junyoung Park
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
- Mgenic Bio, Anseong 17529,
Korea
| | - Sung Sil Moon
- Sunjin Technology & Research
Institute, Icheon 17332, Korea
| | - Sumin Song
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Huilin Cheng
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Choeun Im
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Lixin Du
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
| | - Gap-Don Kim
- Graduate School of International
Agricultural Technology, Seoul National University,
Pyeongchang 25354, Korea
- Institutes of Green Bio Science &
Technology, Seoul National University, Pyeongchang 25354,
Korea
| |
Collapse
|
41
|
Jiang Y, Shen L, Wang B. Non-electrophysiological techniques targeting transient receptor potential (TRP) gene of gastrointestinal tract. Int J Biol Macromol 2024; 262:129551. [PMID: 38367416 DOI: 10.1016/j.ijbiomac.2024.129551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 02/19/2024]
Abstract
Transient receptor potential (TRP) channels are cation channels related to a wide range of physical and chemical stimuli, they are expressed all along the gastrointestinal system, and a myriad of diseases are often associated with aberrant expression or mutation of the TRP gene, suggesting that TRPs are promising targets for drug therapy. Therefore, a better understanding of the information of TRPs in health and disease could facilitate the development of effective drugs for the treatment of gastrointestinal diseases like IBD. But there are very few generalizations about the experimental techniques studied in this field. In view of the promise of TRP as a therapeutic target, we discuss experimental methods that can be used for TRPs including their distribution, function and interaction with other proteins, as well as some promising emerging technologies to provide experimental methods for future studies.
Collapse
Affiliation(s)
- Yuting Jiang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China
| | - Lan Shen
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Bing Wang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Center for Pharmaceutics Research, Shanghai Institute of Materia Medica Chinese Academy of Sciences, Shanghai 201203, China.
| |
Collapse
|
42
|
Broeckel U, Iqbal MA, Levy B, Sahajpal N, Nagy PL, Scharer G, Rodriguez V, Bossler A, Stence A, Skinner C, Skinner SA, Kolhe R, Stevenson R. Detection of Constitutional Structural Variants by Optical Genome Mapping: A Multisite Study of Postnatal Samples. J Mol Diagn 2024; 26:213-226. [PMID: 38211722 DOI: 10.1016/j.jmoldx.2023.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 12/14/2023] [Indexed: 01/13/2024] Open
Abstract
Optical genome mapping is a high-resolution technology that can detect all types of structural variations in the genome. This second phase of a multisite study compares the performance of optical genome mapping and current standard-of-care methods for diagnostic testing of individuals with constitutional disorders, including neurodevelopmental impairments and congenital anomalies. Among the 627 analyses in phase 2, 405 were of retrospective samples supplied by five diagnostic centers in the United States and 94 were prospective samples collected over 18 months by two diagnostic centers (June 2021 to October 2022). Additional samples represented a family cohort to determine inheritance (n = 119) and controls (n = 9). Full concordance of results between optical genome mapping and one or more standard-of-care diagnostic tests was 98.6% (618/627), with partial concordance in an additional 1.1% (7/627).
Collapse
Affiliation(s)
- Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - M Anwar Iqbal
- DNA Microarray CGH Laboratory, Department of Pathology, University of Rochester Medical Center, Rochester, New York
| | - Brynn Levy
- Columbia University Medical Center, New York, New York
| | | | - Peter L Nagy
- Columbia University Medical Center, New York, New York
| | - Gunter Scharer
- Section of Genomic Pediatrics, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | | | - Aaron Stence
- University of Iowa Hospitals and Clinics, Iowa City, Iowa
| | | | | | - Ravindra Kolhe
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, Georgia.
| | | |
Collapse
|
43
|
Toplu N, Oğuzoğlu TÇ, Akkoç AN. Development of an In Situ Hybridization Method for Detection of Akabane Virus. J Biol Methods 2024; 11:e99010011. [PMID: 38988497 PMCID: PMC11230939 DOI: 10.14440/jbm.2024.413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 07/12/2024] Open
Abstract
Akabane virus (AKAV) is an arbovirus belonging to the family Bunyaviridae, genus Orthobunyavirus. AKAV consists of three-segment (L, M, and S RNA segments), negative single-stranded RNA. The aim of this study was to investigate an in situ hybridization method (ISH) in a Vero E6 cell line infected with Akabane virus. The 320 base pair amplicon was obtained by RT-PCR with a primer pair and labeled with digoxigenin. Akabane virus RNAs were seen as a granular pattern in the cytoplasm of infected cells. As a result, the expression of the particular Akabane virus gene area was successfully disclosed in the current investigation using the ISH method with a digoxigenin-labeled probe.
Collapse
Affiliation(s)
- Nihat Toplu
- Department of Pathology, Faculty of Veterinary Medicine, University of Aydın Adnan Menderes, Isikli, Aydin, Turkiye
| | - Tuba Çiğdem Oğuzoğlu
- Department of Virology, Faculty of Veterinary Medicine, University of Ankara, Diskapi, Ankara, Turkiye
| | - Ayşe Nur Akkoç
- Department of Pathology, Faculty of Veterinary Medicine, University of Aydın Adnan Menderes, Isikli, Aydin, Turkiye
| |
Collapse
|
44
|
Lynch A, Bradford S, Burkard ME. The reckoning of chromosomal instability: past, present, future. Chromosome Res 2024; 32:2. [PMID: 38367036 DOI: 10.1007/s10577-024-09746-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/19/2024]
Abstract
Quantitative measures of CIN are crucial to our understanding of its role in cancer. Technological advances have changed the way CIN is quantified, offering increased accuracy and insight. Here, we review measures of CIN through its rise as a field, discuss considerations for its measurement, and look forward to future quantification of CIN.
Collapse
Affiliation(s)
- Andrew Lynch
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Shermineh Bradford
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Mark E Burkard
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA.
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
45
|
Lee S, Kim G, Lee J, Lee AC, Kwon S. Mapping cancer biology in space: applications and perspectives on spatial omics for oncology. Mol Cancer 2024; 23:26. [PMID: 38291400 PMCID: PMC10826015 DOI: 10.1186/s12943-024-01941-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/12/2024] [Indexed: 02/01/2024] Open
Abstract
Technologies to decipher cellular biology, such as bulk sequencing technologies and single-cell sequencing technologies, have greatly assisted novel findings in tumor biology. Recent findings in tumor biology suggest that tumors construct architectures that influence the underlying cancerous mechanisms. Increasing research has reported novel techniques to map the tissue in a spatial context or targeted sampling-based characterization and has introduced such technologies to solve oncology regarding tumor heterogeneity, tumor microenvironment, and spatially located biomarkers. In this study, we address spatial technologies that can delineate the omics profile in a spatial context, novel findings discovered via spatial technologies in oncology, and suggest perspectives regarding therapeutic approaches and further technological developments.
Collapse
Affiliation(s)
- Sumin Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Meteor Biotech,, Co. Ltd, Seoul, 08826, Republic of Korea
| | - Gyeongjun Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - JinYoung Lee
- Division of Engineering Science, University of Toronto, Toronto, Ontario, ON, M5S 3H6, Canada
| | - Amos C Lee
- Meteor Biotech,, Co. Ltd, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Sunghoon Kwon
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, 08826, Republic of Korea.
- Bio-MAX Institute, Seoul National University, Seoul, 08826, Republic of Korea.
- Institutes of Entrepreneurial BioConvergence, Seoul National University, Seoul, 08826, Republic of Korea.
- Cancer Research Institute, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea.
| |
Collapse
|
46
|
Rolph MJ, Bolfa P, Cavanaugh SM, Rolph KE. Fluorescent In Situ Hybridization for the Detection of Intracellular Bacteria in Companion Animals. Vet Sci 2024; 11:52. [PMID: 38275934 PMCID: PMC10821249 DOI: 10.3390/vetsci11010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
FISH techniques have been applied for the visualization and identification of intracellular bacteria in companion animal species. Most frequently, these techniques have focused on the identification of adhesive-invasive Escherichia coli in gastrointestinal disease, although various other organisms have been identified in inflammatory or neoplastic gastrointestinal disease. Previous studies have investigated a potential role of Helicobacter spp. in inflammatory gastrointestinal and hepatic conditions. Other studies evaluating the role of infectious organisms in hepatopathies have received some attention with mixed results. FISH techniques using both eubacterial and species-specific probes have been applied in inflammatory cardiovascular, urinary, and cutaneous diseases to screen for intracellular bacteria. This review summarizes the results of these studies.
Collapse
Affiliation(s)
| | | | | | - Kerry E. Rolph
- Center for Integrative Mammalian Research, Ross University School of Veterinary Medicine, Basseterre P.O. Box 334, Saint Kitts and Nevis
| |
Collapse
|
47
|
Huan C, Li J, Li Y, Zhao S, Yang Q, Zhang Z, Li C, Li S, Guo Z, Yao J, Zhang W, Zhou L. Spatially Resolved Multiomics: Data Analysis from Monoomics to Multiomics. BME FRONTIERS 2024; 6:0084. [PMID: 39810754 PMCID: PMC11725630 DOI: 10.34133/bmef.0084] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/05/2024] [Accepted: 12/02/2024] [Indexed: 01/16/2025] Open
Abstract
Spatial monoomics has been recognized as a powerful tool for exploring life sciences. Recently, spatial multiomics has advanced considerably, which could contribute to clarifying many biological issues. Spatial monoomics techniques in epigenomics, genomics, transcriptomics, proteomics, and metabolomics can enhance our understanding of biological functions and cellular identities by simultaneously measuring tissue structures and biomolecule levels. Spatial monoomics technology has evolved from monoomics to spatial multiomics. Moreover, the spatial resolution, high-throughput detection capability, capture efficiency, and compatibility with various sample types of omics technology have considerably advanced. Despite the technological advances in this field, data analysis frameworks have stagnated. Current challenges include incomplete spatial monoomics data analysis pipeline, overly complex data analysis tasks, and few established spatial multiomics data analysis strategies. In this review, we systematically summarize recent developments of various spatial monoomics techniques and improvements in related data analysis pipeline. On the basis of the spatial multiomics technology, we propose a data integration strategy with cross-platform, cross-slice, and cross-modality. We summarize the potential applications of spatial monoomics technology, aiming to provide researchers and clinicians with a better understanding of how such applications have advanced. Spatial multiomics technology is expected to substantially impact biology and precision medicine through measurements of cellular tissue structures and the extraction of biomolecular features.
Collapse
Affiliation(s)
- Changxiang Huan
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei 230026, China
| | - Jinze Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou 215163, China
| | - Yingxue Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou 215163, China
| | - Shasha Zhao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou 215163, China
| | - Qi Yang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhiqi Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou 215163, China
| | - Chuanyu Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei 230026, China
| | - Shuli Li
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou 215163, China
| | - Zhen Guo
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei 230026, China
| | - Jia Yao
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei 230026, China
| | - Wei Zhang
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou 215163, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine,
University of Science and Technology of China, Hefei 230026, China
| | - Lianqun Zhou
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
48
|
Zhang X, Lu W, Feng Y, Zhang Z, Yuan Z. A Chromogenic In Situ Hybridization (CISH) Assay for Detection of HBV RNA, DNA, and cccDNA in Liver Tissue. Methods Mol Biol 2024; 2837:137-148. [PMID: 39044081 DOI: 10.1007/978-1-0716-4027-2_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Hepatitis B virus (HBV) developed highly intricates mechanisms exploiting host resources for its multiplication within a constrained genetic coding capacity. With the aid of a series of classical analytical methods such as ultrafiltration, and Southern and Northern blots, a general framework of HBV life cycle has been established. However, this picture still lacks many key histological contexts which involves pathophysiological changes of hepatocytes, non-parenchymal cells, infiltrated leukocytes, and associated extracellular matrix. Here, we describe a CISH protocol modified from the ViewRNA assay that allows direct visualization of HBV RNA, DNA, and cccDNA in liver tissue of chronic hepatitis B patients. By coupling it with immunohistochemistry and other histological stains, much richer information regarding the HBV-induced pathological changes can be harvested.
Collapse
Affiliation(s)
- Xiaonan Zhang
- Centre for Research in Therapeutic Solutions, Biomedical Sciences, Faculty of Science and Technology, University of Canberra, Canberra, ACT, Australia.
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China.
| | - Wei Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yanling Feng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhanqing Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zhenghong Yuan
- Key Laboratory of Medical Molecular Virology (MOE & NHC), Research Unit of Cure of Chronic Hepatitis B Virus Infection (CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Guo P, Deng Y. Spatial Omics: Navigating Neuroscience Research into the New Era. ADVANCES IN NEUROBIOLOGY 2024; 41:133-149. [PMID: 39589713 DOI: 10.1007/978-3-031-69188-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The human brain's complexity is underpinned by billions of neurons and trillions of synapses, necessitating coordinated activities across diverse cell types. Conventional techniques like in situ hybridization and immunohistochemistry, while valuable, face limitations in resolution and comprehensiveness when analyzing neuron types. Advances in spatial omics technologies, especially those integrating transcriptomics and proteomics, have revolutionized our understanding of brain tissue organization. These technologies, such as FISH-based, in situ sequencing-based (ISS), and next-generation sequencing (NGS)-based methods, provide detailed spatial context, overcoming previous limitations. FISH techniques, including smFISH and its variants like seqFISH and MERFISH, offer high-resolution spatial gene expression data. ISS approaches leverage padlock probes and rolling circle amplification to yield spatial transcriptome information. NGS-based methods, such as spatial transcriptomics and spatial-epigenomics, integrate spatial barcodes with single-cell sequencing, enabling comprehensive profiling of gene expression and epigenetic states in tissues. These innovations have propelled insights into neural development and disease, identifying cellular heterogeneity and molecular alterations in conditions like Alzheimer's and major depression. Despite challenges in cost, speed, and data analysis, spatial omics technologies continue to evolve, promising deeper insights into the molecular mechanisms of the brain and neurodegenerative diseases.
Collapse
Affiliation(s)
- Pengfei Guo
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yanxiang Deng
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
50
|
Hani S, Mercier C, David P, Desnos T, Escudier JM, Bertrand E, Nussaume L. smFISH for Plants. Methods Mol Biol 2024; 2784:87-100. [PMID: 38502480 DOI: 10.1007/978-1-0716-3766-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Single-molecule fluorescence in situ hybridization (smFISH) is a powerful method for the visualization and quantification of individual RNA molecules within intact cells. With its ability to probe gene expression at the single cell and single-molecule level, the technique offers valuable insights into cellular processes and cell-to-cell heterogeneity. Although widely used in the animal field, its use in plants has been limited. Here, we present an experimental smFISH workflow that allows researchers to overcome hybridization and imaging challenges in plants, including sample preparation, probe hybridization, and signal detection. Overall, this protocol holds great promise for unraveling the intricacies of gene expression regulation and RNA dynamics at the single-molecule level in whole plants.
Collapse
Affiliation(s)
- Sahar Hani
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, Saint-Paul lez Durance, France
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Caroline Mercier
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, Saint-Paul lez Durance, France
- Biochimie et Physiologie Moléculaire des Plantes, Univesité de Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Pascale David
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, Saint-Paul lez Durance, France
| | - Thierry Desnos
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, Saint-Paul lez Durance, France
| | - Jean-Marc Escudier
- Laboratoire Synthèse et Physico-Chimie de Molécules d'intérêt Biologique, Université Paul Sabatier, CNRS, Toulouse, France
| | - Edouard Bertrand
- Institut de Génétique Humaine, CNRS, UMR9002, Montpellier, France
| | - Laurent Nussaume
- Aix Marseille Univ, CEA, CNRS, BIAM, UMR7265, Saint-Paul lez Durance, France.
| |
Collapse
|