1
|
The role of chromatin at transcription-replication conflicts as a genome safeguard. Biochem Soc Trans 2021; 49:2727-2736. [PMID: 34821364 DOI: 10.1042/bst20210691] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022]
Abstract
DNA replication ensures the correct copying of the genome and the faithful transfer of the genetic information to the offspring. However, obstacles to replication fork (RF) progression cause RF stalling and compromise efficient genome duplication. Since replication uses the same DNA template as transcription, both transcription and replication must be coordinated to prevent Transcription-Replication Conflicts (TRCs) that could stall RF progression. Several factors contribute to limit the occurrence of such conflicts and their harmful impact on genome integrity. Increasing evidence indicates that chromatin homeostasis plays a key role in the cellular response to TRCs as well as in the preservation of genome integrity. Indeed, chromatin regulating enzymes are frequently mutated in cancer cells, a common characteristic of which is genome instability. Therefore, understanding the role of chromatin in TRC occurrence and resolution may help identify the molecular mechanism by which chromatin protects genome integrity, and the causes and physiological relevance of the high mutation rates of chromatin regulating factors in cancer. Here we review the current knowledge in the field, as well as the perspectives and future applications.
Collapse
|
2
|
Topoisomerase I Essentiality, DnaA-Independent Chromosomal Replication, and Transcription-Replication Conflict in Escherichia coli. J Bacteriol 2021; 203:e0019521. [PMID: 34124945 DOI: 10.1128/jb.00195-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Topoisomerase I (Topo I) of Escherichia coli, encoded by topA, acts to relax negative supercoils in DNA. Topo I deficiency results in hypernegative supercoiling, formation of transcription-associated RNA-DNA hybrids (R-loops), and DnaA- and oriC-independent constitutive stable DNA replication (cSDR), but some uncertainty persists as to whether topA is essential for viability in E. coli and related enterobacteria. Here, we show that several topA alleles, including ΔtopA, confer lethality in derivatives of wild-type E. coli strain MG1655. Viability in the absence of Topo I was restored with two perturbations, neither of which reversed the hypernegative supercoiling phenotype: (i) in a reduced-genome strain (MDS42) or (ii) by an RNA polymerase (RNAP) mutation, rpoB*35, that has been reported to alleviate the deleterious consequences of RNAP backtracking and transcription-replication conflicts. Four phenotypes related to cSDR were identified for topA mutants: (i) one of the topA alleles rescued ΔdnaA lethality; (ii) in dnaA+ derivatives, Topo I deficiency generated a characteristic copy number peak in the terminus region of the chromosome; (iii) topA was synthetically lethal with rnhA (encoding RNase HI, whose deficiency also confers cSDR); and (iv) topA rnhA synthetic lethality was itself rescued by ΔdnaA. We propose that the terminal lethal consequence of hypernegative DNA supercoiling in E. coli topA mutants is RNAP backtracking during transcription elongation and associated R-loop formation, which in turn leads to transcription-replication conflicts and to cSDR. IMPORTANCE In all life forms, double-helical DNA exists in a topologically supercoiled state. The enzymes DNA gyrase and topoisomerase I act, respectively, to introduce and to relax negative DNA supercoils in Escherichia coli. That gyrase deficiency leads to bacterial death is well established, but the essentiality of topoisomerase I for viability has been less certain. This study confirms that topoisomerase I is essential for E. coli viability and suggests that in its absence, aberrant chromosomal DNA replication and excessive transcription-replication conflicts occur that are responsible for lethality.
Collapse
|
3
|
Cao L, Do T, Link AJ. Mechanisms of action of ribosomally synthesized and posttranslationally modified peptides (RiPPs). J Ind Microbiol Biotechnol 2021; 48:6121428. [PMID: 33928382 PMCID: PMC8183687 DOI: 10.1093/jimb/kuab005] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 01/22/2021] [Indexed: 12/19/2022]
Abstract
Natural products remain a critical source of medicines and drug leads. One of the most rapidly growing superclasses of natural products is RiPPs: ribosomally synthesized and posttranslationally modified peptides. RiPPs have rich and diverse bioactivities. This review highlights examples of the molecular mechanisms of action that underly those bioactivities. Particular emphasis is placed on RiPP/target interactions for which there is structural information. This detailed mechanism of action work is critical toward the development of RiPPs as therapeutics and can also be used to prioritize hits in RiPP genome mining studies.
Collapse
Affiliation(s)
- Li Cao
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Truc Do
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - A James Link
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.,Department of Chemistry, Princeton University, Princeton, NJ 08544, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
4
|
Supercoiling, R-loops, Replication and the Functions of Bacterial Type 1A Topoisomerases. Genes (Basel) 2020; 11:genes11030249. [PMID: 32120891 PMCID: PMC7140829 DOI: 10.3390/genes11030249] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/19/2020] [Accepted: 02/26/2020] [Indexed: 12/26/2022] Open
Abstract
Type 1A topoisomerases (topos) are the only topos that bind single-stranded DNA and the only ones found in all cells of the three domains of life. Two subfamilies, topo I and topo III, are present in bacteria. Topo I, found in all of them, relaxes negative supercoiling, while topo III acts as a decatenase in replication. However, recent results suggest that they can also act as back-up for each other. Because they are ubiquitous, type 1A enzymes are expected to be essential for cell viability. Single topA (topo I) and topB (topo III) null mutants of Escherichia coli are viable, but for topA only with compensatory mutations. Double topA topB null mutants were initially believed to be non-viable. However, in two independent studies, results of next generation sequencing (NGS) have recently shown that double topA topB null mutants of Bacillus subtilis and E. coli are viable when they carry parC parE gene amplifications. These genes encode the two subunits of topo IV, the main cellular decatenase. Here, we discuss the essential functions of bacterial type 1A topos in the context of this observation and new results showing their involvement in preventing unregulated replication from R-loops.
Collapse
|
5
|
Abstract
Genome replication involves dealing with obstacles that can result from DNA damage but also from chromatin alterations, topological stress, tightly bound proteins or non-B DNA structures such as R loops. Experimental evidence reveals that an engaged transcription machinery at the DNA can either enhance such obstacles or be an obstacle itself. Thus, transcription can become a potentially hazardous process promoting localized replication fork hindrance and stress, which would ultimately cause genome instability, a hallmark of cancer cells. Understanding the causes behind transcription-replication conflicts as well as how the cell resolves them to sustain genome integrity is the aim of this review.
Collapse
|
6
|
Rovinskiy NS, Agbleke AA, Chesnokova ON, Higgins NP. Supercoil Levels in E. coli and Salmonella Chromosomes Are Regulated by the C-Terminal 35⁻38 Amino Acids of GyrA. Microorganisms 2019; 7:E81. [PMID: 30875939 PMCID: PMC6463007 DOI: 10.3390/microorganisms7030081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 02/06/2023] Open
Abstract
Prokaryotes have an essential gene-gyrase-that catalyzes negative supercoiling of plasmid and chromosomal DNA. Negative supercoils influence DNA replication, transcription, homologous recombination, site-specific recombination, genetic transposition and sister chromosome segregation. Although E. coli and Salmonella Typhimurium are close relatives with a conserved set of essential genes, E. coli DNA has a supercoil density 15% higher than Salmonella, and E. coli cannot grow at the supercoil density maintained by wild type (WT) Salmonella. E. coli is addicted to high supercoiling levels for efficient chromosomal folding. In vitro experiments were performed with four gyrase isoforms of the tetrameric enzyme (GyrA₂:GyrB₂). E. coli gyrase was more processive and faster than the Salmonella enzyme, but Salmonella strains with chromosomal swaps of E. coli GyrA lost 40% of the chromosomal supercoil density. Reciprocal experiments in E. coli showed chromosomal dysfunction for strains harboring Salmonella GyrA. One GyrA segment responsible for dis-regulation was uncovered by constructing and testing GyrA chimeras in vivo. The six pinwheel elements and the C-terminal 35⁻38 acidic residues of GyrA controlled WT chromosome-wide supercoiling density in both species. A model of enzyme processivity modulated by competition between DNA and the GyrA acidic tail for access to β-pinwheel elements is presented.
Collapse
Affiliation(s)
- Nikolay S Rovinskiy
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA.
| | - Andrews A Agbleke
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA.
| | - Olga N Chesnokova
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA.
| | - N Patrick Higgins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294-0024, USA.
| |
Collapse
|
7
|
Regulatory Effect of DNA Topoisomerase I on T3SS Activity, Antibiotic Susceptibility and Quorum- Sensing-Independent Pyocyanin Synthesis in Pseudomonas aeruginosa. Int J Mol Sci 2019; 20:ijms20051116. [PMID: 30841529 PMCID: PMC6429228 DOI: 10.3390/ijms20051116] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 02/04/2023] Open
Abstract
Topoisomerases are required for alleviating supercoiling of DNA during transcription and replication. Recent evidence suggests that supercoiling of bacterial DNA can affect bacterial pathogenicity. To understand the potential regulatory role of a topoisomerase I (TopA) in Pseudomonas aeruginosa, we investigated a previously isolated topA mutation using genetic approaches. We here report the effects of the altered topoisomerase in P. aeruginosa on type III secretion system, antibiotic susceptibility, biofilm initiation, and pyocyanin production. We found that topA was essential in P. aeruginosa, but a transposon mutant lacking the 13 amino acid residues at the C-terminal of the TopA and a mutant, named topA-RM, in which topA was split into three fragments were viable. The reduced T3SS expression in topA-RM seemed to be directly related to TopA functionality, but not to DNA supercoiling. The drastically increased pyocyanin production in the mutant was a result of up-regulation of the pyocyanin related genes, and the regulation was mediated through the transcriptional regulator PrtN, which is known to regulate bacteriocin. The well-established regulatory pathway, quorum sensing, was unexpectedly not involved in the increased pyocyanin synthesis. Our results demonstrated the unique roles of TopA in T3SS activity, antibiotic susceptibility, initial biofilm formation, and secondary metabolite production, and revealed previously unknown regulatory pathways.
Collapse
|
8
|
RNA Polymerase Collision versus DNA Structural Distortion: Twists and Turns Can Cause Break Failure. Mol Cell 2017; 62:327-334. [PMID: 27153532 DOI: 10.1016/j.molcel.2016.03.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The twisting of DNA due to the movement of RNA polymerases is the basis of numerous classic experiments in molecular biology. Recent mouse genetic models indicate that chromosomal breakage is common at sites of transcriptional turbulence. Two key studies on this point mapped breakpoints to sites of either convergent or divergent transcription but arrived at different conclusions as to which is more detrimental and why. The issue hinges on whether DNA strand separation is the basis for the chromosomal instability or collision of RNA polymerases.
Collapse
|
9
|
Mogil LS, Becker NA, Maher LJ. Supercoiling Effects on Short-Range DNA Looping in E. coli. PLoS One 2016; 11:e0165306. [PMID: 27783696 PMCID: PMC5081198 DOI: 10.1371/journal.pone.0165306] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 10/10/2016] [Indexed: 11/19/2022] Open
Abstract
DNA-protein loops can be essential for gene regulation. The Escherichia coli lactose (lac) operon is controlled by DNA-protein loops that have been studied for decades. Here we adapt this model to test the hypothesis that negative superhelical strain facilitates the formation of short-range (6-8 DNA turns) repression loops in E. coli. The natural negative superhelicity of E. coli DNA is regulated by the interplay of gyrase and topoisomerase enzymes, adding or removing negative supercoils, respectively. Here, we measured quantitatively DNA looping in three different E. coli strains characterized by different levels of global supercoiling: wild type, gyrase mutant (gyrB226), and topoisomerase mutant (ΔtopA10). DNA looping in each strain was measured by assaying repression of the endogenous lac operon, and repression of ten reporter constructs with DNA loop sizes between 70-85 base pairs. Our data are most simply interpreted as supporting the hypothesis that negative supercoiling facilitates gene repression by small DNA-protein loops in living bacteria.
Collapse
MESH Headings
- DNA Gyrase/genetics
- DNA Gyrase/metabolism
- DNA Topoisomerases, Type I/genetics
- DNA Topoisomerases, Type I/metabolism
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/metabolism
- DNA, Superhelical/chemistry
- DNA, Superhelical/genetics
- DNA, Superhelical/metabolism
- Electrophoresis, Agar Gel
- Escherichia coli/genetics
- Genes, Reporter
- Lac Operon/genetics
- Mutation
- Nucleic Acid Conformation
Collapse
Affiliation(s)
- Lauren S. Mogil
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, United States of America
- Biochemistry and Molecular Biology track, Mayo Graduate School, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, United States of America
| | - Nicole A. Becker
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, United States of America
| | - L. James Maher
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 200 First St. SW, Rochester, Minnesota 55905, United States of America
- * E-mail:
| |
Collapse
|
10
|
Bansal S, Bajaj P, Pandey S, Tandon V. Topoisomerases: Resistance versus Sensitivity, How Far We Can Go? Med Res Rev 2016; 37:404-438. [PMID: 27687257 DOI: 10.1002/med.21417] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/04/2016] [Accepted: 08/29/2016] [Indexed: 12/15/2022]
Abstract
DNA topoisomerases are ubiquitously present remarkable molecular machines that help in altering topology of DNA in living cells. The crucial role played by these nucleases during DNA replication, transcription, and recombination vis-à-vis less sequence similarity among different species makes topoisomerases unique and attractive targets for different anticancer and antibacterial drugs. However, druggability of topoisomerases by the existing class of molecules is increasingly becoming questationable due to resistance development predominated by mutations in the corresponding genes. The current scenario facing a decline in the development of new molecules further comprises an important factor that may challenge topoisomerase-targeting therapy. Thus, it is imperative to wisely use the existing inhibitors lest with this rapid rate of losing grip over the target we may not go too far. Furthermore, it is important not only to design new molecules but also to develop new approaches that may avoid obstacles in therapies due to multiple resistance mechanisms. This review provides a succinct account of different classes of topoisomerase inhibitors, focuses on resistance acquired by mutations in topoisomerases, and discusses the various approaches to increase the efficacy of topoisomerase inhibitors. In a later section, we also suggest the possibility of using bisbenzimidazoles along with efflux pump inhibitors for synergistic bactericidal effects.
Collapse
Affiliation(s)
- Sandhya Bansal
- Dr. B.R. Ambedkar Center for Biomedical Research, University of Delhi, New Delhi, India
| | - Priyanka Bajaj
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Stuti Pandey
- Department of Chemistry, University of Delhi, New Delhi, India
| | - Vibha Tandon
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India.,Department of Chemistry, University of Delhi, New Delhi, India
| |
Collapse
|
11
|
Yamaguchi Y, Inouye M. An endogenous protein inhibitor, YjhX (TopAI), for topoisomerase I from Escherichia coli. Nucleic Acids Res 2015; 43:10387-96. [PMID: 26553797 PMCID: PMC4666372 DOI: 10.1093/nar/gkv1197] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/26/2015] [Indexed: 01/23/2023] Open
Abstract
Almost all free-living bacteria contain toxin-antitoxin (TA) systems on their genomes and the targets of toxins are highly diverse. Here, we found a novel, previously unidentified TA system in Escherichia coli named yjhX-yjhQ. Induction of YjhX (85 amino acid residues) causes cell-growth arrest resulting in cell death, while YjhQ (181 residues) co-induction resumes cell growth. The primary cellular target of YjhX was found to be topoisomerase I (TopA), inhibiting both DNA replication and RNA synthesis. Notably, YjhX has no homology to any other toxins of the TA systems. YjhX was expressed well with an N-terminal protein S (PrS) tag in soluble forms. PrS-YjhX specifically interacts with the N-terminal region of TopA (TopA67) but not full-TopA in the absence of plasmid DNA, while PrS-YjhX binds to full-TopA in the presence of DNA. Notably, YjhX does not directly interact with DNA and RNA. YjhX inhibits only topoisomerase I but not topoisomerase III and IV in vitro. Hence, yjhX is renamed as the gene for the TopA inhibitor (the topAI gene). TopAI is the first endogenous protein inhibitor specific for topoisomerase I.
Collapse
Affiliation(s)
- Yoshihiro Yamaguchi
- The Osaka City University Advanced Research Institute for Natural Science and Technology (OCARINA), 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan Faculty of Biology, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| | - Masayori Inouye
- Department of Biochemistry and Molecular Biology, Center for Advanced Biotechnology and Medicine, Rutgers-Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| |
Collapse
|
12
|
Ahmed W, Menon S, Karthik PV, Nagaraja V. Reduction in DNA topoisomerase I level affects growth, phenotype and nucleoid architecture of Mycobacterium smegmatis. MICROBIOLOGY-SGM 2014; 161:341-353. [PMID: 25516959 DOI: 10.1099/mic.0.000014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The steady-state negative supercoiling of eubacterial genomes is maintained by the action of DNA topoisomerases. Topoisomerase distribution varies in different species of mycobacteria. While Mycobacterium tuberculosis (Mtb) contains a single type I (TopoI) and a single type II (Gyrase) enzyme, Mycobacterium smegmatis (Msm) and other members harbour additional relaxases. TopoI is essential for Mtb survival. However, the necessity of TopoI or other relaxases in Msm has not been investigated. To recognize the importance of TopoI for growth, physiology and gene expression of Msm, we have developed a conditional knock-down strain of TopoI in Msm. The TopoI-depleted strain exhibited extremely slow growth and drastic changes in phenotypic characteristics. The cessation of growth indicates the essential requirement of the enzyme for the organism in spite of having additional DNA relaxation enzymes in the cell. Notably, the imbalance in TopoI level led to the altered expression of topology modulatory proteins, resulting in a diffused nucleoid architecture. Proteomic and transcript analysis of the mutant indicated reduced expression of the genes involved in central metabolic pathways and core DNA transaction processes. RNA polymerase (RNAP) distribution on the transcription units was affected in the TopoI-depleted cells, suggesting global alteration in transcription. The study thus highlights the essential requirement of TopoI in the maintenance of cellular phenotype, growth characteristics and gene expression in mycobacteria. A decrease in TopoI level led to altered RNAP occupancy and impaired transcription elongation, causing severe downstream effects.
Collapse
Affiliation(s)
- Wareed Ahmed
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Shruti Menon
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Pullela V Karthik
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Valakunja Nagaraja
- Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India.,Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
13
|
Vos SM, Lyubimov AY, Hershey DM, Schoeffler AJ, Sengupta S, Nagaraja V, Berger JM. Direct control of type IIA topoisomerase activity by a chromosomally encoded regulatory protein. Genes Dev 2014; 28:1485-97. [PMID: 24990966 PMCID: PMC4083091 DOI: 10.1101/gad.241984.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Topoisomerases are central regulators of DNA supercoiling; how these enzymes are regulated to suit specific cellular needs is poorly understood. Vos et al. now report the structure of E. coli gyrase, a type IIA topoisomerase bound to an inhibitor, YacG. YacG represses gyrase through steric occlusion of its DNA-binding site. Further studies show that YacG engages two spatially segregated regions associated with small-molecule inhibitor interactions—fluoroquinolone antibiotics and a gyrase agonist. This study thus defines a new mechanism for the protein-based control of topoisomerases. Precise control of supercoiling homeostasis is critical to DNA-dependent processes such as gene expression, replication, and damage response. Topoisomerases are central regulators of DNA supercoiling commonly thought to act independently in the recognition and modulation of chromosome superstructure; however, recent evidence has indicated that cells tightly regulate topoisomerase activity to support chromosome dynamics, transcriptional response, and replicative events. How topoisomerase control is executed and linked to the internal status of a cell is poorly understood. To investigate these connections, we determined the structure of Escherichia coli gyrase, a type IIA topoisomerase bound to YacG, a recently identified chromosomally encoded inhibitor protein. Phylogenetic analyses indicate that YacG is frequently associated with coenzyme A (CoA) production enzymes, linking the protein to metabolism and stress. The structure, along with supporting solution studies, shows that YacG represses gyrase by sterically occluding the principal DNA-binding site of the enzyme. Unexpectedly, YacG acts by both engaging two spatially segregated regions associated with small-molecule inhibitor interactions (fluoroquinolone antibiotics and the newly reported antagonist GSK299423) and remodeling the gyrase holoenzyme into an inactive, ATP-trapped configuration. This study establishes a new mechanism for the protein-based control of topoisomerases, an approach that may be used to alter supercoiling levels for responding to changes in cellular state.
Collapse
Affiliation(s)
| | | | - David M Hershey
- Deparment of Plant and Microbial Biology, University of California at Berkeley, Berkeley, California 94720, USA
| | | | - Sugopa Sengupta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560 012, India
| | | |
Collapse
|
14
|
Anderson BG, Stivers JT. Variola type IB DNA topoisomerase: DNA binding and supercoil unwinding using engineered DNA minicircles. Biochemistry 2014; 53:4302-15. [PMID: 24945825 PMCID: PMC4089885 DOI: 10.1021/bi500571q] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Type
IB topoisomerases unwind positive and negative DNA supercoils
and play a key role in removing supercoils that would otherwise accumulate
at replication and transcription forks. An interesting question is
whether topoisomerase activity is regulated by the topological state
of the DNA, thereby providing a mechanism for targeting the enzyme
to highly supercoiled DNA domains in genomes. The type IB enzyme from
variola virus (vTopo) has proven to be useful in addressing mechanistic
questions about topoisomerase function because it forms a reversible
3′-phosphotyrosyl adduct with the DNA backbone at a specific
target sequence (5′-CCCTT-3′) from which DNA unwinding
can proceed. We have synthesized supercoiled DNA minicircles (MCs)
containing a single vTopo target site that provides highly defined
substrates for exploring the effects of supercoil density on DNA binding,
strand cleavage and ligation, and unwinding. We observed no topological
dependence for binding of vTopo to these supercoiled MC DNAs, indicating
that affinity-based targeting to supercoiled DNA regions by vTopo
is unlikely. Similarly, the cleavage and religation rates of the MCs
were not topologically dependent, but topoisomers with low superhelical
densities were found to unwind more slowly than highly supercoiled
topoisomers, suggesting that reduced torque at low superhelical densities
leads to an increased number of cycles of cleavage and ligation before
a successful unwinding event. The K271E charge reversal mutant has
an impaired interaction with the rotating DNA segment that leads to
an increase in the number of supercoils that were unwound per cleavage
event. This result provides evidence that interactions of the enzyme
with the rotating DNA segment can restrict the number of supercoils
that are unwound. We infer that both superhelical density and transient
contacts between vTopo and the rotating DNA determine the efficiency
of supercoil unwinding. Such determinants are likely to be important
in regulating the steady-state superhelical density of DNA domains
in the cell.
Collapse
Affiliation(s)
- Breeana G Anderson
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine , 725 North Wolfe Street, Baltimore, Maryland 21205-2185, United States
| | | |
Collapse
|
15
|
Mustaev A, Malik M, Zhao X, Kurepina N, Luan G, Oppegard LM, Hiasa H, Marks KR, Kerns RJ, Berger JM, Drlica K. Fluoroquinolone-gyrase-DNA complexes: two modes of drug binding. J Biol Chem 2014; 289:12300-12. [PMID: 24497635 DOI: 10.1074/jbc.m113.529164] [Citation(s) in RCA: 122] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA gyrase and topoisomerase IV control bacterial DNA topology by breaking DNA, passing duplex DNA through the break, and then resealing the break. This process is subject to reversible corruption by fluoroquinolones, antibacterials that form drug-enzyme-DNA complexes in which the DNA is broken. The complexes, called cleaved complexes because of the presence of DNA breaks, have been crystallized and found to have the fluoroquinolone C-7 ring system facing the GyrB/ParE subunits. As expected from x-ray crystallography, a thiol-reactive, C-7-modified chloroacetyl derivative of ciprofloxacin (Cip-AcCl) formed cross-linked cleaved complexes with mutant GyrB-Cys(466) gyrase as evidenced by resistance to reversal by both EDTA and thermal treatments. Surprisingly, cross-linking was also readily seen with complexes formed by mutant GyrA-G81C gyrase, thereby revealing a novel drug-gyrase interaction not observed in crystal structures. The cross-link between fluoroquinolone and GyrA-G81C gyrase correlated with exceptional bacteriostatic activity for Cip-AcCl with a quinolone-resistant GyrA-G81C variant of Escherichia coli and its Mycobacterium smegmatis equivalent (GyrA-G89C). Cip-AcCl-mediated, irreversible inhibition of DNA replication provided further evidence for a GyrA-drug cross-link. Collectively these data establish the existence of interactions between the fluoroquinolone C-7 ring and both GyrA and GyrB. Because the GyrA-Gly(81) and GyrB-Glu(466) residues are far apart (17 Å) in the crystal structure of cleaved complexes, two modes of quinolone binding must exist. The presence of two binding modes raises the possibility that multiple quinolone-enzyme-DNA complexes can form, a discovery that opens new avenues for exploring and exploiting relationships between drug structure and activity with type II DNA topoisomerases.
Collapse
Affiliation(s)
- Arkady Mustaev
- From the Public Health Research Institute and Department of Microbiology and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, New Jersey 07103
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Rovinskiy N, Agbleke AA, Chesnokova O, Pang Z, Higgins NP. Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome. PLoS Genet 2012; 8:e1002845. [PMID: 22916023 PMCID: PMC3420936 DOI: 10.1371/journal.pgen.1002845] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/07/2012] [Indexed: 12/23/2022] Open
Abstract
Gyrase catalyzes negative supercoiling of DNA in an ATP-dependent reaction that helps condense bacterial chromosomes into a compact interwound "nucleoid." The supercoil density (σ) of prokaryotic DNA occurs in two forms. Diffusible supercoil density (σ(D)) moves freely around the chromosome in 10 kb domains, and constrained supercoil density (σ(C)) results from binding abundant proteins that bend, loop, or unwind DNA at many sites. Diffusible and constrained supercoils contribute roughly equally to the total in vivo negative supercoil density of WT cells, so σ = σ(C)+σ(D). Unexpectedly, Escherichia coli chromosomes have a 15% higher level of σ compared to Salmonella enterica. To decipher critical mechanisms that can change diffusible supercoil density of chromosomes, we analyzed strains of Salmonella using a 9 kb "supercoil sensor" inserted at ten positions around the genome. The sensor contains a complete Lac operon flanked by directly repeated resolvase binding sites, and the sensor can monitor both supercoil density and transcription elongation rates in WT and mutant strains. RNA transcription caused (-) supercoiling to increase upstream and decrease downstream of highly expressed genes. Excess upstream supercoiling was relaxed by Topo I, and gyrase replenished downstream supercoil losses to maintain an equilibrium state. Strains with TS gyrase mutations growing at permissive temperature exhibited significant supercoil losses varying from 30% of WT levels to a total loss of σ(D) at most chromosome locations. Supercoil losses were influenced by transcription because addition of rifampicin (Rif) caused supercoil density to rebound throughout the chromosome. Gyrase mutants that caused dramatic supercoil losses also reduced the transcription elongation rates throughout the genome. The observed link between RNA polymerase elongation speed and gyrase turnover suggests that bacteria with fast growth rates may generate higher supercoil densities than slow growing species.
Collapse
Affiliation(s)
- Nikolay Rovinskiy
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrews Akwasi Agbleke
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Olga Chesnokova
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zhenhua Pang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Cathay Industrial Biotech, Shanghai, China
| | - N. Patrick Higgins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
17
|
Stockum A, Lloyd RG, Rudolph CJ. On the viability of Escherichia coli cells lacking DNA topoisomerase I. BMC Microbiol 2012; 12:26. [PMID: 22373098 PMCID: PMC3313902 DOI: 10.1186/1471-2180-12-26] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Accepted: 02/28/2012] [Indexed: 11/25/2022] Open
Abstract
Background Manipulations of the DNA double helix during replication, transcription and other nucleic acid processing cause a change of DNA topology, which results in torsional stress. This stress is relaxed by DNA topoisomerases, a class of enzymes present in all domains of life. Negatively supercoiled DNA is relaxed by type IA topoisomerases that are widespread in bacteria, archaea and eukaryotes. In Escherichia coli there is conflicting data about viability of ΔtopA cells lacking topoisomerase I. Results In this study we sought to clarify whether E. coli cells lacking topoisomerase I are viable by using a plasmid-based lethality assay that allowed us to investigate the phenotype of ΔtopA cells without the presence of any compensatory mutations. Our results show that cells lacking topoisomerase I show an extreme growth defect and cannot be cultured without the accumulation of compensatory mutations. This growth defect can be partially suppressed by overexpression of topoisomerase III, the other type IA topoisomerase in E. coli, suggesting that the accumulation of torsional stress is, at least partially, responsible for the lethality of ΔtopA cells. The absence of RNase HI strongly exacerbates the phenotype of cells lacking topoisomerase I, which supports the idea that the processing of RNA:DNA hybrids is vitally important in ΔtopA cells. However, we did not observe suppression of the ΔtopA phenotype by increasing the level of R-loop processing enzymes, such as RNase HI or RecG. Conclusions Our data show unambiguously that E. coli cells are not viable in the absence of DNA topoisomerase I without the presence of compensatory mutations. Furthermore, our data suggest that the accumulation of R-loops is not the primary reason for the severe growth defect of cells lacking topoisomerase I, which is in contrast to the current literature. Potential reasons for this discrepancy are discussed.
Collapse
Affiliation(s)
- Anna Stockum
- Centre for Genetics and Genomics, University of Nottingham, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | | | | |
Collapse
|
18
|
Chodavarapu S, Felczak MM, Kaguni JM. Two forms of ribosomal protein L2 of Escherichia coli that inhibit DnaA in DNA replication. Nucleic Acids Res 2011; 39:4180-91. [PMID: 21288885 PMCID: PMC3105425 DOI: 10.1093/nar/gkq1203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We purified an inhibitor of oriC plasmid replication and determined that it is a truncated form of ribosomal protein L2 evidently lacking 59 amino acid residues from the C-terminal region encoded by rplB. We show that this truncated form of L2 or mature L2 physically interacts with the N-terminal region of DnaA to inhibit initiation from oriC by apparently interfering with DnaA oligomer formation, and the subsequent assembly of the prepriming complex on an oriC plasmid. Both forms of L2 also inhibit the unwinding of oriC by DnaA. These in vitro results raise the possibility that one or both forms of L2 modulate DnaA function in vivo to regulate the frequency of initiation.
Collapse
Affiliation(s)
- Sundari Chodavarapu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824-1319, USA
| | | | | |
Collapse
|
19
|
Effect of N-1/c-8 ring fusion and C-7 ring structure on fluoroquinolone lethality. Antimicrob Agents Chemother 2010; 54:5214-21. [PMID: 20855738 DOI: 10.1128/aac.01054-10] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Quinolones rapidly kill bacteria by two mechanisms, one that requires protein synthesis and one that does not. The latter, which is measured as lethal action in the presence of the protein synthesis inhibitor chloramphenicol, is enhanced by N-1 cyclopropyl and C-8 methoxy substituents, as seen with the highly lethal compound PD161144. In some compounds, such as levofloxacin, the N-1 and C-8 substituents are fused. To assess the effect of ring fusion on killing, structural derivatives of levofloxacin and PD161144 differing at C-7 were synthesized and examined with Escherichia coli. A fused-ring derivative of PD161144 exhibited a striking absence of lethal activity in the presence of chloramphenicol. In general, ring fusion had little effect on lethal activity when protein synthesis was allowed, but fusion reduced lethal activity in the absence of protein synthesis to extents that depended on the C-7 ring structure. Additional fused-ring fluoroquinolones, pazufloxacin, marbofloxacin, and rufloxacin, also exhibited reduced activity in the presence of chloramphenicol. Energy minimization modeling revealed that steric interactions of the trans-oriented N-1 cyclopropyl and C-8 methoxy moieties skew the quinolone core, rigidly orient these groups perpendicular to core rings, and restrict the rotational freedom of C-7 rings. These features were not observed with fused-ring derivatives. Remarkably, structural effects on quinolone lethality were not explained by the recently described X-ray crystal structures of fluoroquinolone-topoisomerase IV-DNA complexes, suggesting the existence of an additional drug-binding state.
Collapse
|
20
|
Gober JW, Kashket ER. Role of DNA Superhelicity in Regulation of Bacteroid-Associated Functions of Bradyrhizobium sp. Strain 32H1. Appl Environ Microbiol 2010; 55:1420-5. [PMID: 16347935 PMCID: PMC202881 DOI: 10.1128/aem.55.6.1420-1425.1989] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bradyrhizobium sp. strain 32H1 cells express a number of bacteroid-associated functions and repress some functions related to the free-living state when grown ex planta under conditions of low (0.2%) oxygen tension and relatively high levels (>8 mM) of medium K. Expression of the bacteroid-associated phenotype was blocked by the DNA gyrase inhibitor novobiocin. Because the degree of negative supercoiling of DNA is the result of the activities of both DNA gyrase and topoisomerase I, we measured these enzymes in cells grown under nitrogen-fixing (low O(2), high K) and non-nitrogen-fixing conditions (low O(2), low [50 muM] K or high O(2), high K). Lower topoisomerase I activities were seen in extracts from nitrogen-fixing cells than in those from non-nitrogen-fixing cells. In contrast, DNA gyrase levels were lower in high-O(2)-grown cells than under the other conditions tested. These differences are consistent with an increase in DNA superhelicity associated with growth under low-O(2), high-K conditions. A spontaneous mutant resistant to the DNA gyrase inhibitor ciprofloxacin was found to be constitutive with respect to the K requirement, because it expressed the bacteroid-associated phenotype when grown under low-O(2), low-K conditions. The mutant cells gave rise to effective nodules on Macroptilium atropurpureum and possessed the low topoisomerase I activities and high DNA gyrase levels of low-O(2)-, high-K-grown wild-type cells. Our data suggest that changes in DNA supercoiling resulting from low O(2) tension and a high K concentration exert a major influence on the expression of the bacteroid-associated phenotype.
Collapse
Affiliation(s)
- J W Gober
- Department of Microbiology, Boston University School of Medicine, 80 E. Concord St., Boston, Massachusetts 02118-2394
| | | |
Collapse
|
21
|
Han X, Dorsey-Oresto A, Malik M, Wang JY, Drlica K, Zhao X, Lu T. Escherichia coli genes that reduce the lethal effects of stress. BMC Microbiol 2010; 10:35. [PMID: 20128927 PMCID: PMC2824699 DOI: 10.1186/1471-2180-10-35] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2009] [Accepted: 02/04/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The continuing emergence of antimicrobial resistance requires the development of new compounds and/or enhancers of existing compounds. Genes that protect against the lethal effects of antibiotic stress are potential targets of enhancers. To distinguish such genes from those involved in drug uptake and efflux, a new susceptibility screen is required. RESULTS Transposon (Tn5)-mediated mutagenesis was used to create a library of Escherichia coli mutants that was screened for hypersensitivity to the lethal action of quinolones and counter-screened to have wild-type bacteriostatic susceptibility. Mutants with this novel "hyperlethal" phenotype were found. The phenotype was transferable to other E. coli strains by P1-mediated transduction, and for a subset of the mutants the phenotype was complemented by the corresponding wild-type gene cloned into a plasmid. Thus, the inactivation of these genes was responsible for hyperlethality. Nucleotide sequence analysis identified 14 genes, mostly of unknown function, as potential factors protecting from lethal effects of stress. The 14 mutants were killed more readily than wild-type cells by mitomycin C and hydrogen peroxide; nine were also more readily killed by UV irradiation, and several exhibited increased susceptibility to killing by sodium dodecyl sulfate. No mutant was more readily killed by high temperature. CONCLUSIONS A new screening strategy identified a diverse set of E. coli genes involved in the response to lethal antimicrobial and environmental stress, with some genes being involved in the response to multiple stressors. The gene set, which differed from sets previously identified with bacteriostatic assays, provides an entry point for obtaining small-molecule enhancers that will affect multiple antimicrobial agents.
Collapse
Affiliation(s)
- Xiulin Han
- Yunnan Institute of Microbiology, Yunnan University, 52 Cui Hu Bei Lu, Kunming, Yunnan 650091, PR China
| | | | | | | | | | | | | |
Collapse
|
22
|
Novel approach for comparing the abilities of quinolones to restrict the emergence of resistant mutants during quinolone exposure. Antimicrob Agents Chemother 2009; 54:149-56. [PMID: 19805561 DOI: 10.1128/aac.01035-09] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
An agar-plate assay was adapted to examine aspects of quinolone structure that restrict the emergence of quinolone-mediated quinolone resistance. When Escherichia coli was applied to agar containing nalidixic acid, the number of quinolone-resistant mutants arising during incubation was decreased by raising the drug concentration and by mutations expected to block the induction of the SOS response (recA, lexA); the mutant number was increased by a mutator mutation (ung). The examination of four related fluoroquinolones then revealed that a C-8 methoxy group and an N-ethyl piperazine substituent at C-7 reduced mutant acquisition more effectively than C-8 H and C-7 C-ethyl piperazine groups. The fluoroquinolone that was most effective at restricting mutant acquisition was the most active when lethal activity was measured on agar plates or in liquid medium (as minimal bactericidal concentration). It also exhibited the lowest ratio of mutant MIC to wild-type MIC when it was tested with a set of isogenic gyrase mutants, and it had a low mutant prevention concentration (MPC) relative to MIC. However, a low MPC was less likely to be important in restricting the induced mutant accumulation because a fluoroquinolone N-ethyl piperazine substituent was more effective than a C-ethyl piperazine substituent at reducing mutant accumulation but was less effective at lowering the MPC. An 8-methoxy-quinazoline-2,4-dione was also effective at restricting the accumulation of resistant mutants on agar. Collectively, these data characterize a simple assay for detection of drug-mediated resistance that is sensitive to the structures of GyrA inhibitors. The assay provides a new method for screening quinolones and quinolone-like molecules that complements MPC-based tests for restricting the emergence of resistance.
Collapse
|
23
|
The S-phase checkpoint is required to respond to R-loops accumulated in THO mutants. Mol Cell Biol 2009; 29:5203-13. [PMID: 19651896 DOI: 10.1128/mcb.00402-09] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Cotranscriptional R-loops are formed in yeast mutants of the THO complex, which functions at the interface between transcription and mRNA export. Despite the relevance of R-loops in transcription-associated recombination, the mechanisms by which they trigger recombination are still elusive. In order to understand how R-loops compromise genome stability, we have analyzed the genetic interaction of THO with 26 genes involved in replication, S-phase checkpoint, DNA repair, and chromatin remodeling. We found a synthetic growth defect in double null mutants of THO and S-phase checkpoint factors, such as the replication factor C- and PCNA-like complexes. Under replicative stress, R-loop-forming THO null mutants require functional S-phase checkpoint functions but not double-strand-break repair functions for survival. Furthermore, R-loop-forming hpr1Delta mutants display replication fork progression impairment at actively transcribed chromosomal regions and trigger Rad53 phosphorylation. We conclude that R-loop-mediated DNA damage activates the S-phase checkpoint, which is required for the cell survival of THO mutants under replicative stress. In light of these results, we propose a model in which R-loop-mediated recombination is explained by template switching.
Collapse
|
24
|
Genetic analysis of repair and damage tolerance mechanisms for DNA-protein cross-links in Escherichia coli. J Bacteriol 2009; 191:5657-68. [PMID: 19617358 DOI: 10.1128/jb.00417-09] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
DNA-protein cross-links (DPCs) are unique among DNA lesions in their unusually bulky nature. We have recently shown that nucleotide excision repair (NER) and RecBCD-dependent homologous recombination (HR) collaboratively alleviate the lethal effect of DPCs in Escherichia coli. In this study, to gain further insight into the damage-processing mechanism for DPCs, we assessed the sensitivities of a panel of repair-deficient E. coli mutants to DPC-inducing agents, including formaldehyde (FA) and 5-azacytidine (azaC). We show here that the damage tolerance mechanism involving HR and subsequent replication restart (RR) provides the most effective means of cell survival against DPCs. Translesion synthesis does not serve as an alternative damage tolerance mechanism for DPCs in cell survival. Elimination of DPCs from the genome relies primarily on NER, which provides a second and moderately effective means of cell survival against DPCs. Interestingly, Cho rather than UvrC seems to be an effective nuclease for the NER of DPCs. Together with the genes responsible for HR, RR, and NER, the mutation of genes involved in several aspects of DNA repair and transactions, such as recQ, xth nfo, dksA, and topA, rendered cells slightly but significantly sensitive to FA but not azaC, possibly reflecting the complexity of DPCs or cryptic lesions induced by FA. UvrD may have an additional role outside NER, since the uvrD mutation conferred a slight azaC sensitivity on cells. Finally, DNA glycosylases mitigate azaC toxicity, independently of the repair of DPCs, presumably by removing 5-azacytosine or its degradation product from the chromosome.
Collapse
|
25
|
Lon protease is essential for paradoxical survival of Escherichia coli exposed to high concentrations of quinolone. Antimicrob Agents Chemother 2009; 53:3103-5. [PMID: 19414573 DOI: 10.1128/aac.00019-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A deficiency of the Escherichia coli Lon protease blocked paradoxical survival occurring at very high nalidixic acid concentrations. The absence of Lon also blocked a parallel increase in cell lysate viscosity likely to reflect DNA size. Thus, Lon may participate in repairing quinolone-mediated DNA lesions formed at high drug concentrations.
Collapse
|
26
|
Abstract
Transcription-induced hypernegative supercoiling is a hallmark of Escherichia coli topoisomerase I (topA) mutants. However, its physiological significance has remained unclear. Temperature downshift of a mutant yielded transient growth arrest and a parallel increase in hypernegative supercoiling that was more severe with lower temperature. Both properties were alleviated by overexpression of RNase HI. While ribosomes in extracts showed normal activity when obtained during growth arrest, mRNA on ribosomes was reduced for fis and shorter for crp, polysomes were much less abundant relative to monosomes, and protein synthesis rate dropped, as did the ratio of large to small proteins. Altered processing and degradation of lacA and fis mRNA was also observed. These data are consistent with truncation of mRNA during growth arrest. These effects were not affected by a mutation in the gene encoding RNase E, indicating that this endonuclease is not involved in the abnormal mRNA processing. They were also unaffected by spectinomycin, an inhibitor of protein synthesis, which argued against induction of RNase activity. In vitro transcription revealed that R-loop formation is more extensive on hypernegatively supercoiled templates. These results allow us, for the first time, to present a model by which hypernegative supercoiling inhibits growth. In this model, the introduction of hypernegative supercoiling by gyrase facilitates degradation of nascent RNA; overproduction of RNase HI limits the accumulation of hypernegative supercoiling, thereby preventing extensive RNA degradation.
Collapse
|
27
|
Use of gyrase resistance mutants to guide selection of 8-methoxy-quinazoline-2,4-diones. Antimicrob Agents Chemother 2008; 52:3915-21. [PMID: 18765690 DOI: 10.1128/aac.00330-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A series of 1-cyclopropyl-8-methoxy-quinazoline-2,4-diones was synthesized and evaluated for lowering the ratio of the antimicrobial MIC in gyrase resistance mutants to that in the gyr(+) (wild type) using isogenic strains of Escherichia coli. Dione features that lowered this ratio were a 3-amino group and C-7 ring structure (3-aminomethyl pyrrolidinyl < 3-aminopyrrolidinyl < diazobicyclo < 2-ethyl piperazinyl). The wild-type MIC was also lowered. With the most active derivative tested, many gyrA resistance mutant types were as susceptible as, or more susceptible than, wild-type cells. The most active 2,4-dione derivatives were also more active with two quinolone-resistant gyrB mutants than with wild-type cells. With respect to lethality, the most bacteriostatic 2,4-dione killed E. coli at a rate that was affected little by a gyrA resistance mutation, and it exhibited a rate of killing similar to its cognate fluoroquinolone at 10x the MIC. Population analysis with wild-type E. coli applied to agar showed that the mutant selection window for the most active 2,4-dione was narrower than that for the cognate fluoroquinolone or for ciprofloxacin. These data illustrate a new approach to guide early-stage antimicrobial selection. Use of antimutant activity (i.e., ratio of the antimicrobial MIC in a mutant strain to the antimicrobial MIC in a wild-type strain) as a structure-function selection criterion can be combined with traditional efforts aimed at lowering antimicrobial MICs against wild-type organisms to more effectively afford lead molecules with activity against both wild-type and mutant cells.
Collapse
|
28
|
Usongo V, Nolent F, Sanscartier P, Tanguay C, Broccoli S, Baaklini I, Drlica K, Drolet M. Depletion of RNase HI activity in Escherichia coli lacking DNA topoisomerase I leads to defects in DNA supercoiling and segregation. Mol Microbiol 2008; 69:968-81. [PMID: 18554330 DOI: 10.1111/j.1365-2958.2008.06334.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gyrase-mediated hypernegative supercoiling is one manifestation of R-loop formation, a phenomenon that is normally suppressed by topoisomerase I (topA) in Escherichia coli. Overproduction of RNase HI (rnhA), an enzyme that removes the RNA moiety of R-loops, prevents hypernegative supercoiling and allows growth of topA null mutants. We previously showed that topA and rnhA null mutations are incompatible. We now report that such mutants were viable when RNase HI or topoisomerase III was expressed from a plasmid-borne gene. Surprisingly, DNA of topA null mutants became relaxed rather than hypernegatively supercoiled following depletion of RNase HI activity. This result failed to correlate with the cellular concentration of gyrase or topoisomerase IV (the other relaxing enzyme in the cell) or with transcription-induced supercoiling. Rather, intracellular DNA relaxation in the absence of RNase HI was related to inhibition of gyrase activity both in vivo and in extracts. Cells lacking topA and rnhA also exhibited properties consistent with segregation defects. Overproduction of topoisomerase III, an enzyme that can carry out DNA decatenation, corrected the segregation defects without restoring supercoiling activity. Collectively these data reveal (i) the existence of a cellular response to loss of RNase HI that counters the supercoiling activity of gyrase, and (ii) supercoiling-independent segregation defects due to loss of RNase HI from topA null mutants. Thus RNase HI plays a more central role in DNA topology than previously thought.
Collapse
Affiliation(s)
- Valentine Usongo
- Département de microbiologie et immunologie, Université de Montréal, CP 6128, Succ. Centre-ville, Montréal, P Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Samul R, Leng F. Transcription-coupled hypernegative supercoiling of plasmid DNA by T7 RNA polymerase in Escherichia coli topoisomerase I-deficient strains. J Mol Biol 2007; 374:925-35. [PMID: 17980389 DOI: 10.1016/j.jmb.2007.10.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2007] [Revised: 09/08/2007] [Accepted: 10/02/2007] [Indexed: 10/22/2022]
Abstract
Transcription by RNA polymerase can stimulate negative DNA supercoiling in Escherichia coli topA strains. This phenomenon has been explained by a "twin-supercoiled-domain" model of transcription in which positive DNA supercoils are generated in front of a translocating RNA polymerase and negative supercoils behind it. However, since there is lack of a specific system to study the factors governing this biologically important process, the parameters regulating transcription-coupled DNA supercoiling (TCDS) in E.coli still remain elusive. Here, we describe our efforts to study TCDS in E.coli using a newly developed system. This system consists of a topA strain, VS111(DE3) or DM800(DE3), in which a lambdaDE3 prophage containing a T7 RNA polymerase gene under the control of lacUV5 promoter has been integrated into the cell chromosome, along with a set of plasmids producing RNA transcripts of various lengths by T7 RNA polymerase. Using this system, we found that transcription by T7 RNA polymerase strikingly induced the formation of hypernegatively supercoiled plasmid DNA. We also discovered, for the first time, that TCDS was dependent on the length of RNA transcripts in vivo, precisely predicted by the twin-supercoiled-domain model of transcription. Furthermore, our results demonstrated that hypernegative supercoiling of plasmid DNA by T7 RNA polymerase did not require anchoring of DNA to the bacterial cytoplasmic membrane. These results indicate that a transcribing RNA polymerase alone is sufficient to cause a change in local DNA superhelicity, which can have a powerful impact on the conformation and function of critical DNA sequence elements such as promoters and DNA replication origins.
Collapse
Affiliation(s)
- Rebecca Samul
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW 8th Street, Miami, FL 33199, USA
| | | |
Collapse
|
30
|
Abdelbaqi K, Buissonnière A, Prouzet-Mauleon V, Gresser J, Wesley I, Mégraud F, Ménard A. Development of a real-time fluorescence resonance energy transfer PCR to detect arcobacter species. J Clin Microbiol 2007; 45:3015-21. [PMID: 17652482 PMCID: PMC2045264 DOI: 10.1128/jcm.00256-07] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A real-time PCR targeting the gyrase A subunit gene outside the quinolone resistance-determining region has been developed to detect Arcobacter species. The species identification was done by probe hybridization and melting curve analysis, using fluorescence resonance energy transfer technology. Discrimination between Arcobacter species was straightforward, as the corresponding melting points showed significant differences with the characteristic melting temperatures of 63.5 degrees C, 58.4 degrees C, 60.6 degrees C, and 51.8 degrees C for the Arcobacter butzleri, Arcobacter cryaerophilus, Arcobacter cibarius, and Arcobacter nitrofigilis type strains, respectively. The specificity of this assay was confirmed with pure cultures of 106 Arcobacter isolates from human clinical and veterinary specimens identified by phenotypic methods and 16S rRNA gene sequencing. The assay was then used to screen 345 clinical stool samples obtained from patients with diarrhea. The assay detected A. butzleri in four of these clinical samples (1.2%). These results were confirmed by a conventional PCR method targeting the 16S rRNA gene with subsequent sequencing of the PCR product. In conclusion, this real-time assay detects and differentiates Arcobacter species in pure culture as well as in the competing microbiota of the stool matrix. The assay is economical since only one biprobe is used and multiple Arcobacter species are identified in a single test.
Collapse
Affiliation(s)
- Khalil Abdelbaqi
- Université Victor Segalen Bordeaux 2, Centre National de Référence des Helicobacters et Campylobacters, F33076 Bordeaux, France
| | | | | | | | | | | | | |
Collapse
|
31
|
Champion K, Higgins NP. Growth rate toxicity phenotypes and homeostatic supercoil control differentiate Escherichia coli from Salmonella enterica serovar Typhimurium. J Bacteriol 2007; 189:5839-49. [PMID: 17400739 PMCID: PMC1952050 DOI: 10.1128/jb.00083-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium share high degrees of DNA and amino acid identity for 65% of the homologous genes shared by the two genomes. Yet, there are different phenotypes for null mutants in several genes that contribute to DNA condensation and nucleoid formation. The mutant R436-S form of the GyrB protein has a temperature-sensitive phenotype in Salmonella, showing disruption of supercoiling near the terminus and replicon failure at 42 degrees C. But this mutation in E. coli is lethal at the permissive temperature. A unifying hypothesis for why the same mutation in highly conserved homologous genes of different species leads to different physiologies focuses on homeotic supercoil control. During rapid growth in mid-log phase, E. coli generates 15% more negative supercoils in pBR322 DNA than Salmonella. Differences in compaction and torsional strain on chromosomal DNA explain a complex set of single-gene phenotypes and provide insight into how supercoiling may modulate epigenetic effects on chromosome structure and function and on prophage behavior in vivo.
Collapse
Affiliation(s)
- Keith Champion
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0024
| | - N. Patrick Higgins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0024
- Corresponding author. Mailing address: KAUL-524, 720 20th Street South, Birmingham, AL 35294. Phone: (205) 934-3299. Fax: (205) 975-5955. E-mail:
| |
Collapse
|
32
|
Schmidt KH, Reimers JM, Wright BE. The effect of promoter strength, supercoiling and secondary structure on mutation rates in Escherichia coli. Mol Microbiol 2007; 60:1251-61. [PMID: 16689800 DOI: 10.1111/j.1365-2958.2006.05166.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Four mutations resulting in opal stop codons were individually engineered into a plasmid-borne chloramphenicol-resistance (cat) gene driven by the lac promoter. These four mutations were located at different sites in secondary structures. The mutations were analysed with the computer program mfg, which predicted their relative reversion frequencies. Reversion frequencies determined experimentally correlated with the mutability of the bases as predicted by mfg. To examine the effect of increased transcription on reversion frequencies, the lac promoter was replaced with the stronger tac promoter, which resulted in 12- to 30-fold increases in reversion rates. The effect of increased and decreased supercoiling was also investigated. The cat mutants had higher reversion rates in a topA mutant strain with increased negative supercoiling compared with wild-type levels, and the cat reversion rates were lower in a topA gyrB mutant strain with decreased negative supercoiling, as predicted.
Collapse
Affiliation(s)
- Karen H Schmidt
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | | | | |
Collapse
|
33
|
Abstract
Escherichia coli is a model system to study the mechanism of DNA replication and its regulation during the cell cycle. One regulatory pathway ensures that initiation of DNA replication from the chromosomal origin, oriC, is synchronous and occurs at the proper time in the bacterial cell cycle. A major player in this pathway is SeqA protein and involves its ability to bind preferentially to oriC when it is hemi-methylated. The second pathway modulates DnaA activity by stimulating the hydrolysis of ATP bound to DnaA protein. The regulatory inactivation of DnaA function involves an interaction with Hda protein and the beta dimer, which functions as a sliding clamp for the replicase, DNA polymerase III holoenzyme. The datA locus represents a third mechanism, which appears to influence the availability of DnaA protein in supporting rifampicin-resistant initiations.
Collapse
Affiliation(s)
- Jon M Kaguni
- Department of Biochemistry & Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| |
Collapse
|
34
|
Malik M, Hussain S, Drlica K. Effect of anaerobic growth on quinolone lethality with Escherichia coli. Antimicrob Agents Chemother 2006; 51:28-34. [PMID: 17043118 PMCID: PMC1797672 DOI: 10.1128/aac.00739-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Quinolone activity against Escherichia coli was examined during aerobic growth, aerobic treatment with chloramphenicol, and anaerobic growth. Nalidixic acid, norfloxacin, ciprofloxacin, and PD161144 were lethal for cultures growing aerobically, and the bacteriostatic activity of each quinolone was unaffected by anaerobic growth. However, lethal activity was distinct for each quinolone with cells treated aerobically with chloramphenicol or grown anaerobically. Nalidixic acid failed to kill cells under both conditions; norfloxacin killed cells when they were grown anaerobically but not when they were treated with chloramphenicol; ciprofloxacin killed cells under both conditions but required higher concentrations than those required with cells grown aerobically; and PD161144, a C-8-methoxy fluoroquinolone, was equally lethal under all conditions. Following pretreatment with nalidixic acid, a shift to anaerobic conditions or the addition of chloramphenicol rapidly blocked further cell death. Formation of quinolone-gyrase-DNA complexes, observed as a sodium dodecyl sulfate (SDS)-dependent drop in cell lysate viscosity, occurred during aerobic and anaerobic growth and in the presence and in the absence of chloramphenicol. However, lethal chromosome fragmentation, detected as a drop in viscosity in the absence of SDS, occurred with nalidixic acid treatment only under aerobic conditions in the absence of chloramphenicol. With PD161144, chromosome fragmentation was detected when the cells were grown aerobically and anaerobically and in the presence and in the absence of chloramphenicol. Thus, all quinolones tested appear to form reversible bacteriostatic complexes containing broken DNA during aerobic growth, during anaerobic growth, and when protein synthesis is blocked; however, the ability to fragment chromosomes and to rapidly kill cells under these conditions depends on quinolone structure.
Collapse
Affiliation(s)
- Muhammad Malik
- Public Health Research Institute, 225 Warren Street, Newark, NJ 07103, USA
| | | | | |
Collapse
|
35
|
Zhao X, Malik M, Chan N, Drlica-Wagner A, Wang JY, Li X, Drlica K. Lethal action of quinolones against a temperature-sensitive dnaB replication mutant of Escherichia coli. Antimicrob Agents Chemother 2006; 50:362-4. [PMID: 16377712 PMCID: PMC1346826 DOI: 10.1128/aac.50.1.362-364.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Inhibition of DNA replication in an Escherichia coli dnaB-22 mutant failed to block quinolone-mediated lethality. Inhibition of protein synthesis by chloramphenicol inhibited nalidixic acid lethality and, to a lesser extent, ciprofloxacin lethality in both dnaB-22 and wild-type cells. Thus, major features of quinolone-mediated lethality do not depend on ongoing replication.
Collapse
Affiliation(s)
- Xilin Zhao
- Public Health Research Institute, 225 Warren St., Newark, New Jersey 07103, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Tobes R, Pareja E. Bacterial repetitive extragenic palindromic sequences are DNA targets for Insertion Sequence elements. BMC Genomics 2006; 7:62. [PMID: 16563168 PMCID: PMC1525189 DOI: 10.1186/1471-2164-7-62] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2005] [Accepted: 03/24/2006] [Indexed: 02/04/2023] Open
Abstract
Background Mobile elements are involved in genomic rearrangements and virulence acquisition, and hence, are important elements in bacterial genome evolution. The insertion of some specific Insertion Sequences had been associated with repetitive extragenic palindromic (REP) elements. Considering that there are a sufficient number of available genomes with described REPs, and exploiting the advantage of the traceability of transposition events in genomes, we decided to exhaustively analyze the relationship between REP sequences and mobile elements. Results This global multigenome study highlights the importance of repetitive extragenic palindromic elements as target sequences for transposases. The study is based on the analysis of the DNA regions surrounding the 981 instances of Insertion Sequence elements with respect to the positioning of REP sequences in the 19 available annotated microbial genomes corresponding to species of bacteria with reported REP sequences. This analysis has allowed the detection of the specific insertion into REP sequences for ISPsy8 in Pseudomonas syringae DC3000, ISPa11 in P. aeruginosa PA01, ISPpu9 and ISPpu10 in P. putida KT2440, and ISRm22 and ISRm19 in Sinorhizobium meliloti 1021 genome. Preference for insertion in extragenic spaces with REP sequences has also been detected for ISPsy7 in P. syringae DC3000, ISRm5 in S. meliloti and ISNm1106 in Neisseria meningitidis MC58 and Z2491 genomes. Probably, the association with REP elements that we have detected analyzing genomes is only the tip of the iceberg, and this association could be even more frequent in natural isolates. Conclusion Our findings characterize REP elements as hot spots for transposition and reinforce the relationship between REP sequences and genomic plasticity mediated by mobile elements. In addition, this study defines a subset of REP-recognizer transposases with high target selectivity that can be useful in the development of new tools for genome manipulation.
Collapse
Affiliation(s)
- Raquel Tobes
- Bioinformatics Unit, Era7 Information Technologies SL, BIC Granada CEEI, Parque Tecnológico de Ciencias de la Salud – Armilla Granada 18100, Spain
| | - Eduardo Pareja
- Bioinformatics Unit, Era7 Information Technologies SL, BIC Granada CEEI, Parque Tecnológico de Ciencias de la Salud – Armilla Granada 18100, Spain
| |
Collapse
|
37
|
Valjavec-Gratian M, Henderson TA, Hill TM. Tus-mediated arrest of DNA replication in Escherichia coli is modulated by DNA supercoiling. Mol Microbiol 2006; 58:758-73. [PMID: 16238625 DOI: 10.1111/j.1365-2958.2005.04860.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the absence of RecA, expression of the Tus protein of Escherichia coli is lethal when ectopic Ter sites are inserted into the chromosome in an orientation that blocks completion of chromosome replication. Using this observation as a basis for genetic selection, an extragenic suppressor of Tus-mediated arrest of DNA replication was isolated with diminished ability of Tus to halt DNA replication. Resistance to tus expression mapped to a mutation in the stop codon of the topA gene (topA869), generating an elongated topoisomerase I protein with a marked reduction in activity. Other alleles of topA with mutations in the carboxyl-terminal domain of topoisomerase I, topA10 and topA66, also rendered recA strains with blocking Ter sites insensitive to tus expression. Thus, increased negative supercoiling in the DNA of these mutants reduced the ability of Tus-Ter complexes to arrest DNA replication. The increase in superhelical density did not diminish replication arrest by disrupting Tus-Ter interactions, as Tus binding to Ter sites was essentially unaffected by the topA mutations. The topA869 mutation also relieved the requirement for recombination functions other than recA to restart replication, such as recC, ruvA and ruvC, indicating that the primary effect of the increased negative supercoiling was to interfere with Tus blockage of DNA replication. Introduction of gyrB mutations in combination with the topA869 mutation restored supercoiling density to normal values and also restored replication arrest at Ter sites, suggesting that supercoiling alone modulated Tus activity. We propose that increased negative supercoiling enhances DnaB unwinding activity, thereby reducing the duration of the Tus-DnaB interaction and leading to decreased Tus activity.
Collapse
Affiliation(s)
- Majda Valjavec-Gratian
- National Center for Biotechnology Information, US National Library of Medicine, 8600 Rockville Pike, Bethesda, MD 20894, USA
| | | | | |
Collapse
|
38
|
Ménard A, Dachet F, Prouzet-Mauleon V, Oleastro M, Mégraud F. Development of a real-time fluorescence resonance energy transfer PCR to identify the main pathogenic Campylobacter spp. Clin Microbiol Infect 2005; 11:281-7. [PMID: 15760424 DOI: 10.1111/j.1469-0691.2005.01072.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A simple real-time fluorescence resonance energy transfer (FRET) PCR, targeting the gyrA gene outside the quinolone resistance-determining region, was developed to identify Campylobacter jejuni and Campylobacter coli. These species were distinguished easily, as the corresponding melting points showed a difference of 15 degrees C. A second assay using the same biprobe and PCR conditions, but different PCR primers, was also developed to identify the less frequently encountered Campylobacter fetus. These assays were applied to 807 Campylobacter isolates from clinical specimens. Compared to phenotypic identification tests, the FRET assay yielded the same results for all except three of the isolates. Analysis by standard PCR and 16S rDNA sequencing demonstrated that two of these isolates were hippurate-negative C. jejuni strains, resulting in an erroneous phenotypic identification, while the third was an isolate of C. coli that contained a gyrA gene typical of C. jejuni, resulting in misidentification by the FRET assay. The FRET assay identified more isolates than standard PCR, which failed to yield amplification products with c. 10% of isolates. It was concluded that the FRET assays were rapid, reliable, reproducible and relatively cost-efficient, as they require only one biprobe and can be performed directly on boiled isolates.
Collapse
Affiliation(s)
- A Ménard
- Laboratoire de Bactériologie, Université Victor Segalen Bordeaux 2, France.
| | | | | | | | | |
Collapse
|
39
|
Abstract
The viability of the topA mutants lacking DNA topoisomerase I was thought to depend on the presence of compensatory mutations in Escherichia coli but not Salmonella typhimurium or Shigella flexneri. This apparent discrepancy in topA requirements in different bacteria prompted us to reexamine the topA requirements in E. coli. We find that E. coli strains bearing topA mutations, introduced into the strains by DNA-mediated gene replacement, are viable at 37 or 42 degrees C without any compensatory mutations. These topA(-) cells exhibit cold sensitivity in their growth, however, and this cold sensitivity phenotype appears to be caused by excessive negative supercoiling of intracellular DNA. In agreement with previous results (Zhu, Q., Pongpech, P., and DiGate, R. J. (2001) Proc. Natl. Acad. Sci. U. S. A. 98, 9766-9771), E. coli cells lacking both type IA DNA topoisomerases I and III are found to be nonviable, indicating that the two type IA enzymes share a critical cellular function.
Collapse
Affiliation(s)
- Vera A Stupina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
40
|
Sun Q, Margolin W. Effects of perturbing nucleoid structure on nucleoid occlusion-mediated toporegulation of FtsZ ring assembly. J Bacteriol 2004; 186:3951-9. [PMID: 15175309 PMCID: PMC419936 DOI: 10.1128/jb.186.12.3951-3959.2004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, assembly of the FtsZ ring (Z ring) at the cell division site is negatively regulated by the nucleoid in a phenomenon called nucleoid occlusion (NO). Previous studies have indicated that chromosome packing plays a role in NO, as mukB mutants grown in rich medium often exhibit FtsZ rings on top of diffuse, unsegregated nucleoids. To address the potential role of overall nucleoid structure on NO, we investigated the effects of disrupting chromosome structure on Z-ring positioning. We found that NO was mostly normal in cells with inactivated DNA gyrase or in mukB-null mutants lacking topA, although some suppression of NO was evident in the latter case. Previous reports suggesting that transcription, translation, and membrane insertion of proteins ("transertion") influence nucleoid structure prompted us to investigate whether disruption of these activities had effects on NO. Blocking transcription caused nucleoids to become diffuse, and FtsZ relocalized to multiple bands on top of these nucleoids, biased towards midcell. This suggested that these diffuse nucleoids were defective in NO. Blocking translation with chloramphenicol caused characteristic nucleoid compaction, but FtsZ rarely assembled on top of these centrally positioned nucleoids. This suggested that NO remained active upon translation inhibition. Blocking protein secretion by thermoinduction of a secA(Ts) strain caused a chromosome segregation defect similar to that in parC mutants, and NO was active. Although indirect effects are certainly possible with these experiments, the above data suggest that optimum NO activity may require specific organization and structure of the nucleoid.
Collapse
Affiliation(s)
- Qin Sun
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, 6431 Fannin, Houston, TX 77030, USA
| | | |
Collapse
|
41
|
Nagy Z, Chandler M. Regulation of transposition in bacteria. Res Microbiol 2004; 155:387-98. [PMID: 15207871 DOI: 10.1016/j.resmic.2004.01.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2003] [Accepted: 01/20/2004] [Indexed: 11/30/2022]
Abstract
Mobile genetic elements (MGEs) play a central role in the evolution of bacterial genomes. Transposable elements (TE: transposons and insertion sequences) represent an important group of these elements. Comprehension of the dynamics of genome evolution requires an understanding of how the activity of TEs is regulated and how their activity responds to the physiology of the host cell. This article presents an overview of the large range of, often astute, regulatory mechanisms, which have been adopted by TEs. These include mechanisms intrinsic to the element at the level of gene expression, the presence of key checkpoints in the recombination pathway and the intervention of host proteins which provide a TE/host interface. The multiplicity and interaction of these mechanisms clearly illustrates the importance of limiting transposition activity and underlines the compromise that has been reached between TE activity and the host genome. Finally, we consider how TE activity can shape the host genome.
Collapse
MESH Headings
- Bacteria/genetics
- DNA Methylation
- DNA Repair/genetics
- DNA Transposable Elements/genetics
- DNA, Superhelical/genetics
- Evolution, Molecular
- Frameshifting, Ribosomal/genetics
- Gene Expression Regulation, Bacterial/genetics
- Genes, Bacterial/genetics
- Genome, Bacterial
- Integration Host Factors/genetics
- Models, Genetic
- Promoter Regions, Genetic/genetics
- Protein Biosynthesis/genetics
- RNA Stability/genetics
- RNA, Antisense/genetics
- SOS Response, Genetics/genetics
Collapse
Affiliation(s)
- Zita Nagy
- Laboratoire de Microbiologie et de Génétique Moléculaire (CNRS), 118 route de Narbonne, F-31062 Toulouse Cedex, France
| | | |
Collapse
|
42
|
Ravindranath MH, Muthugounder S, Presser N, Viswanathan S. Anticancer therapeutic potential of soy isoflavone, genistein. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2004; 546:121-65. [PMID: 15584372 DOI: 10.1007/978-1-4757-4820-8_11] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genistein (4'5, 7-trihydroxyisoflavone) occurs as a glycoside (genistin) in the plant family Leguminosae, which includes the soybean (Glycine max). A significant correlation between the serum/plasma level of genistein and the incidence of gender-based cancers in Asian, European and American populations suggests that genistein may reduce the risk of tumor formation. Other evidence includes the mechanism of action of genistein in normal and cancer cells. Genistein inhibits protein tyrosine kinase (PTK), which is involved in phosphorylation of tyrosyl residues of membrane-bound receptors leading to signal transduction, and it inhibits topoisomerase II, which participates in DNA replication, transcription and repair. By blocking the activities of PTK, topoisomerase II and matrix metalloprotein (MMP9) and by down-regulating the expression of about 11 genes, including that of vascular endothelial growth factor (VEGF), genistein can arrest cell growth and proliferation, cell cycle at G2/M, invasion and angiogenesis. Furthermore, genistein can alter the expression of gangliosides and other carbohydrate antigens to facilitate their immune recognition. Genistein acts synergistically with drugs such as tamoxifen, cisplatin, 1,3-bis 2-chloroethyl-1-nitrosourea (BCNU), dexamethasone, daunorubicin and tiazofurin, and with bioflavonoid food supplements such as quercetin, green-tea catechins and black-tea thearubigins. Genistein can augment the efficacy of radiation for breast and prostate carcinomas. Because it increases melanin production and tyrosinase activity, genistein can protect melanocytes of the skin of Caucasians from UV-B radiation-induced melanoma. Genistein-induced antigenic alteration has the potential for improving active specific immunotherapy of melanoma and carcinomas. When conjugated to B43 monoclonal antibody, genistein becomes a tool for passive immunotherapy to target B-lineage leukemias that overexpress the target antigen CD19. Genistein is also conjugated to recombinant EGF to target cancers overexpressing the EGF receptor. Although genistein has many potentially therapeutic actions against cancer, its biphasic bioactivity (inhibitory at high concentrations and activating at low concentrations) requires caution in determining therapeutic doses of genistein alone or in combination with chemotherapy, radiation therapy, and/or immunotherapies. Of the more than 4500 genistein studies in peer-reviewed primary publications, almost one fifth pertain to its antitumor capabilities and more than 400 describe its mechanism of action in normal and malignant human and animal cells, animal models, in vitro experiments, or phase I/II clinical trials. Several biotechnological firms in Japan, Australia and in the United States (e.g., Nutrilite) manufacture genistein as a natural supplement under quality controlled and assured conditions.
Collapse
Affiliation(s)
- Mepur H Ravindranath
- Laboratory of Glycoimmunotherapy, John Wayne Cancer Institute, 2200 Santa Monica Blvd., Santa Monica, CA 90404-2302, USA.
| | | | | | | |
Collapse
|
43
|
Olsson JA, Nordström K, Hjort K, Dasgupta S. Eclipse–Synchrony Relationship in Escherichia coli Strains with Mutations Affecting Sequestration, Initiation of Replication and Superhelicity of the Bacterial Chromosome. J Mol Biol 2003; 334:919-31. [PMID: 14643657 DOI: 10.1016/j.jmb.2003.10.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Initiation of replication from oriC on the Escherichia coli chromosomes occurs once and only once per generation at the same cell mass per origin. During rapid growth there are overlapping replication cycles, and initiation occurs synchronously at two or more copies of oriC. Since the bacterial growth can vary over a wide range (from three divisions per hour to 2.5 hours or more per division) the frequency of initiation should change in coordination with bacterial growth. Prevention of reinitiation from a newly replicated origin by temporary sequestration of the hemi-methylated GATC-sites in the origin region provides the molecular/genetic basis for the maintenance of the eclipse period between two successive rounds of replication. Sequestration is also believed to be responsible for initiation synchrony, since inactivation of either the seqA or the dam gene abolishes synchrony while drastically reducing the eclipse. In this work, we attempted to examine the functional relationship(s) between the eclipse period and the synchrony of initiation in E.coli strains by direct measurements of these parameters by density-shift centrifugation and flow-cytometric analyses, respectively. The eclipse period, measured as a fraction of DNA-duplication times, varied continuously from 0.6 for the wild-type E.coli K12 to 0.1 for strains with mutations in seqA, dam, dnaA, topA and gyr genes (all of which have been shown to cause asynchrony) and their various combinations. The asynchrony index, a quantitative indicator for the loss of synchrony of initiation, changed from low (synchronous) to high (asynchronous) values in a step-function-like relationship with the eclipse. An eclipse period of approximately 0.5 generation time appeared to be the critical value for the switch from synchronous to asynchronous initiation.
Collapse
Affiliation(s)
- Jan A Olsson
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
44
|
García-Rubio M, Huertas P, González-Barrera S, Aguilera A. Recombinogenic Effects of DNA-Damaging Agents Are Synergistically Increased by Transcription inSaccharomyces cerevisiae: New Insights Into Transcription-Associated Recombination. Genetics 2003; 165:457-66. [PMID: 14573461 PMCID: PMC1462770 DOI: 10.1093/genetics/165.2.457] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
AbstractHomologous recombination of a particular DNA sequence is strongly stimulated by transcription, a phenomenon observed from bacteria to mammals, which we refer to as transcription-associated recombination (TAR). TAR might be an accidental feature of DNA chemistry with important consequences for genetic stability. However, it is also essential for developmentally regulated processes such as class switching of immunoglobulin genes. Consequently, it is likely that TAR embraces more than one mechanism. In this study we tested the possibility that transcription induces recombination by making DNA more susceptible to recombinogenic DNA damage. Using different plasmid-chromosome and direct-repeat recombination constructs in which transcription is driven from either the PGAL1- or the Ptet-regulated promoters, we haveshown that either 4-nitroquinoline-N-oxide (4-NQO) or methyl methanesulfonate (MMS) produces a synergistic increase of recombination when combined with transcription. 4-NQO and MMS stimulated recombination of a transcriptionally active DNA sequence up to 12,800- and 130-fold above the spontaneous levels observed in the absence of transcription, whereas 4-NQO and MMS alone increased recombination 193- and 4.5-fold, respectively. Our results provide evidence that TAR is due, at least in part, to the ability of transcription to enhance the accessibility of DNA to exogenous chemicals and internal metabolites responsible for recombinogenic lesions. We discuss possible parallelisms between the mechanisms of induction of recombination and mutation by transcription.
Collapse
Affiliation(s)
- M García-Rubio
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, 41012 Sevilla, Spain
| | | | | | | |
Collapse
|
45
|
Sutanto Y, Shoemaker NB, Gardner JF, Salyers AA. Characterization of Exc, a novel protein required for the excision of Bacteroides conjugative transposon. Mol Microbiol 2002; 46:1239-46. [PMID: 12453211 DOI: 10.1046/j.1365-2958.2002.03210.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Conjugative transposons are integrated elements that excise from the chromosome, then transfer by conjugation to a recipient in which they integrate once again. Recently, a gene, designated exc, was shown to be essential for excision of the Bacteroides conjugative transposon (CTnDOT) from the chromosome. The deduced amino acid sequence of Exc had low amino acid sequence similarity to DNA topoisomerase III, an enzyme that relaxes DNA supercoils. This similarity raised the question of whether Exc protein was a topoisomerase and, if so, whether topoisomerase activity might contribute to the excision process. Here, we demonstrate that Exc does have topoisomerase activity in vitro. Exc relaxed supercoiled DNA, had a conserved tyrosine as its active site and required magnesium ions for its relaxation activity. However, although mutation of the catalytic tyrosine of Exc to phenylalanine abolished the ability of the enzyme to relax DNA supercoils in vitro, the mutation did not abolish the ability of the protein to mediate excision in vivo. This surprising result suggests that CTnDOT excision does not rely on the topoisomerase activity of Exc in vivo.
Collapse
Affiliation(s)
- Yuri Sutanto
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | | | | | |
Collapse
|
46
|
Ahumada A, Tse-Dinh YC. The role of the Zn(II) binding domain in the mechanism of E. coli DNA topoisomerase I. BMC BIOCHEMISTRY 2002; 3:13. [PMID: 12052259 PMCID: PMC115839 DOI: 10.1186/1471-2091-3-13] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2002] [Accepted: 05/29/2002] [Indexed: 11/10/2022]
Abstract
BACKGROUND Escherichia coli DNA topoisomerase I binds three Zn(II) with three tetracysteine motifs which, together with the 14 kDa C-terminal region, form a 30 kDa DNA binding domain (ZD domain). The 67 kDa N-terminal domain (Top67) has the active site tyrosine for DNA cleavage but cannot relax negatively supercoiled DNA. We analyzed the role of the ZD domain in the enzyme mechanism. RESULTS Addition of purified ZD domain to Top67 partially restored the relaxation activity, demonstrating that covalent linkage between the two domains is not necessary for removal of negative supercoils from DNA. The two domains had similar affinities to ssDNA. However, only Top67 could bind dsDNA with high affinity. DNA cleavage assays showed that the Top67 had the same sequence and structure selectivity for DNA cleavage as the intact enzyme. DNA rejoining also did not require the presence of the ZD domain. CONCLUSIONS We propose that during relaxation of negatively supercoiled DNA, Top67 by itself can position the active site tyrosine near the junction of double-stranded and single-stranded DNA for cleavage. However, the interaction of the ZD domain with the passing single-strand of DNA, coupled with enzyme conformational change, is needed for removal of negative supercoils.
Collapse
Affiliation(s)
- Adriana Ahumada
- Department of Biochemistry and Molecular Biology, New York Medical College Valhalla, NY USA
| | - Yuk-Ching Tse-Dinh
- Department of Biochemistry and Molecular Biology, New York Medical College Valhalla, NY USA
| |
Collapse
|
47
|
Wang Y, Lynch AS, Chen SJ, Wang JC. On the molecular basis of the thermal sensitivity of an Escherichia coli topA mutant. J Biol Chem 2002; 277:1203-9. [PMID: 11700321 DOI: 10.1074/jbc.m109436200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Studies of two temperature-sensitive Escherichia coli topA strains AS17 and BR83, both of which were supposed to carry a topA amber mutation and a temperature-sensitive supD43,74 amber-suppressor, led to conflicting results regarding the essentiality of DNA topoisomerase I in cells grown in media of low osmolarity. We have therefore reexamined the molecular basis of the temperature sensitivity of strain AS17. We find that the supD allele in this strain had lost its temperature sensitivity. The temperature sensitivity of the strain, in media of all osmolarity, results from the synthesis of a mutant DNA topoisomerase I that is itself temperature-sensitive. Nucleotide sequencing of the AS17 topA allele and studies of its expected cellular product show that the mutant enzyme is not as active as its wild-type parent even at 30 degrees C, a permissive temperature for the strain, and its activity relative to the wild-type enzyme is further reduced at 42 degrees C, a nonpermissive temperature. Our results thus implicate an indispensable role of DNA topoisomerase I in E. coli cells grown in media of any osmolarity.
Collapse
Affiliation(s)
- Yong Wang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
48
|
Friedman SM, Lu T, Drlica K. Mutation in the DNA gyrase A Gene of Escherichia coli that expands the quinolone resistance-determining region. Antimicrob Agents Chemother 2001; 45:2378-80. [PMID: 11451702 PMCID: PMC90659 DOI: 10.1128/aac.45.8.2378-2380.2001] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In three Escherichia coli mutants, a change (Ala-51 to Val) in the gyrase A protein outside the standard quinolone resistance-determining region (QRDR) lowered the level of quinolone susceptibility more than changes at amino acids 67, 82, 84, and 106 did. Revision of the QRDR to include amino acid 51 is indicated.
Collapse
Affiliation(s)
- S M Friedman
- Department of Biological Sciences, Hunter College of The City University of New York, New York, New York 10021, USA.
| | | | | |
Collapse
|
49
|
Pasupathy K, Bhattacharya RK. Damage to DNA and activity of nuclear DNA repair and replicative enzymes following N-nitrosodiethylamine treatment to rats. J Biochem Mol Toxicol 2001; 14:277-82. [PMID: 10969999 DOI: 10.1002/1099-0461(2000)14:5<277::aid-jbt6>3.0.co;2-k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Continuous administration in the drinking water of hepatocarcinogen N-nitrosodiethylamine (NDEA) to male rats (200 mg/L) for 60 days resulted in DNA damage in the form of single strand breaks. The damage, which is measured as a shift in the sedimentation of DNA in alkaline sucrose density gradients, was found to be maximum at the fourth week of treatment, and the sedimentation pattern of DNA was found to return to near normal size by the seventh week of NDEA treatment. Simultaneously, there were perturbations in the nuclear enzymes involved in DNA replication and repair. Activities of DNA polymerase beta, DNA ligase, and topoisomerase were found to increase in as early as the first week of NDEA treatment and reached the maximum at the fourth week, and thereafter declined to normal level by the eighth week of treatment. Concomitantly, the activities of DNA polymerase alpha, DNA primase, and RNA polymerase which were unaltered in the initial period of carcinogen treatment recorded a marked increase after sixth week of NDEA treatment. Results suggest that administration of NDEA inflicts DNA damage, which is manifested as increase in DNA repair enzymes in the initial period and activated DNA replicative enzymes at a later period, indicating the active proliferation of transformed cells.
Collapse
Affiliation(s)
- K Pasupathy
- Bhabha Atomic Research Centre, Radiation Biology Division, Bombay, India
| | | |
Collapse
|
50
|
Von Freiesleben U, Rasmussen KV, Atlung T, Hansen FG. Rifampicin-resistant initiation of chromosome replication from oriC in ihf mutants. Mol Microbiol 2000; 37:1087-93. [PMID: 10972827 DOI: 10.1046/j.1365-2958.2000.02060.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
IHF (integration host factor) mutants exhibit asynchronous initiation of chromosome replication from oriC as determined from flow cytometric analysis of cultures where RNA synthesis was inhibited with rifampicin. However, the run-out kinetics of chromosome replication in ihf mutants shows that they continue to produce oriCs for some time in the absence of RNA synthesis resulting in a twofold increase in the oriC per mass ratio. An ihf dnaA double mutant did not exhibit this continued increase of the oriC per mass ratio. This indicates that ihf mutants can initiate replication from oriC in a rifampicin-resistant initiation mode but requires fully functional DnaA protein. The origin per mass ratio, determined by a quantitative Southern blotting technique, showed that the ihf mutants had an origin per mass ratio that was 60% of the wild type although it had a normal DnaA protein concentration. This shows that the initiation mass was substantially higher in the ihf mutants. The oriC per terminus ratio, which was also determined by Southern blotting, was very low in the ihf mutant, although it grew with the same doubling times as the wild-type strain. This indicates that cells lacking IHF replicate their chromosome(s) very fast.
Collapse
Affiliation(s)
- U Von Freiesleben
- Department of Microbiology, Technical University of Denmark, Building 301, DK-2800 Lyngby, Denmark
| | | | | | | |
Collapse
|