1
|
Bartsch T, Arndt C, Loureiro LR, Kegler A, Puentes-Cala E, Soto JA, Kurien BT, Feldmann A, Berndt N, Bachmann MP. A Small Step, a Giant Leap: Somatic Hypermutation of a Single Amino Acid Leads to Anti-La Autoreactivity. Int J Mol Sci 2021; 22:ijms222112046. [PMID: 34769474 PMCID: PMC8584381 DOI: 10.3390/ijms222112046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 11/16/2022] Open
Abstract
The anti-La mab 312B, which was established by hybridoma technology from human-La transgenic mice after adoptive transfer of anti-human La T cells, immunoprecipitates both native eukaryotic human and murine La protein. Therefore, it represents a true anti-La autoantibody. During maturation, the anti-La mab 312B acquired somatic hypermutations (SHMs) which resulted in the replacement of four aa in the complementarity determining regions (CDR) and seven aa in the framework regions. The recombinant derivative of the anti-La mab 312B in which all the SHMs were corrected to the germline sequence failed to recognize the La antigen. We therefore wanted to learn which SHM(s) is (are) responsible for anti-La autoreactivity. Humanization of the 312B ab by grafting its CDR regions to a human Ig backbone confirms that the CDR sequences are mainly responsible for anti-La autoreactivity. Finally, we identified that a single amino acid replacement (D > Y) in the germline sequence of the CDR3 region of the heavy chain of the anti-La mab 312B is sufficient for anti-La autoreactivity.
Collapse
Affiliation(s)
- Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Liliana R. Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Edinson Puentes-Cala
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- Corporación para la Investigación de la Corrosión (CIC), Piedecuesta 681011, Colombia
| | - Javier Andrés Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- BIOGEN Research Group, University of Santander, Faculty of Health Sciences, Cúcuta 540001, Colombia
| | - Biji T. Kurien
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Nicole Berndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
| | - Michael P. Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), 01328 Dresden, Germany; (T.B.); (C.A.); (L.R.L.); (A.K.); (E.P.-C.); (J.A.S.); (A.F.); (N.B.)
- BIOGEN Research Group, University of Santander, Faculty of Health Sciences, Cúcuta 540001, Colombia
- The Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
- Tumor Immunology, University Cancer Center (UCC), University Hospital Carl Gustav Carus Dresden, TU Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases (NCT), 03128 Dresden, Germany
- Correspondence: ; Tel.: +49-351-260-3223
| |
Collapse
|
2
|
Withers JB, Mondol V, Pawlica P, Rosa-Mercado NA, Tycowski KT, Ghasempur S, Torabi SF, Steitz JA. Idiosyncrasies of Viral Noncoding RNAs Provide Insights into Host Cell Biology. Annu Rev Virol 2019; 6:297-317. [PMID: 31039329 PMCID: PMC6768742 DOI: 10.1146/annurev-virology-092818-015811] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Like their host cells, many viruses express noncoding RNAs (ncRNAs). Despite the technical challenge of ascribing function to ncRNAs, diverse biological roles for virally expressed ncRNAs have been described, including regulation of viral replication, modulation of host gene expression, host immune evasion, cellular survival, and cellular transformation. Insights into conserved interactions between viral ncRNAs and host cell machinery frequently lead to novel findings concerning host cell biology. In this review, we discuss the functions and biogenesis of ncRNAs produced by animal viruses. Specifically, we describe noncanonical pathways of microRNA (miRNA) biogenesis and novel mechanisms used by viruses to manipulate miRNA and messenger RNA stability. We also highlight recent advances in understanding the function of viral long ncRNAs and circular RNAs.
Collapse
Affiliation(s)
- Johanna B Withers
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Vanessa Mondol
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Paulina Pawlica
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Nicolle A Rosa-Mercado
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Salehe Ghasempur
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Seyed F Torabi
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; , , , , , , ,
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
3
|
Vinayak J, Marrella SA, Hussain RH, Rozenfeld L, Solomon K, Bayfield MA. Human La binds mRNAs through contacts to the poly(A) tail. Nucleic Acids Res 2019; 46:4228-4240. [PMID: 29447394 PMCID: PMC5934636 DOI: 10.1093/nar/gky090] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 01/31/2018] [Indexed: 12/31/2022] Open
Abstract
In addition to a role in the processing of nascent RNA polymerase III transcripts, La proteins are also associated with promoting cap-independent translation from the internal ribosome entry sites of numerous cellular and viral coding RNAs. La binding to RNA polymerase III transcripts via their common UUU-3’OH motif is well characterized, but the mechanism of La binding to coding RNAs is poorly understood. Using electromobility shift assays and cross-linking immunoprecipitation, we show that in addition to a sequence specific UUU-3’OH binding mode, human La exhibits a sequence specific and length dependent poly(A) binding mode. We demonstrate that this poly(A) binding mode uses the canonical nucleic acid interaction winged helix face of the eponymous La motif, previously shown to be vacant during uridylate binding. We also show that cytoplasmic, but not nuclear La, engages poly(A) RNA in human cells, that La entry into polysomes utilizes the poly(A) binding mode, and that La promotion of translation from the cyclin D1 internal ribosome entry site occurs in competition with cytoplasmic poly(A) binding protein (PABP). Our data are consistent with human La functioning in translation through contacts to the poly(A) tail.
Collapse
Affiliation(s)
- Jyotsna Vinayak
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Stefano A Marrella
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Rawaa H Hussain
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Leonid Rozenfeld
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Karine Solomon
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| | - Mark A Bayfield
- Department of Biology, York University, 4700 Keele St., Life Science Building #327E, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
4
|
Meng W, Wang XJ, Wang HCR. Targeting nuclear proteins for control of viral replication. Crit Rev Microbiol 2019; 45:495-513. [DOI: 10.1080/1040841x.2018.1553848] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wen Meng
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Xiao-Jia Wang
- Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Hwa-Chain Robert Wang
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, The University of Tennessee, Knoxville, USA
| |
Collapse
|
5
|
Mattijssen S, Arimbasseri AG, Iben JR, Gaidamakov S, Lee J, Hafner M, Maraia RJ. LARP4 mRNA codon-tRNA match contributes to LARP4 activity for ribosomal protein mRNA poly(A) tail length protection. eLife 2017; 6:e28889. [PMID: 28895529 PMCID: PMC5626478 DOI: 10.7554/elife.28889] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA function is controlled by the 3' poly(A) tail (PAT) and poly(A)-binding protein (PABP). La-related protein-4 (LARP4) binds poly(A) and PABP. LARP4 mRNA contains a translation-dependent, coding region determinant (CRD) of instability that limits its expression. Although the CRD comprises <10% of LARP4 codons, the mRNA levels vary >20 fold with synonymous CRD substitutions that accommodate tRNA dynamics. Separately, overexpression of the most limiting tRNA increases LARP4 levels and reveals its functional activity, net lengthening of the PATs of heterologous mRNAs with concomitant stabilization, including ribosomal protein (RP) mRNAs. Genetic deletion of cellular LARP4 decreases PAT length and RPmRNA stability. This LARP4 activity requires its PABP-interaction domain and the RNA-binding module which we show is sensitive to poly(A) 3'-termini, consistent with protection from deadenylation. The results indicate that LARP4 is a posttranscriptional regulator of ribosomal protein production in mammalian cells and suggest that this activity can be controlled by tRNA levels.
Collapse
Affiliation(s)
- Sandy Mattijssen
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | | | - James R Iben
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Sergei Gaidamakov
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Joowon Lee
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
| | - Markus Hafner
- National Institute of Arthritis and Musculoskeletal and Skin DiseasesNational Institutes of HealthBethesdaUnited States
| | - Richard J Maraia
- Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaUnited States
- Commissioned CorpsUS Public Health ServiceBethesdaUnited Staes
| |
Collapse
|
6
|
Katsarou K, Rao ALN, Tsagris M, Kalantidis K. Infectious long non-coding RNAs. Biochimie 2015; 117:37-47. [PMID: 25986218 DOI: 10.1016/j.biochi.2015.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/07/2015] [Indexed: 02/06/2023]
Abstract
Long non protein coding RNAs (lncRNAs) constitute a large category of the RNA world, able to regulate different biological processes. In this review we are focusing on infectious lncRNAs, their classification, pathogenesis and impact on the infected organisms. Here they are presented in two separate groups: 'dependent lncRNAs' (comprising satellites RNA, Hepatitis D virus and lncRNAs of viral origin) which need a helper virus and 'independent lncRNAs' (viroids) that can self-replicate. Even though these lncRNA do not encode any protein, their structure and/or sequence comprise all the necessary information to drive specific interactions with host factors and regulate several cellular functions. These new data that have emerged during the last few years concerning lncRNAs modify the way we understand molecular biology's 'central dogma' and give new perspectives for applications and potential therapeutic strategies.
Collapse
Affiliation(s)
- Konstantina Katsarou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - A L N Rao
- Department of Plant Pathology and Microbiology, University of California, Riverside, CA, 92521-01222, USA
| | - Mina Tsagris
- Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kriton Kalantidis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece; Department of Biology, University of Crete, Heraklion, Crete, Greece.
| |
Collapse
|
7
|
Deragon JM, Bousquet-Antonelli C. The role of LARP1 in translation and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:399-417. [PMID: 25892282 DOI: 10.1002/wrna.1282] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 03/13/2015] [Accepted: 03/13/2015] [Indexed: 12/11/2022]
Abstract
The LARP1 proteins form an evolutionarily homogeneous subgroup of the eukaryotic superfamily of La-Motif (LAM) containing factors. Members of the LARP1 family are found in most protists, fungi, plants, and animals. We review here evidence suggesting that LARP1 are key versatile messenger RNA (mRNA)-binding proteins involved in regulating important biological processes such as gametogenesis, embryogenesis, sex determination, and cell division in animals, as well as acclimation to stress in yeasts and plants. LARP1 proteins perform all these essential tasks likely by binding to key mRNAs and regulating their stability and/or translation. In human, the impact of LARP1 over cell division and proliferation is potentially under the control of the TORC1 complex. We review data suggesting that LARP1 is a direct target of this master signaling hub. TOR-dependent LARP1 phosphorylation could specifically enhance the translation of TOP mRNAs providing a way to promote translation, growth, and proliferation. Consequently, LARP1 is found to be significantly upregulated in many malignant cell types. In plants, LARP1 was found to act as a cofactor of the heat-induced mRNA degradation process, an essential acclimation strategy leading to the degradation of more than 4500 mRNAs coding for growth and development housekeeping functions. In Saccharomyces cerevisiae, the LARP1 proteins (Slf1p and Sro9p) are important, among other things, for copper resistance and oxidative stress survival. LARP1 proteins are therefore emerging as critical ancient mRNA-binding factors that evolved common as well as specific targets and regulatory functions in all eukaryotic lineages.
Collapse
Affiliation(s)
- Jean-Marc Deragon
- CNRS, LGDP-UMR5096, Perpignan, France.,University of Perpignan, LGDP-UMR5096, Perpignan, France
| | | |
Collapse
|
8
|
Abstract
Eukaryotic cells produce several classes of long and small noncoding RNA (ncRNA). Many DNA and RNA viruses synthesize their own ncRNAs. Like their host counterparts, viral ncRNAs associate with proteins that are essential for their stability, function, or both. Diverse biological roles--including the regulation of viral replication, viral persistence, host immune evasion, and cellular transformation--have been ascribed to viral ncRNAs. In this review, we focus on the multitude of functions played by ncRNAs produced by animal viruses. We also discuss their biogenesis and mechanisms of action.
Collapse
Affiliation(s)
- Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Yang Eric Guo
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Tenaya K Vallery
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Mingyi Xie
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
9
|
Human La protein interaction with GCAC near the initiator AUG enhances hepatitis C Virus RNA replication by promoting linkage between 5' and 3' untranslated regions. J Virol 2013; 87:6713-26. [PMID: 23552417 DOI: 10.1128/jvi.00525-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Human La protein has been implicated in facilitating the internal initiation of translation as well as replication of hepatitis C virus (HCV) RNA. Previously, we demonstrated that La interacts with the HCV internal ribosome entry site (IRES) around the GCAC motif near the initiator AUG within stem-loop IV by its RNA recognition motif (RRM) (residues 112 to 184) and influences HCV translation. In this study, we have deciphered the role of this interaction in HCV replication in a hepatocellular carcinoma cell culture system. We incorporated mutation of the GCAC motif in an HCV monocistronic subgenomic replicon and a pJFH1 construct which altered the binding of La and checked HCV RNA replication by reverse transcriptase PCR (RT-PCR). The mutation drastically affected HCV replication. Furthermore, to address whether the decrease in replication is a consequence of translation inhibition or not, we incorporated the same mutation into a bicistronic replicon and observed a substantial decrease in HCV RNA levels. Interestingly, La overexpression rescued this inhibition of replication. More importantly, we observed that the mutation reduced the association between La and NS5B. The effect of the GCAC mutation on the translation-to-replication switch, which is regulated by the interplay between NS3 and La, was further investigated. Additionally, our analyses of point mutations in the GCAC motif revealed distinct roles of each nucleotide in HCV replication and translation. Finally, we showed that a specific interaction of the GCAC motif with human La protein is crucial for linking 5' and 3' ends of the HCV genome. Taken together, our results demonstrate the mechanism of regulation of HCV replication by interaction of the cis-acting element GCAC within the HCV IRES with human La protein.
Collapse
|
10
|
Köhn M, Pazaitis N, Hüttelmaier S. Why YRNAs? About Versatile RNAs and Their Functions. Biomolecules 2013; 3:143-56. [PMID: 24970161 PMCID: PMC4030889 DOI: 10.3390/biom3010143] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 01/27/2013] [Accepted: 01/31/2013] [Indexed: 11/20/2022] Open
Abstract
Y RNAs constitute a family of highly conserved small noncoding RNAs (in humans: 83-112 nt; Y1, Y3, Y4 and Y5). They are transcribed from individual genes by RNA-polymerase III and fold into conserved stem-loop-structures. Although discovered 30 years ago, insights into the cellular and physiological role of Y RNAs remains incomplete. In this review, we will discuss knowledge on the structural properties, associated proteins and discuss proposed functions of Y RNAs. We suggest Y RNAs to be an integral part of ribonucleoprotein networks within cells and could therefore have substantial influence on many different cellular processes. Putative functions of Y RNAs include small RNA quality control, DNA replication, regulation of the cellular stress response and proliferation. This suggests Y RNAs as essential regulators of cell fate and indicates future avenues of research, which will provide novel insights into the role of small noncoding RNAs in gene expression.
Collapse
Affiliation(s)
- Marcel Köhn
- Martin-Luther-University Halle-Wittenberg, Institute of Molecular Medicine, Section Molecular Cell Biology, ZAMED, Heinrich-Damerow-Str.1, D-6120 Halle, Germany.
| | - Nikolaos Pazaitis
- Martin-Luther-University Halle-Wittenberg, Institute of Molecular Medicine, Section Molecular Cell Biology, ZAMED, Heinrich-Damerow-Str.1, D-6120 Halle, Germany.
| | - Stefan Hüttelmaier
- Martin-Luther-University Halle-Wittenberg, Institute of Molecular Medicine, Section Molecular Cell Biology, ZAMED, Heinrich-Damerow-Str.1, D-6120 Halle, Germany.
| |
Collapse
|
11
|
Vashist S, Bhullar D, Vrati S. La protein can simultaneously bind to both 3'- and 5'-noncoding regions of Japanese encephalitis virus genome. DNA Cell Biol 2011; 30:339-46. [PMID: 21294637 DOI: 10.1089/dna.2010.1114] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Japanese encephalitis virus (JEV) genome is a single-stranded, positive-sense RNA with noncoding regions (NCRs) of 95 and 585 bases at its 5' and 3' ends, respectively. These may interact with viral or host proteins important for viral replication. We have previously shown that La protein binds the 3'-stem-loop (SL) structure of JEV 3'-NCR. Using electrophoretic mobility shift and ultraviolet crosslinking assays, we now show that La protein binds both 3'-SL and 5'-NCR of JEV. La protein binding to 5'-NCR RNA was stable under high salt condition (300 mM KCl) and the affinity of RNA protein interaction was high; the dissociation constant (K(d)) for La binding with 5'-NCR RNA was 8.8 nM, indicating the physiological relevance of the interaction. RNA toe-printing assays showed that La protein interacted with nucleotides located in the top loop of the predicted structure of 5'-NCR RNA. Using competitive binding studies and 5'-3' coprecipitation assay, we have demonstrated that La protein could simultaneously bind both JEV 3'- and 5'-NCRs. This may help circularize the viral genome for its efficient transcription and translation.
Collapse
Affiliation(s)
- Surender Vashist
- National Institute of Immunology, Aruna Asaf Ali Marg, JNU Complex, New Delhi, India.
| | | | | |
Collapse
|
12
|
Hoffmann MH, Trembleau S, Muller S, Steiner G. Nucleic acid-associated autoantigens: pathogenic involvement and therapeutic potential. J Autoimmun 2009; 34:J178-206. [PMID: 20031372 DOI: 10.1016/j.jaut.2009.11.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Autoimmunity to ubiquitously expressed macromolecular nucleic acid-protein complexes such as the nucleosome or the spliceosome is a characteristic feature of systemic autoimmune diseases. Disease-specificity and/or association with clinical features of some of these autoimmune responses suggest pathogenic involvement which, however, has been proven in only a few cases so far. Although the mechanisms leading to autoimmunity against nucleic acid-containing complexes are still far from being fully understood, there is increasing experimental evidence that the nucleic acid component may act as a co-stimulator or adjuvans via activation of nucleic acid-binding receptor systems such as Toll-like receptors in antigen-presenting cells. Dysregulated apoptosis and inappropriate stimulation of nucleic acid-sensing receptors may lead to loss of tolerance against the protein components of such complexes, activation of autoreactive T cells and formation of autoantibodies. This has been demonstrated to occur in systemic lupus erythematosus and seems to represent a general mechanism that may be crucial for the development of systemic autoimmune diseases. This review provides a comprehensive overview of the most thoroughly-characterized nucleic acid-associated autoantigens, describing their structure and biological function, as well as the nature and pathogenic importance of the reactivities directed against them. Furthermore, recent advances in immunotherapy such as antigen-specific approaches targeted at nucleic acid-binding antigens are discussed.
Collapse
Affiliation(s)
- Markus H Hoffmann
- Division of Rheumatology, Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
13
|
Vashist S, Anantpadma M, Sharma H, Vrati S. La protein binds the predicted loop structures in the 3' non-coding region of Japanese encephalitis virus genome: role in virus replication. J Gen Virol 2009; 90:1343-1352. [PMID: 19264640 DOI: 10.1099/vir.0.010850-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Japanese encephalitis virus (JEV) genome is a single-stranded, positive-sense RNA with non-coding regions (NCRs) of 95 and 585 bases at its 5' and 3' ends, respectively. These may bind to viral or host proteins important for viral replication. It has been shown previously that three proteins of 32, 35 and 50 kDa bind the 3' stem-loop (SL) structure of the JEV 3' NCR, and one of these was identified as 36 kDa Mov34 protein. Using electrophoretic mobility-shift and UV cross-linking assays, as well as a yeast three-hybrid system, it was shown here that La protein binds to the 3' SL of JEV. The binding was stable under high-salt conditions (300 mM KCl) and the affinity of the RNA-protein interaction was high; the dissociation constant (Kd) for binding of La protein to the 3' SL was 12 nM, indicating that this RNA-protein interaction is physiologically plausible. Only the N-terminal half of La protein containing RNA recognition motifs 1 and 2 interacted with JEV RNA. An RNA toe-printing assay followed by deletion mutagenesis showed that La protein bound to predicted loop structures in the 3' SL RNA. Furthermore, it was shown that small interfering RNA-mediated downregulation of La protein resulted in repression of JEV replication in cultured cells.
Collapse
Affiliation(s)
| | | | - Himani Sharma
- National Institute of Immunology, New Delhi 110067, India
| | | |
Collapse
|
14
|
Hirose Y, Harada F. Mouse nucleolin binds to 4.5S RNAh, a small noncoding RNA. Biochem Biophys Res Commun 2008; 365:62-8. [PMID: 17971306 DOI: 10.1016/j.bbrc.2007.10.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2007] [Accepted: 10/22/2007] [Indexed: 10/22/2022]
Abstract
4.5S RNAh is a rodent-specific small noncoding RNA that exhibits extensive homology to the B1 short interspersed element. Although 4.5S RNAh is known to associate with cellular poly(A)-terminated RNAs and retroviral genomic RNAs, its function remains unclear. In this study, we analyzed 4.5S RNAh-binding proteins in mouse nuclear extracts using gel mobility shift and RNA-protein UV cross-linking assays. We found that at least nine distinct polypeptides (p170, p110, p93, p70, p48, p40, p34, p20, and p16.5) specifically interacted with 4.5S RNAhin vitro. Using anti-La antibody, p48 was identified as mouse La protein. To identify the other 4.5S RNAh-binding proteins, we performed expression cloning from a mouse cDNA library and obtained cDNA clones derived from nucleolin mRNA. We identified p110 as nucleolin using nucleolin-specific antibodies. UV cross-linking analysis using various deletion mutants of nucleolin indicated that the third of four tandem RNA recognition motifs is a major determinant for 4.5S RNAh recognition. Immunoprecipitation of nucleolin from the subcellular fractions of mouse cell extracts revealed that a portion of the endogenous 4.5S RNAh was associated with nucleolin and that this complex was located in both the nucleoplasm and nucleolus.
Collapse
Affiliation(s)
- Yutaka Hirose
- Graduate School of Medical and Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | | |
Collapse
|
15
|
Izumi RE, Das S, Barat B, Raychaudhuri S, Dasgupta A. A peptide from autoantigen La blocks poliovirus and hepatitis C virus cap-independent translation and reveals a single tyrosine critical for La RNA binding and translation stimulation. J Virol 2004; 78:3763-76. [PMID: 15016896 PMCID: PMC371053 DOI: 10.1128/jvi.78.7.3763-3776.2004] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Accepted: 11/25/2003] [Indexed: 02/05/2023] Open
Abstract
La, a 52-kDa autoantigen in patients with systemic lupus erythematosus, was one of the first cellular proteins identified to interact with viral internal ribosome entry site (IRES) elements and stimulate poliovirus (PV) and hepatitis C virus (HCV) IRES-mediated translation. Previous results from our laboratory have shown that a small, yeast RNA (IRNA) could selectively inhibit PV and HCV IRES-mediated translation by sequestering the La protein. Here we have identified an 18-amino-acid-long sequence from the N-terminal "La motif" which is required for efficient interaction of La with IRNA and viral 5' untranslated region (5'-UTR) elements. A synthetic peptide (called LAP, for La peptide) corresponding to this sequence (amino acids 11 to 28) of La was found to efficiently inhibit viral IRES-mediated translation in vitro. The LAP efficiently enters Huh-7 cells and preferentially inhibits HCV IRES-mediated translation programmed by a bicistronic RNA in vivo. The LAP does not bind RNA directly but appears to block La binding to IRNA and PV 5'-UTR. Competition UV cross-link and translation rescue experiments suggested that LAP inhibits IRES-mediated translation by interacting with proteins rather than RNA. Mutagenesis of LAP demonstrates that single amino acid changes in a highly conserved sequence within LAP are sufficient to eliminate the translation-inhibitory activity of LAP. When one of these mutations (Y23Q) is introduced into full-length La, the mutant protein is severely defective in interacting with the PV IRES element and consequently unable to stimulate IRES-mediated translation. However, the La protein with a mutation of the next tyrosine moiety (Y24Q) could still interact with PV 5'-UTR and stimulate viral IRES-mediated translation significantly. These results underscore the importance of the La N-terminal amino acids in RNA binding and viral RNA translation. The possible role of the LAP sequence in La-RNA binding and stimulation of viral IRES-mediated translation is discussed.
Collapse
Affiliation(s)
- Raquel E Izumi
- Department of Microbiology, Immunology and Molecular Genetics, UCLA School of Medicine, University of California-Los Angeles, Los Angeles, California 90095, USA
| | | | | | | | | |
Collapse
|
16
|
Pudi R, Abhiman S, Srinivasan N, Das S. Hepatitis C virus internal ribosome entry site-mediated translation is stimulated by specific interaction of independent regions of human La autoantigen. J Biol Chem 2003; 278:12231-40. [PMID: 12540850 DOI: 10.1074/jbc.m210287200] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The human La autoantigen has been shown to interact with the internal ribosome entry site (IRES) of hepatitis C virus (HCV) in vitro. Using a yeast three-hybrid system, we demonstrated that, in addition to full-length La protein, both N- and C-terminal halves were able to interact with HCV IRES in vivo. The exogenous addition of purified full-length and truncated La proteins in rabbit reticulocyte lysate showed dose-dependent stimulation of HCV IRES-mediated translation. However, an additive effect was achieved adding the terminal halves together in the reaction, suggesting that both might play critical roles in achieving full stimulatory activity of the full-length La protein. Using computational analysis, three-dimensional structures of the RNA recognition motifs (RRM) of the La protein were independently modeled. Of the three putative RRMs, RRM2 was predicted to have a good binding pocket for the interaction with the HCV IRES around the GCAC motif near the initiator AUG and RRM3 binds perhaps in a different location. This observation was further investigated by the filter-binding and toe-printing assays. The results presented here strongly suggest that both the N- and C-terminal halves can interact independently with the HCV IRES and are involved in stimulating internal initiation of translation.
Collapse
Affiliation(s)
- Renuka Pudi
- Department of Microbiology and Cell Biology and the Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | | | | | | |
Collapse
|
17
|
Fouraux MA, Kolkman MJM, Van der Heijden A, De Jong AS, Van Venrooij WJ, Pruijn GJM. The human La (SS-B) autoantigen interacts with DDX15/hPrp43, a putative DEAH-box RNA helicase. RNA (NEW YORK, N.Y.) 2002; 8:1428-43. [PMID: 12458796 PMCID: PMC1370349 DOI: 10.1017/s1355838202021076] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The human La (SS-B) autoantigen is an abundantly expressed putative RNA chaperone, functioning in various intracellular processes involving RNA. To further explore the molecular mechanisms by which La functions in these processes, we performed large-scale immunoprecipitations of La from HeLa S100 extracts using the anti-La monoclonal antibody SW5. La-associated proteins were subsequently identified by sequence analysis. This approach allowed the identification of DDX15 as a protein interacting with La. DDX15, the human ortholog of yeast Prp43, is a member of the superfamily of DEAH-box RNA helicases that appeared to interact with La both in vivo and in vitro. The region needed for the interaction with La partly overlaps the DEAH-box domain of DDX15. Immunofluorescence data indicated that endogenous DDX15 accumulates in U snRNP containing nuclear speckles in HEp-2 cells. Surprisingly DDX15 also accumulates in the nucleoli of HEp-2 cells. Moreover, DDX15 and La seem to colocalize in the nucleoli. Regions of DDX15 involved in nuclear, nuclear speckle, and nucleolar localization are located within the N- and C-terminal regions flanking the DEAH-box. RNA coprecipitation experiments indicated that DDX15 is associated with spliceosomal U small nuclear RNAs in HeLa cell extracts. The possible functional implications of the interaction between La and DDX15 are discussed.
Collapse
Affiliation(s)
- Michael A Fouraux
- Department of Biochemistry, Nijmegen Center for Molecular Life Sciences, University of Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Maraia RJ, Intine RV. La protein and its associated small nuclear and nucleolar precursor RNAs. Gene Expr 2002; 10:41-57. [PMID: 11868987 PMCID: PMC5977531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
After transcription by RNA polymerase (pol) III, nascent Pol III transcripts pass through RNA processing, modification, and transport machineries as part of their posttranscriptional maturation process. The first factor to interact with Pol III transcripts is La protein, which binds principally via its conserved N-terminal domain (NTD), to the UUU-OH motif that results from transcription termination. This review includes a sequence Logo of the most conserved region of La and its refined modeling as an RNA recognition motif (RRM). La protects RNAs from 3' exonucleolytic digestion and also contributes to their nuclear retention. The variety of modifications found on La-associated RNAs is reviewed in detail and considered in the contexts of how La may bind the termini of structured RNAs without interfering with recognition by modification enzymes, and its ability to chaperone RNAs through multiple parts of their maturation pathways. The CTD of human La recognizes the 5' end region of nascent RNA in a manner that is sensitive to serine 366 phosphorylation. Although the CTD can control pre-tRNA cleavage by RNase P, a rate-limiting step in tRNASerUGA maturation, the extent to which it acts in the maturation pathway(s) of other transcripts is unknown but considered here. Evidence that a fraction of La resides in the nucleolus together with recent findings that several Pol III transcripts pass through the nucleolus is also reviewed. An imminent goal is to understand how the bipartite RNA binding, intracellular trafficking, and signal transduction activities of La are integrated with the maturation pathways of the various RNAs with which it associates.
Collapse
Affiliation(s)
- Richard J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health & Human Development, National Institutes of Health, Bethesda, MD 20892-2753, USA.
| | | |
Collapse
|
19
|
Kim YK, Back SH, Rho J, Lee SH, Jang SK. La autoantigen enhances translation of BiP mRNA. Nucleic Acids Res 2001; 29:5009-16. [PMID: 11812831 PMCID: PMC97601 DOI: 10.1093/nar/29.24.5009] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2001] [Revised: 10/25/2001] [Accepted: 10/25/2001] [Indexed: 01/17/2023] Open
Abstract
Translational initiation of the human BiP mRNA is directed by an internal ribosomal entry site (IRES) located in the 5'-untranslated region (5'-UTR). In order to understand the mechanism of the IRES-dependent translation of BiP mRNA, cellular proteins interacting with the BiP IRES were investigated. La autoantigen, which augments the translation of polioviral mRNA and hepatitis C viral mRNA, bound specifically to the second half of the 5'-UTR of the BiP IRES and enhanced translation of BiP mRNA in both in vitro and in vivo assays. This finding suggests that cellular and viral IRESs containing very different RNA sequences may share a common mechanism of translation.
Collapse
Affiliation(s)
- Y K Kim
- Department of Life Science, Division of Molecular and Life Sciences, Pohang University of Science and Technology, San31, Hyoja-Dong, Pohang, Kyungbuk 790-784, Korea
| | | | | | | | | |
Collapse
|
20
|
Abstract
Ubiquitous in eukaryotic cells, the La protein associates with the 3' termini of many newly synthesized small RNAs. RNAs bound by the La protein include all nascent transcripts made by RNA polymerase III as well as certain small RNAs synthesized by other RNA polymerases. Recent genetic and biochemical analyses have revealed that binding by the La protein protects the 3' ends of these RNAs from exonucleases. This La-mediated stabilization is required for the normal pathway of pre-tRNA maturation, facilitates assembly of small RNAs into functional RNA-protein complexes, and contributes to nuclear retention of certain small RNAs. Studies of mutant La proteins have given some insights into how the La protein specifically recognizes its RNA targets. However, many questions remain regarding the molecular mechanisms by which La protein binding influences multiple steps in small RNA biogenesis. This review focuses on the roles of the La protein in small RNA biogenesis and also discusses data that implicate the La protein in the translation of specific mRNAs.
Collapse
Affiliation(s)
- Sandra L Wolin
- Departments of Cell Biology and Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Yale University School of Medicine, 295 Congress Avenue, New Haven, Connecticut 06536, USA.
| | | |
Collapse
|
21
|
Maraia RJ, Intine RV. Recognition of nascent RNA by the human La antigen: conserved and divergent features of structure and function. Mol Cell Biol 2001; 21:367-79. [PMID: 11134326 PMCID: PMC86573 DOI: 10.1128/mcb.21.2.367-379.2001] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- R J Maraia
- Laboratory of Molecular Growth Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
22
|
Weser S, Bachmann M, Seifart KH, Meissner W. Transcription efficiency of human polymerase III genes in vitro does not depend on the RNP-forming autoantigen La. Nucleic Acids Res 2000; 28:3935-42. [PMID: 11024173 PMCID: PMC110789 DOI: 10.1093/nar/28.20.3935] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2000] [Revised: 08/23/2000] [Accepted: 08/23/2000] [Indexed: 11/14/2022] Open
Abstract
Transcription of class III genes is conducted by multi-protein complexes consisting of polymerase III itself and several transcription factors. We established a reconstituted in vitro transcription system from which the autoantigen La was removed by immunodepletion. This system showed no RNP formation, but was still fully active in transcription. Supplementing such La-free transcription reactions with recombinant La restored the formation of La complexes with the newly synthesised RNA, but did not lead to enhanced transcription efficiency. Furthermore, we developed a technique for the generation and isolation of transcription complexes, assembled from purified transcription factors and isolated by glycerol centrifugation. These complexes were fully competent to re-initiate RNA synthesis but they were not associated with La and their transcription rate could not be stimulated by addition of recombinant La. Therefore, we conclude that La does not act as a human polymerase III transcription factor.
Collapse
Affiliation(s)
- S Weser
- Institut für Molekularbiologie und Tumorforschung (IMT), Philipps Universität Marburg, Lahnstrabetae 3, D-35037 Marburg, Germany
| | | | | | | |
Collapse
|
23
|
Crosio C, Boyl PP, Loreni F, Pierandrei-Amaldi P, Amaldi F. La protein has a positive effect on the translation of TOP mRNAs in vivo. Nucleic Acids Res 2000; 28:2927-34. [PMID: 10908356 PMCID: PMC102674 DOI: 10.1093/nar/28.15.2927] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2000] [Revised: 06/07/2000] [Accepted: 06/07/2000] [Indexed: 02/05/2023] Open
Abstract
In vertebrates, the mRNAs encoding ribosomal proteins, as well as other proteins implicated in translation, are characterized by a 5'-untranslated region (5'-UTR), including a stretch of pyrimidines at the 5'-end. The 5'-terminal oligopyrimidine (5'-TOP) sequence, which is involved in the growth-dependent translational regulation characteristic of this class of genes (so-called TOP genes), has been shown to specifically bind the La protein in vitro, suggesting that La might be implicated in translational regulation in vivo. In order to substantiate this hypothesis, we have examined the effect of La on TOP mRNA translational control in both stable and transient transfection experiments. In particular we have constructed and analyzed three stably transfected Xenopus cell lines inducible for overexpression of wild-type La or of putative dominant negative mutated forms. Moreover, La-expressing plasmids have been transiently co-transfected together with a plasmid expressing a reporter TOP mRNA in a human cell line. Our results suggest that in vivo La protein plays a positive role in the translation of TOP mRNA. They also suggest that the function of La is to counteract translational repression exerted by a negative factor, possibly cellular nucleic acid binding protein (CNBP), which has been previously shown to bind the 5'-UTR downstream from the 5'-TOP sequence.
Collapse
Affiliation(s)
- C Crosio
- Dipartimento di Biologia, Università di Roma 'Tor Vergata', Via della Ricerca Scientifica, 00133 Roma, Italy and Istituto di Biologia Cellulare, CNR, 00137 Roma, Italy
| | | | | | | | | |
Collapse
|
24
|
Kim YK, Jang SK. La protein is required for efficient translation driven by encephalomyocarditis virus internal ribosomal entry site. J Gen Virol 1999; 80 ( Pt 12):3159-3166. [PMID: 10567647 DOI: 10.1099/0022-1317-80-12-3159] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Translation of internal ribosomal entry site (IRES)-dependent mRNAs is mediated by RNA-binding proteins as well as canonical translation factors. In order to elucidate the roles of RNA-binding proteins in IRES-dependent translation, the role of polypyrimidine tract-binding protein (PTB) and La protein in encephalomyocarditis virus (EMCV) IRES-dependent translation was investigated. PTB was required for efficient EMCV IRES-driven translation but, intriguingly, an excess of PTB suppressed it. Such a translational suppression by surplus PTB was relieved by addition of La protein. A possible role for La protein in IRES-dependent translation is discussed.
Collapse
Affiliation(s)
- Yoon Ki Kim
- Department of Life Science, Pohang University of Science and Technology, San31, Hyoja-Dong, Pohang, Kyungbuk 790-784, Korea1
| | - Sung Key Jang
- Department of Life Science, Pohang University of Science and Technology, San31, Hyoja-Dong, Pohang, Kyungbuk 790-784, Korea1
| |
Collapse
|
25
|
Raska I, Reimer G. Human autoantibodies identify a protein in dense fibrillar and granular components of the nucleolus. Acta Histochem 1999; 101:157-66. [PMID: 10335359 DOI: 10.1016/s0065-1281(99)80015-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel nucleolar protein of an approximate molecular weight of 60 kDa was identified by immunoprecipitation in human cells with an autoimmune sclerodermic serum. It maps at the ultrastructural level to nucleolar granular and dense fibrillar components. This 60 kDa protein could not be demonstrated in Western blots suggesting that the epitope structure is complex and/or is sensitive to the treatment of cells. The immunoprecipitation results indicate that the 60 kDa protein is not a phosphoprotein and is not associated with a nucleolar RNA containing particle. The identified protein represents a new autoimmune marker in the field of systemic connective tissue diseases.
Collapse
Affiliation(s)
- I Raska
- Department of Cell Biology, Academy of Sciences of the Czech Republic, Prague
| | | |
Collapse
|
26
|
Shiroki K, Isoyama T, Kuge S, Ishii T, Ohmi S, Hata S, Suzuki K, Takasaki Y, Nomoto A. Intracellular redistribution of truncated La protein produced by poliovirus 3Cpro-mediated cleavage. J Virol 1999; 73:2193-200. [PMID: 9971802 PMCID: PMC104464 DOI: 10.1128/jvi.73.3.2193-2200.1999] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/1998] [Accepted: 11/16/1998] [Indexed: 02/05/2023] Open
Abstract
The La autoantigen (also known as SS-B), a cellular RNA binding protein, may shuttle between the nucleus and cytoplasm, but it is mainly located in the nucleus. La protein is redistributed to the cytoplasm after poliovirus infection. An in vitro translation study demonstrated that La protein stimulated the internal initiation of poliovirus translation. In the present study, a part of the La protein was shown to be cleaved in poliovirus-infected HeLa cells, and this cleavage appeared to be mediated by poliovirus-specific protease 3C (3Cpro). Truncated La protein (dl-La) was produced in vitro from recombinant La protein by cleavage with purified 3Cpro at only one Gln358-Gly359 peptide bond in the 408-amino-acid (aa) sequence of La protein. The dl-La expressed in L cells was detected in the cytoplasm. However, green fluorescence protein linked to the C-terminal 50-aa sequence of La protein was localized in the nucleus, suggesting that this C-terminal region contributes to the steady-state nuclear localization of the intact La protein in uninfected cells. The dl-La retained the enhancing activity of translation initiation driven by poliovirus RNA in rabbit reticulocyte lysates. These results suggest that La protein is cleaved by 3Cpro in the course of poliovirus infection and that the dl-La is redistributed to the cytoplasm. dl-La, as well as La protein, may play a role in stimulating the internal initiation of poliovirus translation in the cytoplasm.
Collapse
Affiliation(s)
- K Shiroki
- Department of Microbiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kumar M, Carmichael GG. Antisense RNA: function and fate of duplex RNA in cells of higher eukaryotes. Microbiol Mol Biol Rev 1998; 62:1415-34. [PMID: 9841677 PMCID: PMC98951 DOI: 10.1128/mmbr.62.4.1415-1434.1998] [Citation(s) in RCA: 222] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
There is ample evidence that cells of higher eukaryotes express double-stranded RNA molecules (dsRNAs) either naturally or as the result of viral infection or aberrant, bidirectional transcriptional readthrough. These duplex molecules can exist in either the cytoplasmic or nuclear compartments. Cells have evolved distinct ways of responding to dsRNAs, depending on the nature and location of the duplexes. Since dsRNA molecules are not thought to exist naturally within the cytoplasm, dsRNA in this compartment is most often associated with viral infections. Cells have evolved defensive strategies against such molecules, primarily involving the interferon response pathway. Nuclear dsRNA, however, does not induce interferons and may play an important posttranscriptional regulatory role. Nuclear dsRNA appears to be the substrate for enzymes which deaminate adenosine residues to inosine residues within the polynucleotide structure, resulting in partial or full unwinding. Extensively modified RNAs are either rapidly degraded or retained within the nucleus, whereas transcripts with few modifications may be transported to the cytoplasm, where they serve to produce altered proteins. This review summarizes our current knowledge about the function and fate of dsRNA in cells of higher eukaryotes and its potential manipulation as a research and therapeutic tool.
Collapse
Affiliation(s)
- M Kumar
- Department of Microbiology, University of Connecticut Health Center, Farmington, Connecticut 06030-3205, USA.
| | | |
Collapse
|
28
|
Kremerskothen J, Nettermann M, op de Bekke A, Bachmann M, Brosius J. Identification of human autoantigen La/SS-B as BC1/BC200 RNA-binding protein. DNA Cell Biol 1998; 17:751-9. [PMID: 9778034 DOI: 10.1089/dna.1998.17.751] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Rodent BC1 RNA and primate BC200 RNA are small cytoplasmic non-messenger RNAs that are phylogenetically unrelated. Nevertheless, the two RNAs exhibit a large degree of parallelism. In addition to some sequence similarities in their 3' domains, they are prevalently expressed in a similar subset of neurons and belong to a small group of transcripts with a somatodendritic location. Both RNAs are complexed with proteins as ribonucleoprotein particles (RNPs). Their similarities may even extend to analogous functional roles, for example, in the regulation of decentralized dendritic translation. To shed further light on the physiological role(s) of the BC1/BC200 RNPs, we began to analyze protein components that specifically bind to these RNAs. Ultraviolet-crosslinking experiments and affinity purification techniques revealed that the human autoantigen La/SS-B is associated with BC1/BC200 RNA in vitro and in vivo. As with other RNA polymerase III transcripts, La protein binds with high affinity to the 3' end of BC200 RNA. Our results suggest that an additional function of La may be control of dendritic translation by providing a link between the 5' Alu domain of BC200 RNP and the ribosome via the La protein dimer. The fact that La binds both BC1 and BC200 RNAs further supports the notion that the RNAs are functional analogs despite the fact that they arose from two separate retroposition events in two different mammalian lineages.
Collapse
Affiliation(s)
- J Kremerskothen
- Institute for Experimental Pathology, Center for Molecular Biology of Inflammation, University of Münster, Germany
| | | | | | | | | |
Collapse
|
29
|
Liao HJ, Kobayashi R, Mathews MB. Activities of adenovirus virus-associated RNAs: purification and characterization of RNA binding proteins. Proc Natl Acad Sci U S A 1998; 95:8514-9. [PMID: 9671709 PMCID: PMC21107 DOI: 10.1073/pnas.95.15.8514] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Most human adenoviruses encode two virus-associated (VA) RNAs, VA RNAI and VA RNAII, that accumulate to high levels in the cytoplasm of infected cells. The function of VA RNAI in blocking the activation of the cellular kinase PKR is well known, but the role of VA RNAII is obscure. Herein we characterize and purify several human proteins that interact preferentially with VA RNAII in Northwestern blot assays. Two of these proteins were identified as RNA helicase A and NF90, a component of the heterodimeric nuclear factor of activated T cells (NFAT). They copurified with the smaller NFAT subunit, NF45, which did not bind VA RNAII, and with an unidentified protein, p97, which did bind VA RNAII. Both RNA helicase A and NF90 contain two copies of a double-stranded (ds) RNA binding motif and bind strongly to dsRNA. NF90 interacts with RNAs in the following order of affinity: dsRNA > VA RNAII > VA RNAI > single-stranded RNA. Furthermore, VA RNAII is more effective than VA RNAI as an inhibitor of RNA helicase activity. These data identify RNA helicase A and NF90 as cellular proteins with an affinity for dsRNA and other structured RNA molecules and suggest that their functions are subject to regulation by RNA ligands including VA RNAII.
Collapse
Affiliation(s)
- H J Liao
- Cold Spring Harbor Laboratory, P. O. Box 100, Cold Spring Harbor, NY 11724, USA
| | | | | |
Collapse
|
30
|
Bachmann M, Deister H, Pautz A, Laubinger J, Schmitz M, Falke D, Podlech J, Grölz D. The human autoantigen La/SS-B accelerates herpes simplex virus type 1 replication in transfected mouse 3T3 cells. Clin Exp Immunol 1998; 112:482-9. [PMID: 9649219 PMCID: PMC1905003 DOI: 10.1046/j.1365-2249.1998.00605.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/1998] [Indexed: 02/05/2023] Open
Abstract
Permanently transfected mouse cell lines which expressed different levels of the human autoantigen La/SS-B were infected with different strains of herpes simplex virus type 1, including the strains ANG, HSZP, 17syn+ and HFEM. During infection the localization of the human La protein was followed using an anti-La MoAb, which recognized only the human La protein but did not cross-react with either the endogenous mouse La protein or any viral encoded protein. After infection La protein was transported from the nucleus to the cytoplasm. The time course of translocation was dependent on the amount of human La protein expressed in the respective cell line. Moreover, acceleration of viral replication was dependent on the level of expression of human La protein, suggesting that La protein is a cellular factor that facilitates virus replication.
Collapse
Affiliation(s)
- M Bachmann
- Institut für Physiologische Chemie, Johannes-Gutenberg Universität, Mainz, Germany
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Lin-Marq N, Clarkson SG. Efficient synthesis, termination and release of RNA polymerase III transcripts in Xenopus extracts depleted of La protein. EMBO J 1998; 17:2033-41. [PMID: 9524125 PMCID: PMC1170548 DOI: 10.1093/emboj/17.7.2033] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
La proteins are conserved, abundant and predominantly nuclear phosphoproteins which bind to the 3'-U termini of newly synthesized RNA polymerase III transcripts. The human La protein has been implicated in the synthesis, termination and release of such transcripts. Here we examine the potential transcriptional properties of La in Xenopus laevis, using a homologous tRNA gene as template. Immunodepletion of La from cell-free extracts leads to the formation of tRNA precursors lacking 3'-U residues. This shortening can be uncoupled from RNA polymerase III transcription, indicating that it results from nuclease degradation rather than incomplete synthesis. Extracts containing <1% of the normal La protein content synthesize tRNA precursors just as well as complete extracts, with no change in termination efficiency, and the vast majority of these full-length transcripts are not associated with the template or with residual La protein. Hence, Xenopus La seems not to function as an initiation, termination or release factor for RNA polymerase III. Consistent with the recently discovered role of La in yeast tRNA maturation in vivo, recombinant Xenopus La prevents 3'-exonucleolytic degradation of tRNA precursors in vitro. A conserved RNA chaperone function may best explain the abundance of La in eukaryotic nuclei.
Collapse
Affiliation(s)
- N Lin-Marq
- Department of Genetics and Microbiology, University Medical Centre (C.M.U.), 9 avenue de Champel, 1211 Geneva 4, Switzerland
| | | |
Collapse
|
32
|
Miyachi K, Matsushima H, Hankins RW, Hirakata M, Mimori T, Hosaka H, Amagasaki Y, Miyakawa H, Kako M, Shibata M, Onozuka Y, Ueno U. A novel antibody directed against a three-dimensional configuration of a 95-kDa protein in patients with autoimmune hepatic diseases. Scand J Immunol 1998; 47:63-8. [PMID: 9467660 DOI: 10.1046/j.1365-3083.1998.00262.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sera from patients with primary biliary cirrhosis recognize various cellular components, such as mitochondria, centromere, nuclear envelope, and multiple nuclear dot antigens. There also appears to be a novel antibody reacting with a particular protein in these sera. The presence of this antibody was investigated by double immunodiffusion using rat liver cytoplasmic antigens, by immunoprecipitation of [35S]-methionine labelled HeLa cell extracts, and by immunoblot using disrupted HeLa cell extracts. Test sera were obtained from 491 patients with various liver diseases. Nine of the 491 sera were found to react with a 95-kDa protein as determined by immunoprecipitation of [35S]-methionine labelled HeLa cell extracts and by double immunodiffusion using a rat liver microsomal preparation. However, these same nine sera showed no reaction in the immunoblot assay. On the basis of its molecular mass and its presence in the cytoplasmic fraction, this antigen was named p95 C. This anti-p95 C antibody was detected in six of 50 (12%) sera from patients with primary biliary cirrhosis, and in three of 31 (9.7%) sera from patients with autoimmune hepatitis, but not in any of the remaining 410 sera obtained from patients with other hepatic diseases. It is concluded that anti-p95 C antibody reacts primarily with the native form of the 95-kDa protein, and represents another possible analyte for diagnosing autoimmune liver diseases.
Collapse
Affiliation(s)
- K Miyachi
- Health Sciences Research Institute, Third Diagnostic Division, Yokohama, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Duncan RC, Nakhasi HL. La autoantigen binding to a 5' cis-element of rubella virus RNA correlates with element function in vivo. Gene 1997; 201:137-49. [PMID: 9409781 DOI: 10.1016/s0378-1119(97)00438-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Rubella virus genomic RNA contains a 5' stem-loop (5'(+) SL) which is required for efficient translation and replication. The La autoantigen previously was shown to bind this RNA sequence in vitro. Results reported here demonstrate that this cellular RNA-binding protein binds to the RV 5' SL RNA with sufficient specificity for the binding to occur in the presence of excess total cellular RNA. Further, the affinity of purified La for the RV sequence is similar to its affinity for known cellular substrates. To address the functional significance of La binding, mutant forms of the RV 5'(+) SL were analysed which bind La weaker or stronger than the native form. These three forms of the RV 5' SL were incorporated into RV-luciferase constructs which expressed luciferase activity in transient transfection. The level of expression from each construct correlated with the ability of its RV sequence to bind La. The detection of La/RV RNA complexes in infected cells further supported the physiological relevance of this interaction. Possible implications of autoantigen La interaction with RV RNA for rubella virus pathology and vaccine associated adverse reactions are discussed.
Collapse
Affiliation(s)
- R C Duncan
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD 20892, USA
| | | |
Collapse
|
34
|
De BP, Banerjee AK. Role of host proteins in gene expression of nonsegmented negative strand RNA viruses. Adv Virus Res 1997; 48:169-204. [PMID: 9233433 DOI: 10.1016/s0065-3527(08)60288-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- B P De
- Department of Molecular Biology, Cleveland Clinic Foundation, Ohio 44195, USA
| | | |
Collapse
|
35
|
De BP, Gupta S, Zhao H, Drazba JA, Banerjee AK. Specific interaction in vitro and in vivo of glyceraldehyde-3-phosphate dehydrogenase and LA protein with cis-acting RNAs of human parainfluenza virus type 3. J Biol Chem 1996; 271:24728-35. [PMID: 8798741 DOI: 10.1074/jbc.271.40.24728] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Human parainfluenza virus type 3 (HPIV3) genome RNA is transcribed and replicated by the virus-encoded RNA-dependent RNA polymerase, and specific cellular proteins play a regulatory role in these processes. To search for cellular proteins potentially interacting with HPIV3 cis-acting regulatory RNAs, a gel mobility shift assay was used. Two cellular proteins specifically interacted with the viral cis-acting RNAs containing the genomic 3'-noncoding region and the plus-sense leader sequence region. Surprisingly, by biochemical and immunological analyses, one of the cellular proteins was identified as the key glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). The other protein was characterized as the autoantigen, LA protein. Both GAPDH and LA protein also interacted with the same cis-acting RNA sequences in vivo and were found to be associated with the HPIV3 ribonucleoprotein complex in the infected cells. By double immunofluorescent labeling, GAPDH was found to be co-localized with viral ribonucleoprotein in the perinuclear region. These observations strongly suggest that cellular GAPDH and LA Protein participate in the regulation of HPIV3 gene expression.
Collapse
Affiliation(s)
- B P De
- Departments of Molecular Biology, Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | |
Collapse
|
36
|
Pogue GP, Hofmann J, Duncan R, Best JM, Etherington J, Sontheimer RD, Nakhasi HL. Autoantigens interact with cis-acting elements of rubella virus RNA. J Virol 1996; 70:6269-77. [PMID: 8709254 PMCID: PMC190652 DOI: 10.1128/jvi.70.9.6269-6277.1996] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Rubella virus (RV) infections in adult women can be associated with acute and chronic arthritic symptoms. In many autoimmune individuals, antibodies are found targeting endogenous proteins, called autoantigens, contained in ribonucleoprotein complexes (RNPs). In order to understand the molecular mechanisms involved in the RV-associated pathology, we investigated the nature of cellular factors binding RV RNA and whether such RNPs were recognized by antibodies in infected individuals. Previously, we noted that cellular proteins associated with the RV 5'(+) stem-loop (SL) RNA are recognized by serum with Ro reactivity. To better understand the nature of the autoantigens binding RV cis-acting elements, serum samples from individuals with various autoimmune diseases were tested for their ability to immunoprecipitate RNPs containing labeled RV RNAs. A subset of serum samples recognizing autoantigen La, or Ro and La, immunoprecipitated both the RV 5'(+)SL and 3'(+)SL RNA-protein complexes. Autoantigens binding the RV 5'(+)SL and 3'(+)SL RNAs differed in molecular mass, specificities for respective RNA binding substrates, and sensitivity to alkaline phosphatase treatment. The La autoantigen was found to interact with the RV 5'(+)SL RNA as determined by immunological techniques and binding reactions with mixtures containing recombinant La protein. To test whether there is a correlation between La binding to an RV RNA element and the appearance of an anti-La response, we measured anti-La titers in RV-infected individuals. Significant anti-La activity was detected in approximately one-third of RV-infected individuals 2 years postinfection.
Collapse
Affiliation(s)
- G P Pogue
- Laboratory of Molecular Pharmacology, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Atkinson JC, Royce LS, Wellner R, Pillemer SR, Bermudez D, Fox PC. Anti-salivary antibodies in primary Sjögren's syndrome. J Oral Pathol Med 1995; 24:206-12. [PMID: 7616459 DOI: 10.1111/j.1600-0714.1995.tb01168.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Earlier studies have described an antibody that recognized salivary ductal epithelium in sera from 15-50% of patients with primary Sjögren's syndrome; however, the specific salivary antigen in those studies was not identified. The present study further investigated this unknown salivary antigen. Twenty-nine of 31 patients (94%) with primary Sjögren's syndrome demonstrated IgG antinuclear antibodies that bound to an epithelial cell line with ductal characteristics derived from a human salivary gland. Seventy-seven percent of these patients had serum antibodies that bound to ductal cells of normal human parotid tissue after formalin fixation. Western blots of cell extracts, immunofluorescence, and adsorption studies indicated that SS-A/Ro and SS-B/La were the antigens recognized in the salivary cell line. The pattern of fluorescence seen when anti-SS-B/La bound to normal parotid tissue was identical to the fluorescence pattern of the anti-salivary ductal antibodies described in earlier literature.
Collapse
Affiliation(s)
- J C Atkinson
- Clinical Investigations Section, National Institute of Dental Research, Bethesda, MD 20892-1190, USA
| | | | | | | | | | | |
Collapse
|
38
|
Chang YN, Kenan DJ, Keene JD, Gatignol A, Jeang KT. Direct interactions between autoantigen La and human immunodeficiency virus leader RNA. J Virol 1994; 68:7008-20. [PMID: 7933083 PMCID: PMC237138 DOI: 10.1128/jvi.68.11.7008-7020.1994] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have characterized the in vivo and in vitro binding of human La protein to the human immunodeficiency virus type 1 (HIV-1) leader RNA, the trans-activation response element (TAR). In immunoprecipitation studies using anti-La serum, La-TAR ribonucleoproteins were recovered from HIV-1-infected lymphocytes. Further characterization of this interaction revealed that La has preference for the TAR stem. However, TAR RNA recognition tolerated changes in the primary sequence of the stem as long as the secondary structure was conserved. This structural aspect of La-TAR recognition was confirmed in competition studies in which certain homopolymers influenced complex formation while other single-stranded and double-stranded RNAs had no effect. Deletion mutants of recombinant La protein were used to demonstrate that the residues responsible for binding to polymerase III precursor transcripts overlapped the binding domain for the TAR leader RNA. This finding of a direct interaction between La and TAR has functional implications for translational regulation of HIV-1 mRNAs as demonstrated in the accompanying report (Y. V. Svitkin, A. Pause, and N. Sonenberg, J. Virol. 68:7001-7007, 1994).
Collapse
Affiliation(s)
- Y N Chang
- Molecular Virology Section, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892
| | | | | | | | | |
Collapse
|
39
|
Xiao Q, Sharp TV, Jeffrey IW, James MC, Pruijn GJ, van Venrooij WJ, Clemens MJ. The La antigen inhibits the activation of the interferon-inducible protein kinase PKR by sequestering and unwinding double-stranded RNA. Nucleic Acids Res 1994; 22:2512-8. [PMID: 7518914 PMCID: PMC308203 DOI: 10.1093/nar/22.13.2512] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The La (SS-B) autoimmune antigen is an RNA-binding protein that is present in both nucleus and cytoplasm of eukaryotic cells. The spectrum of RNAs that interact with the La antigen includes species which also bind to the interferon-inducible protein kinase PKR. We have investigated whether the La antigen can regulate the activity of PKR and have observed that both the autophosphorylation of the protein kinase that accompanies its activation by dsRNA and the dsRNA-dependent phosphorylation of the alpha subunit of polypeptide chain initiation factor eIF-2 by PKR are inhibited in the presence of recombinant La antigen. This inhibition is partially relieved at higher concentrations of dsRNA. Once activated by dsRNA the protein kinase activity of PKR is insensitive to the La antigen. We have demonstrated by a filter binding assay that La is a dsRNA binding protein. Furthermore, when recombinant La is incubated with a 900 bp synthetic dsRNA or with naturally occurring reovirus dsRNA it converts these substrates to single-stranded forms. We conclude that the La antigen inhibits the dsRNA-dependent activation of PKR by binding and unwinding dsRNA and that it may therefore play a role in the regulation of this protein kinase in interferon-treated or virus-infected cells.
Collapse
Affiliation(s)
- Q Xiao
- Department of Cellular and Molecular Sciences, St George's Hospital Medical School, London, UK
| | | | | | | | | | | | | |
Collapse
|
40
|
Witherell GW, Wimmer E. Encephalomyocarditis virus internal ribosomal entry site RNA-protein interactions. J Virol 1994; 68:3183-92. [PMID: 8151781 PMCID: PMC236809 DOI: 10.1128/jvi.68.5.3183-3192.1994] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Translational initiation of encephalomyocarditis virus (EMCV) mRNA occurs by ribosomal entry into the 5' nontranslated region of the EMCV mRNA, rather than by ribosomal scanning. Internal ribosomal binding requires a cis-acting element termed the internal ribosomal entry site (IRES). IRES elements have been proposed to be involved in the translation of picornavirus mRNAs and some cellular mRNAs. Internal ribosome binding likely requires the interaction of trans-acting factors that recognize both the mRNA and the ribosomal complex. Five cellular proteins (p52, p57, p70, p72, and p100) cross-link the EMCV IRES or fragments of the IRES. For one of these proteins, p57, binding to the IRES correlates with translation. Recently, p57 was identified to be very similar, if not identical, to polypyrimidine tract-binding protein. On the basis of cross-linking results with 21 different EMCV IRES fragments and cytoplasmic HeLa extract or rabbit reticulocyte lysate as the source of polypeptides, consensus binding sites for p52, p57, p70, and p100 are proposed. It is suggested that each of these proteins recognizes primarily a structural feature of the RNA rather than a specific sequence.
Collapse
Affiliation(s)
- G W Witherell
- Department of Microbiology, State University of New York at Stony Brook 11794
| | | |
Collapse
|
41
|
Boehm J, Orth T, Van Nguyen P, Söling HD. Systemic lupus erythematosus is associated with increased auto-antibody titers against calreticulin and grp94, but calreticulin is not the Ro/SS-A antigen. Eur J Clin Invest 1994; 24:248-57. [PMID: 8050453 DOI: 10.1111/j.1365-2362.1994.tb01082.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Auto-antibodies against purified human calreticulin were determined by an ELISA in sera from patients with systemic lupus erythematosus (SLE) and from healthy persons or patients without an autoimmune disease. More than 80% of patients with SLE had titers exceeding the highest value obtained in the group without SLE. Almost 30% of the patients had also elevated auto-antibody titers against purified rat grp94, another resident ER-protein of the KDEL-protein family, but not against rat ERp72 (CaBP2), an ER-resident protein of the proteindisulfide isomerase family. It could, however, be excluded that calreticulin is the Ro/SS-A antigen on the basis of the following observations: 1) Calreticulin purified from rat, bovine or human liver contained far less than 1 mol of phosphate per mol of calreticulin, showed an E280/E260-absorption ratio of about 2.0, and did not contain extractable RNA; 2) Sera from patients with SLE did not react with or precipitate endogenous calreticulin from Hep G2 cells; they did, however, precipitate hY-RNA from these cells; 3) Sera from SLE-patients, but not anti-calreticulin antisera precipitated [32P]-hY-RNA from [32P]-labelled Hep G2 cells.
Collapse
Affiliation(s)
- J Boehm
- Abteilung Klinik Biochemie, Universität Göttingen, Germany
| | | | | | | |
Collapse
|
42
|
Abstract
The protein kinase DAI is an important component of the interferon-induced cellular defense mechanism. In cells infected by adenovirus type 2 (Ad2), activation of the kinase is prevented by the synthesis of a small, highly ordered virus-associated (VA) RNA, VA RNAI. The inhibitory function of this RNA depends on its structure, which has been partially elucidated by a combination of mutagenesis and RNase sensitivity analysis. To gain further insight into the structure and function of this regulatory RNA, we have compared the primary sequences, secondary structures, and functions of seven VA RNA species from five human and animal adenoviruses. The sequences exhibit variable degrees of homology, with a particularly close relationship between the VA RNAII species of Ad2 and Ad7 and notably divergent sequence for the avian (CELO) virus VA RNA. Apart from two pairs of mutually complementary tetranucleotides which are highly conserved, homologies are limited to transcription signals located within the RNA sequence and at its termini. Secondary structure analysis indicated that all seven RNAs conform to the model in which VA RNA possesses three main structural regions, a terminal stem, an apical stem-loop, and a central domain, although these elements vary in size and other details. The apical stem is implicated in binding to DAI, and the central domain is essential for inhibition of DAI activation. One of the pairs of conserved tetranucleotides (CCGG:C/UCGG) provides further evidence for the existence of the apical stem, but the other conserved pair (GGGU:ACCC) strongly suggests a revised structure for the central domain. In two functional assays conducted in vivo, the VA RNAI species of Ad2 and Ad7 were the most active, their corresponding VA RNAII species displayed little activity, and the single VA RNAs of Ad12 and simian adenovirus type 7 exhibited intermediate activity. Correlation of the structural and functional data suggests that the VA RNAII species adopt a structure different from those of the other VA RNA species and may play a different role in the life cycle of the virus.
Collapse
Affiliation(s)
- Y Ma
- Cold Spring Harbor Laboratory, New York 11724
| | | |
Collapse
|
43
|
Kuwana M, Kaburaki J, Mimori T, Tojo T, Homma M. Autoantibody reactive with three classes of RNA polymerases in sera from patients with systemic sclerosis. J Clin Invest 1993; 91:1399-404. [PMID: 8473491 PMCID: PMC288113 DOI: 10.1172/jci116343] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have identified a novel autoantibody reactive with all three classes of RNA polymerases, well-characterized nuclear enzymes, in sera from patients with systemic sclerosis (SSc). After incubation with [35S]methionine-labeled HeLa cell extracts, 14 of 275 SSc sera immunoprecipitated 12 or 14 proteins with similar molecular weights as those of several subunit proteins of eukaryotic RNA polymerases I, II, and III. Purified IgG from these two types of sera inhibited RNA transcription catalyzed by RNA polymerases I, II, and III in vitro. Immunoblot analysis using RNA polymerase-enriched fraction showed that the majority of these sera reacted with 42- or 25-kD protein. Anti-RNA polymerase antibody was highly specific to SSc, especially to diffuse cutaneous SSc. Clinical features associated with this antibody included a high frequency of heart and kidney involvement and a poor survival rate at 5 yr after first visit. These findings indicate that the autoantibody to three classes of RNA polymerases is a new marker for a unique subset of diffuse cutaneous SSc.
Collapse
Affiliation(s)
- M Kuwana
- Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | | | | | | | | |
Collapse
|
44
|
Morris DR, Kakegawa T, Kaspar RL, White MW. Polypyrimidine tracts and their binding proteins: regulatory sites for posttranscriptional modulation of gene expression. Biochemistry 1993; 32:2931-7. [PMID: 8457557 DOI: 10.1021/bi00063a001] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- D R Morris
- Department of Biochemistry, University of Washington, Seattle 98195
| | | | | | | |
Collapse
|
45
|
Abstract
The SSA/Ro and SSB/La antigens are polypeptides which serve as autoantigens in systemic lupus erythematosus and Sjogren's syndrome. The SSA/Ro contains two major isoforms of 60 kD and 52 kD. The former is the main native antigen while the latter is a major autoantigen in its denatured form. The SSB/La is a single phosphorylated protein of 48 kD. Recently a new protein of 46 kD, termed calregulin, was suggested as an additional component of the SSA/Ro antigens. However, extensive investigations failed to confirm its relation to the SSA/Ro system. Based on molecular techniques and cDNA cloning of these antigens, it was demonstrated that the 60 kD protein is capable of binding RNA and DNA molecules, suggesting a regulatory role in transcription for this antigen. The 52 kD polypeptide contains multiple zinc finger motifs and its sequence is homologous to the mouse rptl protein, which is a T-cell regulating peptide. The SSB/La is associated with precursors of 5S RNA and tRNA, implying that it has a role in the synthesis and maturation of RNA polymerase III transcripts. The 60 kD and 52 kD SSA/Ro components may be associated within the cell. The SSA/Ro and SSB/La may also be in complex in some points of the cell cycle.
Collapse
Affiliation(s)
- E Ben-Chetrit
- Department of Internal Medicine, Hadassah University Hospital, Jerusalem, Israel
| |
Collapse
|
46
|
3'-end-dependent formation of U6 small nuclear ribonucleoprotein particles in Xenopus laevis oocyte nuclei. Mol Cell Biol 1992. [PMID: 1535684 DOI: 10.1128/mcb.12.7.3032] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified and characterized a U6 small nuclear (sn) ribonucleoprotein particle (RNP) present in the nuclei of Xenopus laevis oocytes. The structure of this U6 snRNP was investigated by native gel shift analysis and a combination of RNA-protein UV cross-linking, RNase T1 fingerprinting, and immunoprecipitation assays. These analyses demonstrate that certain forms of U6 snRNA associate with the 50-kDa nuclear antigen La both in vivo and in vitro. The La protein binds the stretch of uridylates at the 3' hydroxyl end of newly synthesized U6 snRNA. La does not bind to mature U6 snRNAs that have 2',3'-cyclic phosphate (greater than p) groups at their 3' ends (E. Lund and J. E. Dahlberg, Science 255:327-330, 1992) or to U6 snRNAs in anti-Sm-precipitable U4/U6 snRNPs. We propose that 3'-end modification, including posttranscriptional UMP addition, modulates the binding of La protein to U6 snRNA which, in turn, may affect the function of this RNA.
Collapse
|
47
|
|
48
|
Terns MP, Lund E, Dahlberg JE. 3'-end-dependent formation of U6 small nuclear ribonucleoprotein particles in Xenopus laevis oocyte nuclei. Mol Cell Biol 1992; 12:3032-40. [PMID: 1535684 PMCID: PMC364517 DOI: 10.1128/mcb.12.7.3032-3040.1992] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We have identified and characterized a U6 small nuclear (sn) ribonucleoprotein particle (RNP) present in the nuclei of Xenopus laevis oocytes. The structure of this U6 snRNP was investigated by native gel shift analysis and a combination of RNA-protein UV cross-linking, RNase T1 fingerprinting, and immunoprecipitation assays. These analyses demonstrate that certain forms of U6 snRNA associate with the 50-kDa nuclear antigen La both in vivo and in vitro. The La protein binds the stretch of uridylates at the 3' hydroxyl end of newly synthesized U6 snRNA. La does not bind to mature U6 snRNAs that have 2',3'-cyclic phosphate (greater than p) groups at their 3' ends (E. Lund and J. E. Dahlberg, Science 255:327-330, 1992) or to U6 snRNAs in anti-Sm-precipitable U4/U6 snRNPs. We propose that 3'-end modification, including posttranscriptional UMP addition, modulates the binding of La protein to U6 snRNA which, in turn, may affect the function of this RNA.
Collapse
Affiliation(s)
- M P Terns
- Department of Biomolecular Chemistry, University of Wisconsin-Madison 53706
| | | | | |
Collapse
|
49
|
|
50
|
Wu TC, Kanayama MD, Hruban RH, Au WC, Askin FB, Hutchins GM. Virus-associated RNAs (VA-I and VA-II). An efficient target for the detection of adenovirus infections by in situ hybridization. THE AMERICAN JOURNAL OF PATHOLOGY 1992; 140:991-8. [PMID: 1314030 PMCID: PMC1886370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The identification of adenovirus in tissue can be difficult. In situ hybridization for adenovirus nucleic acids may aid in the demonstration of adenovirus infections. To develop a probe against adenovirus, a 978 bp fragment of DNA containing the VA-I, VA-II, and a portion of the L-1 regions of the adenovirus type 2 genome was cloned into the SK+ vector. These regions were selected because they are generally conserved among adenoviruses and are abundantly transcribed during the lytic cycle. Sense and antisense tritium or Digoxigenin-labeled riboprobes were generated using in vitro transcription and applied to formalin-fixed paraffin-embedded sections of HeLa cells infected with adenovirus type 2. Extensive in situ hybridization of the antisense riboprobe to HeLa cells with cytopathic changes was found. The number of cells to which the probe hybridized decreased proportionately with dilution of infected with noninfected cells. The control sense riboprobe showed only scattered breakthrough hybridization and in these cells hybridization was mainly located in the nucleus. Northern blot analysis of RNA from infected HeLa cells confirmed the in situ hybridization results. No hybridization was detected when cultured cells infected with herpes simplex virus, Epstein-Barr virus, cytomegalovirus, or human immunodeficiency virus were examined. Specific hybridization was detected in tissues obtained at autopsy from four patients with culture proven adenovirus infection. These observations suggest that this probe is useful in the diagnosis of adenovirus in formalin-fixed paraffin-embedded material.
Collapse
Affiliation(s)
- T C Wu
- Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, Maryland
| | | | | | | | | | | |
Collapse
|