1
|
Abstract
Hormetic dose responses are reported here to occur commonly in the dermal wound healing process, with the particular focus on cell viability, proliferation, migration and collagen deposition of human and murine fibroblasts with in vitro studies. Hormetic responses were induced by a wide range of substances, including endogenous agents, pharmaceutical preparations, plant-derived extracts including many well-known dietary supplements, as well as physical stressor agents such as low-level laser treatments. Detailed mechanistic studies have identified common signaling pathways and their cross-pathway communications that mediate the hormetic dose responses. These findings complement and extend a similar comprehensive assessment concerning the occurrence of hormetic dose responses in keratinocytes. These findings demonstrate the generality of the hormetic dose response for key wound healing endpoints, suggesting that the hormesis concept has a fundamental role in wound healing, with respect to guiding strategies for experimental evaluation as well as therapeutic applications.
Collapse
|
2
|
Mateos-Nava RA, Rodríguez-Mercado JJ, Álvarez-Barrera L, García-Rodríguez MDC, Altamirano-Lozano MA. Vanadium oxides modify the expression levels of the p21, p53, and Cdc25C proteins in human lymphocytes treated in vitro. ENVIRONMENTAL TOXICOLOGY 2021; 36:1536-1543. [PMID: 33913241 DOI: 10.1002/tox.23150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 04/01/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
In vitro assays have demonstrated that vanadium compounds interact with biological molecules similar to protein kinases and phosphatases and have also shown that vanadium oxides decrease the proliferation of cells, including human lymphocytes; however, the mechanism, the phase in which the cell cycle is delayed and the proteins involved in this process are unknown. Therefore, we evaluated the effects of vanadium oxides (V2 O3 , V2 O4 and V2 O5 ) in human lymphocyte cultures (concentrations of 2, 4, 8, or 16 μg/ml) on cellular proliferation and the levels of the p53, p21 and Cdc25C proteins. After 24 h of treatment with the different concentrations of vanadium oxides, the cell cycle phases were determined by evaluating the DNA content using flow cytometry, and the levels of the p21, p53 and Cdc25C proteins were assessed by Western blot analysis. The results revealed that the DNA content remained unchanged in every phase of the cell cycle; however, only at high concentrations did protein levels increase. Although, according to previous reports, vanadium oxides induce a delay in proliferation, DNA analysis did not show this occurring in a specific cell cycle phase. Nevertheless, the increases in p53 protein levels may cause this delay.
Collapse
Affiliation(s)
- Rodrigo Aníbal Mateos-Nava
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| | - Juan José Rodríguez-Mercado
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| | - Lucila Álvarez-Barrera
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| | | | - Mario Agustín Altamirano-Lozano
- Facultad de Estudios Superiores-Zaragoza, Campus II, UNAM. Unidad de Investigación en Genética y Toxicología Ambiental (UNIGEN), Mexico
- Laboratorio 5, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
- Laboratorio 2, primer piso, Unidad Multidisciplinaria de Investigación Experimental (UMIE-Z), Mexico
| |
Collapse
|
3
|
Sergi B, Bulut I, Xia Y, Waller ZAE, Yildizhan Y, Acilan C, Lord RM. Understanding the Potential In Vitro Modes of Action of Bis(β-diketonato) Oxovanadium(IV) Complexes. ChemMedChem 2021; 16:2402-2410. [PMID: 33856120 PMCID: PMC8453837 DOI: 10.1002/cmdc.202100152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/13/2021] [Indexed: 12/22/2022]
Abstract
To understand the potential in vitro modes of action of bis(β‐diketonato) oxovanadium(IV) complexes, nine compounds of varying functionality have been screened using a range of biological techniques. The antiproliferative activity against a range of cancerous and normal cell lines has been determined, and show these complexes are particularly sensitive against the lung carcinoma cell line, A549. Annexin V (apoptosis) and Caspase‐3/7 assays were studied to confirm these complexes induce programmed cell death. While gel electrophoresis was used to determine DNA cleavage activity and production of reactive oxygen species (ROS), the Comet assay was used to determine induced genomic DNA damage. Additionally, Förster resonance energy transfer (FRET)‐based DNA melting and fluorescent intercalation displacement assays have been used to determine the interaction of the complexes with double strand (DS) DNA and to establish preferential DNA base‐pair binding (AT versus GC).
Collapse
Affiliation(s)
- Baris Sergi
- Gradute School of Health Sciences, Koç University, 34450, Sariyer, Istanbul, Turkey
| | - Ipek Bulut
- Gradute School of Health Sciences, Koç University, 34450, Sariyer, Istanbul, Turkey
| | - Ying Xia
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UK
| | - Zoë A E Waller
- School of Pharmacy, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UK.,School of Pharmacy, UCL, 29-39 Brunswick Square, WC1E 6BT, London, UK
| | - Yasemin Yildizhan
- Genetic Engineering and Biotechnology Institute, TUBITAK, 41470, Kocaeli, Turkey
| | - Ceyda Acilan
- School of Medicine, Koç University, 34450, Sariyer, Istanbul, Turkey.,Research Center for Translational Medicine, Koç University, 34450, Sariyer, Istanbul, Turkey
| | - Rianne M Lord
- School of Chemistry, University of East Anglia, Norwich Research Park, NR4 7TJ, Norwich, UK
| |
Collapse
|
4
|
Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coord Chem Rev 2015; 301:24-48. [PMID: 32226091 PMCID: PMC7094629 DOI: 10.1016/j.ccr.2014.12.002] [Citation(s) in RCA: 357] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022]
Abstract
Vanadium is a transition metal that, being ubiquitously distributed in soil, crude oil, water and air, also found roles in biological systems and is an essential element in most living beings. There are also several groups of organisms which accumulate vanadium, employing it in their biological processes. Vanadium being a biological relevant element, it is not surprising that many vanadium based therapeutic drugs have been proposed for the treatment of several types of diseases. Namely, vanadium compounds, in particular organic derivatives, have been proposed for the treatment of diabetes, of cancer and of diseases caused by parasites. In this work we review the medicinal applications proposed for vanadium compounds with particular emphasis on the more recent publications. In cells, partly due to the similarity of vanadate and phosphate, vanadium compounds activate numerous signaling pathways and transcription factors; this by itself potentiates application of vanadium-based therapeutics. Nevertheless, this non-specific bio-activity may also introduce several deleterious side effects as in addition, due to Fenton's type reactions or of the reaction with atmospheric O2, VCs may also generate reactive oxygen species, thereby introducing oxidative stress with consequences presently not well evaluated, particularly for long-term administration of vanadium to humans. Notwithstanding, the potential of vanadium compounds to treat type 2 diabetes is still an open question and therapies using vanadium compounds for e.g. antitumor and anti-parasitic related diseases remain promising.
Collapse
Affiliation(s)
- Joao Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Susana Etcheverry
- Cátedra de Bioquímica Patológica and CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 1900 La Plata, Argentina
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay
| |
Collapse
|
5
|
First example of a 1:1 vanadium(IV)–citrate complex featuring the 2,2′-bipyridine co-ligand: Synthesis, X-ray crystal structure and DFT calculations. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2013.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
6
|
Gabriel C, Kioseoglou E, Venetis J, Psycharis V, Raptopoulou CP, Terzis A, Voyiatzis G, Bertmer M, Mateescu C, Salifoglou A. pH-Specific Structural Speciation of the Ternary V(V)–Peroxido–Betaine System: A Chemical Reactivity-Structure Correlation. Inorg Chem 2012; 51:6056-69. [DOI: 10.1021/ic2025878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- C. Gabriel
- Laboratory of Inorganic Chemistry, Department
of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki
54124, Greece
| | - E. Kioseoglou
- Laboratory of Inorganic Chemistry, Department
of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki
54124, Greece
| | - J. Venetis
- Laboratory of Inorganic Chemistry, Department
of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki
54124, Greece
| | - V. Psycharis
- Institute
of Materials Science, NCSR “Demokritos”, Aghia Paraskevi,
Attiki 15310, Greece
| | - C. P. Raptopoulou
- Institute
of Materials Science, NCSR “Demokritos”, Aghia Paraskevi,
Attiki 15310, Greece
| | - A. Terzis
- Institute
of Materials Science, NCSR “Demokritos”, Aghia Paraskevi,
Attiki 15310, Greece
| | - G. Voyiatzis
- Foundation
for Research and Technology Hellas (FORTH), Institute of Chemical
Engineering and High Temperature Chemical Processes (ICE/HT), Patras
26500, Greece
| | - M. Bertmer
- Institut
für Experimentelle Physik II, Universität Leipzig, Leipzig
04103, Germany
| | - C. Mateescu
- Banat's
University of Agricultural Sciences and Veterinary Medicine, Timisoara
300645, Romania
| | - A. Salifoglou
- Laboratory of Inorganic Chemistry, Department
of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki
54124, Greece
| |
Collapse
|
7
|
Kaliva M, Gabriel C, Raptopoulou CP, Terzis A, Voyiatzis G, Zervou M, Mateescu C, Salifoglou A. A Unique Dinuclear Mixed V(V) Oxo-peroxo Complex in the Structural Speciation of the Ternary V(V)-Peroxo-citrate System. Potential Mechanistic and Structural Insight into the Aqueous Synthetic Chemistry of Dinuclear V(V)-Citrate Species with H2O2. Inorg Chem 2011; 50:11423-36. [DOI: 10.1021/ic201204s] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. Kaliva
- Department of Chemistry, University of Crete, Heraklion 71409, Greece
| | - C. Gabriel
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - C. P. Raptopoulou
- Institute of Materials Science, NCSR “Demokritos”, Aghia Paraskevi 15310, Attiki, Greece
| | - A. Terzis
- Institute of Materials Science, NCSR “Demokritos”, Aghia Paraskevi 15310, Attiki, Greece
| | - G. Voyiatzis
- Foundation for Research and Technology Hellas (FORTH), Institute of Chemical Engineering and High Temperature Chemical Processes (ICE/HT), Patras 26500, Greece
| | - M. Zervou
- Laboratory of Molecular Analysis, Institute of Organic and Pharmaceutical Chemistry, National Hellenic Research Foundation, Athens 11635, Greece
| | - C. Mateescu
- Banat University of Agricultural Sciences and Veterinary Medicine, Timisoara 1900, Romania
| | - A. Salifoglou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
8
|
Lal MA, Bae D, Camilli TC, Patierno SR, Ceryak S. AKT1 mediates bypass of the G1/S checkpoint after genotoxic stress in normal human cells. Cell Cycle 2009; 8:1589-602. [PMID: 19377290 DOI: 10.4161/cc.8.10.8547] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Certain forms of hexavalent chromium [Cr(VI)] are human carcinogens. Our recent work has shown that a broad range protein tyrosine phosphatase (PTP) inhibitor, sodium orthovanadate (SOV), abrogated both Cr(VI)-induced growth arrest and clonogenic lethality. Notably, SOV enhanced Cr(VI) mutation frequency, ostensibly through forced survival of genetically damaged cells. In the present study, co-treatment with this PTP inhibitor bypassed the Cr(VI)-induced G(1)/S checkpoint arrest in diploid human lung fibroblasts (HLF). Moreover, the PTP inhibitor abrogated the Cr(VI)-induced decrease in the expression of key effectors of the G(1)/S checkpoint [Cyclin D1, phospho Ser 807/811 Rb (pRB), p27]. Cr(VI)-induced G(1) arrest was associated with the cytoplasmic appearance of pRb and the nuclear localization of p27, both of which were reversed by the PTP inhibitor. The PTP inhibitor's reversal of G(1)/S checkpoint effector localization after Cr exposure was found to be Akt1-dependent, as this was abrogated by transfection with either akt1 siRNA or an Akt1-kinase dead plasmid. Furthermore, Akt1 activation alone was sufficient to induce G(1)/S checkpoint bypass and to prevent Cr(VI)-induced changes in pRb and p27 localization. In conclusion, this work establishes Akt1 activation to be both sufficient to bypass the Cr(VI)-induced G(1)/S checkpoint, as well as necessary for the observed PTP inhibitor effects on key mediators of the G(1)/S transition. The potential for Akt to bypass G(1)/S checkpoint arrest in the face of genotoxic damage could increase genomic instability, which is a hallmark of neoplastic progression.
Collapse
Affiliation(s)
- Madhu A Lal
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington DC 20037, USA
| | | | | | | | | |
Collapse
|
9
|
Gabriel C, Venetis J, Kaliva M, Raptopoulou C, Terzis A, Drouza C, Meier B, Voyiatzis G, Potamitis C, Salifoglou A. Probing for missing links in the binary and ternary V(V)–citrate–(H2O2) systems: Synthetic efforts and in vitro insulin mimetic activity studies. J Inorg Biochem 2009; 103:503-16. [DOI: 10.1016/j.jinorgbio.2008.12.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Revised: 12/21/2008] [Accepted: 12/30/2008] [Indexed: 01/19/2023]
|
10
|
Bae D, Camilli TC, Chun G, Lal M, Wright K, O'Brien TJ, Patierno SR, Ceryak S. Bypass of hexavalent chromium-induced growth arrest by a protein tyrosine phosphatase inhibitor: enhanced survival and mutagenesis. Mutat Res 2009; 660:40-6. [PMID: 19013184 PMCID: PMC2728454 DOI: 10.1016/j.mrfmmm.2008.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2008] [Revised: 10/03/2008] [Accepted: 10/08/2008] [Indexed: 11/22/2022]
Abstract
Although the consequences of genotoxic injury include cell cycle arrest and apoptosis, cell survival responses after genotoxic injury can produce intrinsic death-resistance and contribute to the development of a transformed phenotype. Protein tyrosine phosphatases (PTPs) are integral components of key survival pathways, and are responsible for their inactivation, while PTP inhibition is often associated with enhanced cell proliferation. Our aim was to elucidate signaling events that modulate cell survival after genotoxin exposure. Diploid human lung fibroblasts (HLF) were treated with Cr(VI) (as Na(2)CrO(4)), the soluble oxyanionic dissolution product of certain particulate chromates, which are well-documented human respiratory carcinogens. In vitro soluble Cr(VI) induces a wide spectrum of DNA damage, in both the presence and absence of a broad-range PTP inhibitor, sodium orthovanadate (SOV). Notably, SOV abrogated Cr(VI)-induced clonogenic lethality. The enhanced survival of Cr(VI)-exposed cells after SOV treatment was predominantly due to a bypass of cell cycle arrest, as there was no effect of the PTP inhibitor on Cr-induced apoptosis. Moreover, the SOV effect was not due to decreased Cr uptake as evidenced by unchanged Cr-DNA adduct burden. Additionally, the bypass of Cr-induced growth arrest by SOV was accompanied by a decrease in Cr(VI)-induced expression of cell cycle inhibiting genes, and an increase in Cr(VI)-induced expression of cell cycle promoting genes. Importantly, SOV resulted in an increase in forward mutations at the HPRT locus, supporting the hypothesis that PTP inhibition in the presence of certain types of DNA damage may lead to increased genomic instability, via bypass of cell cycle checkpoints.
Collapse
Affiliation(s)
- Dongsoon Bae
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC, USA
| | - Tura C. Camilli
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC, USA
- Program in Molecular Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Gina Chun
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC, USA
- Program in Molecular Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Madhu Lal
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC, USA
- Program in Molecular Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Kristen Wright
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC, USA
- Program in Molecular Medicine, The George Washington University Medical Center, Washington, DC, USA
| | - Travis J. O'Brien
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC, USA
- Program in Molecular Medicine, The George Washington University Medical Center, Washington, DC, USA
- GW Cancer Institute, The George Washington University Medical Center, Washington, DC, USA
| | - Steven R. Patierno
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC, USA
- Department of Medicine, The George Washington University Medical Center, Washington, DC, USA
- Program in Molecular Medicine, The George Washington University Medical Center, Washington, DC, USA
- GW Cancer Institute, The George Washington University Medical Center, Washington, DC, USA
| | - Susan Ceryak
- Department of Pharmacology and Physiology, The George Washington University Medical Center, Washington, DC, USA
- Department of Medicine, The George Washington University Medical Center, Washington, DC, USA
- Program in Molecular Medicine, The George Washington University Medical Center, Washington, DC, USA
- GW Cancer Institute, The George Washington University Medical Center, Washington, DC, USA
| |
Collapse
|
11
|
Gabriel C, Kaliva M, Venetis J, Baran P, Rodriguez-Escudero I, Voyiatzis G, Zervou M, Salifoglou A. Aqueous V(V)-Peroxo-Amino Acid Chemistry. Synthesis, Structural and Spectroscopic Characterization of Unusual Ternary Dinuclear Tetraperoxo Vanadium(V)-Glycine Complexes. Inorg Chem 2008; 48:476-87. [DOI: 10.1021/ic801427b] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- C. Gabriel
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Crete, Heraklion 71409, Greece, Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931-3346, Foundation for Research and Technology Hellas (FORTH), Institute of Chemical Engineering and High Temperature Chemical Processes (ICE/HT), Patras 26500, Greece, and Laboratory of Molecular Analysis, Institute of
| | - M. Kaliva
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Crete, Heraklion 71409, Greece, Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931-3346, Foundation for Research and Technology Hellas (FORTH), Institute of Chemical Engineering and High Temperature Chemical Processes (ICE/HT), Patras 26500, Greece, and Laboratory of Molecular Analysis, Institute of
| | - J. Venetis
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Crete, Heraklion 71409, Greece, Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931-3346, Foundation for Research and Technology Hellas (FORTH), Institute of Chemical Engineering and High Temperature Chemical Processes (ICE/HT), Patras 26500, Greece, and Laboratory of Molecular Analysis, Institute of
| | - P. Baran
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Crete, Heraklion 71409, Greece, Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931-3346, Foundation for Research and Technology Hellas (FORTH), Institute of Chemical Engineering and High Temperature Chemical Processes (ICE/HT), Patras 26500, Greece, and Laboratory of Molecular Analysis, Institute of
| | - I. Rodriguez-Escudero
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Crete, Heraklion 71409, Greece, Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931-3346, Foundation for Research and Technology Hellas (FORTH), Institute of Chemical Engineering and High Temperature Chemical Processes (ICE/HT), Patras 26500, Greece, and Laboratory of Molecular Analysis, Institute of
| | - G. Voyiatzis
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Crete, Heraklion 71409, Greece, Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931-3346, Foundation for Research and Technology Hellas (FORTH), Institute of Chemical Engineering and High Temperature Chemical Processes (ICE/HT), Patras 26500, Greece, and Laboratory of Molecular Analysis, Institute of
| | - M. Zervou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Crete, Heraklion 71409, Greece, Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931-3346, Foundation for Research and Technology Hellas (FORTH), Institute of Chemical Engineering and High Temperature Chemical Processes (ICE/HT), Patras 26500, Greece, and Laboratory of Molecular Analysis, Institute of
| | - A. Salifoglou
- Laboratory of Inorganic Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece, Department of Chemistry, University of Crete, Heraklion 71409, Greece, Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931-3346, Foundation for Research and Technology Hellas (FORTH), Institute of Chemical Engineering and High Temperature Chemical Processes (ICE/HT), Patras 26500, Greece, and Laboratory of Molecular Analysis, Institute of
| |
Collapse
|
12
|
Kaliva M, Gabriel C, Raptopoulou CP, Terzis A, Salifoglou A. pH-specific synthesis, isolation, spectroscopic and structural characterization of a new dimeric assembly of dinuclear vanadium(V)–citrate–peroxo species from aqueous solutions. Inorganica Chim Acta 2008. [DOI: 10.1016/j.ica.2007.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Srivastava AK. Section Review—Oncologic, Endocrine & Metabolic: Potential Use of Vanadium Compounds in the Treatment of Diabetes Mellitus. Expert Opin Investig Drugs 2008. [DOI: 10.1517/13543784.4.6.525] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Noutsopoulos D, Markopoulos G, Koliou M, Dova L, Vartholomatos G, Kolettas E, Tzavaras T. Vanadium Induces VL30 Retrotransposition at an Unusually High Level: A Possible Carcinogenesis Mechanism. J Mol Biol 2007; 374:80-90. [DOI: 10.1016/j.jmb.2007.09.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 08/14/2007] [Accepted: 09/04/2007] [Indexed: 10/22/2022]
|
15
|
Shukla R, Bhonde RR. Adipogenic action of vanadium: a new dimension in treating diabetes. Biometals 2007; 21:205-10. [PMID: 17671828 DOI: 10.1007/s10534-007-9109-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2006] [Accepted: 07/12/2007] [Indexed: 10/23/2022]
Abstract
Vanadium is a well known anti-diabetic agent which mimics most of the actions of insulin on mature adipocytes. We report here the effect of vanadium on proliferation and differentiation of 3T3-L1 preadipocytes. Like insulin, vanadium treatment leads to increased proliferation as evidenced by H(3)thymidine uptake studies and differentiation of 3T3-L1 cells into adipocytes as evidenced by oil-red-O staining. Adipogenic potential of vanadium can be attributed to CREB activation, as documented by phospho-CREB antibody staining. This adipogenic potential is of significance in an in vivo scenario as the new adipocytes are likely to be insulin sensitive as against resistant existing mature adipocytes and thus indirectly may help in reduction of insulin resistance. Till today decrease in insulin resistance by vanadium treatment has been mainly attributed to its potential to inhibit PTP-1B, however the present study opens a new dimension in vanadium treatment for diabetes due to its novel role in adipogenesis.
Collapse
Affiliation(s)
- Ruchi Shukla
- Tissue Engineering and Banking Laboratory, National Centre for Cell Science, Pune University Campus, Ganeshkhind, Pune, India
| | | |
Collapse
|
16
|
Li J, Tong Q, Shi X, Costa M, Huang C. ERKs activation and calcium signaling are both required for VEGF induction by vanadium in mouse epidermal Cl41 cells. Mol Cell Biochem 2007; 279:25-33. [PMID: 16283512 DOI: 10.1007/s11010-005-8212-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The previous studies have demonstrated that vanadium exposure can cause a variety of biological effects. However, the mechanisms involved in the biological effects caused by vanadium are not well understood. Our previous studies have shown that exposure of mouse epidermal Cl 41 cells to vanadate stimulated the phosphorylation of both ERKs and p38K, and calcium signaling leading NFAT activation. In view of the evidence that ERKs and p38 kinase contribute to VEGF induction, we investigated in the present study the potential roles of ERKs, p38K, and calcium signaling in VEGF induction caused by vanadium exposure. Exposure of Cl 41 cells to vanadium led to VEGF induction in both time- and dose-dependent manners. Pre-treatment of Cl 41 cells with PD98059, an inhibitor of MEK1/2-ERKs pathway, but not SB202190, an inhibitor for p38K pathway, resulted in a dramatic inhibition of VEGF induction by vanadium. More interesting, pre-treatment of Cl 41 cells with intracellular calcium chelator, but not calcium channel blocker, resulted in a dramatic decrease in VEGF induction by vanadium. However, both PI-3K inhibitors and overexpression of Deltap85, a dominant negative PI-3K mutant, resulted in only a marginal decrease in VEGF induction by vanadium. Moreover, mTOR, as a downstream molecule of PI-3K, did not attribute to VEGF induction by vanadium because rapamycin pre-treatment did not show any inhibitory effect on VEGF induction. These results indicate that ERKs and intracellular stored calcium release play a critical role in VEGF induction by vanadium. PI-3K is partially involved in VEGF induction by vanadium, while p38K and mTOR are not involved. Those results will help us to understand the molecular mechanisms involved in vanadium-induced biological effects.
Collapse
Affiliation(s)
- Jingxia Li
- Nelson Institute of Environmental Medicine, School of Medicine, New York University, Old Forge Road, Tuxedo, New York 10987, USA
| | | | | | | | | |
Collapse
|
17
|
Veschetti E, Maresca D, Lucentini L, Ferretti E, Citti G, Ottaviani M. Monitoring of V(IV) and V(V) in Etnean drinking-water distribution systems by solid phase extraction and electrothermal atomic absorption spectrometry. Microchem J 2007. [DOI: 10.1016/j.microc.2006.05.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Kaliva M, Kyriakakis E, Gabriel C, Raptopoulou C, Terzis A, Tuchagues JP, Salifoglou A. Synthesis, isolation, spectroscopic and structural characterization of a new pH complex structural variant from the aqueous vanadium(V)-peroxo-citrate ternary system. Inorganica Chim Acta 2006. [DOI: 10.1016/j.ica.2006.07.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
19
|
Chakraborty T, Pandey N, Chatterjee A, Ghosh B, Rana B, Chatterjee M. Molecular basis of anticlastogenic potential of vanadium in vivo during the early stages of diethylnitrosamine-induced hepatocarcinogenesis in rats. Mutat Res 2006; 609:117-28. [PMID: 16942905 DOI: 10.1016/j.mrgentox.2006.04.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 03/17/2006] [Accepted: 04/06/2006] [Indexed: 12/14/2022]
Abstract
Carcinogen-induced DNA base modification and subsequent DNA lesions are the critical events for the expression of premalignant phenotype of the cell. We have therefore investigated the chemopreventive efficacy of a vanadium salt against diethylnitrosamine (DEN)-induced early DNA and chromosomal damages in rat liver. Hepatocarcinogenesis was induced in male Sprague-Dawley rats with a single, necrogenic, intraperitoneal injection of DEN (200mg/kg body weight). 8-Hydroxy-2'-deoxyguanosines (8-OHdGs), strand-breaks and DNA-protein crosslinks (DPCs) were measured by HPLC, comet assay and spectrofluorimetry, respectively. There was a significant and steady elevation of modified bases 8-OHdGs along with substantial increments of the extent of single-strand-breaks (SSBs), DPCs and chromosomal aberrations (CAs) following DEN exposure. Supplementation of vanadium as ammonium metavanadate (NH(4)VO(3), +V oxidation state) at a dose of 0.5ppm in terms of the salt weight throughout the experiment abated the formations of 8-OHdGs (P<0.0001; 79.54%), tailed DNA (P<0.05; 31.55%) and length:width of DNA mass (P<0.02; 61.25%) in preneoplastic rat liver. Vanadium treatment also inhibited DPCs (P<0.0001; 58.47%) and CAs (P<0.001; 45.17%) studied at various time points. The results indicate that the anticlastogenic potential of vanadium in vivo might be due to the observed reductions in liver-specific 8-OHdGs, SSBs and/or DPCs by this trace metal. We conclude that, vanadium plays a significant role in limiting DEN-induced genotoxicity and clastogenicity during the early stages of hepatocarcinogenesis in rats.
Collapse
Affiliation(s)
- Tridib Chakraborty
- Division of Biochemistry, Department of Pharmaceutical Technology, Jadavpur University, PO Box 17028, Calcutta 700032, India
| | | | | | | | | | | |
Collapse
|
20
|
Bolkent S, Bolkent S, Yanardag R, Tunali S. Protective effect of vanadyl sulfate on the pancreas of streptozotocin-induced diabetic rats. Diabetes Res Clin Pract 2005; 70:103-9. [PMID: 16188572 DOI: 10.1016/j.diabres.2005.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2005] [Indexed: 11/20/2022]
Abstract
The aim of this study is to examine from a biochemical and histological perspective, whether vanadium has a protective effect on the pancreas of diabetic rats. Male, 6-6.5 months old, Swiss albino rats were divided into four groups. Group I: control (intact) animals (n=13). Group II: control rats given vanadyl sulfate (n=5). Group III: streptozotocin-induced diabetic animals (n=11). Group IV: streptozotocin-induced diabetic animals given vanadyl sulfate (n=11). Vanadyl sulfate was given by gavage technique to rats in a dose of 100mg/kg daily for 60 days, after experimental animals were made diabetic. On day 60, the pancreas tissue and blood samples were taken from the animals. In the streptozotocin-induced diabetic group, blood glucose levels significantly increased in contrast to the loss of body weight, but vanadyl sulfate in streptozotocin-diabetic rats reduced blood glucose levels and increased both blood glutathione levels and body weight. Tissue sections were immunostained using an insulin antibody. The control group given vanadyl sulfate was no different from the other intact control group considering the insulin immunoreactivity in B cells. In pancreatic islets of the diabetic group, a decrease in the number of immunoreactive B cells was observed in comparison to the control group. On the other hand, pancreatic islets of the diabetic group given vanadyl sulfate showed a higher number of immunoreactive B cells in comparison to the diabetic group. According to the immunohistochemical and biochemical results obtained, it was concluded that vanadyl sulfate can regenerate B cells of endocrine pancreas in experimental diabetes.
Collapse
Affiliation(s)
- Sema Bolkent
- Department of Medical Biology, Cerrahpasa Faculty of Medicine, Istanbul University, 34098-Cerrahpasa, Istanbul, Turkey.
| | | | | | | |
Collapse
|
21
|
Aguirre MV, Juaristi JA, Alvarez MA, Brandan NC. Characteristics of in vivo murine erythropoietic response to sodium orthovanadate. Chem Biol Interact 2005; 156:55-68. [PMID: 16137666 DOI: 10.1016/j.cbi.2005.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 07/08/2005] [Accepted: 07/08/2005] [Indexed: 11/23/2022]
Abstract
Current knowledge about the effects of vanadium compounds on erythropoiesis is still reduced and even contradictory. The aim of this work was to evaluate the in vivo effects of a single dose of sodium orthovanadate (OV, 33 mg/kg i.p.) on CF-1 mice in a time course study (0-8 days). Murine erythropoiesis was assessed through a combinatory of experimental approaches. Classical peripheral and bone marrow (BM) hematological parameters were determined. Erythroid maturation in blood stream and hemopoietic tissues (59Fe uptake assays), BM erythroid progenitor frequency (clonogenic assays) and erythroid crucial protein expressions for commitment and survival: GATA-1, erythropoietin receptor (Epo-R) and Bcl-xL (immunoblottings) were evaluated. Neither BM cellularities nor BM viabilities changed noticeably during the study. Peripheral reticulocytes showed a biphasic increment on days 2 and 8 post-OV. hematocrits enhanced transiently between days 2 and 4. 59Fe uptake percentages enhanced in peripheral blood nearly two-fold over control values between 4 and 8 days (p<0.01) without changes in BM and spleen. Additionally, mature erythroid BM compartments: polychromatophilic erythroblasts and orthochromatic normoblasts increased by the eighth day. BFU-E colonies remained near basal values during the whole experience, whilst CFU-E colonies raised 60% over control at 8 days post-OV (p<0.05). GATA-1 and Epo-R were significantly over-expressed from the third until the end of the experimental protocol (p<0.01). Surprisingly, Bcl-xL showed a constitutive expression pattern without changes during the experience. Experimental data let us suggest that OV does not to cause bone marrow cytotoxicity and that it accelerates maturation of BM committed erythroid precursors. Moreover, there are significant correlations among erythroid-related protein expressions: GATA-1 and Epo-R and the frequency of CFU-E. In addition, Bcl-xL expression invariance during the time course study would indicate that the stimulatory effect of OV treatment on erythropoiesis was mainly exerted on the maturation of red cell precursors rather than on the antiapoptosis of erythroid terminal progenitors.
Collapse
Affiliation(s)
- María Victoria Aguirre
- Department of Biochemistry, Faculty of Medicine, Northeast National University, Moreno 1240, 3400 Corrientes, Argentina
| | | | | | | |
Collapse
|
22
|
Mukherjee B, Patra B, Mahapatra S, Banerjee P, Tiwari A, Chatterjee M. Vanadium--an element of atypical biological significance. Toxicol Lett 2004; 150:135-43. [PMID: 15093669 DOI: 10.1016/j.toxlet.2004.01.009] [Citation(s) in RCA: 217] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2003] [Revised: 12/18/2003] [Accepted: 01/20/2004] [Indexed: 11/30/2022]
Abstract
The biological image of the transition element vanadium ferments a great deal of contradiction-from toxicity to essentiality. Importance of this element as micro-nutrient is yet to be unequivocally accepted by biologists and biomedical scientists. In spite of toxicity, it seems interesting to analyze the different biological roles of the element. Vanadium compounds have been proven to be associated with various implications in the pathogenesis of some human diseases and also in maintaining normal body functions. Salts of vanadium interfere with an essential array of enzymatic systems such as different ATPases, protein kinases, ribonucleases and phosphatases. While vanadium deficiency accounts for several physiological malfunctionings including thyroid, glucose and lipid metabolism, etc., several genes are regulated by this element or by its compounds, which include genes for tumor necrosis factor-alpha (TNF-alpha), Interleukin-8 (IL-8), activator protein-1 (AP-1), ras, c-raf-1, mitogen activated protein kinase (MAPK), p53, nuclear factors-kappaB, etc. All these seem to be not far from its recognition as an element of pharmacological and nutritional significance, which is revealed through its increasing therapeutic uses in diabetes. Vanadium is also emerging as a potent anti-carcinogenic agent. This review summarizes the developments related to vanadium biology as a whole by analyzing the general biochemical functions of vanadium.
Collapse
Affiliation(s)
- Biswajit Mukherjee
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | | | | | | | | | | |
Collapse
|
23
|
Hulley P, Davison A. Regulation of tyrosine phosphorylation cascades by phosphatases: What the actions of vanadium teach us. ACTA ACUST UNITED AC 2003. [DOI: 10.1002/jtra.10040] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Barrio DA, Williams PAM, Cortizo AM, Etcheverry SB. Synthesis of a new vanadyl(IV) complex with trehalose (TreVO): insulin-mimetic activities in osteoblast-like cells in culture. J Biol Inorg Chem 2003; 8:459-68. [PMID: 12761667 DOI: 10.1007/s00775-002-0438-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2002] [Accepted: 12/10/2002] [Indexed: 10/18/2022]
Abstract
Vanadium compounds show interesting biological and pharmacological properties. Some of them display insulin-mimetic effects and others produce anti-tumor actions. The bioactivity of vanadium is present in inorganic species like the vanadyl(IV) cation or vanadate(V) anion. Nevertheless, the development of new vanadium derivatives with organic ligands which improve the beneficial actions and decrease the toxic effects is of great interest. On the other hand, the mechanisms involved in vanadium bioactivity are still poorly understood. A new vanadium complex of the vanadyl(IV) cation with the disaccharide trehalose (TreVO), Na(6)[VO(Tre)(2)].4H(2)O, here reported, shows interesting insulin-mimetic properties in two osteoblast cell lines, a normal one (MC3T3E1) and a tumoral one (UMR106). The complex affected the proliferation of both cell lines in a different manner. On tumoral cells, TreVO caused a weak stimulation of growth at 5 microM but it inhibited cell proliferation in a dose-response manner between 50 and 100 microM. TreVO significantly inhibited UMR106 differentiation (15-25% of basal) in the range 5-100 microM. On normal osteoblasts, TreVO behaved as a mitogen at 5-25 microM. Different inhibitors of the MAPK pathway blocked this effect. At higher concentrations (75-100 microM), the complex was a weak inhibitor of the MC3T3E1 proliferation. Besides, TreVO enhanced glucose consumption by a mechanism independent of the PI3-kinase activation. In both cell lines, TreVO stimulated the ERK phosphorylation in a dose- and time-dependent manner. Different inhibitors (PD98059, wortmannin, vitamins C and E) partially decreased this effect, which was totally inhibited by their combination. These results suggest that TreVO could be a potential candidate for therapeutic treatments.
Collapse
Affiliation(s)
- Daniel A Barrio
- Cátedra de Bioquímica Patológica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | | | | | | |
Collapse
|
25
|
Kaliva M, Raptopoulou CP, Terzis A, Salifoglou A. Systematic studies on pH-dependent transformations of dinuclear vanadium(V)-citrate complexes in aqueous solutions. A perspective relevance to aqueous vanadium(V)-citrate speciation. J Inorg Biochem 2003; 93:161-73. [PMID: 12576278 DOI: 10.1016/s0162-0134(02)00563-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Vanadium(V) involvement in interactions with physiological ligands in biological media prompted us to delve into the systematic pH-dependent synthesis, spectroscopic characterization, and perusal of chemical properties of arising aqueous vanadium(V)-citrate species in the requisite system. To this end, facile reactions led to dinuclear complexes (NH(4))(4)[V(2)O(4)(C(6)H(5)O(7))(2)].4H(2)O (1) and (NH(4))(6)[V(2)O(4)(C(6)H(4)O(7))(2)].6H(2)O (2). Complex 1 and 2 were characterized by elemental analysis, FT-IR and X-ray crystallography. Complex 1 crystallizes in the monoclinic space group C2/c with a=16.998(5) A, b=16.768(5) A, c=9.546(3) A, beta=105.22(1) degrees, V=2625(1) A(3), and Z=4. Complex 2 crystallizes in the triclinic space group P1;, with a=9.795(4) A, b=9.942(4) A, c=9.126(3) A, alpha=90.32(1) degrees, beta=111.69(1) degrees, gamma=108.67(1) degrees, V=774.5(5) A(3), and Z=1. The structures of 1 and 2 were consistent with the presence of a V(V)(2)O(2) core, to which citrate ligands of differing protonation state were bound in a coordination mode consistent with past observations. Ultimately, the aqueous pH dependent transformations of a series of three dinuclear complexes, 1, 2 and (NH(4))(2)[V(2)O(4)(C(6)H(6)O(7))(2)].2H(2)O (3), all isolated at pH values from 3 to 7.5, were explored and revealed an important interconnection among all species. Collectively, pH emerged as a determining factor of structural attributes in all three complexes, with the adjoining acid-base chemistry unfolding around the stable V(V)(2)O(2) core. The results point to the participation of all three species in aqueous vanadium(V)-citrate speciation, and may relate the site-specific protonations-deprotonations on the dinuclear complexes to potential biological processes involving vanadium(V) and physiological ligand targets.
Collapse
Affiliation(s)
- M Kaliva
- Department of Chemistry, University of Crete, 71409 Heraklion, Greece
| | | | | | | |
Collapse
|
26
|
Cam MC, Brownsey RW, McNeill JH. Mechanisms of vanadium action: insulin-mimetic or insulin-enhancing agent? Can J Physiol Pharmacol 2001. [PMID: 11077984 DOI: 10.1139/y00-053] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The demonstration that the trace element vanadium has insulin-like properties in isolated cells and tissues and in vivo has generated considerable enthusiasm for its potential therapeutic value in human diabetes. However, the mechanisms by which vanadium induces its metabolic effects in vivo remain poorly understood, and whether vanadium directly mimics or rather enhances insulin effects is considered in this review. It is clear that vanadium treatment results in the correction of several diabetes-related abnormalities in carbohydrate and lipid metabolism, and in gene expression. However, many of these in vivo insulin-like effects can be ascribed to the reversal of defects that are secondary to hyperglycemia. The observations that the glucose-lowering effect of vanadium depends on the presence of endogenous insulin whereas metabolic homeostasis in control animals appears not to be affected, suggest that vanadium does not act completely independently in vivo, but augments tissue sensitivity to low levels of plasma insulin. Another crucial consideration is one of dose-dependency in that insulin-like effects of vanadium in isolated cells are often demonstrated at high concentrations that are not normally achieved by chronic treatment in vivo and may induce toxic side effects. In addition, vanadium appears to be selective for specific actions of insulin in some tissues while failing to influence others. As the intracellular active forms of vanadium are not precisely defined, the site(s) of action of vanadium in metabolic and signal transduction pathways is still unknown. In this review, we therefore examine the evidence for and against the concept that vanadium is truly an insulin-mimetic agent at low concentrations in vivo. In considering the effects of vanadium on carbohydrate and lipid metabolism, we conclude that vanadium acts not globally, but selectively and by enhancing, rather than by mimicking the effects of insulin in vivo.
Collapse
Affiliation(s)
- M C Cam
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, The University of British Columbia,Vancouver, Canada
| | | | | |
Collapse
|
27
|
Yan S, Wenner CE. Modulation of cyclin D1 and its signaling components by the phorbol ester TPA and the tyrosine phosphatase inhibitor vanadate. J Cell Physiol 2001; 186:338-49. [PMID: 11169972 DOI: 10.1002/1097-4652(2000)9999:9999<000::aid-jcp1032>3.0.co;2-b] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The mechanism by which 12-O-tetradecanoylphorbol-13-acetate (TPA) triggers cell-cycle progression at G1 phase in mouse embryonic fibroblast C3H 10T1/2 cells was examined. TPA treatment resulted in a temporary induction of cyclin D1 peaking at 9 h post stimulation. PD98059 (10 microM), the specific inhibitor of MAPK kinase, completely blocked TPA-stimulated cyclin D1 induction and DNA synthesis, confirming that MAPK activation plays an essential role in TPA-stimulated cell-cycle progression. Although both PKCalpha and PKCepsilon are expressed in C3H 10T1/2 cells, inhibitor studies suggest that PKCepsilon activation is required for the activation of MEK/MAPK signal transduction cascade. p70s6K, an important kinase involved in the regulation of protein synthesis and cell-cycle progression, has been reported to be activated through a PKC-dependent pathway (TPA-activatable) in addition to a PI3K-dependent pathway. Here, we demonstrate for the first time that TPA-stimulated MAPK activation is essential for the phosphorylation of several key residues involved in the activation of p70s6K, namely, thr389, thr421, and ser424. Vanadate, the tyrosine phosphatase inhibitor, triggered a sustained elevation of the level of active MAPK. However, corresponding to a rapid loss of cyclin D1 protein, vanadate treatment resulted in a significant shut out of 3H-thymidine incorporation into DNA regardless of TPA cotreatment. Vanadate treatment also led to the increase of active MEK, increased phosphorylation of p70s6K at thr389, thr421, and ser424 yet without activation of PKB. These data suggest that vanadate can selectively perturb the activation of signaling components which raises the interesting issue as to how vanadate downregulates the cyclin D1 level.
Collapse
Affiliation(s)
- S Yan
- Department of Biochemistry, Roswell Park Cancer Institute, Buffalo, New York 14260, USA
| | | |
Collapse
|
28
|
Bardgette J, Abboud HE, Choudhury GG. Activation of STAT1 alpha by phosphatase inhibitor vanadate in glomerular mesangial cells: involvement of tyrosine and serine phosphorylation. J Recept Signal Transduct Res 1999; 19:865-84. [PMID: 10349599 DOI: 10.3109/10799899909042878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Vanadate is an insulinomimetic agent that has potent inhibitory effect on tyrosine phosphatases. We have recently demonstrated that low concentration of vanadate stimulates phosphotyrosine-dependent signal transduction pathways leading to gene expression and DNA synthesis in mesangial cells. To further examine the mechanisms by which vanadate activates mesangial cell, we studied its effect on signal transducer and activators of transcription (STAT). Incubation of lysates from vanadate-stimulated mesangial cells with a specific high affinity sis-inducible DNA element (SIE) resulted in the formation of protein-DNA complex. Supershift analysis using monoclonal antibody against STAT1 alpha showed its exclusive presence in the DNA-protein complex. Incubation of cell lysate with antiphosphotyrosine antibody or with excess phosphotyrosine caused decrease in binding of STAT1 alpha to SIE probe indicating that tyrosine phosphorylation and dimerization of this transcription factor are necessary for its activation. Immunoprecipitation followed by immunecomplex kinase assay showed increased tyrosine kinase activity of Janus kinase 2 (JAK2) in vanadate-treated mesangial cells. The addition of a monoclonal antiphosphoserine antibody to lysates from vanadate-treated mesangial cells results in supershift of protein-DNA complex indicating the presence of serine phosphorylated STAT1 alpha in this complex. Treatment of lystates from vanadated-stimulated mesangial cells with serine phosphatase PP2A causes inhibition of DNA-protein interaction. Collectively, our data indicate that at least one mechanism of activation of mesangial cells during vanadate treatment is increased activation of STAT1 alpha by both tyrosine and serine phosphorylation.
Collapse
Affiliation(s)
- J Bardgette
- Department of Medicine, University of Texas Health Science Center at San Antonio 78284, USA
| | | | | |
Collapse
|
29
|
Mannazzu I, Guerra E, Strabbioli R, Pediconi D, Fatichenti F. The vanadate-tolerant yeast Hansenula polymorpha undergoes cellular reorganization during growth in, and recovery from, the presence of vanadate. MICROBIOLOGY (READING, ENGLAND) 1998; 144 ( Pt 9):2589-2597. [PMID: 9782508 DOI: 10.1099/00221287-144-9-2589] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
When present at intracellular concentrations above micromolar, vanadate becomes toxic to most organisms. However, the yeast Hansenula polymorpha is able to grow on vanadate concentrations in the millimolar range, showing at the same time modifications in cellular ultrastructure and polyphosphate metabolism. Here, the development of the ultrastructural changes, and of vacuolar and secretory activities, during exponential growth on vanadate and upon a return to vanadate-free conditions was investigated. External invertase secretion was inhibited by vanadate, as shown by a decrease in external invertase activity, an intracellular accumulation of small vesicles and a cytoplasmic accumulation of internal invertase. An aberrant appearance of the cell wall and defects in cellular surface growth, possibly linked to defects in secretion, were also observed. However, inhibition of the secretory pathway was not complete since the activity of another secreted enzyme, exoglucanase, increased in the presence of vanadate. Growth on vanadate was also accompanied by an enhancement of vacuolar proteolysis, as indicated by an increase in carboxypeptidase Y activity. However, these modifications were all reversible upon return to vanadate-free conditions, with the normalization process being complex and involving new and dramatic ultrastructural changes and activation of an autophagic mechanism. This mechanism is involved in the elimination/resorption of the observed vanadate-induced aberrant cell structures and/or sites involved in vanadate accumulation, a necessary prerequisite for restoration of conventional ultrastructure and metabolic functions.
Collapse
Affiliation(s)
- Ilaria Mannazzu
- Dipartimento di Biotecnologie Agrarie ed Ambientali, Universit�di Ancona, Via Brecce Bianche, Ancona 60131,Italy
| | - Emanuela Guerra
- Dipartimento di Biotecnologie Agrarie ed Ambientali, Universit�di Ancona, Via Brecce Bianche, Ancona 60131,Italy
| | - Rosanna Strabbioli
- Dipartimento di Biotecnologie Agrarie ed Ambientali, Universit�di Ancona, Via Brecce Bianche, Ancona 60131,Italy
| | - Dario Pediconi
- Dipartimento di Biotecnologie Agrarie ed Ambientali, Universit�di Ancona, Via Brecce Bianche, Ancona 60131,Italy
| | - Fabrizio Fatichenti
- Dipartimento di Biotecnologie Agrarie ed Ambientali, Universit�di Ancona, Via Brecce Bianche, Ancona 60131,Italy
| |
Collapse
|
30
|
Jimenez de Asua L, Goin M. Prostaglandin F2 alpha (PGF2 alpha) triggers protein kinase C (PKC) and tyrosine kinase activity in cultured mammalian cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1998; 400A:531-8. [PMID: 9547601 DOI: 10.1007/978-1-4615-5325-0_72] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Prostaglandin F2 alpha (PGF2 alpha) added to confluent resting Swiss 3T3 cells triggers tyrosine kinase (PTK) activation characterized by the phosphorylation of a set of 75, 86, 110 and 140 kD proteins. PGF2 alpha induces this event independently of PKC activation. However, both PKC and PTK activities appear to act concertedly to cause mitogenesis. Here we discuss their relevance in the control of mammalian cell division.
Collapse
Affiliation(s)
- L Jimenez de Asua
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, (INGEBI), Buenos Aires, Argentina
| | | |
Collapse
|
31
|
Band CJ, Posner BI, Dumas V, Contreres JO. Early signaling events triggered by peroxovanadium [bpV(phen)] are insulin receptor kinase (IRK)-dependent: specificity of inhibition of IRK-associated protein tyrosine phosphatase(s) by bpV(phen). Mol Endocrinol 1997; 11:1899-910. [PMID: 9415395 DOI: 10.1210/mend.11.13.0041] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Peroxovanadiums (pVs) are potent protein tyrosine phosphatase (PTP) inhibitors with insulin-mimetic properties in vivo and in vitro. We have established the existence of an insulin receptor kinase (IRK)-associated PTP whose inhibition by pVs correlates closely with IRK tyrosine phosphorylation, activation, and downstream signaling. pVs have also been shown to activate various tyrosine kinases (TKs) that could participate in activation of the insulin-signaling pathway. In the present study we have sought to determine whether pV-induced IRK tyrosine phosphorylation requires the intrinsic kinase activity of the IRK, and whether IRK activation is necessary to realize the early steps in the insulin-signaling cascade. To address this we evaluated the effect of a pure pV compound, bis peroxovanadium 1,10-phenanthroline [bpV(phen)], in HTC rat hepatoma cells overexpressing normal (HTC-IR) or kinase-deficient (HTC-M1030) mutant IRKs. We showed that at a dose of 0.1 mM, but not 1 mM, bpV(phen) induced IRK-dependent events. Thus, 0.1 mM bpV(phen) increased tyrosine phosphorylation and IRK activity in HTC-IR but not HTC-M1030 cells. Tyrosine phosphorylation of insulin signal-transducing molecules was promoted in HTC-IR but not HTC-M1030 cells by bpV(phen). The association of p185 and p60 with the src homology-2 (SH2) domains of Syp and the p85-regulatory subunit of phosphatidylinositol 3'-kinase was induced by bpV(phen) in HTC-IR, but not in HTC-M1030 cells, as was insulin receptor substrate-1-associated phosphatidylinositol 3'-kinase activity. Thus autophosphorylation and activation of the IRK by bpV(phen) is effected by the IRK itself, and the early events in the insulin- signaling cascade follow from this activation event. This establishes a critical role for PTP(s) in the regulation of IRK activity. bpV(phen) could be distinguished from insulin only in its ability to activate ERK1 in HTC-M1030 cells, thus indicating that this event is IRK independent, consistent with our previous hypothesis that bpV(phen) inhibits a PTP involved in the negative regulation of mitogen-activated protein kinases.
Collapse
Affiliation(s)
- C J Band
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
32
|
Abstract
The aim of this study was to define the effects of a potent inhibitor of tyrosine phosphatases, sodium orthovanadate (0.1-100 microM for up to 48 h), on dentate gyrus cells (DGC) in culture. Treatment with 100 microM orthovanadate evoked a delayed form of cell death. To examine the possible involvement of apoptosis in orthovanadate-induced cell death, biochemical and morphological alterations were compared with those of necrotic death induced by sodium azide. Phase-contrast microscopy and nuclear condensation analysis showed that orthovanadate and azide each evoked cell death by distinct pathways. TUNEL assay was positive in both cases. Application of a protein synthesis inhibitor, cycloheximide, did not prevent cytotoxicity caused by either orthovanadate or azide and potentiated the effects of vanadate. We conclude that orthovanadate-induced death of DGC bears features of apoptosis.
Collapse
Affiliation(s)
- I Figiel
- Nencki Institute, Warsaw, Poland
| | | |
Collapse
|
33
|
Wang H, Scott RE. Unique and selective mitogenic effects of vanadate on SV40-transformed cells. Mol Cell Biochem 1995; 153:59-67. [PMID: 8927049 DOI: 10.1007/bf01075919] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vanadate and insulin both function as unique complete mitogens for SV40-transformed 3T3T cells, designated CSV3-1, but not for nontransformed 3T3T cells. The mitogenic effects induced by vanadate and insulin in CSV3-1 cells are mediated by different signaling mechanisms. For example, vanadate does not stimulate the tyrosine phosphorylation of the insulin receptor beta-subunit nor the 170 kDa insulin receptor substrate-1. Instead, vanadate induces a marked increase in tyrosine phosphorylation of 55 and 64 kDa proteins that is not observed in insulin-stimulated CSV3-1 cells. Perhaps most interestingly, vandate-induced mitogenesis is associated with the selective induction of c-jun and junB expression without significantly inducing c-fos or c-myc. Furthermore, treatment of CSV3-1 cells with genistein abolishes the effects of vanadate on protein tyrosine phosphorylation and c-jun induction. These and related data suggest that modulation of protein tyrosine phosphorylation and c-jun and junB expression may serve the critical roles in mediating vandate-induced mitogenesis in SV40-transformed cells.
Collapse
Affiliation(s)
- H Wang
- Department of Pathology, The University of Tennessee College of Medicine, Memphis, Tennessee 38163, USA
| | | |
Collapse
|
34
|
Goldfine AB, Simonson DC, Folli F, Patti ME, Kahn CR. In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. Mol Cell Biochem 1995; 153:217-31. [PMID: 8927042 DOI: 10.1007/bf01075941] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In vivo vanadate and vanadyl have been shown to mimic the action of insulin and to be effective treatment for animal models of both Type I and Type II diabetes. The molecular mechanism of action of the vanadium salts on insulin sensitivity remains uncertain, and several potential sites proposed for the insulin-like effects are reviewed. In human trials, insulin sensitivity improved in patients with NIDDM, as well as in some patients with IDDM after two weeks of treatment with sodium metavanadate. This increase in insulin sensitivity was primarily due to an increase in non-oxidative glucose disposal, whereas oxidative glucose disposal and both basal and insulin stimulated suppression of hepatic glucose output (HGP) were unchanged. Clinically, oral vanadate was associated with a small decrease in insulin requirements in IDDM subjects. Of additional benefit, there was a decrease in total cholesterol levels in both IDDM and NIDDM subjects. Furthermore, there was an increase in the basal activities of MAP and S6 kinases to levels similar to the insulin-stimulated levels in controls, but there was little or no further stimulation with insulin was seen. Further understanding of the mechanism of vanadium action may ultimately be useful in the design of drugs that improve glucose tolerance.
Collapse
Affiliation(s)
- A B Goldfine
- Research Division, Joslin Diabetes Center, Boston, MA 02215, USA
| | | | | | | | | |
Collapse
|
35
|
Pandey SK, Chiasson JL, Srivastava AK. Vanadium salts stimulate mitogen-activated protein (MAP) kinases and ribosomal S6 kinases. Mol Cell Biochem 1995; 153:69-78. [PMID: 8927050 DOI: 10.1007/bf01075920] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Effect of several vanadium salts, sodium orthovanadate, vanadyl sulfate and sodium metavanadate on protein tyrosine phosphorylation and serine/threonine kinases in chinese hamster ovary (CHO) cells overexpressing a normal human insulin receptor was examined. All the compounds stimulated protein tyrosine phosphorylation of two major proteins with molecular masses of 42 kDa (p42) and 44 kDa (p44). The phosphorylation of p42 and p44 was associated with an activation of mitogen activated protein (MAP) kinase as well as increased protein tyrosine phosphorylation of p42mapk and p44mapk. Vanadium salts also activated the 90 kDa ribosomal s6 kinase (p90rsk) and 70 kDa ribosomal s6 kinase (p70s6k). Among the three vanadium salts tested, vanadyl sulfate appeared to be slightly more potent than others in stimulating MAP kinases and p70s6k activity. It is suggested that vanadium-induced activation of MAP kinases and ribosomal s6 kinases may be one of the mechanisms by which insulin like effects of this trace element are mediated.
Collapse
Affiliation(s)
- S K Pandey
- Centre de Recherche/Hotel-Dieu de Montreal Hospital, Quebec, Canada
| | | | | |
Collapse
|
36
|
Hamel FG, Duckworth WC. The relationship between insulin and vanadium metabolism in insulin target tissues. Mol Cell Biochem 1995; 153:95-102. [PMID: 8927053 DOI: 10.1007/bf01075923] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Vanadium (V) is an orally effective treatment for diabetes, but relatively little is known about the mechanisms controlling its normal metabolism nor the long term pharmacokinetics of oral administration. We have examined the accumulation of V in various organs from rats fed liquid diet for up to 18 days, containing no additional V, 1.6, 80, or 160 mumole/kg/day as either sodium orthovanadate (SOV) or vanadyl sulfate (VS). V content was assayed using a sensitive neutron activation analysis method. The organs of the nonsupplemented animals contained widely varying concentrations (ng of V/g dry tissue weight) with brain < fat < blood < heart < muscle < lung < liver < testes < spleen < kidney. All organs accumulated V in a dose dependent manner. Not all organs showed steady state amount of V at 18 days, so additional rats were fed SOV or VS, switched to control diet, and assayed at 0, 4 and 8 days. From this data we calculated organ half lives of V. Insulin sensitive tissue tissues, such as liver and fat, had shorter half-lives than tissues that are relatively less insulin sensitive, such as spleen, brain and testes. SOV and VS fed rats showed similar patterns, but VS had somewhat shorter t1/2's. Additional studies of old and young rats fed control diet for 45 days show accumulation of V in spleen and testes. These results indicate that vanadium metabolism varies widely among different organs, and that insulin, either directly or indirectly has effects on the retention of vanadium. This may have impact on the therapeutic use of vanadium in Type I diabetics with no insulin, or Type II patients who may be relatively hyperinsulinemic.
Collapse
Affiliation(s)
- F G Hamel
- Veterans Administration Medical Center, Omaha, NE 68105, USA
| | | |
Collapse
|
37
|
Wenzel UO, Fouqueray B, Biswas P, Grandaliano G, Choudhury GG, Abboud HE. Activation of mesangial cells by the phosphatase inhibitor vanadate. Potential implications for diabetic nephropathy. J Clin Invest 1995; 95:1244-52. [PMID: 7883973 PMCID: PMC441463 DOI: 10.1172/jci117774] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The metalion vanadate has insulin-like effects and has been advocated for use in humans as a therapeutic modality for diabetes mellitus. However, since vanadate is a tyrosine phosphatase inhibitor, it may result in undesirable activation of target cells. We studied the effect of vanadate on human mesangial cells, an important target in diabetic nephropathy. Vanadate stimulated DNA synthesis and PDGF B chain gene expression. Vanadate also inhibited total tyrosine phosphatase activity and stimulated tyrosine phosphorylation of a set of cellular proteins. Two chemically and mechanistically dissimilar tyrosine kinase inhibitors, genistein and herbimycin A, blocked DNA synthesis induced by vanadate. Vanadate also stimulated phospholipase C and protein kinase C. Downregulation of protein kinase C abolished vanadate-induced DNA synthesis. Thus, vanadate-induced mitogenesis is dependent on tyrosine kinases and protein kinase C activation. The most likely mechanism for the effect of vanadate on these diverse processes involves the inhibition of cellular phosphotyrosine phosphatases. These studies demonstrating that vanadate activates mesangial cells may have major implications for the therapeutic potential of vanadate administration in diabetes. Although vanadate exerts beneficial insulin-like effects and potentiates the effect of insulin in sensitive tissue, it may result in undesirable activation of other target cells, such as mesangial cells.
Collapse
Affiliation(s)
- U O Wenzel
- Department of Medicine, University Hospital, San Antonio, Texas
| | | | | | | | | | | |
Collapse
|
38
|
Nobes CD, Hawkins P, Stephens L, Hall A. Activation of the small GTP-binding proteins rho and rac by growth factor receptors. J Cell Sci 1995; 108 ( Pt 1):225-33. [PMID: 7738099 DOI: 10.1242/jcs.108.1.225] [Citation(s) in RCA: 320] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The small GTP-binding proteins, rho and rac, control signal transduction pathways that link growth factor receptors to the activation of actin polymerization. In Swiss 3T3 cells, rho proteins mediate the lysophosphatidic acid and bombesin-induced formation of focal adhesions and actin stress fibres, whilst rac proteins are required for the platelet-derived growth factor-, insulin-, bombesin- and phorbol ester (phorbol 12-myristate 13-acetate)-stimulated actin polymerization at the plasma membrane that results in membrane ruffling. To investigate the role of p85/p110 phosphatidylinositol 3-kinase in the rho and rac signalling pathways, we have used a potent inhibitor of this activity, wortmannin. Wortmannin has no effect on focal adhesion or actin stress fibre formation induced by lysophosphatidic acid, bombesin or microinjected recombinant rho protein. In contrast, it totally inhibits plasma membrane edge-ruffling induced by platelet-derived growth factor and insulin though not by bombesin, phorbol ester or microinjected recombinant rac protein. We conclude that phosphatidylinositol 3,4,5 trisphosphate mediates activation of rac by the platelet-derived growth factor and insulin receptors. The effects of lysophosphatidic acid on the Swiss 3T3 actin cytoskeleton can be blocked by the tyrosine kinase inhibitor, tyrphostin. Since tyrphostin does not inhibit the effects of microinjected rho protein, we conclude that lysophosphatidic acid activation of rho is mediated by a tyrosine kinase.
Collapse
Affiliation(s)
- C D Nobes
- MRC Laboratory for Molecular Cell Biology, University College London, UK
| | | | | | | |
Collapse
|
39
|
Lamb P, Haslam J, Kessler L, Seidel HM, Stein RB, Rosen J. Rapid activation of the interferon-gamma signal transduction pathway by inhibitors of tyrosine phosphatases. JOURNAL OF INTERFERON RESEARCH 1994; 14:365-73. [PMID: 7897256 DOI: 10.1089/jir.1994.14.365] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Induction of gene expression by interferon-gamma involves the activation of a latent cytoplasmic transcription factor, p91, by phosphorylation on a single tyrosyl residue. This phosphorylation triggers dimerization, nuclear translocation, and the binding of p91 to interferon-gamma response elements present in the promoters of induced genes. Phosphorylation of p91 requires the activation of two tyrosine kinases, JAK1 and JAK2, that themselves become phosphorylated on tyrosyl residues shortly after interferon-gamma binds to its receptor. The importance of tyrosine phosphorylation in this pathway prompted us to investigate the role of protein tyrosine phosphatases in the regulation of the pathway. We find that in the absence of interferon-gamma, treatment of cells with an inhibitor of tyrosine phosphatases causes a rapid and potent activation of the components of the interferon-gamma signal transduction pathway and induces an interferon-gamma-responsive gene. This suggests that tyrosine phosphatases act both to repress the interferon-gamma signal transduction pathway in the absence of interferon-gamma and to downregulate the pathway after interferon-gamma induction.
Collapse
Affiliation(s)
- P Lamb
- Ligand Pharmaceuticals, San Diego, California
| | | | | | | | | | | |
Collapse
|
40
|
Lobert S, Isern N, Hennington BS, Correia JJ. Interaction of tubulin and microtubule proteins with vanadate oligomers. Biochemistry 1994; 33:6244-52. [PMID: 8193139 DOI: 10.1021/bi00186a026] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Microtubule assembly is known to be regulated by the phosphorylation of microtubule-associated proteins (MAPs), and is thus sensitive to phosphatase inhibitors. We have investigated the direct interaction between phosphatase inhibitors (vanadate, sodium fluoride, and okadaic acid) and microtubule proteins. Vanadate self-assembles into oligomers, primarily dimer, tetramer, and decamer in 0.1 M Pipes, pH 6.9. Oligomer concentrations and their direct binding to tubulin and MAPs were determined by 51V NMR. The assembly of microtubule protein (MTP) is strongly inhibited by decavanadate binding to MAPs and only weakly inhibited by tetravanadate binding to MAPs. Decavanadate will inhibit both MAP2 and tau-induced assembly. Decavanadate binds to MAP2 at 26 sites [Ka > or = (1.0-1.3) x 10(5) M-1]. The mechanism appears to involve competitive binding to MAPs, presumably at or near the microtubule binding domains, and reduced affinity for microtubules. The assembly of MAP-free, phosphocellulose-purified tubulin (PC-tubulin) is only weakly inhibited by decavanadate, although decavanadate binds to tubulin at four independent sites (Ka > or = 1.0 x 10(5) M-1). Monomeric vanadate, a strong phosphatase inhibitor, does not interact with tubulin or MAPs, and thus does not bind to the exchangeable nucleotide binding site on tubulin. Sodium fluoride stimulates both PC-tubulin and MTP assembly by a nonspecific effect, probably involving water structure formation. Wyman analysis suggests an absence of direct or specific binding to tubulin (d ln K/d ln [NaF] = 0.214). NaCl is nearly as effective in promoting assembly of PC-tubulin, but inhibits MTP assembly.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Lobert
- School of Nursing, University of Mississippi Medical Center, Jackson 39216
| | | | | | | |
Collapse
|
41
|
Wu YY, Bradshaw RA. Effect of nerve growth factor and fibroblast growth factor on PC12 cells: inhibition by orthovanadate. J Cell Biol 1993; 121:409-22. [PMID: 8468355 PMCID: PMC2200105 DOI: 10.1083/jcb.121.2.409] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Sodium orthovanadate, an inhibitor of protein tyrosine phosphatases, causes increased levels of tyrosine phosphorylation and blocks, at noncytotoxic concentrations, the differentiative response of rat pheochromocytoma (PC12) cells to beta-nerve growth factor (beta NGF) and basic fibroblast growth factor (bFGF) in a reversible manner. It also prevents growth factor-induced neurite proliferation in primed cells and causes the retraction of previously formed neurites, even in the presence of beta NGF or bFGF. It is equally effective in blocking neurite proliferation by 8-Br-cAMP. Zinc chloride and ammonium molybdate, two other inhibitors of tyrosine phosphatases, also cause parallel decreases in neurite proliferation. Orthovanadate generally reduces the transcription of immediate early response genes (TIS 8 and c-fos) and secondary response genes (ornithine decarboxylase (ODC), acetyl-cholinesterase (AChE) and SCG 10) induced by beta NGF, bFGF, EGF, and PMA, albeit in a variable fashion. There was no observed effect on the kinetics of expression as judged by TIS 8 induction by beta NGF and protein kinase C (PKC) downregulation did not change the levels of inhibition by orthovanadate seen in control cells. Orthovanadate does not affect the production of diacylglycerol induced by beta NGF or bFGF. These observations are consistent with the view that growth factor stimulation of differentiation in PC12 cells involves at least one other PKC independent pathway, and that cAMP and PMA (and their active analogs) activate tyrosine kinases (albeit probably secondarily), which are at least partially responsible for their actions. Although the exact site(s) of action of orthovanadate that lead to the inhibition of growth factor-induced neurite proliferation are unknown, the results presented suggest that it prolongs tyrosine phosphorylations by nonreceptor tyrosine kinases that act downstream from the receptor kinases.
Collapse
Affiliation(s)
- Y Y Wu
- Department of Biological Chemistry, College of Medicine, University of California, Irvine 92717
| | | |
Collapse
|
42
|
A mitogen-responsive promoter region that is synergistically activated through multiple signalling pathways. Mol Cell Biol 1993. [PMID: 8382776 DOI: 10.1128/mcb.13.3.1796] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A regulatory region of the human transferrin receptor gene promoter was found to be required for increased expression in response to serum or growth factors. This region contains two elements that appear to cooperate for full responsiveness. We found that sodium orthovanadate treatment of cells significantly activated expression of promoter constructs containing these elements. 12-O-Tetradecanoylphorbol-13-acetate alone induced a twofold increase in expression but acted synergistically with vanadate to generate a highly elevated level of expression. Dibutyryl cyclic AMP alone had no effect on expression, but when added together with vanadate and 12-O-tetradecanoylphorbol-13-acetate, led to superinduction of the promoter construct. Induction of expression by these reagents was delayed several hours, and the kinetics were identical to those observed for serum induction.
Collapse
|
43
|
Ouyang Q, Bommakanti M, Miskimins WK. A mitogen-responsive promoter region that is synergistically activated through multiple signalling pathways. Mol Cell Biol 1993; 13:1796-804. [PMID: 8382776 PMCID: PMC359492 DOI: 10.1128/mcb.13.3.1796-1804.1993] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A regulatory region of the human transferrin receptor gene promoter was found to be required for increased expression in response to serum or growth factors. This region contains two elements that appear to cooperate for full responsiveness. We found that sodium orthovanadate treatment of cells significantly activated expression of promoter constructs containing these elements. 12-O-Tetradecanoylphorbol-13-acetate alone induced a twofold increase in expression but acted synergistically with vanadate to generate a highly elevated level of expression. Dibutyryl cyclic AMP alone had no effect on expression, but when added together with vanadate and 12-O-tetradecanoylphorbol-13-acetate, led to superinduction of the promoter construct. Induction of expression by these reagents was delayed several hours, and the kinetics were identical to those observed for serum induction.
Collapse
Affiliation(s)
- Q Ouyang
- Department of Biochemistry and Molecular Biology, School of Medicine, University of South Dakota, Vermillion 57069
| | | | | |
Collapse
|
44
|
Rijksen G, Völler MC, Van Zoelen EJ. Orthovanadate both mimics and antagonizes the transforming growth factor beta action on normal rat kidney cells. J Cell Physiol 1993; 154:393-401. [PMID: 8425920 DOI: 10.1002/jcp.1041540223] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Normal rat kidney [NRK] cells grown in the presence of epidermal growth factor (EGF) or platelet-derived growth factor (PDGF) have a normal phenotype and undergo density-dependent growth inhibition, whereas in the presence of multiple growth factors, density arrest is lost and the cells become phenotypically transformed. We studied the influence of the protein tyrosine phosphatase (PTPase) inhibitor sodium orthovanadate on the mitogenic stimulation of NRK cells by growth factors and on transformation-linked properties as loss of density-dependent growth inhibition and anchorage-independent growth. The fraction of cells in serum-deprived monolayer cultures that is induced to proliferate upon mitogenic stimulation by EGF or PDGF is only slightly enhanced upon addition of low concentrations (25-50 microM) of vanadate. Addition of vanadate per se induces proliferation of only a very limited amount of cells, but results in a shift of the dose-response curves for other growth factors to lower concentrations. Vanadate added in combination with EGF or PDGF is able to mimic the effect of transforming growth factor beta (TGF beta) in inducing phenotypic transformation. In monolayer cultures density-dependent growth inhibition is lost and anchorage-independent proliferation is observed on dishes coated with poly(2-hydroxy-ethyl methacrylate) (polyHEMA). The extent of these changes is similar to that induced by TGF beta. However, the morphology of the obtained colonies in polyHEMA-coated dishes is quite different. Cells transformed by TGF beta in the presence of EGF form rather amorphous colonies, whereas in the presence of orthovanadate colonies are formed that tend to fall apart in loose cells. The effect of vanadate on cell transformation is dependent on the growth factor conditions in a bimodal way. When a suboptimal dose of growth factor(s) is used, 25 microM vanadate is very effective in preventing density-induced growth inhibition and stimulating anchorage-independent proliferation. However, the same concentration of vanadate is inhibitory when cells are maximally stimulated and antagonizes the transforming effect of TGF beta added in combination with other growth factors. It is hypothesized that vanadate acts on a set of different protein tyrosine phosphatases. Some of these are positive and others negative regulators of growth.
Collapse
Affiliation(s)
- G Rijksen
- Department of Hematology, University Hospital, Utrecht, The Netherlands
| | | | | |
Collapse
|
45
|
Chao W, Liu H, Hanahan DJ, Olson MS. Protein tyrosine phosphorylation and regulation of the receptor for platelet-activating factor in rat Kupffer cells. Effect of sodium vanadate. Biochem J 1992; 288 ( Pt 3):777-84. [PMID: 1335232 PMCID: PMC1131954 DOI: 10.1042/bj2880777] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine, AGEPC) and sodium vanadate (a phosphotyrosine phosphatase inhibitor) induced a time- and concentration-dependent increase in phosphotyrosine in several proteins and stimulated prostaglandin (PG) E2 production in cultured rat Kupffer cells. In addition, vanadate induced a decrease in the surface expression of AGEPC receptors and, as a consequence, inhibited AGEPC-stimulated PGE2 production. The vanadate-induced decrease in the surface expression of AGEPC receptors was time- and concentration-dependent and was partially prevented by genistein, a putative tyrosine kinase inhibitor. Upon removal of vanadate from the culture medium and re-incubation of cells in vanadate-free medium, the surface AGEPC receptors were restored within 7 h after the removal of vanadate. Both AGEPC- and vanadate-stimulated PGE2 formation was attenuated by genistein. Thus the present investigation demonstrates that both AGEPC and sodium vanadate stimulate tyrosine phosphorylation of cellular proteins, and vanadate induces a decrease in the number of the surface AGEPC receptors. These results suggest that protein tyrosine phosphorylation may play a role, directly or indirectly, in the regulation of surface expression of AGEPC receptors as well as in PGE2 production in response to vanadate and AGEPC.
Collapse
Affiliation(s)
- W Chao
- Department of Biochemistry, University of Texas Health Science Center, San Antonio 78284-7760
| | | | | | | |
Collapse
|
46
|
Yin X, Davison AJ, Tsang SS. Vanadate-induced gene expression in mouse C127 cells: roles of oxygen derived active species. Mol Cell Biochem 1992; 115:85-96. [PMID: 1435769 DOI: 10.1007/bf00229100] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An underinvestigated aspect of the mitogenic and cell regulatory actions of vanadium is the regulation of gene expression. Among the fifteen cellular genes studied in cultured mouse C127 cells, vanadium (as 10 microM sodium vanadate) increased levels of mRNA of the actin and c-Ha-ras to four times control values. These increases represented de novo synthesis of mRNA, since they were inhibited by actinomycin D. Vanadate did not increase mRNA corresponding to c-src, c-mos, c-myc, p53, HSP70, pODC or RB genes, and expression of c-erb A, c-erb B, c-sis and c-fes genes was undetectable whether vanadium was present or not. Expression of a third gene affected by vanadium, c-jun, was augmented by addition of a reductant or oxidant together with the vanadate. Addition of NADH (marginally effective on its own) or H2O2 (effective alone) dramatically enhanced the effect of vanadate on c-jun gene expression. Catalase inhibited the effect of NADH partly. The vanadate-stimulated expression of actin and c-Ha-ras mRNA were unaffected by oxidants, reductants, metal chelators, or anti-oxidant enzymes. Evidently vanadate acts by two separate mechanisms on these two categories of genes. The alternate hypothesis that the actions of vanadate on actin and c-Ha-ras were mediated by a protein kinase cascade was inconsistent with the following observations. Neither insulin nor epidermal growth factor increased mRNA levels of c-Ha-ras or actin gene. Neither genistein (a tyrosine kinase inhibitor) nor pretreatment with 12-O-tetradecanoylphorbol-13-acetate blocked the actions of vanadate on these genes. Clearly the biological actions of vanadium depend in part on altered expression of genes. Since two of the genes are proto-oncogenes, this mechanism is potentially relevant to the mitogenic responses of cells to vanadium.
Collapse
Affiliation(s)
- X Yin
- Bioenergetics Research Laboratory, Faculty of Applied Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | |
Collapse
|
47
|
Mooney R, Bordwell K. Differential dephosphorylation of the insulin receptor and its 160-kDa substrate (pp160) in rat adipocytes. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(19)49677-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
48
|
Scimeca JC, Ballotti R, Filloux C, Van Obberghen E. Insulin and orthovanadate stimulate multiple phosphotyrosine-containing serine kinases. Mol Cell Biochem 1992; 109:139-47. [PMID: 1378174 DOI: 10.1007/bf00229768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Using the synthetic peptide substrate Kemptide and cytosolic extracts of mouse fibroblasts transfected with a human insulin receptor cDNA construct, we have studied an insulin-sensitive serine kinase activity. This activity is rapidly stimulated by insulin (maximum within 5 min) and also by orthovanadate. During cell extract preparation, para-nitrophenylphosphate and phosphotyrosine are able to preserve the enzyme activity, while phosphothreonine and phosphoserine fail to do so. Using antiphosphotyrosine antibodies, specific immunoprecipitation of this insulin- and orthovanadate-sensitive serine kinase was obtained. We then analysed by gel filtration chromatography eluates containing tyrosine-phosphorylated proteins obtained from unstimulated, insulin- and vanadate-treated cells. We found that several activities, with molecular weights estimated to be 30 kDa and smaller, are stimulated by both, insulin and orthovanadate. As a whole, our data indicate that insulin and orthovanadate enhance the cytosolic content in at least 2 or 3 phosphotyrosine-containing serine kinase activities.
Collapse
Affiliation(s)
- J C Scimeca
- INSERM U 145, Faculté de Médecine, Nice, France
| | | | | | | |
Collapse
|
49
|
Elazar Z, Fuchs S. Vanadate inhibits agonist binding to D2 dopamine receptor. J Mol Neurosci 1991; 3:1-6. [PMID: 1679343 DOI: 10.1007/bf02896843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Orthovanadate (in the micromolar range) inhibits the high-affinity binding of the D2 dopamine receptor to specific agonists (apomorphine and N-propylnorapomorphine), while it does not affect the binding to D2 antagonists (spiperone and haloperidol). These effects of vanadate resemble those observed with guanine nucleotides or their analogs. However, in contrast to the guanine nucleotides, vanadate does not induce dissociation of the D2 dopamine receptor from its related G proteins, suggesting that vanadate and guanine nucleotides may exert their effect on the D2 dopamine receptor via different mechanisms. The effect of vanadate on agonist binding was shown to be ATP dependent and correlated with increased protein phosphorylation.
Collapse
Affiliation(s)
- Z Elazar
- Department of Chemical Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
50
|
Galli A, Vellosi R, Fiorio R, Della Croce C, Del Carratore R, Morichetti E, Giromini L, Rosellini D, Bronzetti G. Genotoxicity of vanadium compounds in yeast and cultured mammalian cells. TERATOGENESIS, CARCINOGENESIS, AND MUTAGENESIS 1991; 11:175-83. [PMID: 1685805 DOI: 10.1002/tcm.1770110402] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The ability of vanadium compounds to induce genetic activity was investigated in D7 and D61M strains of Saccharomyces cerevisiae and in Chinese hamster V79 cell line. In our previous work, ammonium metavanadate (pentavalent form, V5) induced mitotic gene conversion and point reverse mutation in the D7 strain of yeast. The genotoxicity was reduced by the presence of S9 fraction, which probably reduced pentavalent vanadium to the tetravalent form. In the present study, vanadyl sulfate (tetravalent form, V4) induced no convertants and revertants in yeast cells harvested from stationary growth phase. With yeast cells from logarithmic growth phase, which contain high levels of cytochrome P-450, a significant increase in genetic effects was observed. Further experiments, performed by treating cells harvested from logarithmic growth phase in the presence of cytochrome P-450 inhibitors, indicated that the monooxygenase system influenced the genotoxicity of metavanadate while the genetic activity of vanadyl remained unaffected. Aneuploidy effect in the D61M strain of Saccharomyces cerevisiae was induced by either V5 or V4, confirming that vanadium compounds are potentially antitubulin agents in eukaryotic cells. Although these compounds are very toxic in V79 cells, no mutagenic effect was observed in the presence or in the absence of S9 fraction.
Collapse
Affiliation(s)
- A Galli
- Istituto di Mutagenesi e Differenziamento CNR, Pisa, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|