1
|
Polani R, De Francesco A, Tomolillo D, Artuso I, Equestre M, Trirocco R, Arcari G, Antonelli G, Villa L, Prosseda G, Visca P, Carattoli A. Cefiderocol Resistance Conferred by Plasmid-Located Ferric Citrate Transport System in KPC-Producing Klebsiella pneumoniae. Emerg Infect Dis 2025; 31:123-124. [PMID: 39714320 PMCID: PMC11682805 DOI: 10.3201/eid3101.241426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Cefiderocol (FDC), a siderophore-cephalosporin conjugate, is the newest option for treating infection with carbapenem-resistant gram-negative bacteria. We identified a novel mechanism contributing to decreased FDC susceptibility in Klebsiella pneumoniae clinical isolates. The mechanism involves 2 coresident plasmids: pKpQIL, carrying variants of blaKPC carbapenemase gene, and pKPN, carrying the ferric citrate transport (FEC) system. We observed increasing FDC MICs in an Escherichia coli model system carrying different natural pKpQIL plasmids, encoding different K. pneumoniae carbapenemase (KPC) variants, in combination with a conjugative low copy number vector carrying the fec gene cluster from pKPN. We observed transcriptional repression of fiu, cirA, fepA, and fhuA siderophore receptor genes in blaKPC-fec-E. coli cells treated with ferric citrate. Screening of 27,793 K. pneumoniae whole-genome sequences revealed that the fec cluster occurs frequently in some globally distributed different KPC-producing K. pneumoniae clones (sequence types 258, 14, 45, and 512), contributing to reduced FDC susceptibility.
Collapse
|
2
|
Zhu C, Han R, Gu B, Wang C, Liu H, Lyu X, He J, Yang R. Multiple Regulatory Mechanisms Synergistically Control the Soluble Expression of CsCE for Enhanced Enzymatic Productivity of Lactulose in E. coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39361812 DOI: 10.1021/acs.jafc.4c04060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
The limited expression of cellobiose 2-epimerase poses a significant constraint on the industrial enzymatic production of lactulose. Extensive modifications to the expression cassette offer a means to enhance the yield of recombinant proteins. In this study, an integrated strategy, combining individual and collaborative approaches, is proposed to fine-tune each stage of the CsCE overexpression program. This strategy involves the multidimensional integration of standardized genetic elements at various levels, including transcription, translation, folding, and three-dimensional structure. The volumetric activity of the final recombinant strain was markedly increased by 12-fold compared to the wild-type strain, reaching 2260.62 U/L. The protein expression in the newly developed high-yield recombinant strain exhibited a significant enhancement, with a higher proportion of soluble protein compared to that of inclusion bodies. Our findings offer insights into the multifaceted synergistic regulation of protein expression processes, holding promising implications for the production of heterologous recombinant proteins.
Collapse
Affiliation(s)
- Chenlu Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Renjiao Han
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, People's Republic of China
- Inner Mongolia Research Center of Diary Technology Co., Ltd., Hohhot, Inner Mongolia 010110, People's Republic of China
| | - Bixuan Gu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Caiyun Wang
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, People's Republic of China
- Inner Mongolia Research Center of Diary Technology Co., Ltd., Hohhot, Inner Mongolia 010110, People's Republic of China
| | - Han Liu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Xiaomei Lyu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jian He
- National Center of Technology Innovation for Dairy, Hohhot, Inner Mongolia 010110, People's Republic of China
- Inner Mongolia Research Center of Diary Technology Co., Ltd., Hohhot, Inner Mongolia 010110, People's Republic of China
| | - Ruijin Yang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
3
|
Hu YT, Wu KX, Wang XT, Zhao YY, Jiang XY, Liu D, Tong ML, Liu LL. Treponema pallidum promoted microglia apoptosis and prevented itself from clearing by human microglia via blocking autophagic flux. PLoS Pathog 2023; 19:e1011594. [PMID: 37611054 PMCID: PMC10446187 DOI: 10.1371/journal.ppat.1011594] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/02/2023] [Indexed: 08/25/2023] Open
Abstract
Treponema pallidum (Tp) has a well-known ability to evade the immune system and can cause neurosyphilis by invading the central nervous system (CNS). Microglia are resident macrophages of the CNS that are essential for host defense against pathogens, this study aims to investigate the interaction between Tp and microglia and the potential mechanism. Here, we found that Tp can exert significant toxic effects on microglia in vivo in Tg (mpeg1: EGFP) transgenic zebrafish embryos. Single-cell RNA sequencing results showed that Tp downregulated autophagy-related genes in human HMC3 microglial cells, which is negatively associated with apoptotic gene expression. Biochemical and cell biology assays further established that Tp inhibits microglial autophagy by interfering with the autophagosome-lysosome fusion process. Transcription factor EB (TFEB) is a master regulator of lysosome biogenesis, Tp activates the mechanistic target of rapamycin complex 1 (mTORC1) signaling to inhibit the nuclear translocation of TFEB, leading to decreased lysosomal biogenesis and accumulated autophagosome. Importantly, the inhibition of autophagosome formation reversed Tp-induced apoptosis and promoted microglial clearance of Tp. Taken together, these findings show that Tp blocks autophagic flux by inhibiting TFEB-mediated lysosomal biosynthesis in human microglia. Autophagosome accumulation was demonstrated to be a key mechanism underlying the effects of Tp in promoting apoptosis and preventing itself from clearing by human microglia. This study offers novel perspectives on the potential mechanism of immune evasion employed by Tp within CNS. The results not only establish the pivotal role of autophagy dysregulation in the detrimental effects of Tp on microglial cells but also bear considerable implications for the development of therapeutic strategies against Tp, specifically involving mTORC1 inhibitors and autophagosome formation inhibitors, in the context of neurosyphilis patients.
Collapse
Affiliation(s)
- Yun-Ting Hu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Kai-Xuan Wu
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, China
| | - Xiao-Tong Wang
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Department of Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin’s Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin, China
| | - Yuan-Yi Zhao
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiao-Yong Jiang
- Department of Dermatology, Zhongshan Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Dan Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Man-Li Tong
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Li-Li Liu
- Center of Clinical Laboratory, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
4
|
Jeon HJ, Kang C, N MPA, Lee Y, Wang X, Chattoraj DK, Lim HM. Translation Initiation Control of RNase E-Mediated Decay of Polycistronic gal mRNA. Front Mol Biosci 2020; 7:586413. [PMID: 33240931 PMCID: PMC7681074 DOI: 10.3389/fmolb.2020.586413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/28/2020] [Indexed: 11/13/2022] Open
Abstract
In bacteria, mRNA decay is a major mechanism for regulating gene expression. In Escherichia coli, mRNA decay initiates with endonucleolytic cleavage by RNase E. Translating ribosomes impede RNase E cleavage, thus providing stability to mRNA. In transcripts containing multiple cistrons, the translation of each cistron initiates separately. The effect of internal translation initiations on the decay of polycistronic transcripts remains unknown, which we have investigated here using the four-cistron galETKM transcript. We find that RNase E cleaves a few nucleotides (14-36) upstream of the translation initiation site of each cistron, generating decay intermediates galTKM, galKM, and galM mRNA with fewer but full cistrons. Blocking translation initiation reduced stability, particularly of the mutated cistrons and when they were the 5'-most cistrons. This indicates that, together with translation failure, the location of the cistron is important for its elimination. The instability of the 5'-most cistron did not propagate to the downstream cistrons, possibly due to translation initiation there. Cistron elimination from the 5' end was not always sequential, indicating that RNase E can also directly access a ribosome-free internal cistron. The finding in gal operon of mRNA decay by cistron elimination appears common in E. coli and Salmonella.
Collapse
Affiliation(s)
- Heung Jin Jeon
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Changjo Kang
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Monford Paul Abishek N
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Yonho Lee
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| | - Xun Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dhruba K Chattoraj
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Heon M Lim
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
5
|
Melior H, Maaß S, Li S, Förstner KU, Azarderakhsh S, Varadarajan AR, Stötzel M, Elhossary M, Barth-Weber S, Ahrens CH, Becher D, Evguenieva-Hackenberg E. The Leader Peptide peTrpL Forms Antibiotic-Containing Ribonucleoprotein Complexes for Posttranscriptional Regulation of Multiresistance Genes. mBio 2020; 11:e01027-20. [PMID: 32546623 PMCID: PMC7298713 DOI: 10.1128/mbio.01027-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 11/20/2022] Open
Abstract
Bacterial ribosome-dependent attenuators are widespread posttranscriptional regulators. They harbor small upstream open reading frames (uORFs) encoding leader peptides, for which no functions in trans are known yet. In the plant symbiont Sinorhizobium meliloti, the tryptophan biosynthesis gene trpE(G) is preceded by the uORF trpL and is regulated by transcription attenuation according to tryptophan availability. However, trpLE(G) transcription is initiated independently of the tryptophan level in S. meliloti, thereby ensuring a largely tryptophan-independent production of the leader peptide peTrpL. Here, we provide evidence for a tryptophan-independent role of peTrpL in trans We found that peTrpL increases the resistance toward tetracycline, erythromycin, chloramphenicol, and the flavonoid genistein, which are substrates of the major multidrug efflux pump SmeAB. Coimmunoprecipitation with a FLAG-peTrpL suggested smeR mRNA, which encodes the transcription repressor of smeABR, as a peptide target. Indeed, upon antibiotic exposure, smeR mRNA was destabilized and smeA stabilized in a peTrpL-dependent manner, showing that peTrpL acts in the differential regulation of smeABR Furthermore, smeR mRNA was coimmunoprecipitated with peTrpL in antibiotic-dependent ribonucleoprotein (ARNP) complexes, which, in addition, contained an antibiotic-induced antisense RNA complementary to smeRIn vitro ARNP reconstitution revealed that the above-mentioned antibiotics and genistein directly support complex formation. A specific region of the antisense RNA was identified as a seed region for ARNP assembly in vitro Altogether, our data show that peTrpL is involved in a mechanism for direct utilization of antimicrobial compounds in posttranscriptional regulation of multiresistance genes. Importantly, this role of peTrpL in resistance is conserved in other AlphaproteobacteriaIMPORTANCE Leader peptides encoded by transcription attenuators are widespread small proteins that are considered nonfunctional in trans We found that the leader peptide peTrpL of the soil-dwelling plant symbiont Sinorhizobium meliloti is required for differential, posttranscriptional regulation of a multidrug resistance operon upon antibiotic exposure. Multiresistance achieved by efflux of different antimicrobial compounds ensures survival and competitiveness in nature and is important from both evolutionary and medical points of view. We show that the leader peptide forms antibiotic- and flavonoid-dependent ribonucleoprotein complexes (ARNPs) for destabilization of smeR mRNA encoding the transcription repressor of the major multidrug resistance operon. The seed region for ARNP assembly was localized in an antisense RNA, whose transcription is induced by antimicrobial compounds. The discovery of ARNP complexes as new players in multiresistance regulation opens new perspectives in understanding bacterial physiology and evolution and potentially provides new targets for antibacterial control.
Collapse
Affiliation(s)
- Hendrik Melior
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Sandra Maaß
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Siqi Li
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Konrad U Förstner
- ZB MED-Information Centre for Life Sciences, University of Cologne, Cologne, Germany
| | - Saina Azarderakhsh
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | | | - Maximilian Stötzel
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Muhammad Elhossary
- ZB MED-Information Centre for Life Sciences, University of Cologne, Cologne, Germany
| | - Susanne Barth-Weber
- Institute of Microbiology and Molecular Biology, University of Giessen, Giessen, Germany
| | - Christian H Ahrens
- Agroscope & SIB Swiss Institute of Bioinformatics, Wädenswil, Switzerland
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | |
Collapse
|
6
|
Pareyn M, Hendrickx R, Girma N, Hendrickx S, Van Bockstal L, Van Houtte N, Shibru S, Maes L, Leirs H, Caljon G. Evaluation of a pan-Leishmania SL RNA qPCR assay for parasite detection in laboratory-reared and field-collected sand flies and reservoir hosts. Parasit Vectors 2020; 13:276. [PMID: 32487217 PMCID: PMC7268266 DOI: 10.1186/s13071-020-04141-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/21/2020] [Indexed: 11/15/2022] Open
Abstract
Background In eco-epidemiological studies, Leishmania detection in vectors and reservoirs is frequently accomplished by high-throughput and sensitive molecular methods that target minicircle kinetoplast DNA (kDNA). A pan-Leishmania SYBR green quantitative PCR (qPCR) assay which detects the conserved spliced-leader RNA (SL RNA) sequence was developed recently. This study assessed the SL RNA assay performance combined with a crude extraction method for the detection of Leishmania in field-collected and laboratory-reared sand flies and in tissue samples from hyraxes as reservoir hosts. Methods Field-collected and laboratory-infected sand fly and hyrax extracts were subjected to three different qPCR approaches to assess the suitability of the SL RNA target for Leishmania detection. Nucleic acids of experimentally infected sand flies were isolated with a crude extraction buffer with ethanol precipitation and a commercial kit and tested for downstream DNA and RNA detection. Promastigotes were isolated from culture and sand fly midguts to assess whether there was difference in SL RNA and kDNA copy numbers. Naive sand flies were spiked with a serial dilution of promastigotes to make a standard curve. Results The qPCR targeting SL RNA performed well on infected sand fly samples, despite preservation and extraction under presumed unfavorable conditions for downstream RNA detection. Nucleic acid extraction by a crude extraction buffer combined with a precipitation step was highly compatible with downstream SL RNA and kDNA detection. Copy numbers of kDNA were found to be identical in culture-derived parasites and promastigotes isolated from sand fly midguts. SL RNA levels were slightly lower in sand fly promastigotes (ΔCq 1.7). The theoretical limit of detection and quantification of the SL RNA qPCR respectively reached down to 10−3 and 10 parasite equivalents. SL RNA detection in stored hyrax samples was less efficient with some false-negative assay results, most likely due to the long-term tissue storage in absence of RNA stabilizing reagents. Conclusions This study shows that a crude extraction method in combination with the SL RNA qPCR assay is suitable for the detection and quantification of Leishmania in sand flies. The assay is inexpensive, sensitive and pan-Leishmania specific, and accordingly an excellent assay for high-throughput screening in entomological research.![]()
Collapse
Affiliation(s)
- Myrthe Pareyn
- Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium.
| | - Rik Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Nigatu Girma
- Biology Department, Arba Minch University, Arba Minch, Ethiopia
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Lieselotte Van Bockstal
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | | | - Simon Shibru
- Biology Department, Arba Minch University, Arba Minch, Ethiopia
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium
| | - Herwig Leirs
- Evolutionary Ecology Group, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
7
|
Geyer CN, Fowler RC, Johnson JR, Johnston B, Weissman SJ, Hawkey P, Hanson ND. Evaluation of CTX-M steady-state mRNA, mRNA half-life and protein production in various STs of Escherichia coli. J Antimicrob Chemother 2015; 71:607-16. [PMID: 26612874 PMCID: PMC4743699 DOI: 10.1093/jac/dkv388] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 10/19/2015] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVES High levels of β-lactamase production can impact treatment with a β-lactam/β-lactamase inhibitor combination. Goals of this study were to: (i) compare the mRNA and protein levels of CTX-M-15- and CTX-M-14-producing Escherichia coli from 18 different STs and 10 different phylotypes; (ii) evaluate the mRNA half-lives and establish a role for chromosomal- and/or plasmid-encoded factors; and (iii) evaluate the zones of inhibition for piperacillin/tazobactam and ceftolozane/tazobactam. METHODS Disc diffusion was used to establish zone size. RNA analysis was accomplished using real-time RT-PCR and CTX-M protein levels were evaluated by immunoblotting. Clinical isolates, transformants and transconjugants were used to evaluate mRNA half-lives. RESULTS mRNA levels of CTX-M-15 were up to 165-fold higher compared with CTX-M-14. CTX-M-15 protein levels were 2-48-fold less than their respective transcript levels, while CTX-M-14 protein production was comparable to the observed transcript levels. Nineteen of 25 E. coli (76%) had extended CTX-M-15 mRNA half-lives of 5-15 min and 16 (100%) CTX-M-14 isolates had mRNA half-lives of <2-3 min. Transformants had mRNA half-lives of <2 min for both CTX-M-type transcripts, while transconjugant mRNA half-lives corresponded to the half-life of the donor. Ceftolozane/tazobactam zone sizes were ≥19 mm, while piperacillin/tazobactam zone sizes were ≥17 mm. CONCLUSIONS CTX-M-15 mRNA and protein production did not correlate. Neither E. coli ST nor phylotype influenced the variability observed for CTX-M-15 mRNA or protein produced. mRNA half-life is controlled by a plasmid-encoded factor and may influence mRNA transcript levels, but not protein levels.
Collapse
Affiliation(s)
- Chelsie N Geyer
- Department of Medical Microbiology and Immunology, Center for Research in Anti-Infectives and Biotechnology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - Randal C Fowler
- Department of Medical Microbiology and Immunology, Center for Research in Anti-Infectives and Biotechnology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| | - James R Johnson
- Veterans Affairs Medical Center, Minneapolis, MN, USA University of Minnesota, Minneapolis, MN, USA
| | - Brian Johnston
- Veterans Affairs Medical Center, Minneapolis, MN, USA University of Minnesota, Minneapolis, MN, USA
| | - Scott J Weissman
- Center for Global Infectious Diseases Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Peter Hawkey
- Public Health England (PHE), West Midlands Public Health Laboratory, Heart of England NHS Foundation Trust, Bordesley Green East, Birmingham B9 5SS, UK Institute of Microbiology and Infection, School of Biosciences, School of Immunity and Infection, University of Birmingham, Edgbaston Campus, Birmingham B15 2TT, UK
| | - Nancy D Hanson
- Department of Medical Microbiology and Immunology, Center for Research in Anti-Infectives and Biotechnology, Creighton University School of Medicine, 2500 California Plaza, Omaha, NE 68178, USA
| |
Collapse
|
8
|
Abstract
Many Gram-negative bacterial species release outer membrane vesicles (OMVs) that interact with the host by delivering virulence factors. Here, we report for the first time that RNA is among the wide variety of bacterial components that are associated with OMVs. To characterize the RNA profiles of bacterial OMVs, we performed RNA deep sequencing analysis using OMV samples isolated from a wild type Vibrio cholerae O1 El Tor strain. The results showed that RNAs originating from intergenic regions were the most abundant. Our findings reveal a hitherto unrecognised feature of OMVs mimicking eukaryotic exosomes and highlight a need to evaluate the potential role of RNA-containing bacterial membrane vesicles in bacteria-host interactions.
Collapse
|
9
|
Chen H, Shiroguchi K, Ge H, Xie XS. Genome-wide study of mRNA degradation and transcript elongation in Escherichia coli. Mol Syst Biol 2015; 11:781. [PMID: 25583150 PMCID: PMC4332155 DOI: 10.15252/msb.20145794] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
An essential part of gene expression is the coordination of RNA synthesis and degradation, which occurs in the same cellular compartment in bacteria. Here, we report a genome-wide RNA degradation study in Escherichia coli using RNA-seq, and present evidence that the stereotypical exponential RNA decay curve obtained using initiation inhibitor, rifampicin, consists of two phases: residual RNA synthesis, a delay in the interruption of steady state that is dependent on distance relative to the mRNA's 5′ end, and the exponential decay. This gives a more accurate RNA lifetime and RNA polymerase elongation rate simultaneously genome-wide. Transcripts typically have a single RNA decay constant along all positions, which is distinct between different operons, indicating that RNA stability is unlikely determined by local sequences. These measurements allowed us to establish a model for RNA processing involving co-transcriptional degradation, providing quantitative description of the macromolecular coordination in gene expression in bacteria on a system-wide level.
Collapse
Affiliation(s)
- Huiyi Chen
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Katsuyuki Shiroguchi
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hao Ge
- Biodynamic Optical Imaging Center (BIOPIC), School of Life Science Peking University, Beijing, China Beijing International Center for Mathematical Research (BICMR) Peking University, Beijing, China
| | - Xiaoliang Sunney Xie
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA Biodynamic Optical Imaging Center (BIOPIC), School of Life Science Peking University, Beijing, China
| |
Collapse
|
10
|
Abstract
mRNA degradation is an important mechanism for controlling gene expression in bacterial cells. This process involves the orderly action of a battery of cellular endonucleases and exonucleases, some universal and others present only in certain species. These ribonucleases function with the assistance of ancillary enzymes that covalently modify the 5' or 3' end of RNA or unwind base-paired regions. Triggered by initiating events at either the 5' terminus or an internal site, mRNA decay occurs at diverse rates that are transcript specific and governed by RNA sequence and structure, translating ribosomes, and bound sRNAs or proteins. In response to environmental cues, bacteria are able to orchestrate widespread changes in mRNA lifetimes by modulating the concentration or specific activity of cellular ribonucleases or by unmasking the mRNA-degrading activity of cellular toxins.
Collapse
Affiliation(s)
- Monica P Hui
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, NY 10016;
| | | | | |
Collapse
|
11
|
A repetitive DNA element regulates expression of the Helicobacter pylori sialic acid binding adhesin by a rheostat-like mechanism. PLoS Pathog 2014; 10:e1004234. [PMID: 24991812 PMCID: PMC4081817 DOI: 10.1371/journal.ppat.1004234] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 05/21/2014] [Indexed: 12/12/2022] Open
Abstract
During persistent infection, optimal expression of bacterial factors is required to match the ever-changing host environment. The gastric pathogen Helicobacter pylori has a large set of simple sequence repeats (SSR), which constitute contingency loci. Through a slipped strand mispairing mechanism, the SSRs generate heterogeneous populations that facilitate adaptation. Here, we present a model that explains, in molecular terms, how an intergenically located T-tract, via slipped strand mispairing, operates with a rheostat-like function, to fine-tune activity of the promoter that drives expression of the sialic acid binding adhesin, SabA. Using T-tract variants, in an isogenic strain background, we show that the length of the T-tract generates multiphasic output from the sabA promoter. Consequently, this alters the H. pylori binding to sialyl-Lewis x receptors on gastric mucosa. Fragment length analysis of post-infection isolated clones shows that the T-tract length is a highly variable feature in H. pylori. This mirrors the host-pathogen interplay, where the bacterium generates a set of clones from which the best-fit phenotypes are selected in the host. In silico and functional in vitro analyzes revealed that the length of the T-tract affects the local DNA structure and thereby binding of the RNA polymerase, through shifting of the axial alignment between the core promoter and UP-like elements. We identified additional genes in H. pylori, with T- or A-tracts positioned similar to that of sabA, and show that variations in the tract length likewise acted as rheostats to modulate cognate promoter output. Thus, we propose that this generally applicable mechanism, mediated by promoter-proximal SSRs, provides an alternative mechanism for transcriptional regulation in bacteria, such as H. pylori, which possesses a limited repertoire of classical trans-acting regulatory factors.
Collapse
|
12
|
González-Andrade P, Camara M, Ilboudo H, Bucheton B, Jamonneau V, Deborggraeve S. Diagnosis of trypanosomatid infections: targeting the spliced leader RNA. J Mol Diagn 2014; 16:400-4. [PMID: 24814957 DOI: 10.1016/j.jmoldx.2014.02.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 02/12/2014] [Accepted: 02/26/2014] [Indexed: 10/25/2022] Open
Abstract
Trypanosomatids transcribe their genes in large polycistronic clusters that are further processed into mature mRNA molecules by trans-splicing. During this maturation process, a conserved spliced leader RNA (SL-RNA) sequence of 39 bp is physically linked to the 5' end of the pre-mRNA molecules. Trypanosomatid infections cause a series of devastating diseases in man (sleeping sickness, leishmaniasis, Chagas disease) and animals (nagana, surra, dourine). Here, we investigated the SL-RNA molecule for its diagnostic potential using reverse transcription followed by real-time PCR. As a model, we used Trypanosoma brucei gambiense, which causes sleeping sickness in west and central Africa. We showed that the copy number of the SL-RNA molecule in one single parasitic cell is at least 8600. We observed a lower detection limit of the SL-RNA assay in spiked blood samples of 100 trypanosomes per milliliter of blood. We also proved that we can detect the trypanosome's SL-RNA in the blood of sleeping sickness patients with a sensitivity of 92% (95% CI, 78%-97%) and a specificity of 96% (95% CI, 86%-99%). The SL-RNA is thus an attractive new molecular target for next-generation diagnostics in diseases caused by trypanosomatids.
Collapse
Affiliation(s)
| | - Mamady Camara
- National Sleeping Sickness Control Program, Ministry of Health and Public Hygiene, Conakry, Guinea
| | - Hamidou Ilboudo
- International Center for Development Research on Aging in Sub-Humid Areas (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Bruno Bucheton
- Institute of Research for Development, Mixed Research Unit IRD-CIRAD 177, Montpellier, France
| | - Vincent Jamonneau
- International Center for Development Research on Aging in Sub-Humid Areas (CIRDES), Bobo-Dioulasso, Burkina Faso; Institute of Research for Development, Mixed Research Unit IRD-CIRAD 177, Montpellier, France
| | - Stijn Deborggraeve
- Biomedical Sciences Department, Institute of Tropical Medicine, Antwerp, Belgium.
| |
Collapse
|
13
|
Scribano D, Petrucca A, Pompili M, Ambrosi C, Bruni E, Zagaglia C, Prosseda G, Nencioni L, Casalino M, Polticelli F, Nicoletti M. Polar localization of PhoN2, a periplasmic virulence-associated factor of Shigella flexneri, is required for proper IcsA exposition at the old bacterial pole. PLoS One 2014; 9:e90230. [PMID: 24587292 PMCID: PMC3937361 DOI: 10.1371/journal.pone.0090230] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 01/27/2014] [Indexed: 12/18/2022] Open
Abstract
Proper protein localization is critical for bacterial virulence. PhoN2 is a virulence-associated ATP-diphosphohydrolase (apyrase) involved in IcsA-mediated actin-based motility of S. flexneri. Herein, by analyzing a ΔphoN2 mutant of the S. flexneri strain M90T and by generating phoN2::HA fusions, we show that PhoN2, is a periplasmic protein that strictly localizes at the bacterial poles, with a strong preference for the old pole, the pole where IcsA is exposed, and that it is required for proper IcsA exposition. PhoN2-HA was found to be polarly localized both when phoN2::HA was ectopically expressed in a Escherichia coli K-12 strain and in a S. flexneri virulence plasmid-cured mutant, indicating a conserved mechanism of PhoN2 polar delivery across species and that neither IcsA nor the expression of other virulence-plasmid encoded genes are involved in this process. To assess whether PhoN2 and IcsA may interact, two-hybrid and cross-linking experiments were performed. While no evidence was found of a PhoN2-IcsA interaction, unexpectedly the outer membrane protein A (OmpA) was shown to bind PhoN2-HA through its periplasmic-exposed C-terminal domain. Therefore, to identify PhoN2 domains involved in its periplasmic polar delivery as well as in the interaction with OmpA, a deletion and a set of specific amino acid substitutions were generated. Analysis of these mutants indicated that neither the (183)PAPAP(187) motif of OmpA, nor the N-terminal polyproline (43)PPPP(46) motif and the Y155 residue of PhoN2 are involved in this interaction while P45, P46 and Y155 residues were found to be critical for the correct folding and stability of the protein. The relative rapid degradation of these amino acid-substituted recombinant proteins was found to be due to unknown S. flexneri-specific protease(s). A model depicting how the PhoN2-OmpA interaction may contribute to proper polar IcsA exposition in S. flexneri is presented.
Collapse
Affiliation(s)
- Daniela Scribano
- Dipartimento di Scienze Sperimentali e Cliniche, Università “G. D'Annunzio”, Chieti, Italy
| | - Andrea Petrucca
- Dipartimento di Scienze Sperimentali e Cliniche, Università “G. D'Annunzio”, Chieti, Italy
| | - Monica Pompili
- Dipartimento di Sanità Pubblica e Malattie Infettive Università “Sapienza” di Roma, Rome, Italy
| | - Cecilia Ambrosi
- Dipartimento di Sanità Pubblica e Malattie Infettive Università “Sapienza” di Roma, Rome, Italy
| | - Elena Bruni
- Dipartimento di Sanità Pubblica e Malattie Infettive Università “Sapienza” di Roma, Rome, Italy
| | - Carlo Zagaglia
- Dipartimento di Sanità Pubblica e Malattie Infettive Università “Sapienza” di Roma, Rome, Italy
| | - Gianni Prosseda
- Dipartimento di Biologia e Biotecnologie “C. Darwin”, Università Sapienza di Roma, Rome, Italy
| | - Lucia Nencioni
- Dipartimento di Sanità Pubblica e Malattie Infettive Università “Sapienza” di Roma, Rome, Italy
| | | | - Fabio Polticelli
- Dipartimento di Scienze, Università di “Roma Tre”, Rome, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di “Roma Tre”, Rome, Italy
| | - Mauro Nicoletti
- Dipartimento di Scienze Sperimentali e Cliniche, Università “G. D'Annunzio”, Chieti, Italy
| |
Collapse
|
14
|
Arraiano CM. Post-transcriptional control of gene expression: bacterial mRNA degradation. World J Microbiol Biotechnol 2014; 9:421-32. [PMID: 24420109 DOI: 10.1007/bf00328030] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/1993] [Indexed: 11/30/2022]
Abstract
Many biological processes cannot be fully understood without detailed knowledge of RNA metabolism. The continuous breakdown and resynthesis of prokaryotic mRNA permit rapid production of new kinds of proteins. In this way, mRNA levels can regulate protein synthesis and cellular growth. Analysing mRNA degradation in prokaryotes has been particularly difficult because most mRNA undergo rapid exponential decay. Prokaryotic mRNAs differ in their susceptibility to degradation by endonucleases and exonucleases, possibly because of variation in their sequencing and structure. In spite of numerous studies, details of mRNA degradation are still largely unknown. This review highlights those aspects of mRNA metabolism which seem most influential in the regulation of gene expression.
Collapse
Affiliation(s)
- C M Arraiano
- Instituto de Tecnologia Quimica e Biológica (ITQB), Apt 127, 2780, Oeiras, Portugal
| |
Collapse
|
15
|
Elliott DG, Applegate LJ, Murray AL, Purcell MK, McKibben CL. Bench-top validation testing of selected immunological and molecular Renibacterium salmoninarum diagnostic assays by comparison with quantitative bacteriological culture. JOURNAL OF FISH DISEASES 2013; 36:779-809. [PMID: 23346868 DOI: 10.1111/jfd.12079] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 11/26/2012] [Accepted: 12/03/2012] [Indexed: 06/01/2023]
Abstract
No gold standard assay exhibiting error-free classification of results has been identified for detection of Renibacterium salmoninarum, the causative agent of salmonid bacterial kidney disease. Validation of diagnostic assays for R. salmoninarum has been hindered by its unique characteristics and biology, and difficulties in locating suitable populations of reference test animals. Infection status of fish in test populations is often unknown, and it is commonly assumed that the assay yielding the most positive results has the highest diagnostic accuracy, without consideration of misclassification of results. In this research, quantification of R. salmoninarum in samples by bacteriological culture provided a standardized measure of viable bacteria to evaluate analytical performance characteristics (sensitivity, specificity and repeatability) of non-culture assays in three matrices (phosphate-buffered saline, ovarian fluid and kidney tissue). Non-culture assays included polyclonal enzyme-linked immunosorbent assay (ELISA), direct smear fluorescent antibody technique (FAT), membrane-filtration FAT, nested polymerase chain reaction (nested PCR) and three real-time quantitative PCR assays. Injection challenge of specific pathogen-free Chinook salmon, Oncorhynchus tshawytscha (Walbaum), with R. salmoninarum was used to estimate diagnostic sensitivity and specificity. Results did not identify a single assay demonstrating the highest analytical and diagnostic performance characteristics, but revealed strengths and weaknesses of each test.
Collapse
Affiliation(s)
- D G Elliott
- US Geological Survey, Western Fisheries Research Center, Seattle, WA 98115, USA.
| | | | | | | | | |
Collapse
|
16
|
Mutations in the Escherichia coli ribosomal protein L22 selectively suppress the expression of a secreted bacterial virulence factor. J Bacteriol 2013; 195:2991-9. [PMID: 23625843 DOI: 10.1128/jb.00211-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mutations in the ribosomal protein L22 that impair peptide-mediated translation arrest in Escherichia coli have been shown to reduce the expression of several genes, including secA, which encodes an ATPase that drives protein export via the Sec pathway. Here, we used a comparative proteomic approach to obtain insight into the global effects of the L22(Δ82-84) mutation on gene expression and protein synthesis. While the mutation did not affect or modestly affected the level of most soluble proteins, it dramatically reduced the level of antigen 43 (Ag43), a secreted virulence factor that promotes autoaggregation. The reduced protein concentration correlated with a sharp decrease in the abundance and stability of Ag43 mRNA. We found that the overexpression of secA or the inactivation of genes that encode presecretory and membrane proteins restored Ag43 production in the L22 mutant strain. Furthermore, impairment of the Sec pathway in a wild-type strain reduced Ag43 production but did not significantly affect the synthesis of other presecretory proteins. Taken together, these results indicate that Ag43 gene expression is exquisitely sensitive to the status of the Sec machinery and strongly suggest that the L22 mutation decreases the Ag43 concentration indirectly by reducing secA expression. Our results imply the existence of a novel regulatory mechanism in which the efficiency of protein export is coupled to gene expression and help to explain the modulation of SecA synthesis that has been observed in response to secretion stress.
Collapse
|
17
|
Lehti TA, Bauchart P, Kukkonen M, Dobrindt U, Korhonen TK, Westerlund-Wikström B. Phylogenetic group-associated differences in regulation of the common colonization factor Mat fimbria in Escherichia coli. Mol Microbiol 2013; 87:1200-22. [PMID: 23347101 DOI: 10.1111/mmi.12161] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2013] [Indexed: 11/28/2022]
Abstract
Heterogeneity of cell population is a key component behind the evolutionary success of Escherichia coli. The heterogeneity supports species adaptation and mainly results from lateral gene transfer. Adaptation may also involve genomic alterations that affect regulation of conserved genes. Here we analysed regulation of the mat (or ecp) genes that encode a conserved fimbrial adhesin of E. coli. We found that the differential and temperature-sensitive expression control of the mat operon is dependent on mat promoter polymorphism and closely linked to phylogenetic grouping of E. coli. In the mat promoter lineage favouring fimbriae expression, the mat operon-encoded regulator MatA forms a positive feedback loop that overcomes the repression by H-NS and stabilizes the fimbrillin mRNA under low growth temperature, acidic pH or elevated levels of acetate. The study exemplifies phylogenetic group-associated expression of a highly common surface organelle in E. coli.
Collapse
Affiliation(s)
- Timo A Lehti
- Division of General Microbiology, Department of Biosciences, FI-00014 University of Helsinki, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
18
|
Role of the Irr protein in the regulation of iron metabolism in Rhodobacter sphaeroides. PLoS One 2012; 7:e42231. [PMID: 22879920 PMCID: PMC3413700 DOI: 10.1371/journal.pone.0042231] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Accepted: 07/05/2012] [Indexed: 12/21/2022] Open
Abstract
In Rhizobia the Irr protein is an important regulator for iron-dependent gene expression. We studied the role of the Irr homolog RSP_3179 in the photosynthetic alpha-proteobacterium Rhodobacter sphaeroides. While Irr had little effect on growth under iron-limiting or non-limiting conditions its deletion resulted in increased resistance to hydrogen peroxide and singlet oxygen. This correlates with an elevated expression of katE for catalase in the Irr mutant compared to the wild type under non-stress conditions. Transcriptome studies revealed that Irr affects the expression of genes for iron metabolism, but also has some influence on genes involved in stress response, citric acid cycle, oxidative phosphorylation, transport, and photosynthesis. Most genes showed higher expression levels in the wild type than in the mutant under normal growth conditions indicating an activator function of Irr. Irr was however not required to activate genes of the iron metabolism in response to iron limitation, which showed even stronger induction in the absence of Irr. This was also true for genes mbfA and ccpA, which were verified as direct targets for Irr. Our results suggest that in R. sphaeroides Irr diminishes the strong induction of genes for iron metabolism under iron starvation.
Collapse
|
19
|
Metz S, Jäger A, Klug G. Role of a short light, oxygen, voltage (LOV) domain protein in blue light- and singlet oxygen-dependent gene regulation in Rhodobacter sphaeroides. Microbiology (Reading) 2012; 158:368-379. [DOI: 10.1099/mic.0.054700-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Sebastian Metz
- Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - Andreas Jäger
- Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| | - Gabriele Klug
- Institut für Mikro- und Molekularbiologie, Justus-Liebig-Universität Gießen, Heinrich-Buff-Ring 26-32, D-35392 Gießen, Germany
| |
Collapse
|
20
|
A new piece of the Shigella Pathogenicity puzzle: spermidine accumulation by silencing of the speG gene [corrected]. PLoS One 2011; 6:e27226. [PMID: 22102881 PMCID: PMC3213128 DOI: 10.1371/journal.pone.0027226] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 10/12/2011] [Indexed: 11/19/2022] Open
Abstract
The genome of Shigella, a gram negative bacterium which is the causative agent of bacillary dysentery, shares strong homologies with that of its commensal ancestor, Escherichia coli. The acquisition, by lateral gene transfer, of a large plasmid carrying virulence determinants has been a crucial event in the evolution towards the pathogenic lifestyle and has been paralleled by the occurrence of mutations affecting genes, which negatively interfere with the expression of virulence factors. In this context, we have analysed to what extent the presence of the plasmid-encoded virF gene, the major activator of the Shigella regulon for invasive phenotype, has modified the transcriptional profile of E. coli. Combining results from transcriptome assays and comparative genome analyses we show that in E. coli VirF, besides being able to up-regulate several chromosomal genes, which potentially influence bacterial fitness within the host, also activates genes which have been lost by Shigella. We have focused our attention on the speG gene, which encodes spermidine acetyltransferase, an enzyme catalysing the conversion of spermidine into the physiologically inert acetylspermidine, since recent evidence stresses the involvement of polyamines in microbial pathogenesis. Through identification of diverse mutations, which prevent expression of a functional SpeG protein, we show that the speG gene has been silenced by convergent evolution and that its inactivation causes the marked increase of intracellular spermidine in all Shigella spp. This enhances the survival of Shigella under oxidative stress and allows it to better face the adverse conditions it encounters inside macrophage. This is supported by the outcome of infection assays performed in mouse peritoneal macrophages and of a competitive-infection assay on J774 macrophage cell culture. Our observations fully support the pathoadaptive nature of speG inactivation in Shigella and reveal that the accumulation of spermidine is a key determinant in the pathogenicity strategy adopted by this microrganism.
Collapse
|
21
|
Bylund GO, Nord S, Lövgren JM, Wikström PM. Alterations in the β flap and β' dock domains of the RNA polymerase abolish NusA-mediated feedback regulation of the metY-nusA-infB operon. J Bacteriol 2011; 193:4113-22. [PMID: 21685293 PMCID: PMC3147696 DOI: 10.1128/jb.00196-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 06/04/2011] [Indexed: 11/20/2022] Open
Abstract
The RimM protein in Escherichia coli is important for the in vivo maturation of 30S ribosomal subunits and a ΔrimM mutant grows poorly due to assembly and translational defects. These deficiencies are suppressed partially by mutations that increase the synthesis of another assembly protein, RbfA, encoded by the metY-nusA-infB operon. Among these suppressors are mutations in nusA that impair the NusA-mediated negative-feedback regulation at internal intrinsic transcriptional terminators of the metY-nusA-infB operon. We describe here the isolation of two new mutations, one in rpoB and one in rpoC (encoding the β and β' subunits of the RNA polymerase, respectively), that increase the synthesis of RbfA by preventing NusA from stimulating termination at the internal intrinsic transcriptional terminators of the metY-nusA-infB operon. The rpoB2063 mutation changed the isoleucine in position 905 of the β flap-tip helix to a serine, while the rpoC2064 mutation duplicated positions 415 to 416 (valine-isoleucine) at the base of the β' dock domain. These findings support previously published in vitro results, which have suggested that the β flap-tip helix and β' dock domain at either side of the RNA exit tunnel mediate the binding to NusA during transcriptional pausing and termination.
Collapse
Affiliation(s)
| | | | | | - P. Mikael Wikström
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
22
|
Martínez LC, Yakhnin H, Camacho MI, Georgellis D, Babitzke P, Puente JL, Bustamante VH. Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the Salmonella SPI-1 and SPI-2 virulence regulons through HilD. Mol Microbiol 2011; 80:1637-56. [PMID: 21518393 PMCID: PMC3116662 DOI: 10.1111/j.1365-2958.2011.07674.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Salmonella pathogenicity islands 1 and 2 (SPI-1 and SPI-2) play key roles in the pathogenesis of Salmonella enterica. Previously, we showed that when Salmonella grows in Luria-Bertani medium, HilD, encoded in SPI-1, first induces the expression of hilA, located in SPI-1, and subsequently of the ssrAB operon, located in SPI-2. These genes code for HilA and the SsrA/B two-component system, the positive regulators of the SPI-1 and SPI-2 regulons respectively. In this study, we demonstrate that CsrA, a global regulatory RNA binding protein, post-transcriptionally regulates hilD expression by directly binding near the Shine-Dalgarno and translation initiation codon sequences of the hilD mRNA, preventing its translation and leading to its accelerated turnover. Negative regulation is counteracted by the global SirA/BarA two-component system, which directly activates the expression of CsrB and CsrC, two non-coding regulatory RNAs that sequester CsrA, thereby preventing it from binding to its target mRNAs. Our results illustrate the integration of global and specific regulators into a multifactorial regulatory cascade controlling the expression of virulence genes acquired by horizontal transfer events.
Collapse
Affiliation(s)
- Luary C. Martínez
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Morelos 62210, Mexico
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Martha I. Camacho
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F. 04510, Mexico
| | - Dimitris Georgellis
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México. México D.F. 04510, Mexico
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - José L. Puente
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Morelos 62210, Mexico
| | - Víctor H. Bustamante
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Cuernavaca, Morelos 62210, Mexico
| |
Collapse
|
23
|
Belasco JG. All things must pass: contrasts and commonalities in eukaryotic and bacterial mRNA decay. Nat Rev Mol Cell Biol 2010; 11:467-78. [PMID: 20520623 PMCID: PMC3145457 DOI: 10.1038/nrm2917] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite its universal importance for controlling gene expression, mRNA degradation was initially thought to occur by disparate mechanisms in eukaryotes and bacteria. This conclusion was based on differences in the structures used by these organisms to protect mRNA termini and in the RNases and modifying enzymes originally implicated in mRNA decay. Subsequent discoveries have identified several striking parallels between the cellular factors and molecular events that govern mRNA degradation in these two kingdoms of life. Nevertheless, some key distinctions remain, the most fundamental of which may be related to the different mechanisms by which eukaryotes and bacteria control translation initiation.
Collapse
Affiliation(s)
- Joel G Belasco
- Kimmel Center for Biology and Medicine at the Skirball Institute and Department of Microbiology, New York University School of Medicine, New York, 10016, USA.
| |
Collapse
|
24
|
Arraiano CM, Andrade JM, Domingues S, Guinote IB, Malecki M, Matos RG, Moreira RN, Pobre V, Reis FP, Saramago M, Silva IJ, Viegas SC. The critical role of RNA processing and degradation in the control of gene expression. FEMS Microbiol Rev 2010; 34:883-923. [PMID: 20659169 DOI: 10.1111/j.1574-6976.2010.00242.x] [Citation(s) in RCA: 263] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The continuous degradation and synthesis of prokaryotic mRNAs not only give rise to the metabolic changes that are required as cells grow and divide but also rapid adaptation to new environmental conditions. In bacteria, RNAs can be degraded by mechanisms that act independently, but in parallel, and that target different sites with different efficiencies. The accessibility of sites for degradation depends on several factors, including RNA higher-order structure, protection by translating ribosomes and polyadenylation status. Furthermore, RNA degradation mechanisms have shown to be determinant for the post-transcriptional control of gene expression. RNases mediate the processing, decay and quality control of RNA. RNases can be divided into endonucleases that cleave the RNA internally or exonucleases that cleave the RNA from one of the extremities. Just in Escherichia coli there are >20 different RNases. RNase E is a single-strand-specific endonuclease critical for mRNA decay in E. coli. The enzyme interacts with the exonuclease polynucleotide phosphorylase (PNPase), enolase and RNA helicase B (RhlB) to form the degradosome. However, in Bacillus subtilis, this enzyme is absent, but it has other main endonucleases such as RNase J1 and RNase III. RNase III cleaves double-stranded RNA and family members are involved in RNA interference in eukaryotes. RNase II family members are ubiquitous exonucleases, and in eukaryotes, they can act as the catalytic subunit of the exosome. RNases act in different pathways to execute the maturation of rRNAs and tRNAs, and intervene in the decay of many different mRNAs and small noncoding RNAs. In general, RNases act as a global regulatory network extremely important for the regulation of RNA levels.
Collapse
Affiliation(s)
- Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Giangrossi M, Prosseda G, Tran CN, Brandi A, Colonna B, Falconi M. A novel antisense RNA regulates at transcriptional level the virulence gene icsA of Shigella flexneri. Nucleic Acids Res 2010; 38:3362-75. [PMID: 20129941 PMCID: PMC2879508 DOI: 10.1093/nar/gkq025] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 12/30/2009] [Accepted: 01/11/2010] [Indexed: 12/26/2022] Open
Abstract
The virulence gene icsA of Shigella flexneri encodes an invasion protein crucial for host colonization by pathogenic bacteria. Within the intergenic region virA-icsA, we have discovered a new gene that encodes a non-translated antisense RNA (named RnaG), transcribed in cis on the complementary strand of icsA. In vitro transcription assays show that RnaG promotes premature termination of transcription of icsA mRNA. Transcriptional inhibition is also observed in vivo by monitoring the expression profile in Shigella by real-time polymerase chain reaction and when RnaG is provided in trans. Chemical and enzymatic probing of the leader region of icsA mRNA either free or bound to RnaG indicate that upon hetero-duplex formation an intrinsic terminator, leading to transcription block, is generated on the nascent icsA mRNA. Mutations in the hairpin structure of the proposed terminator impair the RnaG mediated-regulation of icsA transcription. This study represents the first evidence of transcriptional attenuation mechanism caused by a small RNA in Gram-negative bacteria. We also present data on the secondary structure of the antisense region of RnaG. In addition, alternatively silencing icsA and RnaG promoters, we find that transcription from the strong RnaG promoter reduces the activity of the weak convergent icsA promoter through the transcriptional interference regulation.
Collapse
Affiliation(s)
- Mara Giangrossi
- Laboratory of Molecular Genetics, Department of Biology MCA, University of Camerino, 62032 Camerino, MC, Italy
| | | | | | | | | | | |
Collapse
|
26
|
Kime L, Jourdan SS, Stead JA, Hidalgo-Sastre A, McDowall KJ. Rapid cleavage of RNA by RNase E in the absence of 5' monophosphate stimulation. Mol Microbiol 2010; 76:590-604. [PMID: 19889093 PMCID: PMC2948425 DOI: 10.1111/j.1365-2958.2009.06935.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2009] [Indexed: 11/28/2022]
Abstract
The best characterized pathway for the initiation of mRNA degradation in Escherichia coli involves the removal of the 5'-terminal pyrophosphate to generate a monophosphate group that stimulates endonucleolytic cleavage by RNase E. We show here however, using well-characterized oligonucleotide substrates and mRNA transcripts, that RNase E can cleave certain RNAs rapidly without requiring a 5'-monophosphorylated end. Moreover, the minimum substrate requirement for this mode of cleavage, which can be categorized as 'direct' or 'internal' entry, appears to be multiple single-stranded segments in a conformational context that allows their simultaneous interaction with RNase E. While previous work has alluded to the existence of a 5' end-independent mechanism of mRNA degradation, the relative simplicity of the requirements identified here for direct entry suggests that it could represent a major means by which mRNA degradation is initiated in E. coli and other organisms that contain homologues of RNase E. Our results have implications for the interplay of translation and mRNA degradation and models of gene regulation by small non-coding RNAs.
Collapse
Affiliation(s)
| | | | - Jonathan A Stead
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLS2 9JT, England, UK
| | - Ana Hidalgo-Sastre
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLS2 9JT, England, UK
| | - Kenneth J McDowall
- Astbury Centre for Structural Molecular Biology, Faculty of Biological Sciences, University of LeedsLS2 9JT, England, UK
| |
Collapse
|
27
|
Carpousis AJ, Luisi BF, McDowall KJ. Endonucleolytic initiation of mRNA decay in Escherichia coli. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:91-135. [PMID: 19215771 DOI: 10.1016/s0079-6603(08)00803-9] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Instability is a fundamental property of mRNA that is necessary for the regulation of gene expression. In E. coli, the turnover of mRNA involves multiple, redundant pathways involving 3'-exoribonucleases, endoribonucleases, and a variety of other enzymes that modify RNA covalently or affect its conformation. Endoribonucleases are thought to initiate or accelerate the process of mRNA degradation. A major endoribonuclease in this process is RNase E, which is a key component of the degradative machinery amongst the Proteobacteria. RNase E is the central element in a multienzyme complex known as the RNA degradosome. Structural and functional data are converging on models for the mechanism of activation and regulation of RNase E and its paralog, RNase G. Here, we discuss current models for mRNA degradation in E. coli and we present current thinking on the structure and function of RNase E based on recent crystal structures of its catalytic core.
Collapse
Affiliation(s)
- Agamemnon J Carpousis
- Laboratoire de Microbiologie et Génétique Moléculaires, CNRS et Université Paul Sabatier, 31062 Toulouse, France
| | | | | |
Collapse
|
28
|
Andrade JM, Pobre V, Silva IJ, Domingues S, Arraiano CM. The role of 3'-5' exoribonucleases in RNA degradation. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2009; 85:187-229. [PMID: 19215773 DOI: 10.1016/s0079-6603(08)00805-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RNA degradation is a major process controlling RNA levels and plays a central role in cell metabolism. From the labile messenger RNA to the more stable noncoding RNAs (mostly rRNA and tRNA, but also the expanding class of small regulatory RNAs) all molecules are eventually degraded. Elimination of superfluous transcripts includes RNAs whose expression is no longer required, but also the removal of defective RNAs. Consequently, RNA degradation is an inherent step in RNA quality control mechanisms. Furthermore, it contributes to the recycling of the nucleotide pool in the cell. Escherichia coli has eight 3'-5' exoribonucleases, which are involved in multiple RNA metabolic pathways. However, only four exoribonucleases appear to accomplish all RNA degradative activities: polynucleotide phosphorylase (PNPase), ribonuclease II (RNase II), RNase R, and oligoribonuclease. Here, we summarize the available information on the role of bacterial 3'-5' exoribonucleases in the degradation of different substrates, highlighting the most recent data that have contributed to the understanding of the diverse modes of operation of these degradative enzymes.
Collapse
Affiliation(s)
- José M Andrade
- Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa, Qeiras, Portugal
| | | | | | | | | |
Collapse
|
29
|
Sjöström AE, Sondén B, Müller C, Rydström A, Dobrindt U, Wai SN, Uhlin BE. Analysis of the sfaX(II) locus in the Escherichia coli meningitis isolate IHE3034 reveals two novel regulatory genes within the promoter-distal region of the main S fimbrial operon. Microb Pathog 2008; 46:150-8. [PMID: 19103276 DOI: 10.1016/j.micpath.2008.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2008] [Revised: 11/30/2008] [Accepted: 12/04/2008] [Indexed: 11/19/2022]
Abstract
We describe the expression and regulation of the gene sfaX(II) located near the Sfa(II) fimbrial determinant in the newborn meningitis Escherichia coli (NMEC) isolate IHE3034. sfaX(II) belongs to a gene family, the 17-kDa genes, typically located downstream (300-3000bp) of different fimbrial operons found in E. coli isolates of uropathogenic and newborn meningitis origin. Using transcriptional sfaX(II) reporter gene fusions we found that different environmental conditions commonly affecting expression of fimbrial genes also affected sfaX(II) expression. Analysis of the sfaX(II) transcripts showed that the gene is part of the main fimbrial operon as it is transcribed together with the rest of the fimbrial genes. In addition, the sfaX(II) gene can be expressed from a more proximal promoter and is found to be subject to strong down-regulation by the nucleoid protein H-NS. Studies with an sfaX(II) mutant derivative of IHE3034 did not reveal effects on Sfa(II) fimbrial biogenesis as monitored by e.g. immunofluorescence microscopy. Nevertheless, a mutation in sfaX(II) resulted in altered expression of other surface components. Moreover, we define a new gene, sfaY(II), coding for a putative phosphodiesterase that is located in between the sfaX(II) gene and the fimbrial biogenesis genes. Our studies by ectopic expression of sfaY(II) in Vibrio cholerae showed that the gene product caused reduced biofilm formation and it is proposed that sfaY(II) can influence cyclic-di-GMP turnover in the bacteria. Our findings demonstrate that the operons typical for S-fimbriae of extraintestinal pathogenic E. coli include previously unrecognized novel regulatory genes.
Collapse
Affiliation(s)
- Annika E Sjöström
- Department of Molecular Biology, The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, S-90187 Umeå, Sweden
| | | | | | | | | | | | | |
Collapse
|
30
|
Papenfort K, Pfeiffer V, Mika F, Lucchini S, Hinton JCD, Vogel J. SigmaE-dependent small RNAs of Salmonella respond to membrane stress by accelerating global omp mRNA decay. Mol Microbiol 2007; 62:1674-88. [PMID: 17427289 PMCID: PMC1804206 DOI: 10.1111/j.1365-2958.2006.05524.x] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacterial envelope stress response (ESR) is triggered by the accumulation of misfolded outer membrane proteins (OMPs) upon envelope damage or excessive OMP synthesis, and is mediated by the alternative sigma factor, sigmaE. Activation of the GE pathway causes a rapid downregulation of major omp mRNAs, which prevents further build-up of unassembled OMPs and liberates the translocation and folding apparatus under conditions that require envelope remodelling. The factors that facilitate the rapid removal of the unusually stable omp mRNAs in the ESR were previously unknown. We report that in Salmonella the ESR relies upon two highly conserved, sigmaE-controlled small non-coding RNAs, RybB and MicA. By using a transcriptomic approach and kinetic analyses of target mRNA decay in vivo, RybB was identified as the factor that selectively accelerates the decay of multiple major omp mRNAs upon induction of the ESR, while MicA is proposed to facilitate rapid decay of the single ompA mRNA. In unstressed bacterial cells, the two oE-dependent small RNAs function within a surveillance loop to maintain envelope homeostasis and to achieve autoregulation of oE.
Collapse
Affiliation(s)
- Kai Papenfort
- Max Planck Institute for Infection BiologyCharitéplatz 1, 10117 Berlin, Germany
| | - Verena Pfeiffer
- Max Planck Institute for Infection BiologyCharitéplatz 1, 10117 Berlin, Germany
| | - Franziska Mika
- Max Planck Institute for Infection BiologyCharitéplatz 1, 10117 Berlin, Germany
| | - Sacha Lucchini
- Institute of Food Research, Norwich Research ParkNorwich, NR4 7UA, UK
| | - Jay C D Hinton
- Institute of Food Research, Norwich Research ParkNorwich, NR4 7UA, UK
- *For correspondence. E-mail ; Tel. (+49) 30 28460 265; Fax (+49) 30 28460 244; E-mail ; Tel. (+44) 1603 255352; Fax (+44) 1603 255288
| | - Jörg Vogel
- Max Planck Institute for Infection BiologyCharitéplatz 1, 10117 Berlin, Germany
- *For correspondence. E-mail ; Tel. (+49) 30 28460 265; Fax (+49) 30 28460 244; E-mail ; Tel. (+44) 1603 255352; Fax (+44) 1603 255288
| |
Collapse
|
31
|
Abstract
This chapter discusses several topics relating to the mechanisms of mRNA decay. These topics include the following: important physical properties of mRNA molecules that can alter their stability; methods for determining mRNA half-lives; the genetics and biochemistry of proteins and enzymes involved in mRNA decay; posttranscriptional modification of mRNAs; the cellular location of the mRNA decay apparatus; regulation of mRNA decay; the relationships among mRNA decay, tRNA maturation, and ribosomal RNA processing; and biochemical models for mRNA decay. Escherichia coli has multiple pathways for ensuring the effective decay of mRNAs and mRNA decay is closely linked to the cell's overall RNA metabolism. Finally, the chapter highlights important unanswered questions regarding both the mechanism and importance of mRNA decay.
Collapse
|
32
|
Zeller T, Mraheil MA, Moskvin OV, Li K, Gomelsky M, Klug G. Regulation of hydrogen peroxide-dependent gene expression in Rhodobacter sphaeroides: regulatory functions of OxyR. J Bacteriol 2007; 189:3784-92. [PMID: 17351037 PMCID: PMC1913319 DOI: 10.1128/jb.01795-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome-wide transcriptome profiling was used to reveal hydrogen peroxide (H(2)O(2))-dependent regulatory mechanisms in the facultatively photosynthetic bacterium Rhodobacter sphaeroides. In this study we focused on the role of the OxyR protein, a known regulator of the H(2)O(2) response in bacteria. The transcriptome profiles of R. sphaeroides wild-type and oxyR mutant strains that were exposed to 1 mM H(2)O(2) for 7 min or were not exposed to H(2)O(2) were analyzed. Three classes of OxyR-dependent genes were identified based on their expression patterns in the wild type of oxyR mutant strains with differing predicted roles of oxidized and reduced OxyR as activators of transcription. DNA binding studies revealed that OxyR binds upstream of class I genes, which are induced by H(2)O(2) and exhibit similar basal levels of expression in the wild-type and oxyR mutant strains. The effect of OxyR on class II genes, which are also induced by H(2)O(2) but exhibit significantly lower basal levels of expression in the wild-type strain than in the mutant, is indirect. Interestingly, reduced OxyR also activates expression of few genes (class III). The role of reduced OxyR as an activator is shown for the first time. Our data reveal that the OxyR-mediated response is fast and transient. In addition, we found that additional regulatory pathways are involved in the H(2)O(2) response.
Collapse
Affiliation(s)
- Tanja Zeller
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
33
|
Stork M, Di Lorenzo M, Welch TJ, Crosa JH. Transcription termination within the iron transport-biosynthesis operon of Vibrio anguillarum requires an antisense RNA. J Bacteriol 2007; 189:3479-88. [PMID: 17337574 PMCID: PMC1855896 DOI: 10.1128/jb.00619-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The iron transport-biosynthesis (ITB) operon in Vibrio anguillarum includes four genes for ferric siderophore transport, fatD, -C, -B, and -A, and two genes for siderophore biosynthesis, angR and angT. This cluster plays an important role in the virulence mechanisms of this bacterium. Despite being part of the same polycistronic mRNA, the relative levels of transcription for the fat portion and for the whole ITB message differ profoundly, the levels of the fat transcript being about 17-fold higher. Using S1 nuclease mapping, lacZ transcriptional fusions, and in vitro studies, we were able to show that the differential gene expression within the ITB operon is due to termination of transcription between the fatA and angR genes, although a few transcripts proceeded beyond the termination site to the end of this operon. This termination process requires a 427-nucleotide antisense RNA that spans the intergenic region and acts as a novel transcriptional terminator.
Collapse
Affiliation(s)
- Michiel Stork
- Department of Molecular Microbiology and Immunology L-220, Oregon Health and Science University, 3181 SW Sam Jackson Park Rd., Portland, OR 97201-3098, USA
| | | | | | | |
Collapse
|
34
|
Zeller T, Li K, Klug G. Expression of the trxC gene of Rhodobacter capsulatus: response to cellular redox status is mediated by the transcriptional regulator OxyR. J Bacteriol 2006; 188:7689-95. [PMID: 16916895 PMCID: PMC1636272 DOI: 10.1128/jb.00660-06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 08/07/2006] [Indexed: 11/20/2022] Open
Abstract
Despite the importance of thioredoxins in cellular functions, little is known about the regulation of trx genes. To understand the molecular mechanisms involved in the regulation of the Rhodobacter capsulatus trxC gene, the expression of this gene was investigated. We describe OxyR-dependent redox regulation of the trxC gene that adjusts the levels of thioredoxins in the cell.
Collapse
Affiliation(s)
- Tanja Zeller
- Institut für Mikrobiologie und Molekularbiologie, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | | | |
Collapse
|
35
|
Boes N, Schreiber K, Härtig E, Jaensch L, Schobert M. The Pseudomonas aeruginosa universal stress protein PA4352 is essential for surviving anaerobic energy stress. J Bacteriol 2006; 188:6529-38. [PMID: 16952944 PMCID: PMC1595484 DOI: 10.1128/jb.00308-06] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During infection of the cystic fibrosis (CF) lung, Pseudomonas aeruginosa microcolonies are embedded in the anaerobic CF mucus. This anaerobic environment seems to contribute to the formation of more robust P. aeruginosa biofilms and to an increased antibiotic tolerance and therefore promotes persistent infection. This study characterizes the P. aeruginosa protein PA4352, which is important for survival under anaerobic energy stress conditions. PA4352 belongs to the universal stress protein (Usp) superfamily and harbors two Usp domains in tandem. In Escherichia coli, Usp-type stress proteins are involved in survival during aerobic growth arrest and under various other stresses. A P. aeruginosa PA4352 knockout mutant was tested for survival under several stress conditions. We found a decrease in viability of this mutant compared to the P. aeruginosa wild type during anaerobic energy starvation caused by the missing electron acceptors oxygen and nitrate. Consistent with this phenotype under anaerobic conditions, the PA4352 knockout mutant was also highly sensitive to carbonyl cyanide m-chlorophenylhydrazone, the chemical uncoupler of the electron transport chain. Primer extension experiments identified two promoters upstream of the PA4352 gene. One promoter is activated in response to oxygen limitation by the oxygen-sensing regulatory protein Anr. The center of a putative Anr binding site was identified 41.5 bp upstream of the transcriptional start site. The second promoter is active only in the stationary phase, however, independently of RpoS, RelA, or quorum sensing. This is the second P. aeruginosa Usp-type stress protein that we have identified as important for survival under anaerobic conditions, which resembles the environment during persistent infection.
Collapse
Affiliation(s)
- Nelli Boes
- Institute of Microbiology, Technical University Braunschweig, Spielmannstr. 7D-38106, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
36
|
Balsalobre C, Johansson J, Uhlin BE. Cyclic AMP-dependent osmoregulation of crp gene expression in Escherichia coli. J Bacteriol 2006; 188:5935-44. [PMID: 16885462 PMCID: PMC1540082 DOI: 10.1128/jb.00235-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have found that the cyclic AMP (cAMP) receptor protein (CRP)-cAMP regulatory complex in Escherichia coli is subject to osmoregulation at the level of crp gene expression. This osmoregulation was lost in a cya mutant strain but could be restored by external addition of cAMP, suggesting that the intracellular level of cAMP is a key factor in the osmoregulation of CRP. The ability of the cell to maintain optimal CRP activity was essential for the growth and survival of the bacteria under low-osmolarity conditions as shown by studies with different crp mutant alleles. A suppressor mutant with a novel amino acid substitution (L124R) in CRP showed restored growth at low osmolarity. CRP(L124R) was not activated by cAMP and was shown to be dominant negative over the wild type. Our findings suggest that the fine-tuning of the CRP activity may be critical for bacterial viability and adaptability to changing osmotic conditions.
Collapse
Affiliation(s)
- Carlos Balsalobre
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 645, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
37
|
Lee YY, Hu HT, Liang PH, Chak KF. An E. coli lon mutant conferring partial resistance to colicin may reveal a novel role in regulating proteins involved in the translocation of colicin. Biochem Biophys Res Commun 2006; 345:1579-85. [PMID: 16750174 DOI: 10.1016/j.bbrc.2006.05.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2006] [Accepted: 05/11/2006] [Indexed: 11/17/2022]
Abstract
Initially, we found that a lon mutant confers partial resistance against colicin. The results of Western blotting detected a decrease in the protein expression levels of BtuB and OmpF involved in colicin translocation in the lon mutant. Moreover, 2-D gel analysis revealed that the expression level of some scavenger proteins marks the lon mutant as being in a situation similar to oxidative stress. OxyRS and SoxRS are the two major response regulators for oxidative stress. Our RT-PCR analysis revealed an elevation of expression of the oxyS gene in the lon mutant. An immunoblot assay further confirmed that overexpression of oxyS RNA can negatively control on the expression of BtuB protein. Probably the BtuB is negatively regulated by a global regulator, oxyS, induced during oxidative stress.
Collapse
Affiliation(s)
- Yuan-Yu Lee
- Institute of Biochemistry, National Yang Ming University, Shih-Pai, Taipei, Taiwan
| | | | | | | |
Collapse
|
38
|
Andrade JM, Cairrão F, Arraiano CM. RNase R affects gene expression in stationary phase: regulation of ompA. Mol Microbiol 2006; 60:219-28. [PMID: 16556233 DOI: 10.1111/j.1365-2958.2006.05092.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In nature, bacteria remain mostly in the stationary phase of the life cycle. Although mRNA is a major determinant of gene expression, little is known about mRNA decay in the stationary phase. The results presented herein demonstrate that RNase R is induced in stationary phase and is involved in the post-transcriptional regulation of ompA mRNA. This work is the first report of RNase R activity on a full length mRNA. In the absence of RNase R in a single rnr mutant, higher levels of ompA mRNA are found as a consequence of the stabilization of ompA full transcript. This effect is growth-phase-specific and not a growth-rate-dependent event. These higher levels of ompA mRNA were correlated with increases in the amounts of OmpA protein. We have also analysed the role of other factors that could affect ompA mRNA stability in stationary phase. RNase E was found to have the most important role, followed by polyadenylation. PNPase also affected the decay of the ompA transcript but RNase II did not seem to contribute much to this degradation process. The participation of RNase R in poly(A)-dependent pathways of decay in stationary phase of growth is discussed. The results show that RNase R can be a modulator of gene expression in stationary phase cells.
Collapse
Affiliation(s)
- José Marques Andrade
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Apartado 127, 2781-901 Oeiras, Portugal
| | | | | |
Collapse
|
39
|
Zeller T, Moskvin OV, Li K, Klug G, Gomelsky M. Transcriptome and physiological responses to hydrogen peroxide of the facultatively phototrophic bacterium Rhodobacter sphaeroides. J Bacteriol 2005; 187:7232-42. [PMID: 16237007 PMCID: PMC1272974 DOI: 10.1128/jb.187.21.7232-7242.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptome responses to hydrogen peroxide, H2O2, of the facultatively phototrophic bacterium Rhodobacter sphaeroides grown under semiaerobic conditions were investigated. At 7 min after the addition of 1 mM H2O2, the expression of approximately 9% of all genes (total, 394) was changed reliably by at least twofold. At 30 min, the number of genes (total, 88) and the magnitude of expression changes were much lower, indicating rapid recovery from stress. Two types of responses were observed: (i) an H2O2 stress response per se and (ii) a shift to high-oxygen metabolism. The former response involved the upregulation of genes for H2O2 detoxification, protein folding and proteolysis, DNA damage repair, iron transport and storage, iron-sulfur cluster repair, and the downregulation of genes for protein translation, motility, and cell wall and lipopolysaccharide synthesis. The shift to high-oxygen metabolism was evident from the differential regulation of genes for aerobic electron transport chain components and the downregulation of tetrapyrrole biosynthesis and photosystem genes. The abundance of photosynthetic complexes was decreased upon prolonged exposure of R. sphaeroides to H2O2, thus confirming the physiological significance of the transcriptome data. The regulatory pathways mediating the shift to high-oxygen metabolism were investigated. They involved the anaerobic activator FnrL and the antirepressor-repressor AppA-PpsR system. The transcription of FnrL-dependent genes was down at 7 min, apparently due to the transient inactivation by H2O2 of the iron-sulfur cluster of FnrL. The transcription of the AppA-PpsR-dependent genes was down at 30 min, apparently due to the significant decrease in appA mRNA.
Collapse
Affiliation(s)
- Tanja Zeller
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| | | | | | | | | |
Collapse
|
40
|
Welch TJ, Crosa JH. Novel role of the lipopolysaccharide O1 side chain in ferric siderophore transport and virulence of Vibrio anguillarum. Infect Immun 2005; 73:5864-72. [PMID: 16113305 PMCID: PMC1231046 DOI: 10.1128/iai.73.9.5864-5872.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
From a library of approximately 20,000 transposon mutants, we have identified mutants affected in chromosomal genes involved in synthesis of the siderophore anguibactin, as well as in ferric anguibactin utilization. Genetic and sequence analyses of one such transport-defective mutant revealed that the transposon insertion occurred in an open reading frame (ORF) with homology to rmlC, a dTDP-rhamnose biosynthetic gene. This ORF resides within a cluster of four ORFs, all of which are predicted to function in the biosynthesis of this O side chain precursor. The same phenotype was seen in a mutant obtained by allelic exchange in rmlD, another ORF in this dTDP-rhamnose biosynthetic cluster. This mutation could be complemented with the wild-type rmlD gene, restoring both production of the O1 antigen side chain and ferric anguibactin transport. Presence of the O1 side chain was crucial for the resistance of Vibrio anguillarum to the bactericidal action of nonimmune serum from the fish host. Surprisingly, further analysis demonstrated that these mutations were pleiotropic, leading to a dramatic decrease in the levels of FatA, the outer membrane protein receptor for ferric anguibactin transport, and a concomitant reduction in iron transport. Thus, our results in this work demonstrate that the lipopolysaccharide O1 side chain is required for the operation of two critical virulence factors in V. anguillarum: serum resistance and anguibactin-mediated iron transport. These factors allow V. anguillarum to survive in serum and multiply in the iron-limiting milieu of the host vertebrate.
Collapse
Affiliation(s)
- Timothy J Welch
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University; 3181 Sam Jackson Park Road, Portland, OR 97239, USA
| | | |
Collapse
|
41
|
Abstract
Proteus mirabilis, a Gram-negative urinary tract pathogen, has two highly homologous, tandemly arranged flagellin-encoding genes, flaA and flaB. flaA is transcribed from a σ
28 promoter, while flaB is a silent allele. Previous studies have demonstrated the presence of a family of hybrid flagellin genes, referred to as flaAB. These genes are composed of the 5′ end of flaA and the 3′ end of flaB, and are produced through excision of the intervening DNA between the two genes. Although the existence of flaAB DNA has been documented, it was not known if transcription of flaAB occurs in wild-type P. mirabilis. In this study, proof of flaAB transcription was obtained from a combination of RNA dot-blots and RT-PCR assays using specific primers and probes for flaAB and flaA. The RNA data were further supported by the demonstration of phenotypic switching of the locus using a FlaAB-detector strain. The results show that flaAB mRNA is transcribed and is 1/64 as abundant as flaA in the population of wild-type cells, suggesting that flaAB constitutes 1·0–1·5 % of the total flagellin message. Nucleotide sequence analysis of flaAB products produced by RT-PCR from the wild-type confirms previous reports of a variable fusion site between flaA and flaB resulting in a hybrid flagellin transcript. These data support the hypothesis that the production of FlaAB is integral to the physiology of P. mirabilis.
Collapse
Affiliation(s)
- Jim Manos
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 East Pratt Street, Baltimore, MD 21202, USA
| | - Robert Belas
- Center of Marine Biotechnology, University of Maryland Biotechnology Institute, 701 East Pratt Street, Baltimore, MD 21202, USA
| |
Collapse
|
42
|
Hienonen E, Rantakari A, Romantschuk M, Taira S. The bacterial type III secretion system-associated pilin HrpA has an unusually long mRNA half-life. FEBS Lett 2004; 571:217-20. [PMID: 15280045 DOI: 10.1016/j.febslet.2004.06.072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2004] [Revised: 06/22/2004] [Accepted: 06/29/2004] [Indexed: 01/19/2023]
Abstract
Secondary structures affect mRNA stability and may play a role in protein secretion. We have studied the mRNA of hrpA, which codes for the major structural unit of the type III secretion system-associated pilus of Pseudomonas syringae pv. tomato, Erwinia carotovora and Pseudomonas syringae pv. phaseolicola. We show that hrpA mRNA has an unusually long half-life, approximately 33-47 min. We mapped regions in the transcript that affected hrpA mRNA accumulation. Apparently, sequences at both 5' and 3' ends affect accumulation. Altering the hypothetical, stable GC rich loop structure in the 3' end of the transcript decreased transcript levels.
Collapse
Affiliation(s)
- Elina Hienonen
- Division of General Microbiology, Department of Biological and Environmental Sciences, University of Helsinki, Viikki Biocenter, P.O. Box 56, FIN-00014 Helsinki, Finland
| | | | | | | |
Collapse
|
43
|
Afonyushkin T, Moll I, Bläsi U, Kaberdin VR. Temperature-dependent stability and translation of Escherichia coli ompA mRNA. Biochem Biophys Res Commun 2004; 311:604-9. [PMID: 14623313 DOI: 10.1016/j.bbrc.2003.10.040] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
RNase E is known to affect the turnover of ompA mRNA in a growth rate-dependent manner. Here, we show that this enzyme also plays a role in the temperature-dependent stability of the transcript, thereby maintaining comparable levels of OmpA at 28 and 37 degrees C. An increase in the efficiency of RNase E cleavages at 37 degrees C within the 5(') UTR of the transcript in vitro was found to correlate with a decreased half-life and steady-state level at elevated temperature in vivo. However, measurements of de novo OmpA synthesis and in vitro toeprinting experiments suggest that translation of ompA mRNA is more efficient at 37 degrees C when compared to 28 degrees C. Thus, the enhanced translation apparently counteracts the decreased half-life at elevated temperature. Moreover, we propose that the temperature-dependent inverse correlation between ompA mRNA stability and translation can result from structural changes induced in the 5(') UTR of the transcript.
Collapse
Affiliation(s)
- Taras Afonyushkin
- Department of Microbiology and Genetics, University of Vienna, Dr Bohrgasse 9/4, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
44
|
Fuller CL, Flynn JL, Reinhart TA. In situ study of abundant expression of proinflammatory chemokines and cytokines in pulmonary granulomas that develop in cynomolgus macaques experimentally infected with Mycobacterium tuberculosis. Infect Immun 2003; 71:7023-34. [PMID: 14638792 PMCID: PMC308896 DOI: 10.1128/iai.71.12.7023-7034.2003] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2003] [Revised: 06/17/2003] [Accepted: 08/20/2003] [Indexed: 01/24/2023] Open
Abstract
Tuberculosis remains a major public health problem worldwide. Chemokines and cytokines organize and direct infiltrating cells to sites of infection, and these molecules likely play crucial roles in granuloma formation and maintenance. To address this issue, we used in situ hybridization (ISH) to measure chemokine and cytokine mRNA expression levels and patterns directly in lung tissues from cynomolgus macaques (Macaca fascicularis) experimentally infected with a low dose of virulent Mycobacterium tuberculosis. We examined more than 300 granulomas and observed abundant expression of gamma interferon (IFN-gamma)-inducible chemokine mRNAs (CXCL9/monokine induced by IFN-gamma, CXCL10/IFN-gamma-inducible protein, and CXCL11/IFN-gamma-inducible T-cell alpha-chemoattractant) within solid and caseous granulomas, and there was only minimal expression in nongranulomatous regions of tissue. The mRNA expression patterns of IFN-gamma and tumor necrosis factor alpha were examined in parallel, and the results revealed that cytokine mRNA(+) cells were abundant and generally localized to the granulomas. Mycobacterial 16S rRNA expression was also measured by ISH, and the results revealed that there was localization predominantly to the granulomas and that the highest signal intensity was in caseous granulomas. We observed several granulomatous lesions with exceptionally high levels of RNA for mycobacterial 16S rRNA, IFN-gamma, and IFN-gamma-inducible chemokines, suggesting that the local presence of mycobacteria is partially responsible for the upregulation of IFN-gamma-inducible chemokines and recruitment of CXCR3(+) cells, which were also abundant in granulomatous lesions. These results suggest that expression of CXCR3 ligands and the subsequent recruitment of CXCR3(+) cells are involved in granuloma formation and maintenance.
Collapse
MESH Headings
- Animals
- Cytokines/biosynthesis
- Cytokines/genetics
- DNA, Ribosomal/analysis
- Granuloma, Respiratory Tract/immunology
- Granuloma, Respiratory Tract/microbiology
- Humans
- In Situ Hybridization
- Inflammation
- Interferon-gamma/biosynthesis
- Lung/immunology
- Lung/microbiology
- Lung/pathology
- Macaca fascicularis
- Mycobacterium tuberculosis/genetics
- Mycobacterium tuberculosis/immunology
- Mycobacterium tuberculosis/pathogenicity
- RNA, Messenger/biosynthesis
- RNA, Ribosomal, 16S/genetics
- Receptors, CXCR3
- Receptors, Chemokine/metabolism
- Sequence Analysis, DNA
- Tuberculosis, Pulmonary/immunology
- Tuberculosis, Pulmonary/microbiology
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- Craig L Fuller
- Department of Infectious Diseases and Microbiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, USA
| | | | | |
Collapse
|
45
|
Suzuki Y, Nakamoto H. Light plays a key role in the modulation of heat shock response in the cyanobacterium Synechocystis sp PCC 6803. Biochem Biophys Res Commun 2003; 306:872-9. [PMID: 12821123 DOI: 10.1016/s0006-291x(03)01085-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The heat shock response is generally characterized by an immediate, intense, and transient activation of gene expression, resulting in the elevated synthesis of heat shock proteins. We found that light modulates these characteristics of the heat shock response in cyanobacteria. Light accelerated the heat induction of htpG, groESL1, groEL2, and hspA, in Synechocystis sp. PCC 6803. In the dark, heat shock response of all the heat shock genes except hspA was not as intense as in the light and no transient peak was detected within 3h after heat shock over the time course of the hspA and groESL1 mRNA accumulation. There was an apparent relationship between the enhancement of the heat shock gene transcription in the light and the level of reduced plastoquinone in the photosynthetic electron transport system. Light affected the transcription, but not the stability of the mRNA of heat shock genes, although the stability was quite different, depending on the heat shock gene. Light also enhanced both the accumulation of GroEL under heat stress and the acquired thermo-tolerance.
Collapse
|
46
|
Porwollik S, Frye J, Florea LD, Blackmer F, McClelland M. A non-redundant microarray of genes for two related bacteria. Nucleic Acids Res 2003; 31:1869-76. [PMID: 12655003 PMCID: PMC152813 DOI: 10.1093/nar/gkg298] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A microarray with sequences from the annotated open reading frames (ORFs) in Salmonella enterica subspecies 1, serovar Typhimurium was supplemented with annotated chromosomal ORFs from serovar Typhi that are divergent from Typhimurium (>10% DNA sequence divergence). This non- redundant array was used to (i) measure changes in gene copy number in DNA from actively growing versus stationary Typhi and (ii) to reveal the transcriptional response of Typhi to peroxide, a stress similar to that experienced when they are phagocytosed by macrophages. In S.enterica subspecies 1, pairs of genomes differ in the presence or absence of approximately 10% of their genes. An array twice the size of that needed to cover all ORFs for one genome could carry close homologs of all the ORFs for 10 genomes. Non-redundant DNA arrays could be constructed for any group of closely related organisms that differ by the presence and absence of a few genes.
Collapse
Affiliation(s)
- Steffen Porwollik
- Sidney Kimmel Cancer Center, 10835 Altman Row, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
47
|
Joyce SA, Clarke DJ. A hexA homologue from Photorhabdus regulates pathogenicity, symbiosis and phenotypic variation. Mol Microbiol 2003; 47:1445-57. [PMID: 12603747 DOI: 10.1046/j.1365-2958.2003.03389.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Photorhabdus is a genus of entomopathogenic Gram-negative bacteria that belong to the family Enterobactericeae. Remarkably, at the same time as being pathogenic to insect larvae, Photorhabdus also have a mutualistic relationship with entomophagous nematodes of the family Heterorhabditiae. Photorhabdus can be isolated in two phenotypically distinct forms, termed the primary and secondary variant. Both variants grow equally well and are equally virulent when injected into insect larvae. However, only the primary variant can colonize the intestinal tract of the IJ stage of the nematode and support nematode growth and development. The primary variant expresses several phenotypes that are absent from the secondary variant, including the production of extracellular enzymes, pigments, antibiotics and light. In this study, we use Photorhabdus temperata strain K122 to show that these primary-specific products are symbiosis factors, i.e. factors that are required for nematode growth and development. We also show that, in P. temperata K122, the production of these symbiosis factors is repressed in the secondary variant by the protein encoded by a gene with homology to hexA from Erwinia. Moreover, the derepression of the symbiosis factors in the secondary variant results in a significant attenuation of virulence to larvae of the greater wax moth, Galleria mellonella. This suggests that, during a normal infection, pathogenicity and symbiosis must be temporally separated and that HexA is involved in the regulation of this pathogen-symbiont transition.
Collapse
Affiliation(s)
- Susan A Joyce
- Molecular Microbiology Laboratory, Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK
| | | |
Collapse
|
48
|
Balsalobre C, Morschhäuser J, Jass J, Hacker J, Uhlin BE. Transcriptional analysis of the sfa determinant revealing mmRNA processing events in the biogenesis of S fimbriae in pathogenic Escherichia coli. J Bacteriol 2003; 185:620-9. [PMID: 12511509 PMCID: PMC145322 DOI: 10.1128/jb.185.2.620-629.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Among the virulence factors present in pathogenic extraintestinal Escherichia coli strains, expression of fimbrial adhesins is necessary for attachment to the host tissues and subsequent colonization. Occurrence of the sfa determinant coding for the S fimbriae is widespread among the uropathogens and meningitis isolates. The sfa operon consists of nine genes. In the biogenesis of S fimbriae, the proteins encoded by the sfa genes are presumably required in a specific stoichiometry. In the present work we studied how differential expression of the sfa operon genes occurs. Our findings indicate that a number of endoribonucleolytic cleavages occur in the mRNA from the sfa operon, and we detected the presence of different distinct transcriptional products, including sfaBA, sfaA, sfaADE, and sfaGSH. The sfaGSH transcript represents the three distal genes of the sfa operon, which code for the minor subunits of the S fimbriae. Analysis of the proteins in S fimbriae suggested that expression of the sfaGSH transcript provides equimolar amounts of the minor subunits. Furthermore, we showed that in the generation of the major sfaA transcript, the processing included RNase E endoribonuceolytic cleavage of the precursor sfaBA transcript. We suggest that posttranscriptional mRNA processing events result in differential gene expression important to achieve the stoichiometry necessary for fimbrial adhesin biogenesis.
Collapse
|
49
|
Klein F, Evguenieva-Hackenberg E. RNase E is involved in 5'-end 23S rRNA processing in alpha-Proteobacteria. Biochem Biophys Res Commun 2002; 299:780-6. [PMID: 12470646 DOI: 10.1016/s0006-291x(02)02738-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In Rhodobacter capsulatus and Rhizobium leguminosarum, an internal transcribed spacer consisting of helices 9 and 10 is removed during 23S rRNA processing, which leads to the occurrence of a 5.8S-like rRNA. The particular rRNA maturation steps are not known, with exception of the initial RNase III cleavage in helix 9. We found that GC-rich stem-loop structures of helix 9, which are released by RNase III, are immediately degraded. The degradation of helix 10 is slower and its kinetics differs in both species. Nevertheless, the helix 10 processing mechanism is conserved and includes cleavages by RNase E.
Collapse
Affiliation(s)
- Franziska Klein
- Institut für Mikrobiologie und Molekularbiologie der Justus-Liebig-Universität Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | |
Collapse
|
50
|
Chang SJ, Hsieh SY, Yuan HS, Chak KF. Characterization of the specific cleavage of ceiE7-mRNA of the bactericidal ColE7 operon. Biochem Biophys Res Commun 2002; 299:613-20. [PMID: 12459183 DOI: 10.1016/s0006-291x(02)02704-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Posttranscriptional control of the bactericidal ColE7 operon has been implicated by a feedback endonucleolytic cleavage of its own mRNA. The cleavage site has been located at the coding region of ceiE7, the second cistron of the ColE7 cea-cei-cel polycistronic transcript. Interestingly, Im7 protein, the translation product of ceiE7, is required for the specific cleavage. It was found that both sequence (GAUCUGAUU) flanking the cleavage site and the putative T1 stem-loop structure distal to the coding region of ceiE7 gene play a critical role for the specific cleavage of ceiE7-mRNA. Furthermore, we have verified that a di-nucleotide GG sequence located at the topmost position of the loop region of the putative stem-loop structure is essential for the specific cleavage of ceiE7-mRNA. Thus, our data reveal the existence of a novel mRNA degradative machinery for the regulation of the expression of ColE7 operon.
Collapse
Affiliation(s)
- Ssu-Jean Chang
- Institute of Biochemistry, National Yang Ming University, Shih-Pai, Taipei 11221, Taiwan, ROC
| | | | | | | |
Collapse
|