1
|
Palacios-Pérez M, José MV. A Proposal for the RNAome at the Dawn of the Last Universal Common Ancestor. Genes (Basel) 2024; 15:1195. [PMID: 39336786 PMCID: PMC11431127 DOI: 10.3390/genes15091195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
From the most ancient RNAs, which followed an RNY pattern and folded into small hairpins, modern RNA molecules evolved by two different pathways, dubbed Extended Genetic Code 1 and 2, finally conforming to the current standard genetic code. Herein, we describe the evolutionary path of the RNAome based on these evolutionary routes. In general, all the RNA molecules analysed contain portions encoded by both genetic codes, but crucial features seem to be better recovered by Extended 2 triplets. In particular, the whole Peptidyl Transferase Centre, anti-Shine-Dalgarno motif, and a characteristic quadruplet of the RNA moiety of RNAse-P are clearly unveiled. Differences between bacteria and archaea are also detected; in most cases, the biological sequences are more stable than their controls. We then describe an evolutionary trajectory of the RNAome formation, based on two complementary evolutionary routes: one leading to the formation of essentials, while the other complemented the molecules, with the cooperative assembly of their constituents giving rise to modern RNAs.
Collapse
Affiliation(s)
- Miryam Palacios-Pérez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Network of Researchers on the Chemical Emergence of Life (NoRCEL), Leeds LS7 3RB, UK
| | - Marco V. José
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
2
|
Noller HF. The parable of the caveman and the Ferrari: protein synthesis and the RNA world. Philos Trans R Soc Lond B Biol Sci 2017; 372:rstb.2016.0187. [PMID: 28138073 DOI: 10.1098/rstb.2016.0187] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2016] [Indexed: 11/12/2022] Open
Abstract
The basic steps of protein synthesis are carried out by the ribosome, a very large and complex ribonucleoprotein particle. In keeping with its proposed emergence from an RNA world, all three of its core mechanisms-aminoacyl-tRNA selection, catalysis of peptide bond formation and coupled translocation of mRNA and tRNA-are embodied in the properties of ribosomal RNA, while its proteins play a supportive role.This article is part of the themed issue 'Perspectives on the ribosome'.
Collapse
Affiliation(s)
- Harry F Noller
- Center for Molecular Biology of RNA, University of California at Santa Cruz, Santa Cruz, CA 95064, USA .,Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| |
Collapse
|
3
|
Mechanistic Insights Into Catalytic RNA-Protein Complexes Involved in Translation of the Genetic Code. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2017. [PMID: 28683922 DOI: 10.1016/bs.apcsb.2017.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
The contemporary world is an "RNA-protein world" rather than a "protein world" and tracing its evolutionary origins is of great interest and importance. The different RNAs that function in close collaboration with proteins are involved in several key physiological processes, including catalysis. Ribosome-the complex megadalton cellular machinery that translates genetic information encoded in nucleotide sequence to amino acid sequence-epitomizes such an association between RNA and protein. RNAs that can catalyze biochemical reactions are known as ribozymes. They usually employ general acid-base catalytic mechanism, often involving the 2'-OH of RNA that activates and/or stabilizes a nucleophile during the reaction pathway. The protein component of such RNA-protein complexes (RNPCs) mostly serves as a scaffold which provides an environment conducive for the RNA to function, or as a mediator for other interacting partners. In this review, we describe those RNPCs that are involved at different stages of protein biosynthesis and in which RNA performs the catalytic function; the focus of the account is on highlighting mechanistic aspects of these complexes. We also provide a perspective on such associations in the context of proofreading during translation of the genetic code. The latter aspect is not much appreciated and recent works suggest that this is an avenue worth exploring, since an understanding of the subject can provide useful insights into how RNAs collaborate with proteins to ensure fidelity during these essential cellular processes. It may also aid in comprehending evolutionary aspects of such associations.
Collapse
|
4
|
Hong W, Zeng J, Xie J. Antibiotic drugs targeting bacterial RNAs. Acta Pharm Sin B 2014; 4:258-65. [PMID: 26579393 PMCID: PMC4629089 DOI: 10.1016/j.apsb.2014.06.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/04/2014] [Accepted: 06/20/2014] [Indexed: 10/26/2022] Open
Abstract
RNAs have diverse structures that include bulges and internal loops able to form tertiary contacts or serve as ligand binding sites. The recent increase in structural and functional information related to RNAs has put them in the limelight as a drug target for small molecule therapy. In addition, the recognition of the marked difference between prokaryotic and eukaryotic rRNA has led to the development of antibiotics that specifically target bacterial rRNA, reduce protein translation and thereby inhibit bacterial growth. To facilitate the development of new antibiotics targeting RNA, we here review the literature concerning such antibiotics, mRNA, riboswitch and tRNA and the key methodologies used for their screening.
Collapse
Affiliation(s)
| | | | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Ministry of Education Eco-Environment of the Three Gorges Reservoir Region, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Korobeinikova AV, Garber MB, Gongadze GM. Ribosomal proteins: structure, function, and evolution. BIOCHEMISTRY (MOSCOW) 2012; 77:562-74. [PMID: 22817455 DOI: 10.1134/s0006297912060028] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The question concerning reasons for the variety of ribosomal proteins that arose for more than 40 years ago is still open. Ribosomes of modern organisms contain 50-80 individual proteins. Some are characteristic for all domains of life (universal ribosomal proteins), whereas others are specific for bacteria, archaea, or eucaryotes. Extensive information about ribosomal proteins has been obtained since that time. However, the role of the majority of ribosomal proteins in the formation and functioning of the ribosome is still not so clear. Based on recent data of experiments and bioinformatics, this review presents a comprehensive evaluation of structural conservatism of ribosomal proteins from evolutionarily distant organisms. Considering the current knowledge about features of the structural organization of the universal proteins and their intermolecular contacts, a possible role of individual proteins and their structural elements in the formation and functioning of ribosomes is discussed. The structural and functional conservatism of the majority of proteins of this group suggests that they should be present in the ribosome already in the early stages of its evolution.
Collapse
Affiliation(s)
- A V Korobeinikova
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | | | | |
Collapse
|
6
|
Abstract
Because of the molecular complexity of the ribosome and protein synthesis, it is a challenge to imagine how translation could have evolved from a primitive RNA World. Two specific suggestions are made here to help to address this, involving separate evolution of the peptidyl transferase and decoding functions. First, it is proposed that translation originally arose not to synthesize functional proteins, but to provide simple (perhaps random) peptides that bound to RNA, increasing its available structure space, and therefore its functional capabilities. Second, it is proposed that the decoding site of the ribosome evolved from a mechanism for duplication of RNA. This process involved homodimeric "duplicator RNAs," resembling the anticodon arms of tRNAs, which directed ligation of trinucleotides in response to an RNA template.
Collapse
Affiliation(s)
- Harry F Noller
- Center for Molecular Biology of RNA and Department of Molecular, Cell, and Developmental Biology, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, California 95064, USA.
| |
Collapse
|
7
|
Leung EKY, Suslov N, Tuttle N, Sengupta R, Piccirilli JA. The Mechanism of Peptidyl Transfer Catalysis by the Ribosome. Annu Rev Biochem 2011; 80:527-55. [DOI: 10.1146/annurev-biochem-082108-165150] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Nikolai Suslov
- Department of Biochemistry and Molecular Biology, Chicago, Illinois 60637
| | - Nicole Tuttle
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637;
| | - Raghuvir Sengupta
- Department of Biochemistry, Stanford University, Stanford, California 94305
| | - Joseph Anthony Piccirilli
- Department of Biochemistry and Molecular Biology, Chicago, Illinois 60637
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
8
|
Revisiting the structures of several antibiotics bound to the bacterial ribosome. Proc Natl Acad Sci U S A 2010; 107:17158-63. [PMID: 20876130 DOI: 10.1073/pnas.1008685107] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The increasing prevalence of antibiotic-resistant pathogens reinforces the need for structures of antibiotic-ribosome complexes that are accurate enough to enable the rational design of novel ribosome-targeting therapeutics. Structures of many antibiotics in complex with both archaeal and eubacterial ribosomes have been determined, yet discrepancies between several of these models have raised the question of whether these differences arise from species-specific variations or from experimental problems. Our structure of chloramphenicol in complex with the 70S ribosome from Thermus thermophilus suggests a model for chloramphenicol bound to the large subunit of the bacterial ribosome that is radically different from the prevailing model. Further, our structures of the macrolide antibiotics erythromycin and azithromycin in complex with a bacterial ribosome are indistinguishable from those determined of complexes with the 50S subunit of Haloarcula marismortui, but differ significantly from the models that have been published for 50S subunit complexes of the eubacterium Deinococcus radiodurans. Our structure of the antibiotic telithromycin bound to the T. thermophilus ribosome reveals a lactone ring with a conformation similar to that observed in the H. marismortui and D. radiodurans complexes. However, the alkyl-aryl moiety is oriented differently in all three organisms, and the contacts observed with the T. thermophilus ribosome are consistent with biochemical studies performed on the Escherichia coli ribosome. Thus, our results support a mode of macrolide binding that is largely conserved across species, suggesting that the quality and interpretation of electron density, rather than species specificity, may be responsible for many of the discrepancies between the models.
Collapse
|
9
|
Grosjean H, Gaspin C, Marck C, Decatur WA, de Crécy-Lagard V. RNomics and Modomics in the halophilic archaea Haloferax volcanii: identification of RNA modification genes. BMC Genomics 2008; 9:470. [PMID: 18844986 PMCID: PMC2584109 DOI: 10.1186/1471-2164-9-470] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2008] [Accepted: 10/09/2008] [Indexed: 12/14/2022] Open
Abstract
Background Naturally occurring RNAs contain numerous enzymatically altered nucleosides. Differences in RNA populations (RNomics) and pattern of RNA modifications (Modomics) depends on the organism analyzed and are two of the criteria that distinguish the three kingdoms of life. If the genomic sequences of the RNA molecules can be derived from whole genome sequence information, the modification profile cannot and requires or direct sequencing of the RNAs or predictive methods base on the presence or absence of the modifications genes. Results By employing a comparative genomics approach, we predicted almost all of the genes coding for the t+rRNA modification enzymes in the mesophilic moderate halophile Haloferax volcanii. These encode both guide RNAs and enzymes. Some are orthologous to previously identified genes in Archaea, Bacteria or in Saccharomyces cerevisiae, but several are original predictions. Conclusion The number of modifications in t+rRNAs in the halophilic archaeon is surprisingly low when compared with other Archaea or Bacteria, particularly the hyperthermophilic organisms. This may result from the specific lifestyle of halophiles that require high intracellular salt concentration for survival. This salt content could allow RNA to maintain its functional structural integrity with fewer modifications. We predict that the few modifications present must be particularly important for decoding, accuracy of translation or are modifications that cannot be functionally replaced by the electrostatic interactions provided by the surrounding salt-ions. This analysis also guides future experimental validation work aiming to complete the understanding of the function of RNA modifications in Archaeal translation.
Collapse
Affiliation(s)
- Henri Grosjean
- Department of Microbiology, University of Florida, Gainsville, FL 32611, Florida, USA.
| | | | | | | | | |
Collapse
|
10
|
Anderson RM, Kwon M, Strobel SA. Toward ribosomal RNA catalytic activity in the absence of protein. J Mol Evol 2007; 64:472-83. [PMID: 17417708 DOI: 10.1007/s00239-006-0211-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Accepted: 10/16/2006] [Indexed: 11/28/2022]
Abstract
The ribosome is the ribonucleoprotein particle responsible for translation of genetic information into proteins. The RNA component of the ribosome has been implicated as the catalytic entity for peptide bond formation based on protease resistance and structural data indicating an all-RNA active site. Nevertheless, peptidyl transfer by ribosomal RNA (rRNA) alone has not been demonstrated. In an attempt to show such activity we generated a minimal construct that comprises much of the 23S rRNA peptidyl transferase center, including the central loop and the A- and P-loops. This minimal rRNA domain was inactive in peptide bond formation under all conditions tested. The RNA was subsequently subjected to six rounds of in vitro selection designed to enrich for this activity. The result was a mutated rRNA sequence that could catalyze the covalent linkage of an A-site and P-site substrate; however, the product did not contain a peptide bond. The current study is an example of an in vitro derived alternate function of rRNA mutants and illustrates the evolutionary possibility that the protoribosome may have used amino acids as substrates before it gained the ability to join them into peptides. Though peptidyl transferase activity in the absence of protein remains elusive, the ease with which alternate catalytic activity was selected from rRNA with a small number of mutations suggests that rRNA may have inherent activity. This study represents a step on the path toward isolating that native activity.
Collapse
Affiliation(s)
- Rachel M Anderson
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | | |
Collapse
|
11
|
Abstract
All pairwise interactions occurring between bases which could be detected in three-dimensional structures of crystallized RNA molecules are annotated on new planar diagrams. The diagrams attempt to map the underlying complex networks of base–base interactions and, especially, they aim at conveying key relationships between helical domains: co-axial stacking, bending and all Watson–Crick as well as non-Watson–Crick base pairs. Although such wiring diagrams cannot replace full stereographic images for correct spatial understanding and representation, they reveal structural similarities as well as the conserved patterns and distances between motifs which are present within the interaction networks of folded RNAs of similar or unrelated functions. Finally, the diagrams could help devising methods for meaningfully transforming RNA structures into graphs amenable to network analysis.
Collapse
Affiliation(s)
| | - E. Westhof
- To whom correspondence should be addressed. Tel/Fax: +33 388 41 70 46; Email :
| |
Collapse
|
12
|
Maguire BA, Beniaminov AD, Ramu H, Mankin AS, Zimmermann RA. A protein component at the heart of an RNA machine: the importance of protein l27 for the function of the bacterial ribosome. Mol Cell 2005; 20:427-35. [PMID: 16285924 DOI: 10.1016/j.molcel.2005.09.009] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 08/22/2005] [Accepted: 09/13/2005] [Indexed: 11/29/2022]
Abstract
Deletion of the gene for protein L27 from the E. coli chromosome results in severe defects in cell growth. This deficiency is corrected by the expression of wild-type (wt) protein L27 from a plasmid. Examination of strains expressing L27 variants truncated at the N terminus reveals that the absence of as few as three amino acids leads to a decrease in growth rate, an impairment in peptidyl transferase activity, and a sharp decline in the labeling of L27 from the 3' end of a photoreactive tRNA at the ribosomal P site. These findings suggest that the flexible N-terminal sequence of L27, which protrudes onto the interface of the bacterial 50S subunit, can reach the peptidyl transferase active site and contribute to its function, possibly by helping to correctly position tRNA substrates at the catalytic site.
Collapse
Affiliation(s)
- Bruce A Maguire
- Department of Biochemistry and Molecular Biology, University of Massachusetts, 710 North Pleasant Street, Amherst, Massachusetts 01003, USA
| | | | | | | | | |
Collapse
|
13
|
|
14
|
Lapeyre B. Conserved ribosomal RNA modification and their putative roles in ribosome biogenesis and translation. ACTA ACUST UNITED AC 2004. [DOI: 10.1007/b105433] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
|
15
|
Weinger JS, Kitchen D, Scaringe SA, Strobel SA, Muth GW. Solid phase synthesis and binding affinity of peptidyl transferase transition state mimics containing 2'-OH at P-site position A76. Nucleic Acids Res 2004; 32:1502-11. [PMID: 14999092 PMCID: PMC390298 DOI: 10.1093/nar/gkh311] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
All living cells are dependent on ribosomes to catalyze the peptidyl transfer reaction, by which amino acids are assembled into proteins. The previously studied peptidyl transferase transition state analog CC-dA-phosphate-puromycin (CCdApPmn) has important differences from the transition state, yet current models of the ribosomal active site have been heavily influenced by the properties of this molecule. One significant difference is the substitution of deoxyadenosine for riboadenosine at A76, which mimics the 3' end of a P-site tRNA. We have developed a solid phase synthetic approach to produce inhibitors that more closely match the transition state, including the critical P-site 2'-OH. Inclusion of the 2'-OH or an even bulkier OCH3 group causes significant changes in binding affinity. We also investigated the effects of changing the A-site amino acid side chain from phenylalanine to alanine. These results indicate that the absence of the 2'-OH is likely to play a significant role in the binding and conformation of CCdApPmn in the ribosomal active site by eliminating steric clash between the 2'-OH and the tetrahedral phosphate oxygen. The conformation of the actual transition state must allow for the presence of the 2'-OH, and transition state mimics that include this critical hydroxyl group must bind in a different conformation from that seen in prior analog structures. These new inhibitors will provide valuable insights into the geometry and mechanism of the ribosomal active site.
Collapse
Affiliation(s)
- Joshua S Weinger
- Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 208114, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
16
|
|
17
|
Kirillov SV, Wower J, Hixson SS, Zimmermann RA. Transit of tRNA through the Escherichia coli ribosome: cross-linking of the 3' end of tRNA to ribosomal proteins at the P and E sites. FEBS Lett 2002; 514:60-6. [PMID: 11904182 DOI: 10.1016/s0014-5793(02)02302-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoreactive derivatives of yeast tRNA(Phe) containing 2-azidoadenosine at their 3' termini were used to trace the movement of tRNA across the 50S subunit during its transit from the P site to the E site of the 70S ribosome. When bound to the P site of poly(U)-programmed ribosomes, deacylated tRNA(Phe), Phe-tRNA(Phe) and N-acetyl-Phe-tRNA(Phe) probes labeled protein L27 and two main sites within domain V of the 23S RNA. In contrast, deacylated tRNA(Phe) bound to the E site in the presence of poly(U) labeled protein L33 and a single site within domain V of the 23S rRNA. In the absence of poly(U), the deacylated tRNA(Phe) probe also labeled protein L1. Cross-linking experiments with vacant 70S ribosomes revealed that deacylated tRNA enters the P site through the E site, progressively labeling proteins L1, L33 and, finally, L27. In the course of this process, tRNA passes through the intermediate P/E binding state. These findings suggest that the transit of tRNA from the P site to the E site involves the same interactions, but in reverse order. Moreover, our results indicate that the final release of deacylated tRNA from the ribosome is mediated by the F site, for which protein L1 serves as a marker. The results also show that the precise placement of the acceptor end of tRNA on the 50S subunit at the P and E sites is influenced in subtle ways both by the presence of aminoacyl or peptidyl moieties and, more surprisingly, by the environment of the anticodon on the 30S subunit.
Collapse
Affiliation(s)
- Stanislav V Kirillov
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
18
|
Hartmann RK, Vogel DW, Kröger B, Ulbrich N, Erdmann VA. Studies on rDNA from the extreme thermophilic eubacteriumThermus thermophilusHB8. FEBS Lett 2001. [DOI: 10.1016/0014-5793(87)81049-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Pestova TV, Hellen CU. Preparation and activity of synthetic unmodified mammalian tRNAi(Met) in initiation of translation in vitro. RNA (NEW YORK, N.Y.) 2001; 7:1496-505. [PMID: 11680854 PMCID: PMC1370193 DOI: 10.1017/s135583820101038x] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Translation of eukaryotic mRNA is initiated by a unique amino-acyl tRNA, Met-tRNAi(Met), which passes through a complex series of highly specific interactions with components of the translation apparatus during the initiation process. To facilitate in vitro biochemical and molecular biological analysis of these interactions in fully reconstituted translation initiation reactions, we generated mammalian tRNAi(Met) by in vitro transcription that lacked all eight base modifications present in native tRNAi(Met). Here we report a method for in vitro transcription and aminoacylation of synthetic unmodified initiator tRNAi(Met) that is active in every stage of the initiation process, including aminoacylation by methionyl-tRNA synthetase, binding of Met-tRNAi(Met) to eIF2-GTP to form a ternary complex, binding of the ternary complexes to 40S ribosomal subunits to form 43S complexes, binding of the 43S complex to a native capped eukaryotic mRNA, and scanning on its 5' untranslated region to the correct initiation codon to form a 48S complex, and finally joining with a 60S subunit to assemble an 80S ribosome that is competent to catalyze formation of the first peptide bond using the [35S]methionine residue attached to the acceptor terminus of the tRNAi(Met) transcript.
Collapse
MESH Headings
- Acylation
- Animals
- Base Sequence
- Chromatography, Ion Exchange
- DNA
- Eukaryotic Initiation Factor-2/metabolism
- Guanosine Triphosphate/metabolism
- In Vitro Techniques
- Molecular Sequence Data
- Peptidyl Transferases/metabolism
- Promoter Regions, Genetic
- Protein Biosynthesis/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Transfer, Met/genetics
- RNA, Transfer, Met/isolation & purification
- RNA, Transfer, Met/metabolism
- Transcription, Genetic
Collapse
Affiliation(s)
- T V Pestova
- Department of Microbiology and Immunology, State University of New York Health Sciences Center at Brooklyn, 11203-2098, USA.
| | | |
Collapse
|
20
|
Mat-Arip Y, Garver K, Chen C, Sheng S, Shao Z, Guo P. Three-dimensional interaction of Phi29 pRNA dimer probed by chemical modification interference, cryo-AFM, and cross-linking. J Biol Chem 2001; 276:32575-84. [PMID: 11371551 DOI: 10.1074/jbc.m100045200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Six pRNAs (p for packaging) of bacterial virus phi29 form a hexamer complex that is an essential component of the viral DNA translocating motor. Dimers, the building block of pRNA hexamer, assemble in the order of dimer --> tetramer --> hexamer. The two-dimensional structure of the pRNA monomer has been investigated extensively; however, the three-dimensional structure concerning the distance constraints of the three stems and loops are unknown. In this report, we probed the three-dimensional structure of pRNA monomer and dimer by photo affinity cross-linking with azidophenacyl. Bases 75-81 of the left stem were found to be oriented toward the head loop and proximate to bases 26-31 in a parallel orientation. Chemical modification interference indicates the involvement of bases 45-71 and 82-91 in dimer formation. Dimer was formed via hand-in-hand contact, a novel RNA dimerization that in some aspects is similar to the kissing loops of the human immunodeficiency virus. The covalently linked dimers were found to be biologically active. Both the native dimer and the covalently linked dimer were found by cryo-atomic force microscopy to be similar in global conformation and size.
Collapse
Affiliation(s)
- Y Mat-Arip
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | |
Collapse
|
21
|
Yusupov MM, Yusupova GZ, Baucom A, Lieberman K, Earnest TN, Cate JH, Noller HF. Crystal structure of the ribosome at 5.5 A resolution. Science 2001; 292:883-96. [PMID: 11283358 DOI: 10.1126/science.1060089] [Citation(s) in RCA: 1448] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We describe the crystal structure of the complete Thermus thermophilus 70S ribosome containing bound messenger RNA and transfer RNAs (tRNAs) at 5.5 angstrom resolution. All of the 16S, 23S, and 5S ribosomal RNA (rRNA) chains, the A-, P-, and E-site tRNAs, and most of the ribosomal proteins can be fitted to the electron density map. The core of the interface between the 30S small subunit and the 50S large subunit, where the tRNA substrates are bound, is dominated by RNA, with proteins located mainly at the periphery, consistent with ribosomal function being based on rRNA. In each of the three tRNA binding sites, the ribosome contacts all of the major elements of tRNA, providing an explanation for the conservation of tRNA structure. The tRNAs are closely juxtaposed with the intersubunit bridges, in a way that suggests coupling of the 20 to 50 angstrom movements associated with tRNA translocation with intersubunit movement.
Collapse
MESH Headings
- Anticodon
- Bacterial Proteins/chemistry
- Bacterial Proteins/metabolism
- Base Sequence
- Binding Sites
- Crystallography, X-Ray
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Protein Biosynthesis
- Protein Conformation
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Transfer/chemistry
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acid-Specific/chemistry
- RNA, Transfer, Amino Acid-Specific/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Thermus thermophilus/chemistry
- Thermus thermophilus/ultrastructure
Collapse
Affiliation(s)
- M M Yusupov
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Streptogramins represent a unique class of antibiotics remarkable for their antibacterial activity and their unique mechanism of action. These antibiotics are produced naturally as secondary metabolites by a number of Streptomyces species and have been classified into two main groups. They consist of at least two structurally unrelated compounds, group A or M (macrolactones) and group B or S (cyclic hexadepsipeptides). Both groups bind bacterial ribosomes and inhibit protein synthesis at the elongation step and they act synergistically in vitro against many microorganisms. Streptogramins A and B act synergistically in vivo; the mixture of the two compounds is more powerful than the individual components and their combined action is irreversible. The pharmacokinetic parameters of group A and B streptogramins in blood are similar. The major gap, limiting the therapeutic use of the natural compounds, was represented by the lack dissolution in water. The synthesis of water-soluble derivatives of pristinamycin I(A) and II(B) has allowed the development of injectable, first represented by quinupristin/dalfopristin (Synercid) and oral formulations, represented by RPR-106972, streptogramins with fixed compositions. Streptogramins have demonstrated activity against Gram-positive microorganisms in vitro and in vivo, including those with multi-drug resistance. Moreover, the absence of cross-resistance to macrolides in many of these microorganisms and the rarity of cross-resistance between the two groups of antibiotics associated with the rapid bacterial killing are the principal features of the streptogramins, offering the possibility for treating the rising number of infections that are caused by multi-resistant Gram-positive bacteria.
Collapse
Affiliation(s)
- G Bonfiglio
- Dipartimento di Scienze Microbiologiche, Università di Catania, Via Androne 81, 95124 Catania, Italy.
| | | |
Collapse
|
23
|
Affiliation(s)
- A Barta
- Institute of Medical Biochemistry, University of Vienna, Dr. Bohrgasse 9/3, A-1030, Vienna, Austria
| | | | | |
Collapse
|
24
|
Nissen P, Hansen J, Ban N, Moore PB, Steitz TA. The structural basis of ribosome activity in peptide bond synthesis. Science 2000; 289:920-30. [PMID: 10937990 DOI: 10.1126/science.289.5481.920] [Citation(s) in RCA: 1505] [Impact Index Per Article: 60.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Using the atomic structures of the large ribosomal subunit from Haloarcula marismortui and its complexes with two substrate analogs, we establish that the ribosome is a ribozyme and address the catalytic properties of its all-RNA active site. Both substrate analogs are contacted exclusively by conserved ribosomal RNA (rRNA) residues from domain V of 23S rRNA; there are no protein side-chain atoms closer than about 18 angstroms to the peptide bond being synthesized. The mechanism of peptide bond synthesis appears to resemble the reverse of the acylation step in serine proteases, with the base of A2486 (A2451 in Escherichia coli) playing the same general base role as histidine-57 in chymotrypsin. The unusual pK(a) (where K(a) is the acid dissociation constant) required for A2486 to perform this function may derive in part from its hydrogen bonding to G2482 (G2447 in E. coli), which also interacts with a buried phosphate that could stabilize unusual tautomers of these two bases. The polypeptide exit tunnel is largely formed by RNA but has significant contributions from proteins L4, L22, and L39e, and its exit is encircled by proteins L19, L22, L23, L24, L29, and L31e.
Collapse
MESH Headings
- Archaeal Proteins/chemistry
- Archaeal Proteins/metabolism
- Base Pairing
- Base Sequence
- Binding Sites
- Catalysis
- Crystallization
- Evolution, Molecular
- Haloarcula marismortui/chemistry
- Haloarcula marismortui/metabolism
- Haloarcula marismortui/ultrastructure
- Hydrogen Bonding
- Hydrogen-Ion Concentration
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Oligonucleotides/metabolism
- Peptide Biosynthesis
- Peptides/metabolism
- Peptidyl Transferases/antagonists & inhibitors
- Peptidyl Transferases/chemistry
- Peptidyl Transferases/metabolism
- Phosphates/chemistry
- Phosphates/metabolism
- Protein Conformation
- Puromycin/metabolism
- RNA, Archaeal/chemistry
- RNA, Archaeal/metabolism
- RNA, Catalytic/chemistry
- RNA, Catalytic/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer/metabolism
- RNA, Transfer, Amino Acyl/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Ribosomes/chemistry
- Ribosomes/metabolism
Collapse
Affiliation(s)
- P Nissen
- Department of Molecular Biophysics and Biochemistry and Department of Chemistry, Yale University, and Howard Hughes Medical Institute, New Haven, CT 06520-8114, USA
| | | | | | | | | |
Collapse
|
25
|
Garver K, Guo P. Mapping the inter-RNA interaction of bacterial virus phi29 packaging RNA by site-specific photoaffinity cross-linking. J Biol Chem 2000; 275:2817-24. [PMID: 10644747 DOI: 10.1074/jbc.275.4.2817] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During replication, the lengthy genome of double-stranded DNA viruses is translocated with remarkable velocity into a limited space within the procapsid. The question of how this fascinating task is accomplished has long been a puzzle. Our recent investigation suggests that phi29 DNA packaging is accomplished by a mechanism similar to the driving of a bolt with a hex nut and that six packaging RNAs (pRNAs) form a hexagonal complex to gear the DNA-translocating machine (Chen, C., and Guo, P. (1997) J. Virol. 71, 3864-3871; Zhang, F., Lemieux, S., Wu, X., St.-Arnaud, S., McMurray, C. T., Major, F., and Anderson, D. (1998) Mol. Cell 2, 141-147; Guo, P., Zhang, C., Chen, C., Garver, K., and Trottier, M., (1998) Mol. Cell 2, 149-155). In the current study, circularly permuted pRNAs were used to position an azidophenacyl photoreactive cross-linking agent specifically at a strategic site that was predicted to be involved in pRNA-pRNA interaction. Cross-linked pRNA dimers were isolated, and the sites of cross-link were mapped by primer extension. The cross-linked pRNA dimer retained full activity in phi29 procapsid binding and genomic DNA translocation, indicating that the cross-link distance constraints identified in dimer formation reflect the native pRNA complex. Both cross-linked dimers either containing or not containing the interlocking loops for programmed hexamer formation bound procapsid equally well; however, only the one containing the interlocking loops programmed for hexamer formation was active in phi29 DNA packaging. The cross-linked pRNA dimers were also identified as the minimum binding unit necessary for procapsid binding. Primer extension of the purified cross-linked pRNA dimers revealed that base G(82) was cross-linked to bases G(39), G(40), A(41), C(49), G(62), C(63), and C(64), which contribute to the formation of the three-way junction, suggesting that these bases are proximate in the formation of pRNA tertiary structure. Interestingly, the photoaffinity agent in the left interacting loop did not cross-link directly to the right loop as expected but cross-linked to bases adjacent to the right loop. These data provide a background for future modeling of pRNA tertiary structure.
Collapse
Affiliation(s)
- K Garver
- Department of Pathobiology, Purdue University, West Lafayette, Indiana 47907, USA
| | | |
Collapse
|
26
|
Chernyaeva NS, Murgola EJ, Mankin AS. Suppression of nonsense mutations induced by expression of an RNA complementary to a conserved segment of 23S rRNA. J Bacteriol 1999; 181:5257-62. [PMID: 10464195 PMCID: PMC94030 DOI: 10.1128/jb.181.17.5257-5262.1999] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a short RNA fragment, complementary to the Escherichia coli 23S rRNA segment comprising nucleotides 735 to 766 (in domain II), which when expressed in vivo results in the suppression of UGA nonsense mutations in two reporter genes. Neither UAA nor UAG mutations, examined at the same codon positions, were suppressed by the expression of this antisense rRNA fragment. Our results suggest that a stable phylogenetically conserved hairpin at nucleotides 736 to 760 in 23S rRNA, which is situated close to the peptidyl transferase center, may participate in one or more specific interactions during peptide chain termination.
Collapse
Affiliation(s)
- N S Chernyaeva
- Center for Pharmaceutical Biotechnology, The University of Illinois, Chicago, Illinois 60607, USA
| | | | | |
Collapse
|
27
|
Ashraf SS, Guenther R, Agris PF. Orientation of the tRNA anticodon in the ribosomal P-site: quantitative footprinting with U33-modified, anticodon stem and loop domains. RNA (NEW YORK, N.Y.) 1999; 5:1191-9. [PMID: 10496220 PMCID: PMC1369842 DOI: 10.1017/s1355838299990933] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Binding of transfer RNA (tRNA) to the ribosome involves crucial tRNA-ribosomal RNA (rRNA) interactions. To better understand these interactions, U33-substituted yeast tRNA(Phe) anticodon stem and loop domains (ASLs) were used as probes of anticodon orientation on the ribosome. Orientation of the anticodon in the ribosomal P-site was assessed with a quantitative chemical footprinting method in which protection constants (Kp) quantify protection afforded to individual 16S rRNA P-site nucleosides by tRNA or synthetic ASLs. Chemical footprints of native yeast tRNA(Phe), ASL-U33, as well as ASLs containing 3-methyluridine, cytidine, or deoxyuridine at position 33 (ASL-m3U33, ASL-C33, and ASL-dU33, respectively) were compared. Yeast tRNAPhe and the ASL-U33 protected individual 16S rRNA P-site nucleosides differentially. Ribosomal binding of yeast tRNA(Phe) enhanced protection of C1400, but the ASL-U33 and U33-substituted ASLs did not. Two residues, G926 and G1338 with KpS approximately 50-60 nM, were afforded significantly greater protection by both yeast tRNA(Phe) and the ASL-U33 than other residues, such as A532, A794, C795, and A1339 (KpS approximately 100-200 nM). In contrast, protections of G926 and G1338 were greatly and differentially reduced in quantitative footprints of U33-substituted ASLs as compared with that of the ASL-U33. ASL-m3U33 and ASL-C33 protected G530, A532, A794, C795, and A1339 as well as the ASL-U33. However, protection of G926 and G1338 (KpS between 70 and 340 nM) was significantly reduced in comparison to that of the ASL-U33 (43 and 61 nM, respectively). Though protections of all P-site nucleosides by ASL-dU33 were reduced as compared to that of the ASL-U33, a proportionally greater reduction of G926 and G1338 protections was observed (KpS = 242 and 347 nM, respectively). Thus, G926 and G1338 are important to efficient P-site binding of tRNA. More importantly, when tRNA is bound in the ribosomal P-site, G926 and G1338 of 16S rRNA and the invariant U33 of tRNA are positioned close to each other.
Collapse
Affiliation(s)
- S S Ashraf
- Department of Biochemistry, North Carolina State University, Raleigh 27695-7622, USA
| | | | | |
Collapse
|
28
|
Chattopadhyay S, Pal S, Pal D, Sarkar D, Chandra S, Das Gupta C. Protein folding in Escherichia coli: role of 23S ribosomal RNA. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1429:293-8. [PMID: 9989214 DOI: 10.1016/s0167-4838(98)00179-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Post-translational control of Escherichia coli ribosome on newly synthesised polypeptide leading to its active conformation (protein folding) has been shown in the case of the enzyme beta-galactosidase. As expected, antibiotics chloramphenicol and lincomycin, which bind to 23S rRNA/50S subunit and kasugamycin and streptomycin which interact with the 30S subunit instantaneously inhibited protein synthesis when they were added to the growing cells. The increase in beta-galactosidase activity, though stopped immediately after the addition of chloramphenicol and lincomycin, went on considerably in the presence of streptomycin and kasugamycin even after the stoppage of protein synthesis.
Collapse
Affiliation(s)
- S Chattopadhyay
- Department of Biophysics, Molecular Biology and Genetics, University College of Science, Calcutta, India
| | | | | | | | | | | |
Collapse
|
29
|
Khaitovich P, Mankin AS, Green R, Lancaster L, Noller HF. Characterization of functionally active subribosomal particles from Thermus aquaticus. Proc Natl Acad Sci U S A 1999; 96:85-90. [PMID: 9874776 PMCID: PMC15097 DOI: 10.1073/pnas.96.1.85] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptidyl transferase activity of Thermus aquaticus ribosomes is resistant to the removal of a significant number of ribosomal proteins by protease digestion, SDS, and phenol extraction. To define the upper limit for the number of macromolecular components required for peptidyl transferase, particles obtained by extraction of T. aquaticus large ribosomal subunits were isolated and their RNA and protein composition was characterized. Active subribosomal particles contained both 23S and 5S rRNA associated with notable amounts of eight ribosomal proteins. N-terminal sequencing of the proteins identified them as L2, L3, L13, L15, L17, L18, L21, and L22. Ribosomal protein L4, which previously was thought to be essential for the reconstitution of particles active in peptide bond formation, was not found. These findings, together with the results of previous reconstitution experiments, reduce the number of possible essential macromolecular components of the peptidyl transferase center to 23S rRNA and ribosomal proteins L2 and L3. Complete removal of ribosomal proteins from T. aquaticus rRNA resulted in loss of tertiary folding of the particles and inactivation of peptidyl transferase. The accessibility of proteins in active subribosomal particles to proteinase hydrolysis was increased significantly after RNase treatment. These results and the observation that 50S ribosomal subunits exhibited much higher resistance to SDS extraction than 30S subunits are compatible with a proposed structural organization of the 50S subunit involving an RNA "cage" surrounding a core of a subset of ribosomal proteins.
Collapse
Affiliation(s)
- P Khaitovich
- Center for Pharmaceutical Biotechnology, m/c 870, University of Illinois, 900 South Ashland Avenue, Chicago, IL 60607, USA
| | | | | | | | | |
Collapse
|
30
|
Abstract
L15, a 15 kDa protein of the large ribosomal subunit, interacts with over ten other proteins during 50 S assembly in vitro. We have probed the interaction L15 with 23 S rRNA in 50 S ribosomal subunits by chemical footprinting, and have used localized hydroxyl radical probing, generated from Fe(II) tethered to unique sites of L15, to characterize the three-dimensional 23 S rRNA environment of L15. Footprinting of L15 was done by reconstituting purified, recombinant L15 with core particles derived from Escherichia coli 50 S subunits by treatment with 2 M LiCl. The cores migrate as compact 50 S-like particles in sucrose gradients, contain 23 S and 5 S rRNA, and lack a subset of the 50 S proteins, including L15. Using both Fe(II).EDTA and dimethyl sulfate, we have identified a strong footprint for L15 in the region spanning nucleotides 572-654 in domain II of 23 S rRNA. This footprint cannot be detected when L15 is incubated with "naked" 23 S rRNA, indicating that formation of the L15 binding site requires a partially assembled particle.Protein-tethered hydroxyl radical probing was done using mutants of L15 containing single cysteine residues at amino acid positions 68, 71 and 115. The mutant proteins were derivatized with 1-[p-(bromo-acetamido)benzyl]-EDTA. Fe(II), bound to core particles, and hydroxyl radical cleavage was initiated. Distinct but overlapping sets of cleavages were obtained in the footprinted region of domain II, and in specific regions of domains I, IV and V of 23 S rRNA. These data locate L15 in proximity to several 23 S rRNA elements that are dispersed in the secondary structure, consistent with its central role in the latter stages of 50 S subunit assembly. Furthermore, these results indicate the proximity of these rRNA regions to one another, providing constraints on the tertiary folding of 23 S rRNA.
Collapse
Affiliation(s)
- K R Lieberman
- Center for the Molecular Biology of RNA, University of California, Santa Cruz, CA, 95064, USA
| | | |
Collapse
|
31
|
Green R, Switzer C, Noller HF. Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA. Science 1998; 280:286-9. [PMID: 9535658 DOI: 10.1126/science.280.5361.286] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In the ribosome, the aminoacyl-transfer RNA (tRNA) analog 4-thio-dT-p-C-p-puromycin crosslinks photochemically with G2553 of 23S ribosomal RNA (rRNA). This covalently linked substrate reacts with a peptidyl-tRNA analog to form a peptide bond in a peptidyl transferase-catalyzed reaction. This result places the conserved 2555 loop of 23S rRNA at the peptidyl transferase A site and suggests that peptide bond formation can occur uncoupled from movement of the A-site tRNA. Crosslink formation depends on occupancy of the P site by a tRNA carrying an intact CCA acceptor end, indicating that peptidyl-tRNA, directly or indirectly, helps to create the peptidyl transferase A site.
Collapse
MESH Headings
- Anti-Bacterial Agents/pharmacology
- Binding Sites
- Catalysis
- Enzyme Inhibitors/pharmacology
- Escherichia coli
- Nucleic Acid Conformation
- Peptidyl Transferases/antagonists & inhibitors
- Peptidyl Transferases/metabolism
- Puromycin/analogs & derivatives
- Puromycin/chemical synthesis
- Puromycin/chemistry
- Puromycin/metabolism
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA, Transfer, Amino Acyl/chemistry
- RNA, Transfer, Amino Acyl/metabolism
- RNA, Transfer, Phe/chemistry
- RNA, Transfer, Phe/genetics
- RNA, Transfer, Phe/metabolism
- Ribosomes/metabolism
Collapse
Affiliation(s)
- R Green
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz, CA 95064, USA
| | | | | |
Collapse
|
32
|
Pal D, Chattopadhyay S, Chandra S, Sarkar D, Chakraborty A, Das Gupta C. Reactivation of denatured proteins by domain V of bacterial 23S rRNA. Nucleic Acids Res 1997; 25:5047-51. [PMID: 9396814 PMCID: PMC147138 DOI: 10.1093/nar/25.24.5047] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In vitro transcripts containing domain V of the 23S rRNA of Escherichia coli and Bacillus subtilis can reactivate denatured proteins almost as efficiently as the total 23S rRNA. Here we show that almost the full length of domain V is required for reactivation of denatured pig muscle lactate dehydrogenase and pig heart cytoplasmic malate dehydrogenase: the central loop of this domain alone is not enough for this purpose. The antibiotic chloramphenicol, which binds to domain V of 23S rRNA, can inhibit reactivation of these proteins completely. Activity is eliminated by EDTA at a concentration of <1 mM, even in the presence of 4 mM MgCl2, suggesting that the three-dimensional conformation of the RNA should be maintained for this activity.
Collapse
Affiliation(s)
- D Pal
- Department of Biophysics, Molecular Biology and Genetics, University of Calcutta, 92 APC Road, Calcutta 700009, India
| | | | | | | | | | | |
Collapse
|
33
|
Lee K, Varma S, SantaLucia J, Cunningham PR. In vivo determination of RNA structure-function relationships: analysis of the 790 loop in ribosomal RNA. J Mol Biol 1997; 269:732-43. [PMID: 9223637 DOI: 10.1006/jmbi.1997.1092] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The 790 loop is a conserved hairpin located between positions 786 and 796 of Escherichia coli 16 S rRNA that is required for ribosome function. Using a novel genetic approach, all positions in the loop were simultaneously mutated and functional mutant sequences were selected in vivo. This "instant evolution" experiment revealed that approximately 190 of the 262,144 possible mutant sequences were functional. Analysis of functional mutant sequences allowed discrimination between nucleotides directly involved in protein synthesis and those involved primarily in loop structure. Among the functional mutant sequences, positions 789 and 791 were invariant and extensive covariation was observed among the nucleotides at the base of the loop at positions 787, 788, 794 and 795. NMR and thermodynamic analyses of model 790 hairpins in vitro revealed weak pairing interactions between positions 787 and 795 and between positions 788 and 794 consistent with the in vivo mutational analysis. Functional analysis of site-directed mutants containing all possible nucleotide combinations at positions 787 and 795 in vivo showed that stable base-pairs at these positions prevent subunit association.
Collapse
Affiliation(s)
- K Lee
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
34
|
Oehler R, Polacek N, Steiner G, Barta A. Interaction of tetracycline with RNA: photoincorporation into ribosomal RNA of Escherichia coli. Nucleic Acids Res 1997; 25:1219-24. [PMID: 9092632 PMCID: PMC146554 DOI: 10.1093/nar/25.6.1219] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Photolysis of [3H]tetracycline in the presence of Escherichia coli ribosomes results in an approximately 1:1 ratio of labelling ribosomal proteins and RNAs. In this work we characterize crosslinks to both 16S and 23S RNAs. Previously, the main target of photoincorporation of [3H]tetracycline into ribosomal proteins was shown to be S7, which is also part of the one strong binding site of tetracycline on the 30S subunit. The crosslinks on 23S RNA map exclusively to the central loop of domain V (G2505, G2576 and G2608) which is part of the peptidyl transferase region. However, experiments performed with chimeric ribosomal subunits demonstrate that peptidyltransferase activity is not affected by tetracycline crosslinked solely to the 50S subunits. Three different positions are labelled on the 16S RNA, G693, G1300 and G1338. The positions of these crosslinked nucleotides correlate well with footprints on the 16S RNA produced either by tRNA or the protein S7. This suggests that the nucleotides are labelled by tetracycline bound to the strong binding site on the 30S subunit. In addition, our results demonstrate that the well known inhibition of tRNA binding to the A-site is solely due to tetracycline crosslinked to 30S subunits and furthermore suggest that interactions of the antibiotic with 16S RNA might be involved in its mode of action.
Collapse
MESH Headings
- Base Sequence
- Binding Sites
- Chimera
- Cross-Linking Reagents
- Escherichia coli/metabolism
- Models, Structural
- Molecular Sequence Data
- Nucleic Acid Conformation
- Photolysis
- RNA, Bacterial/chemistry
- RNA, Bacterial/metabolism
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/metabolism
- RNA, Ribosomal, 16S/chemistry
- RNA, Ribosomal, 16S/metabolism
- RNA, Ribosomal, 23S/chemistry
- RNA, Ribosomal, 23S/metabolism
- RNA-Directed DNA Polymerase/metabolism
- Ribosomes/metabolism
- Tetracycline/metabolism
Collapse
Affiliation(s)
- R Oehler
- Institute of Biochemistry, University of Vienna, Vienna Biocenter, Dr Bohrgasse 9/3, A-1030 Vienna, Austria
| | | | | | | |
Collapse
|
35
|
Green R, Samaha RR, Noller HF. Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. J Mol Biol 1997; 266:40-50. [PMID: 9054969 DOI: 10.1006/jmbi.1996.0780] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous experiments have shown that the phylogenetically conserved G2252 of 23 S rRNA forms a Watson-Crick base-pair with C74 of peptidyl-tRNA. In the studies presented here, site-directed mutations were introduced at two other conserved positions in 23 S rRNA, G2251 and U2585, that were previously implicated in interaction of the CCA acceptor end of tRNA with the 50 S subunit P site. The mutant 23 S rRNAs were characterized by determining (1) the in vivo phenotypes, (2) the ability of mutant ribosomes to bind tRNA oligonucleotide fragments in vitro, using footprinting with allele-specific primer extension and (3) the ability of mutant ribosomes to catalyze peptide bond formation using a chimeric reconstitution approach. Mutations at either position confer a dominant lethal phenotype when the mutant 23 S rRNA is coexpressed with the endogenous wild-type 23 S rRNA. Mutations at 2585 disrupt binding of the wild-type (CCA) tRNA oligonucleotide fragment and cause a modest decrease in the peptidyl transferase activity of reconstituted ribosomes. By contrast, mutations at 2251 abolish both binding of the wild-type (CCA) tRNA fragment and peptidyl transferase activity using the wild-type tRNA fragment. In neither case was the loss of binding or peptidyl transferase activity suppressed by mutations in the tRNA oligonucleotide fragment. Chemical modification analysis revealed that mutations at 2251 perturb the reactivity of bases 2584 to 2586, providing further evidence that the 2250 loop of 23 S rRNA interacts, either directly or indirectly, with the 2585 region in the central loop of domain V of 23 S rRNA.
Collapse
Affiliation(s)
- R Green
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | | | |
Collapse
|
36
|
Abstract
The ribosome is a large multifunctional complex composed of both RNA and proteins. Biophysical methods are yielding low-resolution structures of the overall architecture of ribosomes, and high-resolution structures of individual proteins and segments of rRNA. Accumulating evidence suggests that the ribosomal RNAs play central roles in the critical ribosomal functions of tRNA selection and binding, translocation, and peptidyl transferase. Biochemical and genetic approaches have identified specific functional interactions involving conserved nucleotides in 16S and 23S rRNA. The results obtained by these quite different approaches have begun to converge and promise to yield an unprecedented view of the mechanism of translation in the coming years.
Collapse
Affiliation(s)
- R Green
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
37
|
Spahn CM, Remme J, Schäfer MA, Nierhaus KH. Mutational analysis of two highly conserved UGG sequences of 23 S rRNA from Escherichia coli. J Biol Chem 1996; 271:32849-56. [PMID: 8955123 DOI: 10.1074/jbc.271.51.32849] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The 23 S-type rRNA contains two phylogenetically conserved UGG sequences, which have the potential to bind the universal CCA-3'-ends of tRNAs at the ribosomal peptidyltransferase center by base pairing. The first two positions, UG, of these sequences at the helix-loop 80 (U2249G2250) and helix-loop 90 (Psi2580G2581) and some related nucleotides were tested by site-directed mutagenesis for their involvement in ribosomal function, i.e. peptidyltransferase. The plasmid-derived mutated 23 S rRNA comprised about 50% of the total 23 S rRNA. None of the single mutations caused an assembly defect, and all 50 S subunits carrying an altered 23 S rRNA could freely exchange with the pools of 70S ribosomes and polysomes. The mutations at the helix-loop 80 region hardly affected bacterial growth. However, mutations at the helix 90 caused severe growth effects and severely impaired the in vitro protein synthesis, showing that this 23 S rRNA region is of high importance for ribosomal function.
Collapse
Affiliation(s)
- C M Spahn
- Max-Planck-Institut für Molekulare Genetik, AG Ribosomen, Ihnestrasse 73, D-14195 Berlin, Germany.
| | | | | | | |
Collapse
|
38
|
Joseph S, Noller HF. Mapping the rRNA neighborhood of the acceptor end of tRNA in the ribosome. EMBO J 1996; 15:910-6. [PMID: 8631311 PMCID: PMC450288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
In order to map the rRNA environment of the acceptor end of tRNA in th e ribosome, hydroxyl radicals were generated in situ from Fe(II) attached via an EDTA linker to the 5' end of tRNA. Nucleotides in rRNA cleaved by the radicals were identified by primer extension, and assigned to the ribosomal A, P and E sites by standard criteria. In the A site, cleavages were found in the 2555-2573 region of 23S rRNA, around bases previously shown to be protected by A site tRNA, and in the alpha-sarcin loop, the site of interaction of elongation factors EF-Tu and EF-G. P site cleavages occurred in the 2250 loop, where a base pair is made with C74 of tRNA; and around the 2493 region in domain V. Interestingly, two clusters of nucleotides in 23S rRNA are accessible to both A site and P site tRNA probes. The first cluster is in the 1940-1965 region of domain IV, around the site of affinity labeling by the 3' end of tRNA, and the second cluster is around the bulged adenosine A2602, whose accessibility to chemical probes is enhanced by P site tRNA and decreased by A site tRNA. From the E site, cleavages occur in the 2390-2440 region, surrounding C2394, a base protected from dimethyl sulfate by E site tRNA, and in the phylogenetically variable stem at positions 1860/1880 of domain IV. Unexpectedly, no cleavages were detected in the central loop of domain V of 23S rRNA.
Collapse
Affiliation(s)
- S Joseph
- Center for Molecular biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | |
Collapse
|
39
|
Noller HF, Green R, Heilek G, Hoffarth V, Hüttenhofer A, Joseph S, Lee I, Lieberman K, Mankin A, Merryman C. Structure and function of ribosomal RNA. Biochem Cell Biol 1995; 73:997-1009. [PMID: 8722015 DOI: 10.1139/o95-107] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A refined model has been developed for the folding of 16S rRNA in the 30S subunit, based on additional constraints obtained from new experimental approaches. One set of constraints comes from hydroxyl radical footprinting of each of the individual 30S ribosomal proteins, using free Fe(2+)-EDTA complex. A second approach uses localized hydroxyl radical cleavage from a single Fe2+ tethered to unique positions on the surface of single proteins in the 30S subunit. This has been carried out for one position on the surface of protein S4, two on S17, and three on S5. Nucleotides in 16S rRNA that are essential for P-site tRNA binding were identified by a modification interference strategy. Ribosomal subunits were partially inactivated by chemical modification at a low level. Active, partially modified subunits were separated from inactive ones by binding 3'-biotinderivatized tRNA to the 30S subunits and captured with streptavidin beads. Essential bases are those that are unmodified in the active population but modified in the total population. The four essential bases, G926, 2mG966, G1338, and G1401 are a subset of those that are protected from modification by P-site tRNA. They are all located in the cleft of our 30S subunit model. The rRNA neighborhood of the acceptor end of tRNA was probed by hydroxyl radical probing from Fe2+ tethered to the 5' end of tRNA via an EDTA linker. Cleavage was detected in domains IV, V, and VI of 23S rRNA, but not in 5S or 16S rRNA. The sites were all found to be near bases that were protected from modification by the CCA end of tRNA in earlier experiments, except for a set of E-site cleavages in domain IV and a set of A-site cleavages in the alpha-sarcin loop of domain VI. In vitro genetics was used to demonstrate a base-pairing interaction between tRNA and 23S rRNA. Mutations were introduced at positions C74 and C75 of tRNA and positions 2252 and 2253 of 23S rRNA. Interaction of the CCA end of tRNA with mutant ribosomes was tested using chemical probing in conjunction with allele-specific primer extension. The interaction occurred only when there was a Watson-Crick pairing relationship between positions 74 of tRNA and 2252 of 23S rRNA. Using a novel chimeric in vitro reconstitution method, it was shown that the peptidyl transferase reaction depends on this same Watson-Crick base pair.
Collapse
Affiliation(s)
- H F Noller
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hill WE, Bucklin DJ, Bullard JM, Galbralth AL, Jammi NV, Rettberg CC, Sawyer BS, van Waes MA. Identification of ribosome-ligand interactions using cleavage reagents. Biochem Cell Biol 1995; 73:1033-9. [PMID: 8722018 DOI: 10.1139/o95-110] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
To characterize ribosome-ligand interactions, we have used a cleavage reagent, 1,10-orthopenanthroline-Cu(II), tethered to various ligands, to cleave nearby regions of rRNA. The phenanthroline is tethered to the ligand using either an internal 4-thiouridine or a terminal thiophosphate. When Cu2+ and a reducing agent, such as mercaptopropionic acid, are present, cleavage of nearby nucleic acids occurs. The cleavage sites can be identified using primer-extension analysis. We have identified rRNA cleavage sites resulting from transcribed tRNAPhe having randomly placed phenanthroline-Cu(II), tRNAPhe with phenanthroline-Cu(II) at position 8, and a DNA oligomer complementary to positions 2655-2667 (alpha-sarcin region) with phenanthroline-Cu(II) placed at the 5' end. These results provide important new information on the structure of the rRNA within ribosomal subunits and on the proximity of rRNA neighborhoods to these bound ligands.
Collapse
Affiliation(s)
- W E Hill
- Division of Biological Sciences, University of Montana, Missoula 69812, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Samaha RR, Green R, Noller HF. A base pair between tRNA and 23S rRNA in the peptidyl transferase centre of the ribosome. Nature 1995; 377:309-14. [PMID: 7566085 DOI: 10.1038/377309a0] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interaction of the conserved CCA terminus of tRNA with rRNA in the peptidyl transferase P site has been studied by in vitro genetics. A watson-Crick G-C pair between G2252 in a conserved hairpin loop of 23S rRNA and C74 at the acceptor end of tRNA is required for proper functional interaction of the CCA end of tRNA with the ribosomal P site. These findings establish a direct role for 23S rRNA in protein synthesis.
Collapse
Affiliation(s)
- R R Samaha
- Center for Molecular Biology of RNA, Sinsheimer Laboratories, University of California, Santa Cruz 95064, USA
| | | | | |
Collapse
|
42
|
Rhee Y, Valentine MR, Termini J. Oxidative base damage in RNA detected by reverse transcriptase. Nucleic Acids Res 1995; 23:3275-82. [PMID: 7545285 PMCID: PMC307188 DOI: 10.1093/nar/23.16.3275] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Oxidative base damage in DNA and metabolic defects in the recognition and removal of such damage play important roles in mutagenesis and human disease. The extent to which cellular RNA is a substrate for oxidative damage and the possible biological consequences of RNA base oxidation, however, remain largely unexplored. Since oxidatively modified RNA may contribute to the high mutability of retroviral genomic DNA, we have been interested in developing methods for the sequence specific detection of such damage. We show here that a primer extension assay using AMV reverse transcriptase (RT) can be used to reveal oxidatively damaged sites in RNA. This finding extends the currently known range of RNA modifications detectable with AMV reverse transcriptase. Analogous assays using DNA polymerases to detect base damage in DNA substrates appear to be restricted to lesions at thymine. Oxidative base damage in the absence of any detectable chain breaks was produced by dye photosensitization of RNA. Six out of 20 dyes examined were capable of producing RT detectable lesions. RT stops were seen predominantly at purines, although many pyrimidine sites were also detected. Dye specific photofootprints revealed by RT analysis suggests differential dye binding to the RNA substrate. Some of the photoreactive dyes described here may have potential utility in RNA structural analysis, particularly in the identification of stem-loop regions in complex RNAs.
Collapse
Affiliation(s)
- Y Rhee
- Department of Molecular Biochemistry, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | | | |
Collapse
|
43
|
Juzumiene DI, Shapkina TG, Wollenzien P. Distribution of cross-links between mRNA analogues and 16 S rRNA in Escherichia coli 70 S ribosomes made under equilibrium conditions and their response to tRNA binding. J Biol Chem 1995; 270:12794-800. [PMID: 7759534 DOI: 10.1074/jbc.270.21.12794] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The interaction between mRNA and Escherichia coli ribosomes has been studied by photochemical cross-linking using mRNA analogues that contain 4-thiouridine (s4U) or s4U modified with azidophenylacyl bromide (APAB), either two nucleotides upstream or eight nucleotides downstream from the nucleotide sequence ACC, the codon for tRNA(Thr). The sequences of the mRNA analogues were described earlier (Stade, K., Rinke-Appel, J., and Brimacombe, R. (1989) Nucleic Acids Res. 17, 9889-9908; Rinke-Appel, J., Stade, K., and Brimacombe, R. (1991) EMBO J. 10, 2195-2202). Under equilibrium conditions, both of these mRNA analogues bind and cross-link to 70 S ribosomes without the presence of tRNA(Thr); however, there are significant increases both in binding and particularly in cross-linking in the presence of the tRNA(Thr). Four regions contain cross-linking sites that increase in the presence of tRNA, C1395, A532, A1196 (and minor sites around these three positions), and C1533/U1532. Three other cross-linking sites, U723, A845, and U1381, show very little change in extent of cross-linking when tRNA is present. A conformational change in the 30 S subunit allowing additional accessibility to the 16 S rRNA by the mRNA analogues upon tRNA binding best explains the behavior of the tRNA-dependent and tRNA-independent mRNA-16 S rRNA cross-linking sites.
Collapse
Affiliation(s)
- D I Juzumiene
- Department of Biochemistry, North Carolina State University, Raleigh 27695, USA
| | | | | |
Collapse
|
44
|
Affiliation(s)
- B Weisblum
- Department of Pharmacology, University of Wisconsin Medical School, Madison 53706, USA
| |
Collapse
|
45
|
|
46
|
MacMillan AM, Query CC, Allerson CR, Chen S, Verdine GL, Sharp PA. Dynamic association of proteins with the pre-mRNA branch region. Genes Dev 1994; 8:3008-20. [PMID: 8001820 DOI: 10.1101/gad.8.24.3008] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The association of proteins with the branch site region during pre-mRNA splicing was probed using a novel methodology to site-specifically modify the pre-mRNA with the photo-reagent benzophenone. Three sets of proteins were distinguished by the kinetics of their associations with pre-mRNAs, by their association with discrete splicing complexes, and by their differing factor requirements. An early U1 snRNP-dependent cross-link of the branch region to a p80 species was followed by cross-links to p14, p35, and p150 polypeptides associated with the U2 snRNP-pre-mRNA complex. Concomitant with formation of the spliceosome, a rearrangement of protein factors about the branch region occurred, in which the p35 and p150 cross-links were replaced by p220 and p70 species. These results establish that the branch region is recognized in a dynamic fashion by multiple distinct proteins during the course of spliceosomal assembly.
Collapse
Affiliation(s)
- A M MacMillan
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139-4307
| | | | | | | | | | | |
Collapse
|
47
|
Srikantha T, Gutell RR, Morrow B, Soll DR. Partial nucleotide sequence of a single ribosomal RNA coding region and secondary structure of the large subunit 25 s rRNA of Candida albicans. Curr Genet 1994; 26:321-8. [PMID: 7882426 DOI: 10.1007/bf00310496] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A rDNA cistron of Candida albicans strain WO-1 was cloned and the ITS1, ITS2, 5.8 s rDNA and 25 s rDNA coding regions sequenced in their entirety. These sequences were compared to those of three related yeast species (Saccharomyces cerevisiae, Saccharomyces carlsbergensis, and Thermomyces lanuginosus), and the 5.8 s rDNA was compared to seven additional 5.8 s rDNAs from organisms ranging in complexity from D. discoideum to H. sapiens. The C. albicans ITS regions are shorter than those of most other eukaryotes. The 25 s and 5.8 s rDNA sequences were folded into a secondary structure model based on comparative methods. In a comparison of regional similarities between the large subunit rDNAs of C. albicans, the three related yeasts and other eukaryotes, it is demonstrated that the additional sequences not present in the E. coli 23 s rDNA are more variable than the regions present in both prokaryotes and eukaryotes.
Collapse
MESH Headings
- Animals
- Base Sequence
- Candida albicans/chemistry
- Candida albicans/genetics
- Cloning, Molecular
- DNA, Fungal/genetics
- DNA, Ribosomal/genetics
- Genes, Fungal
- Humans
- Mitosporic Fungi/genetics
- Molecular Sequence Data
- Nucleic Acid Conformation
- RNA, Fungal/chemistry
- RNA, Fungal/genetics
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal, 5.8S/genetics
- Saccharomyces/genetics
- Saccharomyces cerevisiae/genetics
- Sequence Homology, Nucleic Acid
- Species Specificity
Collapse
Affiliation(s)
- T Srikantha
- Department of Biological Sciences, University of Iowa, IA City 52242
| | | | | | | |
Collapse
|
48
|
Han H, Schepartz A, Pellegrini M, Dervan PB. Mapping RNA regions in eukaryotic ribosomes that are accessible to methidiumpropyl-EDTA.Fe(II) and EDTA.Fe(II). Biochemistry 1994; 33:9831-44. [PMID: 8060991 DOI: 10.1021/bi00199a004] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Methidiumpropyl-EDTA.Fe(II) [MPE.Fe(II)] and EDTA.Fe(II) were used to investigate the structure of Drosophila melanogaster ribosomes. Cleavage reactions were performed on intact ribosomes in cell lysates in vitro and analyzed by primer extension with reverse transcriptase using oligodeoxynucleotide primers. Regions of 18S and 28S ribosomal RNAs (rRNAs) which are accessible to MPE.Fe(II) and EDTA.Fe(II) are located almost exclusively within expansion segments. The accessibility of these regions to cleavage indicates that they are likely exposed on the surface of eukaryotic ribosomes. These results provide information about the overall tertiary structure of rRNA in ribosomes.
Collapse
Affiliation(s)
- H Han
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena 91125
| | | | | | | |
Collapse
|
49
|
Graifer DM, Juzumiene DI, Karpova GG, Wollenzien P. mRNA binding track in the human 80S ribosome for mRNA analogues randomly substituted with 4-thiouridine residues. Biochemistry 1994; 33:6201-6. [PMID: 7514889 DOI: 10.1021/bi00186a020] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The interaction between mRNA and 18S rRNA in human 80S ribosomes has been studied using synthetic mRNA analogues randomly substituted with 4-thiouridine, which can be photoactivated for cross-linking. Two mRNA analogues with different sequences have been used for complex formation with ribosomes without or with the presence of a cognate tRNA. Cross-linked 18S rRNA nucleotides were identified by reverse transcription analysis. The base U630 in 18S rRNA was the main target of cross-linking for both of the mRNA analogues studied, and three minor sites of cross-linking, A1060, U1046, and U966, were also identified. Thus, in the case of human 80S ribosomes, the set of nucleotide residues cross-linked to the mRNA analogues is significantly smaller than the twelve sites seen for Escherichia coli with these same two mRNA analogues [Bhangu, R., & Wollenzien, P. (1992) Biochemistry 31, 5937-5944]. The residue U630 is within a highly conserved region corresponding to the 530 loop region of eubacterial 16S rRNA; the cross-link to this site indicates that it plays a key role in interacting with mRNA on 80S ribosomes independently of the presence of a cognate tRNA at the P site.
Collapse
Affiliation(s)
- D M Graifer
- Department of Biochemistry, North Carolina State University, Raleigh 27695
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- H F Noller
- Sinsheimer Laboratories, University of California, Santa Cruz 95064
| |
Collapse
|