1
|
Park MK, Lee JC, Lee JW, Kang S, Kim J, Park MH, Hwang SJ, Lee M. Effects of fermented rice bran on DEN-induced oxidative stress in mice: GSTP1, LINE-1 methylation, and telomere length ratio. J Food Biochem 2020; 44:e13274. [PMID: 32468620 DOI: 10.1111/jfbc.13274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/01/2020] [Accepted: 04/18/2020] [Indexed: 12/12/2022]
Abstract
N-diethylnitrosamine (DEN), a well-known carcinogen, not only induces excessive reactive oxygen species but also suppresses DNA methylation. This study investigated the effect of fermented rice bran (FRB) treatment on DEN-induced oxidative stress through DNA methylation and telomere length analysis. To evaluate the potential protective role of FRB in oxidative stress, two different doses of FRB, DEN, and their combination were administered to mice that were preadapted or not to FRB. Glutathione-S-transferase P1 (GSTP1) methylation levels significantly decreased at 2 and 24 hr after FRB and DEN co-administration in mice with and without pre-adaptation. Moreover, GSTP1 mRNA was upregulated under DEN-induced oxidative stress. Furthermore, changes in long interspersed nuclear element-1 methylation were observed from the viewpoint of genomic instability. In addition, FRB preadapted mice displayed a lower telomere length ratio than the non-adapted mice, suggesting that FRB adaptation offers advantages over the non-adapted conditions in terms of inflammation suppression. PRACTICAL APPLICATIONS: DEN induces excessive ROS, which is associated with oxidative stress on DNA and other cellular components, resulting in inflammation. This study shows that FRB may alleviate DEN-triggered oxidative stress, based on changes in GSTP1, LINE-1 methylation, and telomere length ratios, thereby, revealing the potential of dietary intervention during inflammation. Furthermore, this study furthers the current understanding of DNA methylation mechanisms underlying the antioxidant and anti-inflammatory effects of functional food components. These results indicate that dietary inclusion of FRB may help decrease oxidative DNA damage and its associated inflammation at early stages of a disease.
Collapse
Affiliation(s)
- Min-Koo Park
- Nutrigenetics Institute, Bio-Innovation Park, Erom, Inc., Uiwang, Republic of Korea
| | - Jeong-Chan Lee
- Nutrigenetics Institute, Bio-Innovation Park, Erom, Inc., Uiwang, Republic of Korea
| | - Ji-Won Lee
- Nutrigenetics Institute, Bio-Innovation Park, Erom, Inc., Uiwang, Republic of Korea
| | - Sujin Kang
- Bio R&D Division, Bio-Innovation Park, Erom, Inc., Chuncheon, Republic of Korea
| | - JoongHark Kim
- Bio R&D Division, Bio-Innovation Park, Erom, Inc., Chuncheon, Republic of Korea
| | - Mi Houn Park
- Bio R&D Division, Bio-Innovation Park, Erom, Inc., Chuncheon, Republic of Korea
| | - Sung-Joo Hwang
- Integrated Medicine Institute, Loving Care Hospital, Sampyeong, Republic of Korea
| | - MinJae Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
2
|
Cheng TF, Patton GW, Muldoon-Jacobs K. Can the L5178Y Tk+/- mouse lymphoma assay detect epigenetic silencing? Food Chem Toxicol 2013; 59:187-90. [PMID: 23778052 DOI: 10.1016/j.fct.2013.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 05/17/2013] [Accepted: 06/05/2013] [Indexed: 12/14/2022]
Abstract
The mouse lymphoma L5178Y Tk(+/-) assay is broadly used in toxicology to assess genotoxicity because of its known sensitivity to genotoxicants that act through a variety of mechanisms, which may include epigenetic DNA methylation. This brief article highlights the studies that have contributed to this conjecture and suggests an addition to the experimental design that could identify if the test substance is a potential epimutagen acting via hypermethylation.
Collapse
Affiliation(s)
- Tsu-Fan Cheng
- US Food and Drug Administration, Center for Food Safety and Applied Nutrition, Office of Food Additive Safety, Division of Food Contact Notification, College Park, MD 20740, USA
| | | | | |
Collapse
|
3
|
Mirbahai L, Southam AD, Sommer U, Williams TD, Bignell JP, Lyons BP, Viant MR, Chipman JK. Disruption of DNA Methylation via S-Adenosylhomocysteine Is a Key Process in High Incidence Liver Carcinogenesis in Fish. J Proteome Res 2013; 12:2895-904. [DOI: 10.1021/pr400195u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Leda Mirbahai
- School of
Biosciences, University of Birmingham,
Edgbaston, Birmingham, United
Kingdom
| | - Andrew D. Southam
- School of
Biosciences, University of Birmingham,
Edgbaston, Birmingham, United
Kingdom
| | - Ulf Sommer
- NERC Biomolecular
Analysis Facility
− Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United
Kingdom
| | - Tim D. Williams
- School of
Biosciences, University of Birmingham,
Edgbaston, Birmingham, United
Kingdom
| | - John P. Bignell
- Cefas, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | - Brett P. Lyons
- Cefas, Weymouth Laboratory, Weymouth, Dorset, United Kingdom
| | - Mark R. Viant
- School of
Biosciences, University of Birmingham,
Edgbaston, Birmingham, United
Kingdom
- NERC Biomolecular
Analysis Facility
− Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Edgbaston, Birmingham, United
Kingdom
| | - James K. Chipman
- School of
Biosciences, University of Birmingham,
Edgbaston, Birmingham, United
Kingdom
| |
Collapse
|
4
|
Viejo M, Santamaría ME, Rodríguez JL, Valledor L, Meijón M, Pérez M, Pascual J, Hasbún R, Fernández Fraga M, Berdasco M, Toorop PE, Cañal MJ, Rodríguez Fernández R. Epigenetics, the role of DNA methylation in tree development. Methods Mol Biol 2012; 877:277-301. [PMID: 22610636 DOI: 10.1007/978-1-61779-818-4_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During development of multicellular organisms, cells become differentiated by modulating different programs of gene expression. Cells have their own epigenetic signature which reflects genotype, developmental history, and environmental influences, and it is ultimately reflected in the phenotype of the cells and the organism. However, in normal development or disease situations, such as adaptation to climate change or during in vitro culture, some cells undergo major epigenetic reprogramming involving the removal of epigenetic marks in the nuclei followed by the establishment of a different new set of marks. Compared with animal cells, biotech-mediated achievements are reduced in plants despite the presence of cell polypotency. In forestry, any sustainable developments using biotech tools remain restricted to the lab, without progressing to the field for application. Such barriers in the translation between development and implementation need to be addressed by organizations that have the power to integrate these two fields. However, a lack of understanding of gene regulation is also to blame for this barrier. In recent years, great progress has been made in unraveling the control of gene expression. These advances are discussed in this chapter, including the possibility of applying this knowledge in forestry practice.
Collapse
Affiliation(s)
- Marcos Viejo
- Área de Fisiología Vegetal, Departamento BOS, Facultad de Biología, Universidad de Oviedo, Oviedo, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Junien C, Nathanielsz P. Report on the IASO Stock Conference 2006: early and lifelong environmental epigenomic programming of metabolic syndrome, obesity and type II diabetes. Obes Rev 2007; 8:487-502. [PMID: 17949354 DOI: 10.1111/j.1467-789x.2007.00371.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Now that analysis of the organization of the human genome sequence is reaching completion, studies of the finely tuned chromatin epigenetic networks, DNA methylation and histone modifications, are required to determine how the same DNA sequence generates different cells, lineages and organs, i.e. the phenotype. Maternal nutrition, behaviour and metabolic disturbances as well as other environmental factors have been shown to have major effects on these epigenetic processes, potentially affecting the predisposition of offspring to obesity and related adult disorders. The March 2006 Stock Conference considered the latest evidence from studies in the field of obesity and other related areas that elucidate mechanisms by which the environment can modify gene expression and the resulting individual phenotype. Presentations included evaluation of the molecular basis of epigenetic memory and the nature of relevant sequence targets, windows of susceptibility, and maternal dietary and behavioural factors that determine epigenetic changes. Imprinted genes, age and tissue-related exposures, transgenerational and potential interventions were also discussed. In summary, it is clear that epigenetic alterations can no longer be ignored in evaluations of the causes of obesity and its associated disorders. There is a need for systematic large-scale epigenetic studies of obesity, employing appropriate strategies and techniques and appropriately chosen environmental factors in critical spatio-temporal windows.
Collapse
Affiliation(s)
- C Junien
- Inserm U 781, Clinique Maurice Lamy, Hôpital Necker Enfants Malades 149 rue de Sèvres, Paris, France.
| | | |
Collapse
|
6
|
Gallou-Kabani C, Vigé A, Gross MS, Junien C. Nutri-epigenomics: lifelong remodelling of our epigenomes by nutritional and metabolic factors and beyond. Clin Chem Lab Med 2007; 45:321-7. [PMID: 17378726 DOI: 10.1515/cclm.2007.081] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The phenotype of an individual is the result of complex interactions between genotype, epigenome and current, past and ancestral environment, leading to lifelong remodelling of our epigenomes. Various replication-dependent and -independent epigenetic mechanisms are involved in developmental programming, lifelong stochastic and environmental deteriorations, circadian deteriorations, and transgenerational effects. Several types of sequences can be targets of a host of environmental factors and can be associated with specific epigenetic signatures and patterns of gene expression. Depending on the nature and intensity of the insult, the critical spatiotemporal windows and developmental or lifelong processes involved, these epigenetic alterations can lead to permanent changes in tissue and organ structure and function, or to reversible changes using appropriate epigenetic tools. Given several encouraging trials, prevention and therapy of age- and lifestyle-related diseases by individualised tailoring of optimal epigenetic diets or drugs are conceivable. However, these interventions will require intense efforts to unravel the complexity of these epigenetic, genetic and environment interactions and to evaluate their potential reversibility with minimal side effects.
Collapse
Affiliation(s)
- Catherine Gallou-Kabani
- 1. Inserm, AP-HP, Université Paris-Descartes, Faculté de Médecine, Hôpital Necker-Enfants Malades, Inserm U781, Paris, France
| | | | | | | |
Collapse
|
7
|
Subach OM, Maltseva DV, Shastry A, Kolbanovskiy A, Klimasauskas S, Geacintov NE, Gromova ES. The stereochemistry of benzo[a]pyrene-2'-deoxyguanosine adducts affects DNA methylation by SssI and HhaI DNA methyltransferases. FEBS J 2007; 274:2121-34. [PMID: 17388812 DOI: 10.1111/j.1742-4658.2007.05754.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The biologically most significant genotoxic metabolite of the environmental pollutant benzo[a]pyrene (B[a]P), (+)-7R,8S-diol 9S,10R-epoxide, reacts chemically with guanine in DNA, resulting in the predominant formation of (+)-trans-B[a]P-N(2)-dG and, to a lesser extent, (+)-cis-B[a]P-N(2)-dG adducts. Here, we compare the effects of the adduct stereochemistry and conformation on the methylation of cytosine catalyzed by two purified prokaryotic DNA methyltransferases (MTases), SssI and HhaI, with the lesions positioned within or adjacent to their CG and GCGC recognition sites, respectively. The fluorescence properties of the pyrenyl residues of the (+)-cis-B[a]P-N(2)-dG and (+)-trans-B[a]P-N(2)-dG adducts in complexes with MTases are enhanced, but to different extents, indicating that aromatic B[a]P residues are positioned in different microenvironments in the DNA-protein complexes. We have previously shown that the (+)-trans-isomeric adduct inhibits both the binding and methylating efficiencies (k(cat)) of both MTases [Subach OM, Baskunov VB, Darii MV, Maltseva DV, Alexandrov DA, Kirsanova OV, Kolbanovskiy A, Kolbanovskiy M, Johnson F, Bonala R, et al. (2006) Biochemistry45, 6142-6159]. Here we show that the stereoisomeric (+)-cis-B[a]P-N(2)-dG lesion has only a minimal effect on the binding of these MTases and on k(cat). The minor-groove (+)-trans adduct interferes with the formation of the normal DNA minor-groove contacts with the catalytic loop of the MTases. However, the intercalated base-displaced (+)-cis adduct does not interfere with the minor-groove DNA-catalytic loop contacts, allowing near-normal binding of the MTases and undiminished k(cat) values.
Collapse
|
8
|
Zhang YJ, Chen Y, Ahsan H, Lunn RM, Chen SY, Lee PH, Chen CJ, Santella RM. Silencing of glutathione S-transferase P1 by promoter hypermethylation and its relationship to environmental chemical carcinogens in hepatocellular carcinoma. Cancer Lett 2005; 221:135-43. [PMID: 15808399 DOI: 10.1016/j.canlet.2004.08.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2004] [Revised: 08/28/2004] [Accepted: 08/30/2004] [Indexed: 12/20/2022]
Abstract
Glutathione S-transferases (GSTs) are a family of isoenzymes that play an important role in protecting cells from cytotoxic and carcinogenic agents. GSTpi is encoded by the GSTP1 gene. GSTP1 null mice show an increased risk of skin tumorigenesis induced by carcinogens. GSTP1 is transcriptionally silenced by promoter hypermethylation in several human cancers including hepatocellular carcinoma (HCC). Methylation-specific PCR (MSP) was used to analyze the GSTP1 promoter hypermethylation status of 83 hepatocellular carcinoma tissues from Taiwan. Hypermethylation was detected in 38 of 83 (46%) tumors. GSTP1 expression by immunohistochemical staining of HCC tissue samples was significantly associated with methylation status. The relationship between methylation status and clinical parameters and tumor markers including environmental exposure to aflatoxin B1(AFB1) and polycyclic aromatic hydrocarbons (PAH), measured as DNA adducts, was also investigated. A statistically significant association was found between GSTP1 promoter hypermethylation and the level of AFB1-DNA adducts in tumor tissue (OR 2.81, 95% CI 1.03-7.70); a marginally significant association was found for adjacent non-tumor tissue (OR 2.57, 95% CI 0.97-6.80). There was no association between GSTP1 hypermethylation and PAH-DNA adducts in tumor or adjacent non-tumor tissues. These results suggest that epigenetic inactivation of GSTP1 plays an important role in the development of HCC and exposure to environmental carcinogens may be related to altered methylation of genes involved in hepatocarcinogenesis. The mechanism by which environmental exposures induce epigenetic changes in HCC needs further analysis.
Collapse
Affiliation(s)
- Yu-jing Zhang
- Department of Environmental Health Sciences, Mailman School of Public Health of Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Zhang YJ, Chen Y, Ahsan H, Lunn RM, Lee PH, Chen CJ, Santella RM. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation and its relationship to aflatoxin B1-DNA adducts and p53 mutation in hepatocellular carcinoma. Int J Cancer 2003; 103:440-4. [PMID: 12478658 DOI: 10.1002/ijc.10852] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
O(6)-methylguanine-DNA methyltransferase (MGMT) is a repair protein that specifically removes promutagenic alkyl groups from the O(6) position of guanine in DNA. MGMT is transcriptionally silenced by promoter hypermethylation in several human cancers. Methylation-specific PCR (MSP) was used to analyze the MGMT promoter methylation status of 83 hepatocellular carcinomas (HCC) and 2 HCC cell lines (HepG2 and Hep3B). Hypermethylation was detected in 32 of 83 (39%) HCC tissues, but it was not found in either HCC cell line. We also analyzed MGMT expression by immunohistochemical analysis of HCC tissue samples. The presence of aberrant hypermethylation was associated with loss of MGMT protein. The relationship between methylation status and risk factors and tumor markers including environmental exposure to aflatoxin B(1) (AFB(1)), measured as DNA adducts, and status of tumor suppressor gene p53 was also investigated. A statistically significant association was found between MGMT promoter hypermethylation and high level of AFB(1)-DNA adducts in tumor tissues (OR = 5.05, 95% CI = 1.29-19.73). A significant association was also found between methylation and p53 mutation status (OR = 2.97, 95% CI = 1.09-8.11). These results suggest that epigenetic inactivation of MGMT plays an important role in the development of HCC and exposure to environmental carcinogens may be related to altered methylation of genes involved in cancer development. The role of chemical carcinogens in hypermethylation needs further investigation.
Collapse
Affiliation(s)
- Yu-Jing Zhang
- Departments of Environmental Health Sciences and Epidemiology, Mailman School of Public Health, Columbia University, 700 West 168th Street, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
This review focuses on the role that DNA methylation plays in the regulation of normal and aberrant gene expression and on how, in a hypothesis-driven fashion, altered DNA methylation may be viewed as a secondary mechanism involved in carcinogenesis. Research aimed at discerning the mechanisms by which chemicals can transform normal cells into frank carcinomas has both theoretical and practical implications. Through an increased understanding of the mechanisms by which chemicals affect the carcinogenic process, we learn more about basic biology while, at the same time, providing the type of information required to make more rational safety assessment decisions concerning their actual potential to cause cancer under particular conditions of exposure. One key question is: does the mechanism of action of the chemical in question involve a secondary mechanism and, if so, what dose may be below its threshold?
Collapse
Affiliation(s)
- Jay I Goodman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | |
Collapse
|
11
|
Goodman JI. Response to "Epigenetic mechanisms of carcinogenesis" by Klaunig JE, Kamendulis LM and Xu Y. Hum Exp Toxicol 2000; 19:563-5; discussion 571-2. [PMID: 11211994 DOI: 10.1191/096032700701546479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
It is now quite clear that carcinogenesis involves more than mutagenesis and an increased focus on epigenetic events underlying the transformation of a normal cell into a frank malignancy is appropriate.
Collapse
Affiliation(s)
- J I Goodman
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing 48824, USA
| |
Collapse
|
12
|
Monier R. [Fundamental aspects: mechanisms of carcinogenesis and dose-effect relationship]. COMPTES RENDUS DE L'ACADEMIE DES SCIENCES. SERIE III, SCIENCES DE LA VIE 2000; 323:603-10. [PMID: 10983270 DOI: 10.1016/s0764-4469(00)00161-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Oncogenesis is a multistep process, which is the outcome of the accumulation in a single cell of genetic and epigenetic events. The events alter proto-oncogenes, which are converted into oncogenes with gain of function and tumor suppressor genes with loss of function. Cellular mechanisms (e.g. apoptosis) protect tissues against the malignant transformation of cells and limit, for each tissue, the combinations of efficient genetic alterations. The number of genetic events required for conversion to malignancy is still debated, but, at least in the case of many solid tumors (e.g. colon carcinomas), this number may be as high as seven to eight, which implies that a genetic instability occurs during cancer progression. In most cancers the probability of occurrence of oncogenic genetic events is increased by exposure to behavioural and environmental factors. In the case of chemical carcinogens, the dose-effect relationship is strongly affected by their effects on cellular proliferation, which should be taken account into when the experimental data of animal experiments are extrapolated to human exposures. When non-genotoxic carcinogens are considered, a threshold in the dose-effect relationship is generally observed. For genotoxic carcinogens, it is hard to prove experimentally that a threshold exists and linear no-threshold relationships are generally used to evaluate permissible levels of human exposures.
Collapse
Affiliation(s)
- R Monier
- Laboratoire de génétique oncologique, UMR 1599 CNRS, Institut Gustave-Roussy, Villejuif, France.
| |
Collapse
|
13
|
Ryu J, Youn J, Kim Y, Kwon O, Song Y, Kim H, Cho K, Chang I. Mutation spectrum of 4-nitroquinoline N-oxide in the lacI transgenic Big Blue Rat2 cell line. Mutat Res 1999; 445:127-35. [PMID: 10521698 DOI: 10.1016/s1383-5718(99)00136-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper describes the spectrum of mutations induced by 4-nitroquinoline N-oxide (4-NQO) in the lacI target gene of the transgenic Big Blue Rat2 cell line. There are only a few report for the mutational spectrum of 4-NQO in a mammalian system although its biological and genetic effects have been well studied. Big Blue Rat2 cells were treated with 0.03125, 0.0625 or 0.125 microg/ml of 4-NQO, the highest concentration giving 85% survival. Our results indicated that the mutant frequency (MF) induced by 4-NQO was dose-dependent with increases from three- to seven-fold. The DNA sequence analysis of lacI mutants from the control and 4-NQO treatment groups revealed an obvious difference in the spectra of mutations. In spontaneous mutants, transition (60%) mutations, especially G:C-->A:T transition (45%), were most frequent. However, the major type of base substitution after treatment of 4-NQO was transversions (68.8%), especially G:C-->T:A (43.8%), while only 25% of mutants were transitions. These results are consistent with those produced by 4-NQO in other systems and the transgenic assay system will be a powerful tool to postulate more accurately the mechanism of chemical carcinogenesis involved.
Collapse
Affiliation(s)
- J Ryu
- Toxicology Laboratory, Korea Institute of Science and Technology, P. O. Box 131, Cheongryang, Seoul, South Korea.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wachsman JT. DNA methylation and the association between genetic and epigenetic changes: relation to carcinogenesis. Mutat Res 1997; 375:1-8. [PMID: 9129674 DOI: 10.1016/s0027-5107(97)00003-1] [Citation(s) in RCA: 99] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This paper examines the relationship between DNA mutagenic lesions, DNA methylation and the involvement of these changes in the process of carcinogenesis. Many types of DNA damage (oxidative lesions, alkylation of bases, abasic sites, photodimers, etc.) interfere with the ability of mammalian cell DNA to be methylated at CpG dinucleotides by DNA-methyltransferases (DNA-MTases). This can result in altered patterns in the distribution of 5-methylcytosine (5MeC) residues at CpG sites. Methylation of DNA is an epigenetic change that by definition is heritable, can result in changes in chromatin structure, and is often accompanied by modified patterns of gene expression. The presence of 5MeC in DNA, as well as oxidative stress induced by the free radical nitric oxide, can interefere with the repair of alkylation damage, thereby increasing the level of potentially mutagenic lesions. CpG sites in DNA represent mutational hotspots, with both the presence of 5MeC in DNA and the catalytic activity of DNA-MTases being intrinsically mutagenic. The process of carcinogenesis has frequently been associated with an increased expression of DNA-MTase activity, accompanied by either hypermethylation or hypomethylation of target cell (progenitor tumor cell) DNA. In addition, there is evidence that overexpression of DNA-MTase activity could result in increased cytosine methylation at non-CpG sites. A variety of chemicals can alter the extent of DNA methylation in mammalian cells. These include inhibitors of topoisomerase II, as well as inhibitors of DNA synthesis, microtubule formation, histone deacetylation, transmethylation, etc. Genetic and epigenetic changes in DNA have a profound influence on one another and could play a major role in the process of carcinogenesis, by modulating both the extent and the pattern of gene expression.
Collapse
Affiliation(s)
- J T Wachsman
- Environmental Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| |
Collapse
|
15
|
Weitzman SA, Turk PW, Milkowski DH, Kozlowski K. Free radical adducts induce alterations in DNA cytosine methylation. Proc Natl Acad Sci U S A 1994; 91:1261-4. [PMID: 8108398 PMCID: PMC43137 DOI: 10.1073/pnas.91.4.1261] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Methylation of cytosines in DNA is important for the regulation of expression of many genes. During carcinogenesis, normal patterns of gene methylation can be altered. Oxygen radical injury, shown to damage DNA in a variety of ways associated with cancer development and other conditions, has been suggested to affect DNA methylation, but a mechanism has not been demonstrated. Using oligonucleotides containing the common oxygen radical adduct 8-hydroxyguanine to replace guanine, we found that the enzymatic methylation of adjacent cytosines is profoundly altered. Furthermore, there is a high degree of positional specificity with respect to this effect. Thus, free radical injury may explain some of the altered methylation observed during carcinogenesis.
Collapse
Affiliation(s)
- S A Weitzman
- Department of Medicine, Northwestern University Medical School, Chicago, IL 60611
| | | | | | | |
Collapse
|
16
|
Hamilton JW, Louis CA, Doherty KA, Hunt SR, Reed MJ, Treadwell MD. Preferential alteration of inducible gene expression in vivo by carcinogens that induce bulky DNA lesions. Mol Carcinog 1993; 8:34-43. [PMID: 7688968 DOI: 10.1002/mc.2940080109] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Our laboratory is interested in whether chemical carcinogen-induced DNA damage is nonrandomly distributed in the genome, i.e., "targeted," at the level of individual genes. To examine this, we have been investigating whether carcinogen treatment in vivo differentially alters the expression of specific genes. In this study, we examined the effects of four model carcinogens that induce bulky lesions in DNA--benzo[a]pyrene (B[a]P), aflatoxin B1 (AFB1), 7,12-dimethylbenz[a]anthracene (DMBA), and 2-acetylaminofluorene (AAF)--on the steady-state mRNA expression of several constitutive and drug-inducible genes in vivo. We specifically tested the hypothesis that carcinogen-induced DNA damage is preferentially targeted to inducible genes relative to constitutively expressed genes using the chick embryo as a simple in vivo test system. In summary, the four carcinogens had no effect on the steady-state mRNA expression of constitutively expressed beta-actin, transferrin, or albumin genes over a 24-h period after a single dose of each carcinogen. In contrast, each of these same treatments significantly altered the mRNA expression of two glutethimide-inducible genes, ALA synthase and CYP2H1. Both the basal expression of these genes and their drug-inducible expression was altered. B[a]P and AFB1 had similar effects on expression of the two inducible genes and caused similar levels of covalent adducts in total DNA, even though the administered doses differed by 30-fold. B[a]P binding to DNA, and the basal expression of CYP2H1 were similar in liver and lung. However, B[a]P significantly altered basal CYP2H1 mRNA expression in liver, a tissue in which this gene is highly inducible by glutethimide, and had no effect on basal CYP2H1 mRNA expression in lung, a tissue in which this gene is not drug-inducible. These data support the hypothesis that inducible gene expression is a target for carcinogen-induced DNA damage in vivo.
Collapse
Affiliation(s)
- J W Hamilton
- Department of Pharmacology and Toxicology, Dartmouth Medical School, Hanover, NH 03755-3835
| | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- P A Jones
- Kenneth Norris Jr. Comprehensive Cancer Center, University of Southern California, Los Angeles 90033
| | | |
Collapse
|
18
|
|