1
|
Philips C, Campos F, Roosens A, Sánchez-Quevedo MDC, Declercq H, Carriel V. Qualitative and Quantitative Evaluation of a Novel Detergent-Based Method for Decellularization of Peripheral Nerves. Ann Biomed Eng 2018; 46:1921-1937. [PMID: 29987538 DOI: 10.1007/s10439-018-2082-y] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/22/2018] [Indexed: 01/02/2023]
Abstract
Tissue engineering is an emerging strategy for the development of nerve substitutes for peripheral nerve repair. Especially decellularized peripheral nerve allografts are interesting alternatives to replace the gold standard autografts. In this study, a novel decellularization protocol was qualitatively and quantitatively evaluated by histological, biochemical, ultrastructural and mechanical methods and compared to the protocol described by Sondell et al. and a modified version of the protocol described by Hudson et al. Decellularization by the method described by Sondell et al. resulted in a reduction of the cell content, but was accompanied by a loss of essential extracellular matrix (ECM) molecules such as laminin and glycosaminoglycans. This decellularization also caused disruption of the endoneurial tubes and an increased stiffness of the nerves. Decellularization by the adapted method of Hudson et al. did not alter the ECM composition of the nerves, but an efficient cell removal could not be obtained. Finally, decellularization by the method developed in our lab by Roosens et al. led to a successful removal of nuclear material, while maintaining the nerve ultrastructure and ECM composition. In addition, the resulting ECM scaffold was found to be cytocompatible, allowing attachment and proliferation of adipose-derived stem cells. These results show that our decellularization combining Triton X-100, DNase, RNase and trypsin created a promising scaffold for peripheral nerve regeneration.
Collapse
Affiliation(s)
- Charlot Philips
- Tissue Engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B3, 6th floor, 9000, Ghent, Belgium.
| | - Fernando Campos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Annelies Roosens
- Tissue Engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B3, 6th floor, 9000, Ghent, Belgium
| | - María Del Carmen Sánchez-Quevedo
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| | - Heidi Declercq
- Tissue Engineering and Biomaterials Group, Department of Basic Medical Sciences, Faculty of Medicine and Health Sciences, Ghent University, Corneel Heymanslaan 10, Building B3, 6th floor, 9000, Ghent, Belgium
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, University of Granada, Granada, Spain.,Instituto de Investigación Biosanitaria, Ibs.GRANADA, Granada, Spain
| |
Collapse
|
2
|
Tu Q, Pang L, Wang L, Zhang Y, Zhang R, Wang J. Biomimetic choline-like graphene oxide composites for neurite sprouting and outgrowth. ACS APPLIED MATERIALS & INTERFACES 2013; 5:13188-13197. [PMID: 24313218 DOI: 10.1021/am4042004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neurodegenerative diseases or acute injuries of the nervous system always lead to neuron loss and neurite damage. Thus, the development of effective methods to repair these damaged neurons is necessary. The construction of biomimetic materials with specific physicochemical properties is a promising solution to induce neurite sprouting and guide the regenerating nerve. Herein, we present a simple method for constructing biomimetic graphene oxide (GO) composites by covalently bonding an acetylcholine-like unit (dimethylaminoethyl methacrylate, DMAEMA) or phosphorylcholine-like unit (2-methacryloyloxyethyl phosphorylcholine, MPC) onto GO surfaces to enhance neurite sprouting and outgrowth. The resulting GO composites were characterized by Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, Raman spectroscopy, UV-vis spectrometry, scanning electron microscopy, and contact angle analyses. Primary rat hippocampal neurons were used to investigate nerve cell adhesion, spreading, and proliferation on these biomimetic GO composites. GO-DMAEMA and GO-MPC composites provide the desired biomimetic properties for superior biocompatibility without affecting cell viability. At 2 to 7 days after cell seeding was performed, the number of neurites and average neurite length on GO-DMAEMA and GO-MPC composites were significantly enhanced compared with the control GO. In addition, analysis of growth-associate protein-43 (GAP-43) by Western blot showed that GAP-43 expression was greatly improved in biomimetic GO composite groups compared to GO groups, which might promote neurite sprouting and outgrowth. All the results demonstrate the potential of DMAEMA- and MPC-modified GO composites as biomimetic materials for neural interfacing and provide basic information for future biomedical applications of graphene oxide.
Collapse
Affiliation(s)
- Qin Tu
- College of Science and ‡College of Veterinary Medicine, Northwest A&F University , Yangling, Shaanxi 712100, People's Republic of China
| | | | | | | | | | | |
Collapse
|
3
|
Affiliation(s)
- Keith A. Crutcher
- Department of Neurosurgery, University of Cincinnati Medical Center, Cincinnati, Ohio, U.S.A
| |
Collapse
|
4
|
Chang KY, Chen LW, Young TH, Hsieh KH. PEI/EVAL blend membranes for granule neuronal cell culture. JOURNAL OF POLYMER RESEARCH 2007. [DOI: 10.1007/s10965-007-9102-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Pizzi MA, Crowe MJ. Matrix metalloproteinases and proteoglycans in axonal regeneration. Exp Neurol 2006; 204:496-511. [PMID: 17254568 DOI: 10.1016/j.expneurol.2006.12.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2006] [Revised: 12/12/2006] [Accepted: 12/14/2006] [Indexed: 12/13/2022]
Abstract
After an injury to the adult mammalian central nervous system (CNS), a variety of growth-inhibitory molecules are upregulated. A glial scar forms at the site of injury and is composed of numerous molecular substances, including chondroitin sulfate proteoglycans (CSPGs). These proteoglycans inhibit axonal growth in vitro and in vivo. Matrix metalloproteinases (MMPs) can degrade the core protein of some CSPGs as well as other growth-inhibitory molecules such as Nogo and tenascin-C. MMPs have been shown to facilitate axonal regeneration in the adult mammalian peripheral nervous system (PNS). This review will focus on the various roles of proteoglycans and MMPs within the injured nervous system. First, we will present a general background on the injured central nervous system and explore the roles that proteoglycans play in the injured PNS and CNS. Second, we will discuss the various functions of MMPs within the injured PNS and CNS. Special attention will be paid to the possibility of how MMPs might modify the growth-inhibitory extracellular environment of the injured adult mammalian spinal cord and facilitate axonal regeneration in the CNS.
Collapse
Affiliation(s)
- Michael A Pizzi
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Zablocki VAMC, 5000 West National Avenue, Milwaukee, WI 53295, USA
| | | |
Collapse
|
6
|
Affiliation(s)
- Ahmet Höke
- Department of Neurology, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Path 509, Baltimore, MD 21287, USA.
| |
Collapse
|
7
|
Moya KL, Hässig R, Breen KC, Volland H, Di Giamberardino L. Axonal transport of the cellular prion protein is increased during axon regeneration. J Neurochem 2005; 92:1044-53. [PMID: 15715655 DOI: 10.1111/j.1471-4159.2004.02940.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The cellular prion protein, PrPc, is a glycosylphosphatidylinositol-anchored cell surface glycoprotein and a protease-resistant conformer of the protein may be the infectious agent in transmissible spongiform encephalopathies. PrPc is localized on growing axons in vitro and along fibre bundles that contain elongating axons in developing and adult brain. To determine whether the growth state of axons influenced the expression and axonal transport of PrPc, we examined changes in the protein following post-traumatic regeneration in the hamster sciatic nerve. Our results show (1) that PrPc in nerve is significantly increased during nerve regeneration; (2) that this increase involves an increase in axonally transported PrPc; and (3) that the PrPc preferentially targeted for the newly formed portions of the regenerating axons consists of higher molecular weight glycoforms. These results raise the possibility that PrPc may play a role in the growth of axons in vivo, perhaps as an adhesion molecule interacting with the extracellular environment through specialized glycosylation.
Collapse
Affiliation(s)
- Kenneth L Moya
- Commissariat à l'Energie Atomique-Centre National de Recherche Scientifique Unité de Recherche Associeé URA 2210, Service Hospitalier Frédéric Joliot, DRM/DSV, Orsay, France.
| | | | | | | | | |
Collapse
|
8
|
Nieto-Sampedro M. Central nervous system lesions that can and those that cannot be repaired with the help of olfactory bulb ensheathing cell transplants. Neurochem Res 2004; 28:1659-76. [PMID: 14584820 DOI: 10.1023/a:1026056921037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Growth-promoting macroglia (aldynoglia) with growth properties and immunological markers similar to Schwann cells, are found in loci of the mammalian CNS where axon regeneration occurs throughout life, like the olfactory sytem, hypothalamus-hypophysis and the pineal gland. Contrary to Schwann cells, aldynoglia mingle freely with astrocytes and can migrate in brain and spinal cord. Transplantation of cultured and immunopurified olfactory ensheathing cells (OECs) in the spinal cord after multiple central rhizotomy, promoted sensory and central axon growth and partial functional restoration, judging by anatomical, electrophysiological and behavioural criteria. OEC transplants suppressed astrocyte reactivity, thus generally favouring axon growth after a lesion. However, the functional repair promoted by OEC transplants was partial in the best cases, depending on lesion type and location. Cyst formation after photochemical cord lesion was partially prevented but neither the corticospinal tract, interrupted by a mild contusion, nor the sectioned medial longitudinal fascicle, did regrow after OEC transplantation in the injured area.
Collapse
|
9
|
Pinjuh D, Bedi KS. X‐irradiation of adult spinal cord increases its capacity to support neurite regeneration in vitro. Int J Dev Neurosci 2003; 21:409-16. [PMID: 14599487 DOI: 10.1016/j.ijdevneu.2003.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous in vitro studies have shown that X-irradiation during early postnatal life can change the environment of CNS tissue in later adult life such that it becomes more supportive of neurite regeneration from adult dorsal root ganglion (DRG) neurons than non-irradiated tissue. The question arises whether or not x-irradiation during adult life can alter the CNS environment such that it also becomes more supportive of neurite regeneration. This was investigated by exposing portions of the spinal cord of adult rats to 10, 20 or 40 Gray of X-irradiation and later using this tissue to prepare cryosections suitable for use as a substrate in a cryoculture assay. Fixed cryocultures were immunolabelled using anti-glial fibrillary acidic protein (GFAP) to visualise the tissue sections and anti-growth associated protein (GAP-43) to visualise the regenerating neurites. Tissue sections from sham-irradiated animals and from those irradiated with 10 Gray did not support the regeneration of neurites. However, sections of spinal cords from rats treated with either 20 or 40 Gray of X-irradiation 4 or 32 days prior to sampling were found to support a certain degree of neurite regeneration. It is concluded that X-irradiation of adult CNS tissue can alter its environment such that it becomes more supportive of neurite regeneration and it is speculated that this change may be the result of alterations in the glial cell populations in the post-irradiated tissues.
Collapse
Affiliation(s)
- Danny Pinjuh
- School of Biomedical Sciences, The University of Queensland, St Lucia, Brisbane, Qld 4072, Australia
| | | |
Collapse
|
10
|
Bedi KS, Winter J, Berry M, Cohen J. Adult Rat Dorsal Root Ganglion Neurons Extend Neurites on Predegenerated But Not on Normal Peripheral Nerves In Vitro. Eur J Neurosci 2002; 4:193-200. [PMID: 12106365 DOI: 10.1111/j.1460-9568.1992.tb00867.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The abilities of embryonic and adult rat sensory neurons to regenerate were compared when cultured on cryostat sections of normal and lesioned sciatic nerve tissues. Differences in neurite growth, visualized by GAP-43 immunolabelling, were most pronounced on substrata consisting of longitudinal sections of normal versus predegenerated sciatic nerve. Adult dorsal root ganglion (DRG) neurons grew only on the lesioned nerves. Neurites extended along these sections in a characteristically longitudinal orientation, and this growth was not dependent on nerve growth factor. Embryonic DRG neurons extended neurites on sections from both types of nerves. These results highlight important differences in the regenerative abilities of embryonic and adult DRG neurons when grown on physiologically appropriate substrata.
Collapse
Affiliation(s)
- Kuldip S. Bedi
- Division of Anatomy and Cell Biology, UMDS-Guy's Campus, London SE1 9RT, UK
| | | | | | | |
Collapse
|
11
|
Martini R, Xin Y, Schmitz B, Schachner M. The L2/HNK-1 Carbohydrate Epitope is Involved in the Preferential Outgrowth of Motor Neurons on Ventral Roots and Motor Nerves. Eur J Neurosci 2002; 4:628-639. [PMID: 12106326 DOI: 10.1111/j.1460-9568.1992.tb00171.x] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Based on the observation that in adult mice the carbohydrate epitope L2/HNK-1 is detectable on Schwann cells in ventral spinal roots, but only scarcely in dorsal roots (Martini et al., Dev. Biol., 129, 330 - 338, 1988), the possibility was investigated that the carbohydrate is involved in the outgrowth of regenerating motor neuron axons on peripheral nerve substrates expressing the epitope. To monitor whether the L2 carbohydrate remains present during the time periods in which regenerating axons penetrate the denervated distal nerve stumps, the expression of L2 in motor and sensory branches of the femoral nerve was investigated in normal animals and after a crush lesion. During the first two postoperative weeks, L2 immunoreactivity remained high in the myelinating Schwann cells of the motor branch, whereas L2 immunoreactivity was virtually absent in the sensory branch. In a first experimental approach, cryosections of ventral and dorsal spinal roots and of motor and sensory nerves of adult rats and mice were used as substrates for neurite outgrowth. Neurites of motor neurons from chicken embryos were approximately 35% longer after 30 h of maintenance on ventral roots than on dorsal roots. Neurites from sensory neurons had the same length on dorsal as on ventral motors and were as long as neurites from motor neurons grown on dorsal roots. L2 antibodies reduced neurite outgrowth of motor neurons on ventral roots but not on dorsal roots. Neurite outgrowth of sensory neurons on both roots was not altered by the antibodies. Neurite outgrowth of motor neurons on a mixture of the extracellular matrix glycoprotein laminin and the L2 carbohydrate-carrying glycolipid was significantly higher than on the laminin substrate mixture with GD1b ganglioside or sulphatide. L2 antibodies reduced neurite outgrowth of motor neurons by 50% on the L2 glycolipid, but not on GD1b or sulphatide. These observations indicate that the L2 carbohydrate promotes neurite outgrowth of motor neurons in vitro and may thus contribute to the preferential reinnervation of motor nerves by regenerating motor axons in vivo.
Collapse
Affiliation(s)
- R. Martini
- Department of Neurobiology, Swiss Federal Institute of Technology Zürich, Hönggerberg, 8093 Zürich, Switzerland
| | | | | | | |
Collapse
|
12
|
Polleux F, Ghosh A. The slice overlay assay: a versatile tool to study the influence of extracellular signals on neuronal development. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2002; 2002:pl9. [PMID: 12060788 DOI: 10.1126/stke.2002.136.pl9] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We have developed a technique that allows characterization and identification of extracellular signals that regulate various aspects of neuronal differentiation. In this in vitro assay, dissociated cells isolated from the developing cerebral wall are labeled and cultured over organotypic cortical slices. We have used this slice overlay assay to identify some of the extracellular cues that regulate differentiation and patterning of axons and dendrites in the cerebral cortex. This assay can be easily adapted to identify factors that control other aspects of neuronal development, such as proliferation and survival, and can also be used to evaluate the role of extracellular signals in the development of nonneural tissues.
Collapse
Affiliation(s)
- Franck Polleux
- INSERM U371, 18 avenue Doyen Lépine, 69675 BRON Cedex, France
| | | |
Collapse
|
13
|
Polleux F, Ghosh A. The Slice Overlay Assay: A Versatile Tool to Study the Influence of Extracellular Signals on Neuronal Development. Sci Signal 2002. [DOI: 10.1126/scisignal.1362002pl9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
14
|
Abstract
Mice lacking the low-affinity neurotrophin receptor p75 have multiple peripheral neural deficits. Here we examined the developmental nature of these deficiencies. Peripheral axons in p75 -/- embryos were severely stunted and poorly arborized from embryonic day 11.5 (E11.5) to E14.5. In vitro, neurite outgrowth from the dorsal root ganglia was significantly decreased in the p75 -/- embryos at E12.5, suggesting that stunted axonal growth in the embryo may result in part from defects in neurite elongation. Additionally, Schwann cell marker S100beta immunoreactivity was decreased or absent along the growing axons of the ophthalmic branch from the trigeminal ganglia in p75 -/- embryos. Electron microscopy studies of the axons of the trigeminal ganglion at E13.5 revealed that in the p75 mutant embryo, nerve bundles were highly impaired and that coverage of the growing axons by Schwann cell cytoplasm was substantially reduced. In vitro, Schwann cell migration from the dorsal root ganglia was significantly decreased in the p75 -/- embryos at E12.5, suggesting that the lack of S100beta staining and Schwann cell coverage in the p75 mutant results from a deficit in Schwann cell migration. These results provide evidence that p75 is important in the developing embryo for regulating axon growth and arborization and for Schwann cell migration.
Collapse
|
15
|
Pettigrew DB, Shockley KP, Crutcher KA. Disruption of spinal cord white matter and sciatic nerve geometry inhibits axonal growth in vitro in the absence of glial scarring. BMC Neurosci 2001; 2:8. [PMID: 11399204 PMCID: PMC32296 DOI: 10.1186/1471-2202-2-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2001] [Accepted: 05/31/2001] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Axons within the mature mammalian central nervous system fail to regenerate following injury, usually resulting in long-lasting motor and sensory deficits. Studies involving transplantation of adult neurons into white matter implicate glial scar-associated factors in regeneration failure. However, these studies cannot distinguish between the effects of these factors and disruption of the spatial organization of cells and molecular factors (disrupted geometry). Since white matter can support or inhibit neurite growth depending on the geometry of the fiber tract, the present study sought to determine whether disrupted geometry is sufficient to inhibit neurite growth. RESULTS Embryonic chick sympathetic neurons were cultured on unfixed longitudinal cryostat sections of mature rat spinal cord or sciatic nerve that had been crushed with forceps ex vivo then immediately frozen to prevent glial scarring. Neurite growth on uncrushed portions of spinal cord white matter or sciatic nerve was extensive and highly parallel with the longitudinal axis of the fiber tract but did not extend onto crushed portions. Moreover, neurite growth from neurons attached directly to crushed white matter or nerve tissue was shorter and less parallel compared with neurite growth on uncrushed tissue. In contrast, neurite growth appeared to be unaffected by crushed spinal cord gray matter. CONCLUSIONS These observations suggest that glial scar-associated factors are not necessary to block axonal growth at sites of injury. Disruption of fiber tract geometry, perhaps involving myelin-associated neurite-growth inhibitors, may be sufficient to pose a barrier to regenerating axons in spinal cord white matter and peripheral nerves.
Collapse
Affiliation(s)
- David B Pettigrew
- Dept. of Neurobiology and Anatomy University of Texas-Houston Health Science Center P.O. Box 20708 Houston, Texas, U.S.A
| | - Kristina P Shockley
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0515, U.S.A
| | - Keith A Crutcher
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0515, U.S.A
| |
Collapse
|
16
|
Pettigrew DB, Crutcher KA. Myelin contributes to the parallel orientation of axonal growth on white matter in vitro. BMC Neurosci 2001; 2:9. [PMID: 11399205 PMCID: PMC32297 DOI: 10.1186/1471-2202-2-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2001] [Accepted: 05/31/2001] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Brain and spinal cord white matter can support extensive axonal growth. This growth is generally constrained to an orientation that is parallel to the longitudinal axis of the fiber tract. This constraint is presumably due to permissive and non-permissive substrates that are interleaved with each other and oriented in parallel within the tract. RESULTS Embryonic chick sympathetic neurons were cultured on cryostat sections of rat brain and the orientation of neurite growth on white matter was assessed. To determine if haptotaxis is sufficient to guide parallel neurite growth, neurons were cultured under conditions designed to interfere with interactions between growing neurites and factors that act as biochemical contact guidance cues but not interactions with haptotactic cues. Under these conditions, neurites extending on white matter were not exclusively oriented in parallel to the fiber tract, suggesting that biochemical cues are involved. To assess the role of myelin in guiding parallel neurite growth, neurons were cultured on myelin-deficient corpus callosum. These neurons also extended neurites that were not constrained to a parallel orientation. Moreover, preincubation with NGF and treatment with cAMP analogs, manipulations that attenuate overall myelin-mediated inhibition of neurite growth, also led to a reduced parallel orientation of neurite growth. CONCLUSIONS The present studies suggest that some of the relevant factors that constrain axonal growth on white matter are not haptotactic in nature and appear to be partly mediated by factors that are associated with myelin and may involve myelin-associated "inhibitors".
Collapse
Affiliation(s)
- David B Pettigrew
- Dept. of Neurobiology and Anatomy University of Texas-Houston Health Science Center P.O. Box 20708 Houston, Texas, U.S.A
| | - Keith A Crutcher
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0515, U.S.A
| |
Collapse
|
17
|
Biran R, Webb K, Noble MD, Tresco PA. Surfactant-immobilized fibronectin enhances bioactivity and regulates sensory neurite outgrowth. JOURNAL OF BIOMEDICAL MATERIALS RESEARCH 2001; 55:1-12. [PMID: 11426386 DOI: 10.1002/1097-4636(200104)55:1<1::aid-jbm10>3.0.co;2-#] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A PEO-containing surface coating was investigated as a means to control neurite outgrowth in the presence of serum. Various ratios of end-group-activated tri-block copolymer Pluronic F108 were used to immobilize the extracellular matrix protein fibronectin (FN). Primary cultures of dorsal root ganglion neurons were cultured on F108-immobilized FN or, as a control, on FN adsorbed from solution directly to polystyrene. Although FN surface concentration could be controlled in a dose-dependent manner by either technique, dose-dependent control of neuronal behaviors was best achieved on F108-immobilized FN. This effect was similar regardless of the presence of serum in the culture medium. F108-immobilized FN supported twofold greater maximal neurite outgrowth than did directly adsorbed FN. Furthermore, at similar surface concentrations, F108-FN was significantly more active in promoting neurite outgrowth. Polypropylene filament bundles treated with F108-immobilized FN supported robust outgrowth from explants of dorsal root ganglia, demonstrating the utility of the surface coating on clinically relevant materials with more complex shapes. The ability to control neuronal behaviors in a serum-resistant manner, coupled with enhanced biologic activity, demonstrates the potential for surfactant-based immobilization as a method for generating biointeractive materials for tissue engineering.
Collapse
Affiliation(s)
- R Biran
- Department of Bioengineering, The Keck Center for Tissue Engineering, University of Utah, Salt Lake City 84112, USA
| | | | | | | |
Collapse
|
18
|
Wilson N, Esfandiary E, Bedi KS. Cryosections of pre-irradiated adult rat spinal cord tissue support axonal regeneration in vitro. Int J Dev Neurosci 2000; 18:735-41. [PMID: 11154843 DOI: 10.1016/s0736-5748(00)00053-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Neonatal X-irradiation of central nervous system (CNS) tissue markedly reduces the glial population in the irradiated area. Previous in vivo studies have demonstrated regenerative success of adult dorsal root ganglion (DRG) neurons into the neonatally-irradiated spinal cord. The present study was undertaken to determine whether these results could be replicated in an in vitro environment. The lumbosacral spinal cord of anaesthetised Wistar rat pups, aged between 1 and 5 days, was subjected to a single dose (40 Gray) of X-irradiation. A sham-irradiated group acted as controls. Rats were allowed to reach adulthood before being killed. Their lumbosacral spinal cords were dissected out and processed for sectioning in a cryostat. Cryosections (10 microm-thick) of the spinal cord tissue were picked up on sterile glass coverslips and used as substrates for culturing dissociated adult DRG neurons. After an appropriate incubation period, cultures were fixed in 2% paraformaldehyde and immunolabelled to visualise both the spinal cord substrate using anti-glial fibrillary acidic protein (GFAP) and the growing DRG neurons using anti-growth associated protein (GAP-43). Successful growth of DRG neurites was observed on irradiated, but not on non-irradiated, sections of spinal cord. Thus, neonatal X-irradiation of spinal cord tissue appears to alter its environment such that it can later support, rather than inhibit, axonal regeneration. It is suggested that this alteration may be due, at least in part, to depletion in the number of and/or a change in the characteristics of the glial cells.
Collapse
Affiliation(s)
- N Wilson
- Department of Anatomical Sciences, University of Queensland, St Lucia, Australia
| | | | | |
Collapse
|
19
|
Bentley CA, Lee KF. p75 is important for axon growth and schwann cell migration during development. J Neurosci 2000; 20:7706-15. [PMID: 11027232 PMCID: PMC6772891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Mice lacking the low-affinity neurotrophin receptor p75 have multiple peripheral neural deficits. Here we examined the developmental nature of these deficiencies. Peripheral axons in p75 -/- embryos were severely stunted and poorly arborized from embryonic day 11.5 (E11.5) to E14.5. In vitro, neurite outgrowth from the dorsal root ganglia was significantly decreased in the p75 -/- embryos at E12.5, suggesting that stunted axonal growth in the embryo may result in part from defects in neurite elongation. Additionally, Schwann cell marker S100beta immunoreactivity was decreased or absent along the growing axons of the ophthalmic branch from the trigeminal ganglia in p75 -/- embryos. Electron microscopy studies of the axons of the trigeminal ganglion at E13.5 revealed that in the p75 mutant embryo, nerve bundles were highly impaired and that coverage of the growing axons by Schwann cell cytoplasm was substantially reduced. In vitro, Schwann cell migration from the dorsal root ganglia was significantly decreased in the p75 -/- embryos at E12.5, suggesting that the lack of S100beta staining and Schwann cell coverage in the p75 mutant results from a deficit in Schwann cell migration. These results provide evidence that p75 is important in the developing embryo for regulating axon growth and arborization and for Schwann cell migration.
Collapse
MESH Headings
- Animals
- Axons/metabolism
- Axons/ultrastructure
- Calcium-Binding Proteins/metabolism
- Cell Movement/genetics
- Embryo, Mammalian/innervation
- Embryo, Mammalian/pathology
- Fluorescent Antibody Technique
- Ganglia, Spinal/embryology
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Immunohistochemistry
- Mice
- Mice, Knockout
- Microscopy, Electron
- Nerve Growth Factors/metabolism
- Neurites/metabolism
- Neurites/pathology
- Peripheral Nervous System Diseases/genetics
- Peripheral Nervous System Diseases/metabolism
- Peripheral Nervous System Diseases/pathology
- Receptor, Nerve Growth Factor/deficiency
- Receptor, Nerve Growth Factor/genetics
- Receptor, Nerve Growth Factor/metabolism
- S100 Calcium Binding Protein beta Subunit
- S100 Proteins
- Schwann Cells/enzymology
- Schwann Cells/metabolism
- Schwann Cells/ultrastructure
- Trigeminal Ganglion/embryology
- Trigeminal Ganglion/metabolism
- Trigeminal Ganglion/pathology
- Tubulin/metabolism
Collapse
Affiliation(s)
- C A Bentley
- The Salk Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
20
|
Ferguson TA, Muir D. MMP-2 and MMP-9 increase the neurite-promoting potential of schwann cell basal laminae and are upregulated in degenerated nerve. Mol Cell Neurosci 2000; 16:157-67. [PMID: 10924258 DOI: 10.1006/mcne.2000.0859] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Compared to degenerated nerves, the ability of normal adult peripheral nerve to support axonal regeneration is poor and may be attributed to the inhibition of endoneurial laminin by chondroitin sulfate proteoglycan (CSPG). In cryoculture assays, neuritic growth of neonatal and adult peripheral neurons was increased on sections of normal nerve by pretreatment with CSPG-degrading enzymes, including the matrix metalloproteinases MMP-2 and MMP-9. Axonal regeneration is known to occur within the Schwann cell basal laminae of degenerated nerve. Similarly, deconvolution microscopy revealed that neuritic growth on nerve tissue sections occurred principally on the lumenal surface of enzymatically modified basal laminae. Compared to normal nerve, there was a marked increase in the neurite-promoting activity of the degenerated nerve, and this activity was not increased significantly by subsequent MMP treatment. Additionally, the expression and activation of MMP-2 and MMP-9 were elevated in degenerated nerve, suggesting that degradation of inhibitory CSPG by the MMPs contributes to the growth-promoting properties of degenerated nerve.
Collapse
Affiliation(s)
- T A Ferguson
- Division of Neurology, University of Florida Brain Institute and College of Medicine, Gainsville, Florida 32610-0296, USA
| | | |
Collapse
|
21
|
Abstract
The proteoglycans are multifunctional macromolecules composed of a core polypeptide and a variable number of glycosaminoglycan chains. The structural diversity and complexities of proteoglycan expression in the developing and adult Nervous System underlies the variety of biological functions that these molecules fulfill. Thus, in the Nervous System, proteoglycans regulate the structural organisation of the extracellular matrix, modulate growth factor activities and cellular adhesive and motility events, such as cell migration and axon outgrowth. This review summarises the evidences indicating that proteoglycans have an important role as modulators of neurite outgrowth and neuronal polarity. Special emphasis will be placed on those studies that have shown that proteoglycans of certain subtypes inhibit neurite extension either during the development and/or the regeneration of the vertebrate Central Nervous System.
Collapse
Affiliation(s)
- P Bovolenta
- Departamento de Neurobiología del Desarrollo, Instituto Cajal, Consejo Superior de Investigaciones Científicas, Dr. Arce 37, 28002, Madrid, Spain.
| | | |
Collapse
|
22
|
Abstract
Axonal regeneration is normally limited within myelinated fiber tracts in the CNS of higher vertebrates. Numerous studies suggest that CNS myelin contains inhibitors that may contribute to abortive axonal growth. In contrast to the evidence of myelin-associated neurite inhibitors, embryonic neurons transplanted into the CNS can regenerate extensively within myelinated tracts in vivo. It has been speculated that embryonic neurons do not yet express the appropriate receptors for myelin-associated inhibitors. Recently, however, extensive regeneration from transplanted adult neurons has also been reported within myelinated tracts of the CNS, casting doubt on the role myelin-associated inhibitors play in abortive regeneration. The present study reexamined the potential of white matter to support neurite growth in vitro. By the use of Neurobasal medium, neurons were cultured onto unfixed cryostat sections of mature rat CNS tissue. As documented previously, robust neuronal attachment and neurite outgrowth occurred on gray matter but these neurites were sharply inhibited by white matter. In addition, however, increased rates of neuronal attachment directly to white matter occurred with neurite outgrowth comparable in length with that on gray matter but limited to directions parallel to the fiber tract. Frequently, the same section of white matter was found to inhibit neurite outgrowth from neurons on gray matter while supporting parallel neurite outgrowth from neurons on white matter. These results suggest that whether white matter supports or inhibits axonal growth depends on the geometric relationship between the axon and the fiber tract; more specifically, white matter supports parallel growth but inhibits nonparallel growth.
Collapse
|
23
|
Son YJ, Patton BL, Sanes JR. Induction of presynaptic differentiation in cultured neurons by extracellular matrix components. Eur J Neurosci 1999; 11:3457-67. [PMID: 10564354 DOI: 10.1046/j.1460-9568.1999.00766.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Motoneurons reinnervating skeletal muscles form nerve terminals at sites of contact with a specialized basal lamina. To analyse the molecules and mechanisms that underly these responses, we introduce two systems in which basal lamina-derived components induce presynaptic differentiation of cultured neurons from chick ciliary ganglia in the absence of a postsynaptic cell. In one, ciliary neurites that contact substrates coated with a recombinant laminin beta2 fragment form varicosities that are rich in synaptic vesicle proteins, depleted of neurofilaments, and capable of depolarization-dependent exocytosis and endocytosis. Thus, a single molecule can trigger a complex, coordinated program of presynaptic differentiation. In a second system, neurites growing on cryostat sections of adult kidney form vesicle-rich, neurofilament-poor arbors on glomeruli. Glomerular basal lamina, like synaptic basal lamina, is rich in laminin beta2 and collagen (alpha3-5) IV. However, glomeruli from mutant mice lacking these proteins were capable of inducing differentiation, suggesting the glomerulus as a source of novel presynaptic organizing molecules.
Collapse
Affiliation(s)
- Y J Son
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | | | | |
Collapse
|
24
|
Pettigrew DB, Crutcher KA. White matter of the CNS supports or inhibits neurite outgrowth in vitro depending on geometry. J Neurosci 1999; 19:8358-66. [PMID: 10493737 PMCID: PMC6783033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Axonal regeneration is normally limited within myelinated fiber tracts in the CNS of higher vertebrates. Numerous studies suggest that CNS myelin contains inhibitors that may contribute to abortive axonal growth. In contrast to the evidence of myelin-associated neurite inhibitors, embryonic neurons transplanted into the CNS can regenerate extensively within myelinated tracts in vivo. It has been speculated that embryonic neurons do not yet express the appropriate receptors for myelin-associated inhibitors. Recently, however, extensive regeneration from transplanted adult neurons has also been reported within myelinated tracts of the CNS, casting doubt on the role myelin-associated inhibitors play in abortive regeneration. The present study reexamined the potential of white matter to support neurite growth in vitro. By the use of Neurobasal medium, neurons were cultured onto unfixed cryostat sections of mature rat CNS tissue. As documented previously, robust neuronal attachment and neurite outgrowth occurred on gray matter but these neurites were sharply inhibited by white matter. In addition, however, increased rates of neuronal attachment directly to white matter occurred with neurite outgrowth comparable in length with that on gray matter but limited to directions parallel to the fiber tract. Frequently, the same section of white matter was found to inhibit neurite outgrowth from neurons on gray matter while supporting parallel neurite outgrowth from neurons on white matter. These results suggest that whether white matter supports or inhibits axonal growth depends on the geometric relationship between the axon and the fiber tract; more specifically, white matter supports parallel growth but inhibits nonparallel growth.
Collapse
Affiliation(s)
- D B Pettigrew
- Department of Neurosurgery, University of Cincinnati School of Medicine, Cincinnati, Ohio 45267-0515, USA
| | | |
Collapse
|
25
|
Vogelezang MG, Scherer SS, Fawcett JW, ffrench-Constant C. Regulation of fibronectin alternative splicing during peripheral nerve repair. J Neurosci Res 1999; 56:323-33. [PMID: 10340741 DOI: 10.1002/(sici)1097-4547(19990515)56:4<323::aid-jnr1>3.0.co;2-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Wallerian degeneration following peripheral nerve injury is associated with increased production of fibronectin and other extracellular matrix molecules that are thought to enhance repair. We have shown previously that alternative splicing of the mRNA for fibronectin also changes following sciatic nerve lesions so as to reexpress forms of mRNA seen during embryogenesis. In the present study, we have examined the role of the regenerating axons in the regulation of this splicing. We have compared the patterns of fibronectin mRNA splicing seen in sciatic nerve development with that seen in cut nerves (that do not regenerate), crushed nerves (that regenerate successfully), and Schwann cells cultured in forskolin so as to mimic axonal signals. By using a reverse transcriptase polymerase chain reaction assay to examine all three regions of fibronectin mRNA splicing in a quantitative manner, we found that embryonic patterns of fibronectin mRNA splicing appear rapidly following injury and are not then altered by reestablishment of axons in the nerve. In addition, we found that forskolin has no effect on fibronectin mRNA splicing in cultured cells. We conclude that axonal signals do not regulate the pattern of fibronectin alternative splicing in peripheral nerve repair.
Collapse
Affiliation(s)
- M G Vogelezang
- Wellcome/CRC Institute of Developmental Biology and Cancer, Cambridge, United Kingdom
| | | | | | | |
Collapse
|
26
|
Zuo J, Neubauer D, Dyess K, Ferguson TA, Muir D. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp Neurol 1998; 154:654-62. [PMID: 9878200 DOI: 10.1006/exnr.1998.6951] [Citation(s) in RCA: 235] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The contribution of chondroitin sulfate proteoglycan (CSPG) in the suppression of axonal growth in rat spinal cord has been examined by means of an in vitro bioassay in which regenerating neurons are grown on tissue section substrata. Dissociated embryonic chick dorsal root ganglionic neurons were grown on normal and injured adult spinal cord tissue sections treated with chondroitinases. Neuritic growth on normal spinal cord tissue was meager. However, both the percentage of neurons with neurites and the average neurite length were substantially greater on sections treated with chondroitinase ABC. Enzymes that specifically degraded dermatan sulfate or hyaluronan were ineffective. Neuritic growth was significantly greater on injured (compared to normal) spinal cord and a further dramatic increase resulted from chondroitinase ABC treatment. Neurites grew equally within white and gray matter regions after chondroitinase treatment. Observed increases in neurite outgrowth on chondroitinase-treated tissues were largely inhibited in the presence of function-blocking laminin antibodies. These findings indicate that inhibitory CSPG is widely distributed and predominant in both normal and injured spinal cord tissues. Additionally, inhibitory CSPG is implicated in negating the potential stimulatory effects of laminin that might otherwise support spinal cord regeneration.
Collapse
Affiliation(s)
- J Zuo
- Department of Pediatrics, University of Florida Brain Institute and College of Medicine, Gainesville, Florida, 32610-0296, USA
| | | | | | | | | |
Collapse
|
27
|
Abstract
F-spondin, an extracellular matrix protein, is present in peripheral nerve during embryonic development, but its amount diminishes by birth. Axotomy of adult rat sciatic nerve, however, causes a massive upregulation of both F-spondin mRNA and protein distal to the lesion. F-spondin in the distal stump of axotomized nerve promotes neurite outgrowth of sensory neurons, as revealed by protein neutralization with F-spondin-specific antibodies. Thus, F-spondin is likely to play a role in promoting axonal regeneration after nerve injury.
Collapse
|
28
|
Burstyn-Cohen T, Frumkin A, Xu YT, Scherer SS, Klar A. Accumulation of F-spondin in injured peripheral nerve promotes the outgrowth of sensory axons. J Neurosci 1998; 18:8875-85. [PMID: 9786993 PMCID: PMC6793537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
F-spondin, an extracellular matrix protein, is present in peripheral nerve during embryonic development, but its amount diminishes by birth. Axotomy of adult rat sciatic nerve, however, causes a massive upregulation of both F-spondin mRNA and protein distal to the lesion. F-spondin in the distal stump of axotomized nerve promotes neurite outgrowth of sensory neurons, as revealed by protein neutralization with F-spondin-specific antibodies. Thus, F-spondin is likely to play a role in promoting axonal regeneration after nerve injury.
Collapse
Affiliation(s)
- T Burstyn-Cohen
- Department of Anatomy and Cell Biology, The Hebrew University-Hadassah Medical School, Jerusalem, 91120 Israel
| | | | | | | | | |
Collapse
|
29
|
Förster E, Kaltschmidt C, Deng J, Cremer H, Deller T, Frotscher M. Lamina-specific cell adhesion on living slices of hippocampus. Development 1998; 125:3399-410. [PMID: 9693143 DOI: 10.1242/dev.125.17.3399] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Laminar distribution of fiber systems is a characteristic feature of hippocampal organization. Ingrowing afferents, e.g. the fibers from the entorhinal cortex, terminate in specific layers, which implies the existence of laminar recognition cues. To identify cues that are involved in the laminar segregation of fiber systems in the hippocampus, we used an in vitro assay to study the adhesion of dissociated entorhinal cells on living hippocampal slices. Here we demonstrate that dissociated entorhinal cells adhere to living hippocampal slices with a lamina-specific distribution that reflects the innervation pattern of the entorhino-hippocampal projection. In contrast, laminae which are not invaded by entorhinal fibers are a poor substrate for cell adhesion. Lamina-specific cell adhesion does not require the neural cell adhesion molecule or the extracellular matrix glycoprotein reelin, as revealed in studies with mutants. However, the pattern of adhesive cues in the reeler mouse hippocampus mimics characteristic alterations of the entorhinal projection in this mutant, suggesting a role of layer-specific adhesive cues in the pathfinding of entorhinal fibers. Lamina-specific cell adhesion is independent of divalent cations, is abolished after cryofixation or paraformaldehyde fixation and is recognized across species. By using a novel membrane adhesion assay, we show that lamina-specific cell adhesion can be mimicked by membrane-coated fluorescent microspheres. Recognition of the adhesive properties of different hippocampal laminae by growing axons, as either a growth permissive or a non-permissive substrate, may provide a developmental mechanism underlying the segregation of lamina-specific fiber projections.
Collapse
Affiliation(s)
- E Förster
- Institute of Anatomy and Molecular Neurobiology Laboratory, University of Freiburg, P.O. Box 111, D-79001, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
30
|
Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan. J Neurosci 1998. [PMID: 9651203 DOI: 10.1523/jneurosci.18-14-05203.1998] [Citation(s) in RCA: 209] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are implicated in the regulation of axonal growth. We previously reported that the neurite-promoting activity of laminin is inhibited by association with a Schwann cell-derived CSPG and that endoneurial laminin may be inhibited by this CSPG as well [Zuo J, Hernandez YJ, Muir D (1998) Chondroitin sulfate proteoglycan with neurite-inhibiting activity is upregulated after peripheral nerve injury. J Neurobiol 34:41-54]. Mechanisms regulating axonal growth were studied by using an in vitro bioassay in which regenerating embryonic dorsal root ganglionic neurons (DRGn) were grown on sections of normal adult nerve. DRGn achieved slow neuritic growth on sections of normal nerve, which was reduced significantly by treatment with metalloproteinase inhibitors. Similar results were obtained on a synthetic substratum composed of laminin and inhibitory CSPG. DRGn expressed the matrix metalloproteinase, MMP-2, which was transported to the growth cone. Recombinant MMP-2 inactivated the neurite-inhibiting CSPG without hindering the neurite-promoting potential of laminin. Similarly, neuritic growth by DRGn cultured on normal nerve sections was increased markedly by first treating the nerve sections with MMP-2. The proteolytic deinhibition by MMP-2 was equivalent to and nonadditive with that achieved by chondroitinase, suggesting that both enzymes inactivated inhibitory CSPG. Additionally, the increases in neuritic growth resulting from treating nerve sections with MMP-2 or chondroitinase were blocked by anti-laminin antibodies. From these results we conclude that MMP-2 provides a mechanism for the deinhibition of laminin in the endoneurial basal lamina and may play an important role in the regeneration of peripheral nerve.
Collapse
|
31
|
Zuo J, Ferguson TA, Hernandez YJ, Stetler-Stevenson WG, Muir D. Neuronal matrix metalloproteinase-2 degrades and inactivates a neurite-inhibiting chondroitin sulfate proteoglycan. J Neurosci 1998; 18:5203-11. [PMID: 9651203 PMCID: PMC6793496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chondroitin sulfate proteoglycans (CSPGs) are implicated in the regulation of axonal growth. We previously reported that the neurite-promoting activity of laminin is inhibited by association with a Schwann cell-derived CSPG and that endoneurial laminin may be inhibited by this CSPG as well [Zuo J, Hernandez YJ, Muir D (1998) Chondroitin sulfate proteoglycan with neurite-inhibiting activity is upregulated after peripheral nerve injury. J Neurobiol 34:41-54]. Mechanisms regulating axonal growth were studied by using an in vitro bioassay in which regenerating embryonic dorsal root ganglionic neurons (DRGn) were grown on sections of normal adult nerve. DRGn achieved slow neuritic growth on sections of normal nerve, which was reduced significantly by treatment with metalloproteinase inhibitors. Similar results were obtained on a synthetic substratum composed of laminin and inhibitory CSPG. DRGn expressed the matrix metalloproteinase, MMP-2, which was transported to the growth cone. Recombinant MMP-2 inactivated the neurite-inhibiting CSPG without hindering the neurite-promoting potential of laminin. Similarly, neuritic growth by DRGn cultured on normal nerve sections was increased markedly by first treating the nerve sections with MMP-2. The proteolytic deinhibition by MMP-2 was equivalent to and nonadditive with that achieved by chondroitinase, suggesting that both enzymes inactivated inhibitory CSPG. Additionally, the increases in neuritic growth resulting from treating nerve sections with MMP-2 or chondroitinase were blocked by anti-laminin antibodies. From these results we conclude that MMP-2 provides a mechanism for the deinhibition of laminin in the endoneurial basal lamina and may play an important role in the regeneration of peripheral nerve.
Collapse
Affiliation(s)
- J Zuo
- Departments of Pediatrics (Neurology Division) and Neuroscience, University of Florida Brain Institute and College of Medicine, Gainesville, Florida 32610-0296, USA
| | | | | | | | | |
Collapse
|
32
|
Comparison of neurite outgrowth induced by intact and injured sciatic nerves: a confocal and functional analysis. J Neurosci 1998. [PMID: 9412511 DOI: 10.1523/jneurosci.18-01-00328.1998] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mechanisms regulating axon growth in the peripheral nervous system have been studied by means of an in vitro bioassay, the tissue section culture, in which regenerating neurons are grown on substrata made up of tissue sections. Sections from intact and degenerated sciatic nerves proved to be different in their ability to support neurite outgrowth of embryonic chick sensory neurons from both qualitative and quantitative points of view. On denervated nerve sections, the total length of neurites elaborated per neuron was almost twice that found on intact nerve sections. In addition, confocal microscopy revealed a striking difference between intact and denervated nerve substrata: on denervated nerve sections, neurites grew inside the internal structures of endoneurial Schwann cell tubes, within the underlying tissue sections, whereas on intact nerve sections neurites extended along endoneurial basal laminae but never entered Schwann cell tubes. Perturbation experiments were used to analyze some of the molecular determinants that control neurite outgrowth in this system. Antibodies directed against the beta1-integrin subunit inhibited neurite extension on both normal and degenerated rat sciatic nerve tissue. Strikingly, however, differential inhibition was observed using antibodies directed against extracellular matrix molecules. Anti-laminin-2 (merosin) antibodies drastically reduced both the percentage of growing neurons and the total length of neurites on denervated nerve sections, but they did not modify these parameters on sections of normal nerve. Taken together, these results suggest that laminin-2/merosin promotes neurite outgrowth in peripheral nerve environments but only after Wallerian degeneration, which is when axons are allowed to extend within endoneurial tubes.
Collapse
|
33
|
Agius E, Cochard P. Comparison of neurite outgrowth induced by intact and injured sciatic nerves: a confocal and functional analysis. J Neurosci 1998; 18:328-38. [PMID: 9412511 PMCID: PMC6793403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Mechanisms regulating axon growth in the peripheral nervous system have been studied by means of an in vitro bioassay, the tissue section culture, in which regenerating neurons are grown on substrata made up of tissue sections. Sections from intact and degenerated sciatic nerves proved to be different in their ability to support neurite outgrowth of embryonic chick sensory neurons from both qualitative and quantitative points of view. On denervated nerve sections, the total length of neurites elaborated per neuron was almost twice that found on intact nerve sections. In addition, confocal microscopy revealed a striking difference between intact and denervated nerve substrata: on denervated nerve sections, neurites grew inside the internal structures of endoneurial Schwann cell tubes, within the underlying tissue sections, whereas on intact nerve sections neurites extended along endoneurial basal laminae but never entered Schwann cell tubes. Perturbation experiments were used to analyze some of the molecular determinants that control neurite outgrowth in this system. Antibodies directed against the beta1-integrin subunit inhibited neurite extension on both normal and degenerated rat sciatic nerve tissue. Strikingly, however, differential inhibition was observed using antibodies directed against extracellular matrix molecules. Anti-laminin-2 (merosin) antibodies drastically reduced both the percentage of growing neurons and the total length of neurites on denervated nerve sections, but they did not modify these parameters on sections of normal nerve. Taken together, these results suggest that laminin-2/merosin promotes neurite outgrowth in peripheral nerve environments but only after Wallerian degeneration, which is when axons are allowed to extend within endoneurial tubes.
Collapse
Affiliation(s)
- E Agius
- Centre de Biologie du Développement, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5547, affiliée à l'Institut National de la Santé et de la Recherche Médicale, Université Paul Sabatier, 31062 Toulouse, France
| | | |
Collapse
|
34
|
Zuo J, Hernandez YJ, Muir D. Chondroitin sulfate proteoglycan with neurite-inhibiting activity is up-regulated following peripheral nerve injury. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1097-4695(199801)34:1<41::aid-neu4>3.0.co;2-c] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Shiga T, Lustig M, Grumet M, Shirai T. Cell adhesion molecules regulate guidance of dorsal root ganglion axons in the marginal zone and their invasion into the mantle layer of embryonic spinal cord. Dev Biol 1997; 192:136-48. [PMID: 9405103 DOI: 10.1006/dbio.1997.8742] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In order to elucidate the mechanisms regulating the projections of dorsal root ganglion (DRG) axons in the dorsal funiculus and invasion into target regions in the mantle layer (prospective gray matter) of the spinal cord, we examined the interactions between DRG axons and spinal cord. DRG neurons were dissociated from chick embryos and cultured for 1-2 days on cryostat sections of the spinal cord at embryonic day 5 (E5) or at E9. E5 and E9 DRG neurons extended neurites onto both marginal zone (prospective white matter) and mantle layer (prospective gray matter) of the spinal cord, suggesting that both of these regions are permissive for neurite growth. When E5 DRG neurites approached cryosections of E5 spinal cord from outside, most of them ran in the marginal zone without invading the mantle layer. In contrast, about half of E9 DRG neurites entered the mantle layer after crossing the marginal zone of E9 spinal cord. These growth patterns of DRG neurites on spinal marginal zone and mantle layer are similar to the pathway formation of DRG axons at comparable stages in vivo; DRG axons run exclusively in the prospective dorsal funiculus before E6, and enter the mantle layer (prospective dorsal horn) to reach the target regions by E9. Perturbation of functions of Ng-CAM, Nr-CAM, and axonin-1/SC2 by adding the specific antibodies in the culture medium increased the ratio of DRG neurites entering the mantle layer of E5 spinal cord, suggesting that these cell adhesion molecules are involved in keeping DRG neurites in the marginal zone. Taken together with the expression of Ng-CAM, Nr-CAM, and axonin-1/SC2, these CAMs on DRG axons may regulate the guidance of these axons in the marginal zone before E6, and the subsequent decrease in the relative levels of these CAMs might allow DRG axons to invade the target mantle layer.
Collapse
Affiliation(s)
- T Shiga
- Department of Anatomy, Yamagata University School of Medicine, Yamagata, 990-23, Japan
| | | | | | | |
Collapse
|
36
|
Saito F, Yamada H, Sunada Y, Hori H, Shimizu T, Matsumura K. Characterization of a 30-kDa peripheral nerve glycoprotein that binds laminin and heparin. J Biol Chem 1997; 272:26708-13. [PMID: 9334255 DOI: 10.1074/jbc.272.42.26708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have shown previously that a bovine peripheral nerve protein with a molecular mass of about 30 kDa binds laminin in blot overlay assay. In this paper, we have characterized this 30-kDa laminin-binding protein (LBP30). LBP30 was extracted from the crude bovine peripheral nerve membranes at pH 12 or by 0.5 M NaCl but not by 2% Triton X-100. LBP30 bound to heparin-Sepharose in the presence of 0.5 M NaCl. The results of lectin staining indicated that LBP30 contained both terminally sialylated and nonsialylated Ser/Thr-linked oligosaccharides. LBP30 bound laminin-2 as well as laminin-1 but not fibronectin or collagen type IV. When immobilized LBP30 was incubated with the crude peripheral nerve membrane extracts, all of the endogenous peripheral nerve laminin chain isoforms, the alpha1, alpha2, beta1, beta2, and gamma1 chains, were detected bound to LBP30. The binding of LBP30 to laminin was inhibited by heparin, heparan sulfate, dextran sulfate, or NaCl but was not affected significantly by chondroitin sulfate, dextran, or EDTA. Although LBP30 bound to laminin-1 denatured with SDS in a nonreducing condition, the binding was reduced drastically when laminin-1 was denatured with SDS in a reducing condition, suggesting that the binding of LBP30 is somewhat dependent on the high order structure of laminin-1. Immunohistochemical analysis demonstrated the broad distribution of LBP30 in the perineurium and endoneurium of bovine peripheral nerve. These results indicate that LBP30 is a laminin- and heparin-binding glycoprotein localized in the perineurium and endoneurium of bovine peripheral nerve.
Collapse
Affiliation(s)
- F Saito
- Department of Neurology and Neuroscience, Teikyo University School of Medicine, Tokyo 173, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Golding J, Shewan D, Cohen J. Maturation of the mammalian dorsal root entry zone--from entry to no entry. Trends Neurosci 1997; 20:303-8. [PMID: 9223223 DOI: 10.1016/s0166-2236(96)01044-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Interfaces between glial cell precursors of the PNS and CNS are established early in development and form the sites where sensory axons enter and motor axons exit the developing CNS. The molecular and cellular interactions that lead to the formation of these glial interfaces are only now becoming apparent. New in-vitro techniques are providing clues as to how the maturation of PNS-CNS glial interfaces generates barriers to regenerating axons.
Collapse
Affiliation(s)
- J Golding
- Dept of Developmental Neurobiology, UMDS-Guy's Hospital, London, UK
| | | | | |
Collapse
|
38
|
Abstract
During development, axons of the mammalian cerebral cortex show a high degree of selectivity in their growth into specific regions of the central nervous system (CNS). A number of studies have shown that growing axons are guided by permissive or inhibitory membrane-bound molecules. Cryostat sections of the developing brain provide a useful assay to investigate possible membrane-bound guidance cues because such cues are retained in their normal in situ locations in specific regions of the CNS. Moreover, cryostat sections can also be subjected to various treatments that affect membrane-bound molecules. Therefore, to determine the ability of such cues to regulate the growth and guidance of cortical neurites into specific brain regions at different stages of development, we used an in vitro assay system in which explants from newborn hamster cortex were plated onto various regions of cryostat sections from developing and adult hamster brain. Neurite outgrowth from cortical explants onto the cryostat sections was visualized with a fluorescent vital dye. Results showed first that cortical neurites grew robustly on neonatal cryostat sections but only sparsely on sections from adult hamster. Second, cortical neurites grew preferentially on regions of the neonatal sections such as the cortex, basal ganglia, brainstem, thalamus, and colliculus, which are either pathways or targets for cortical axons in vivo. In contrast, cortical neurites avoided growing on the cerebellum and olfactory bulb, which are neither targets nor pathways for cortical neurites in vivo. Results also showed that cortical neurites extending onto cortical regions of neonatal sections preferred to grow along the radial axis of the cortex. Finally, heat treatment of the neonatal sections drastically reduced cortical neurite outgrowth. Taken together, these results suggest that the growth and guidance of cortical neurites is influenced by substrate-bound, developmentally regulated, heat-sensitive guidance cues preserved in the cryostat sections.
Collapse
Affiliation(s)
- M C Halloran
- Neuroscience Training Program, University of Wisconsin, Madison 53706, USA
| | | |
Collapse
|
39
|
Abstract
Axons damaged in a peripheral nerve are often able to regenerate from the site of injury along the degenerate distal segment of the nerve to reform functional synapses. Schwann cells play a central role in this process. However, in the adult mammalian central nervous system, from which Schwann cells are absent, axonal regeneration does not progress to allow functional recovery. This is due to inhibitors of axonal growth produced by both oligodendrocytes and astrocytes and also to the decreased ability of adult neurons to extend axons during regeneration compared to embryonic neurons during development. However once provided with a substrate conducive to axonal growth, such as a peripheral nerve graft, many central neurons are able to regenerate axons over long distances. Over the past year this response has been utilised in experimental models to produce a degree of behavioural recovery.
Collapse
|
40
|
Iglesias M, Soler RM, Hunter DD, Ribera J, Esquerda JE, Comella JX. S-laminin and N-acetylgalactosamine located at the synaptic basal lamina of skeletal muscle are involved in synaptic recognition by growing neurites. JOURNAL OF NEUROCYTOLOGY 1995; 24:903-15. [PMID: 8719818 DOI: 10.1007/bf01215641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The purpose of the work reported here is to identify molecular components of the synaptic basal lamina of skeletal muscle fibres which allow recognition of original synaptic sites by regenerating motor axons. We focused on s-laminin and components recognized by the lectin Dolichos biflorus agglutinin previously shown to be specifically located at the synaptic basal lamina. We used a cryoculture bioassay in which chick ciliary ganglion neurons grow on rat skeletal muscle cryostat sections. In control cultures, neurites extended over the muscle sections in close association with the muscle cell surface. It was observed that most of the neurites that extended towards the endplate zone and reached an area of 40 microns around the neuromuscular junction ceased to grow when they contacted the synaptic site. Masking either lectin receptors or some s-laminin molecule epitopes prior to the culture of neurons alters the behaviour of growing neurites. On sections treated either with Dolichos biflorus agglutinin or anti s-laminin monoclonal antibodies (D5 and C4) most of the neurites did not stop their growth at the synaptic regions. Moreover, treating muscle sections with Dolichos biflorus agglutinin removed the gradient of substratum affinity around the endplate. These results indicate that the s-laminin and Dolichos biflorus agglutinin receptors present on muscle cell surfaces may play a functional role in the interaction of growing neurites with original synaptic sites in the process of neuromuscular regeneration.
Collapse
Affiliation(s)
- M Iglesias
- Department of Ciències Mèdiques Bàsiques, Universitat de Lleida, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Expression and in vitro function of beta 1-integrin laminin receptors in the developing avian ciliary ganglion. J Neurosci 1995. [PMID: 7542700 DOI: 10.1523/jneurosci.15-07-05275.1995] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In chick development, ciliary ganglion (CG) neurons go through a period of axon extension from approximately embryonic day (E)4 to E8, followed by a period of synaptogenesis and neuronal cell death. By examining the immunohistochemical localization of laminin, in conjunction with Dil labeling of the ciliary nerve projection, we have determined that the pathway taken by these neurons is rich in laminin expression. Therefore, laminins are good candidate molecules for mediating outgrowth of these neurons in vivo. In vitro, the ability of CG neurons to extend neurites on laminin-1 (EHS laminin, alpha 1 beta 1 gamma 1) is maximal up to E8, then declines dramatically. CG neuron outgrowth on laminin-1 requires the activity of beta 1-class integrins. We have used subunit-specific antibodies to determine which of the five beta 1-containing heterodimers known to be laminin receptors (alpha 1 beta 1, alpha 2 beta 1, alpha 6 beta 1, alpha 7 beta 1) are expressed, and which mediate neurite outgrowth. While we could not detect expression of alpha 2 or alpha 7, we have found that alpha 1, alpha 3 beta 1, and alpha 6 beta 1 are expressed on the surface of ciliary ganglion neuron cell bodies and axons, both in vitro and in vivo. Furthermore, antibodies against alpha 3 and alpha 6, but not alpha 1, interfered with CG neurite outgrowth on laminin-1 in vitro. Taken together, these data suggest that interactions of cell surface alpha 3 beta 1 and alpha 6 beta 1 integrins with laminin-1 are likely to mediate growth of CG neurons during pathfinding in vivo.
Collapse
|
42
|
Sakatsume M, Igarashi K, Winestock KD, Garotta G, Larner AC, Finbloom DS. The Jak kinases differentially associate with the alpha and beta (accessory factor) chains of the interferon gamma receptor to form a functional receptor unit capable of activating STAT transcription factors. J Biol Chem 1995; 270:17528-34. [PMID: 7615558 DOI: 10.1074/jbc.270.29.17528] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Interferon gamma (IFN gamma) induces the expression of early response genes by tyrosine phosphorylation of Jak kinases and transcription factors referred to as STAT proteins. The topology of the IFN gamma receptor is partially understood and the relationship between the alpha chain that binds the ligand and the beta chain that is required for signal transduction is undefined. In a cell line which expresses only the human alpha chain, we show that these cells did not activate Jak kinases or STAT proteins with human IFN gamma, even though Jak1 co-immunoprecipitated with the alpha chain. In cells unexposed to IFN gamma, Jak1 preferentially associated with the alpha chain, while Jak2 associated with the beta chain. There was evidence for Jak1 kinase activity in untreated cells. For Jak2, kinase activity was IFN gamma-dependent. Although the alpha chain was tyrosine-phosphorylated in response to ligand, we found no evidence for tyrosine phosphorylation of the beta chain. These data are consistent with a model of the IFN gamma receptor in which Jak1 associates with the alpha chain, whereas Jak2 associates with the beta chain. IFN gamma clusters at least two receptor units which results in the tyrosine phosphorylation of Jak1 and Jak2, the activation of Jak2 kinase activity, and the recruitment of STAT1 alpha resulting in its activation by tyrosine phosphorylation.
Collapse
Affiliation(s)
- M Sakatsume
- Division of Cytokine Biology, Food and Drug Administration, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
43
|
Weaver CD, Yoshida CK, de Curtis I, Reichardt LF. Expression and in vitro function of beta 1-integrin laminin receptors in the developing avian ciliary ganglion. J Neurosci 1995; 15:5275-85. [PMID: 7542700 PMCID: PMC2712128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
In chick development, ciliary ganglion (CG) neurons go through a period of axon extension from approximately embryonic day (E)4 to E8, followed by a period of synaptogenesis and neuronal cell death. By examining the immunohistochemical localization of laminin, in conjunction with Dil labeling of the ciliary nerve projection, we have determined that the pathway taken by these neurons is rich in laminin expression. Therefore, laminins are good candidate molecules for mediating outgrowth of these neurons in vivo. In vitro, the ability of CG neurons to extend neurites on laminin-1 (EHS laminin, alpha 1 beta 1 gamma 1) is maximal up to E8, then declines dramatically. CG neuron outgrowth on laminin-1 requires the activity of beta 1-class integrins. We have used subunit-specific antibodies to determine which of the five beta 1-containing heterodimers known to be laminin receptors (alpha 1 beta 1, alpha 2 beta 1, alpha 6 beta 1, alpha 7 beta 1) are expressed, and which mediate neurite outgrowth. While we could not detect expression of alpha 2 or alpha 7, we have found that alpha 1, alpha 3 beta 1, and alpha 6 beta 1 are expressed on the surface of ciliary ganglion neuron cell bodies and axons, both in vitro and in vivo. Furthermore, antibodies against alpha 3 and alpha 6, but not alpha 1, interfered with CG neurite outgrowth on laminin-1 in vitro. Taken together, these data suggest that interactions of cell surface alpha 3 beta 1 and alpha 6 beta 1 integrins with laminin-1 are likely to mediate growth of CG neurons during pathfinding in vivo.
Collapse
Affiliation(s)
- C D Weaver
- Department of Physiology, University of California at San Francisco 94143, USA
| | | | | | | |
Collapse
|
44
|
Tuttle R, Matthew WD. Neurotrophins affect the pattern of DRG neurite growth in a bioassay that presents a choice of CNS and PNS substrates. Development 1995; 121:1301-9. [PMID: 7789262 DOI: 10.1242/dev.121.5.1301] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurons can be categorized in terms of where their axons project: within the central nervous system, within the peripheral nervous system, or through both central and peripheral environments. Examples of these categories are cerebellar neurons, sympathetic neurons, and dorsal root ganglion (DRG) neurons, respectively. When explants containing one type of neuron were placed between cryosections of neonatal or adult sciatic nerve and neonatal spinal cord, the neurites exhibited a strong preference for the substrates that they would normally encounter in vivo: cerebellar neurites generally extended only on spinal cord, sympathetic neurites on sciatic nerve, and DRG neurites on both. Neurite growth from DRG neurons has been shown to be stimulated by neurotrophins. To determine whether neurotrophins might also affect the substrate preferences of neurites, DRG were placed between cryosections of neonatal spinal cord and adult sciatic nerve and cultured for 36 to 48 hours in the presence of various neurotrophins. While DRG cultured in NGF-containing media exhibited neurite growth over both spinal cord and sciatic nerve substrates, in the absence of neurotrophins DRG neurites were found almost exclusively on the CNS cryosection. To determine whether these neurotrophin-dependent neurite patterns resulted from the selective survival of subpopulations of DRG neurons with distinct neurite growth characteristics, a type of rescue experiment was performed: DRG cultured in neurotrophin-free medium were fed with NGF-containing medium after 36 hours in vitro and neurite growth examined 24 hours later; most DRG exhibited extensive neurite growth on both peripheral and central nervous system substrates.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- R Tuttle
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
45
|
Sivron T, Schwartz M. Glial cell types, lineages, and response to injury in rat and fish: implications for regeneration. Glia 1995; 13:157-65. [PMID: 7782101 DOI: 10.1002/glia.440130302] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Axons of the mammalian central nervous system do not regenerate spontaneously after axonal injury, unlike the central nervous system axons of fish and amphibians and the peripheral nervous system of mammals, which possess a good regenerative ability (Grafstein: The Retina: A Model for Cell Biology Studies, Part II, 1986; Kiernan: Biol Rev 54:155-197, 1979; Murray: J Comp Neurol 168:175-196, 1976; Ramón y Cajal: Degeneration and Regeneration of the Nervous System, 1928; Reier and Webster: J Neurocytol 3:591-618, 1974; Sperry: Physiol Zool 23:351-361, 1948). It was previously believed that intrinsic differences between the central nervous system neurons of mammals and fish account for their differences in regenerative ability. The past decade, however, has seen an accumulation of evidence, indicating that mammalian central nervous system neurons are able to regenerate injured axons, at least to some extent. This was first demonstrated by Aguayo and colleagues (David and Aguayo: Science 214:931-933, 1981; Kierstead et al: Science 246:255-257, 1989), who showed that injured mammalian central nervous system axons can grow for a considerable distance into an autograft of a peripheral nerve. It was also demonstrated that injured rabbit optic axons can regenerate into their own environment (i.e., into the distal part of the injured optic nerve), if the injured nerve is treated so as to make it conducive for growth (Lavie et al: J Comp Neurol 298:293-314, 1990; Eitan et al: Science 264:1764-1768, 1994).(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- T Sivron
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
46
|
Mathews GA, Ffrench-Constant C. Embryonic fibronectins are up-regulated following peripheral nerve injury in rats. JOURNAL OF NEUROBIOLOGY 1995; 26:171-88. [PMID: 7707041 DOI: 10.1002/neu.480260203] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Fibronectin mRNAs that include the alternatively spliced exons EIIIA, EIIIB, and V are prevalent during embryogenesis, and EIIIA and EIIIB reappear during wound healing. Using ribonuclease protection analyses, we found an up-regulation of V120 (containing the alpha 4 beta 1 integrin binding site), as well as EIIIA, and EIIIB in fibronectin mRNAs in the crush-injured adult rat sciatic nerve. In situ hybridization using splice variant-specific probes revealed that cells within endoneurial tubes of the injured nerve synthesize these embryonic forms of fibronectin. Our results suggest that embryonic fibronectins synthesized within the nerve contribute to the permissiveness of the peripheral nervous system to axon regrowth and a mechanism by which alternative splicing of the V region in fibronectin mRNA could enhance nervous system regeneration.
Collapse
Affiliation(s)
- G A Mathews
- Wellcome/CRC Institute of Cancer and Developmental Biology, University of Cambridge, United Kingdom
| | | |
Collapse
|
47
|
Emerling DE, Lander AD. Laminar specific attachment and neurite outgrowth of thalamic neurons on cultured slices of developing cerebral neocortex. Development 1994; 120:2811-22. [PMID: 7607072 DOI: 10.1242/dev.120.10.2811] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In nervous system development, the growth cones of advancing axons are thought to navigate to their targets by recognizing cell-surface and extracellular matrix molecules that act as specific guidance cues. To identify and map cues that guide the growth of a particular axonal system, the thalamocortical afferents, an assay was devised to examine short-term interactions of dissociated embryonic thalamic cells with living, approximately 150 microns slices of developing mouse forebrain. Thalamic cells rapidly (< 3 hours) and efficiently attached to and extended neurites on pre- and postnatal slices, but a broad zone throughout the neocortex was generally non-permissive for both thalamic cell attachment and the ingrowth of neurites. This zone coincided with the cortical plate at early stages (embryonic day 15), but later became restricted, in rostral-to-caudal fashion, to cortical laminae 2/3. Thus, at each stage, thalamic cells in vitro avoided just that area that thalamic axons confront, but generally do not enter, in vivo. In addition, neurites that extended on some layers were found to be significantly oriented in directions that coincide with the pathways that thalamic axons follow in vivo. These results imply that local adhesive cues and signals that affect process outgrowth are distributed among developing cortical laminae in a manner that could underlie much of the temporal and spatial patterning of thalamocortical innervation.
Collapse
Affiliation(s)
- D E Emerling
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, 02139, USA
| | | |
Collapse
|
48
|
Sivron T, Schwab ME, Schwartz M. Presence of growth inhibitors in fish optic nerve myelin: postinjury changes. J Comp Neurol 1994; 343:237-46. [PMID: 8027441 DOI: 10.1002/cne.903430205] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This study shows that the fish optic nerve, which is able to regenerate after injury, contains myelin-associated growth inhibitors similar to the growth inhibitors present in mammalian central nervous system (CNS) myelin. The ability of nerves to regenerate was previously correlated with the ability of sections from these nerves to support neuronal attachment and axonal growth in vitro. Thus neuroblastoma cells or embryonic neurons became attached to and grew axons on sections of rat sciatic nerve or fish optic nerve, which are spontaneously regenerating systems, but not on sections of rat optic nerve, a nonregenerating system. Failure of the latter to support axonal growth has been attributed, at least in part, to growth inhibitors. Recently it was shown that adult neurons, which differ in their growth requirement from embryonic neurons, are unable to extend neurites on sections of normal sciatic nerve but are able to extend neurites on sections of sciatic nerve that was injured prior to its excision. We found a similar situation in the fish optic nerve, i.e., that the nerve is normally not permissive to growth of adult retinal axons but becomes growth permissive after injury. The nonpermissiveness of the normal fish optic nerve was found to correlate with the presence of myelin-associated growth-inhibitory molecules. This inhibitory activity of fish myelin was neutralized by IN-1 antibodies, known to neutralize rat myelin growth inhibitors. The results thus demonstrate that fish optic nerve myelin contains inhibitors apparently similar or even identical to those of rat, but possibly present in lower amounts than in the rat. Results are discussed with respect to the possibility that fish optic nerve, like the rat sciatic nerve and unlike the rat optic nerve, undergoes certain changes after injury that support regeneration of adult neurons. Such changes might include elimination or neutralization of growth inhibitors.
Collapse
Affiliation(s)
- T Sivron
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
49
|
Igarashi K, Garotta G, Ozmen L, Ziemiecki A, Wilks A, Harpur A, Larner A, Finbloom D. Interferon-gamma induces tyrosine phosphorylation of interferon-gamma receptor and regulated association of protein tyrosine kinases, Jak1 and Jak2, with its receptor. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36621-8] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
50
|
Rubin BP, Dusart I, Schwab ME. A monoclonal antibody (IN-1) which neutralizes neurite growth inhibitory proteins in the rat CNS recognizes antigens localized in CNS myelin. JOURNAL OF NEUROCYTOLOGY 1994; 23:209-17. [PMID: 7518504 DOI: 10.1007/bf01275525] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In previous studies two neurite growth inhibiting protein fractions of 35 and 250 kDa were identified in myelin preparations of the rat CNS. These activities were not found in the myelin of PNS. A monoclonal antibody (mAb IN-1) was raised against the 250 kDa protein fraction and selected for its ability to neutralize the inhibitory effect of CNS myelin and of both isolated protein fractions. IN-1 has been shown both in vitro and in vivo to neutralize the inhibitory effect of differentiated oligodendrocytes and CNS white matter. In the present study, the antigens of IN-1 were localized by immunohistochemistry on cryostat sections of the adult rat nervous system. The staining pattern of IN-1 was compared to that of mAbs specific for proteins found in CNS and PNS myelin. These proteins include myelin basic protein, myelin oligodendrocyte glycoprotein, and myelin associated glycoprotein. IN-1 stained white matter and myelinated fibre tracts in the CNS on sections of fresh frozen tissue fixed with 95% ethanol: 5% acetic acid (Clark's solution). Sciatic nerve myelin and spinal roots remained unstained. The staining pattern of IN-1 corresponded most closely to that of a mAb against myelin oligodendrocyte glycoprotein, a protein which occurs exclusively in CNS myelin and on differentiated oligodendrocytes.
Collapse
Affiliation(s)
- B P Rubin
- Brain Research Institute, University of Zürich, Switzerland
| | | | | |
Collapse
|