1
|
Abstract
Skeletal muscle atrophy is a common side effect of most human diseases. Muscle loss is not only detrimental for the quality of life but it also dramatically impairs physiological processes of the organism and decreases the efficiency of medical treatments. While hypothesized for years, the existence of an atrophying programme common to all pathologies is still incompletely solved despite the discovery of several actors and key regulators of muscle atrophy. More than a decade ago, the discovery of a set of genes, whose expression at the mRNA levels were similarly altered in different catabolic situations, opened the way of a new concept: the presence of atrogenes, i.e. atrophy-related genes. Importantly, the atrogenes are referred as such on the basis of their mRNA content in atrophying muscles, the regulation at the protein level being sometimes more complicate to elucidate. It should be noticed that the atrogenes are markers of atrophy and that their implication as active inducers of atrophy is still an open question for most of them. While the atrogene family has grown over the years, it has mostly been incremented based on data coming from rodent models. Whether the rodent atrogenes are valid for humans still remain to be established. An "atrogene" was originally defined as a gene systematically up- or down-regulated in several catabolic situations. Even if recent works often restrict this notion to the up-regulation of a limited number of proteolytic enzymes, it is important to keep in mind the big picture view. In this review, we provide an update of the validated and potential rodent atrogenes and the metabolic pathways they belong, and based on recent work, their relevance in human physio-pathological situations. We also propose a more precise definition of the atrogenes that integrates rapid recovery when catabolic stimuli are stopped or replaced by anabolic ones.
Collapse
Affiliation(s)
- Daniel Taillandier
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000, Clermont-Ferrand, France.
| | - Cécile Polge
- Université Clermont Auvergne, INRA, UNH, Unité de Nutrition Humaine, CRNH Auvergne, F-63000, Clermont-Ferrand, France
| |
Collapse
|
2
|
Kleine Büning M, Meyer D, Austermann-Busch S, Roman-Sosa G, Rümenapf T, Becher P. Nonreplicative RNA Recombination of an Animal Plus-Strand RNA Virus in the Absence of Efficient Translation of Viral Proteins. Genome Biol Evol 2017; 9:817-829. [PMID: 28338950 PMCID: PMC5381556 DOI: 10.1093/gbe/evx046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2017] [Indexed: 12/27/2022] Open
Abstract
RNA recombination is a major driving force for the evolution of RNA viruses and is significantly implicated in the adaptation of viruses to new hosts, changes of virulence, as well as in the emergence of new viruses including drug-resistant and escape mutants. However, the molecular details of recombination in animal RNA viruses are only poorly understood. In order to determine whether viral RNA recombination depends on translation of viral proteins, a nonreplicative recombination system was established which is based on cotransfection of cells with synthetic bovine viral diarrhea virus (family Flaviviridae) RNA genome fragments either lacking the internal ribosome entry site required for cap-independent translation or lacking almost the complete polyprotein coding region. The emergence of a number of recombinant viruses demonstrated that IRES-mediated translation of viral proteins is dispensable for efficient recombination and suggests that RNA recombination can occur in the absence of viral proteins. Analyses of 58 independently emerged viruses led to the detection of recombinant genomes with duplications, deletions and insertions in the 5′ terminal region of the open reading frame, leading to enlarged core fusion proteins detectable by Western blot analysis. This demonstrates a remarkable flexibility of the pestivirus core protein. Further experiments with capped and uncapped genome fragments containing a luciferase gene for monitoring the level of protein translation revealed that even a ∼1,000-fold enhancement of translation of viral proteins did not increase the frequency of RNA recombination. Taken together, this study highlights that nonreplicative RNA recombination does not require translation of viral proteins.
Collapse
Affiliation(s)
- Maximiliane Kleine Büning
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Germany
| | - Denise Meyer
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Germany
| | - Sophia Austermann-Busch
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Germany
| | | | - Tillmann Rümenapf
- Department of Pathobiology, Institute of Virology, University of Veterinary Medicine Vienna, Austria
| | - Paul Becher
- Department of Infectious Diseases, Institute of Virology, University of Veterinary Medicine Hannover, Germany
| |
Collapse
|
3
|
Mutsvangwa T, Gilmore J, Squires JE, Lindinger MI, McBride BW. Chronic metabolic acidosis increases mRNA levels for components of the ubiquitin-mediated proteolytic pathway in skeletal muscle of dairy cows. J Nutr 2004; 134:558-61. [PMID: 14988446 DOI: 10.1093/jn/134.3.558] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Ruminants fed high-grain diets often are subjected to ruminal acidosis, which can lead to excessive absorption of lactate into the blood stream, thereby causing metabolic acidosis. Metabolic acidosis leads to body protein loss, mainly due to increased skeletal muscle degradation. Our objective was to determine the effects of metabolic acidosis on the messenger RNA (mRNA) abundance of genes encoding components of the ubiquitin-mediated proteolytic pathway in the skeletal muscle of lactating Holstein cows. Cows (n = 20) were assigned to one of two treatments: 1) control; or 2) NutriChlor 18-8, an HCl-treated supplement, which was fed to induce chronic metabolic acidosis. The longissimus muscle was biopsied before and after 10 d of treatments. Total RNA isolated from muscle tissue was hybridized with (32)P-labeled cDNA probes encoding for 14-kDa ubiquitin carrier protein E2 (14-kDa E2), ubiquitin, and C8 and C9 subunits of the 20S proteasome. Induction of metabolic acidosis increased (P < 0.05) skeletal muscle mRNA levels for ubiquitin (25%), 14-kDa E2 (34%), and the C8 subunit (20%); however, mRNA abundance for the C9 subunit was unaffected (P > 0.05). These results suggest that up-regulation of the ubiquitin-proteasome pathway is the mechanism by which metabolic acidosis stimulates muscle wasting in ruminants.
Collapse
Affiliation(s)
- Timothy Mutsvangwa
- Department of Animal and Poultry Science, University of Guelph, Guelph, ON, Canada N1G 2W1
| | | | | | | | | |
Collapse
|
4
|
Abstract
There is little information on the mechanisms responsible for muscle recovery following a catabolic condition. To address this point, we reloaded unweighted animals and investigated protein turnover during recovery from this highly catabolic state and the role of proteolysis in the reorganization of the soleus muscle. During early recovery (18 h of reloading) both muscle protein synthesis and breakdown were elevated (+65%, P<0.001 and +22%, P<0.05, respectively). However, only the activation of non-lysosomal and Ca(2+)-independent proteolysis was responsible for increased protein breakdown. Accordingly, mRNA levels for ubiquitin and 20S proteasome subunits C8 and C9 were markedly elevated (from +89 to +325%, P<0.03) and actively transcribed as shown by the analysis of polyribosomal profiles. In contrast, both cathepsin D and 14-kDa-ubiquitin conjugating enzyme E2 mRNA levels decreased, suggesting that the expression of such genes is an early marker of reversed muscle wasting. Following 7 days of reloading, protein synthesis was still elevated and there was no detectable change in protein breakdown rates. Accordingly, mRNA levels for all the proteolytic components tested were back to control values even though an accumulation of high molecular weight ubiquitin conjugates was still detectable. This suggests that soleus muscle remodeling was still going on. Taken together, our observations suggest that enhanced protein synthesis and breakdown are both necessary to recover from muscle atrophy and result in catch-up growth. The observed non-coordinate regulation of proteolytic systems is presumably required to target specific classes of substrates (atrophy-specific protein isoforms, damaged proteins) for replacement and/or elimination.
Collapse
|
5
|
Kee AJ, Taylor AJ, Carlsson AR, Sevette A, Smith RC, Thompson MW. IGF-I has no effect on postexercise suppression of the ubiquitin-proteasome system in rat skeletal muscle. J Appl Physiol (1985) 2002; 92:2277-2284. [PMID: 12015337 DOI: 10.1152/japplphysiol.01030.2001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Both exercise and insulin-like growth factor I (IGF-I) are known to have major hypertrophic effects in skeletal muscle; however, the interactive effect of exogenous IGF-I and exercise on muscle protein turnover or the ubiquitin-proteasome pathway has not been reported. In the present study, we have examined the interaction between endurance exercise training and IGF-I treatment on muscle protein turnover and the ubiquitin-proteasome pathway in the postexercise period. Adult male rats (270-280 g) were randomized to receive 5 consecutive days of progressive treadmill exercise and/or IGF-I treatment (1 mg. kg body wt(-1). day(-1)). Twenty-four hours after the last bout of exercise, the rate of protein breakdown in incubated muscles was significantly reduced compared with that in unexercised rats. This was associated with a significant reduction in the chymotrypsin-like activity of the proteasome and the rate of ubiquitin-proteasome-dependent casein hydrolysis in muscle extracts from exercised compared with unexercised rats. In contrast, the muscle expression of the 20S proteasome subunit beta-1, ubiquitin, and the 14-kDa E2 ubiquitin-conjugating enzyme was not altered by exercise or IGF-I treatment 24 h postexercise. Exercise had no effect on the rates of total mixed muscle protein synthesis in incubated muscles 24 h postexercise. IGF-I treatment had no effect on muscle weights or the rates of protein turnover 24 h after endurance exercise. These results suggest that a suppression of the ubiquitin-proteasome proteolytic pathway after endurance exercise may contribute to the acute postexercise net protein gain.
Collapse
Affiliation(s)
- Anthony J Kee
- Department of Surgery, Royal North Shore Hospital, University of Sydney, St. Leonards, New South Wales 2065, Australia.
| | | | | | | | | | | |
Collapse
|
6
|
Baroth M, Orlich M, Thiel HJ, Becher P. Insertion of cellular NEDD8 coding sequences in a pestivirus. Virology 2000; 278:456-66. [PMID: 11118368 DOI: 10.1006/viro.2000.0644] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For the cytopathogenic (cp) bovine viral diarrhea virus (BVDV) strain CP 821, a duplication of the genomic region encoding part of NS2, NS3, NS4A, and part of NS4B together with a nonviral insertion was detected. Further analyses including molecular cloning and sequencing of the putative cellular recombination partner showed that the insertion in CP 821 originated from a bovine mRNA encoding the cellular protein NEDD8, which is 58% identical to ubiquitin. To our knowledge the genome of CP 821 represents the first viral RNA with a NEDD8 coding insertion. Remarkably, the insertion site differs from that described for insertions of ubiquitin. The NEDD8 sequence allows an additional cleavage of the viral polyprotein, whereby an NS3 with an unusual N-terminus is generated. Furthermore, the CP 821-specific genomic alterations were introduced into an infectious noncytopathogenic (noncp) BVDV cDNA clone. After transfection of bovine cells with the respective RNA, a cp virus was recovered. This showed that the NEDD8 coding insertion together with the duplicated viral sequences represents the genetic basis for cytopathogenicity of CP 821. In addition to the recovered cp virus, noncp BVDV rapidly evolved after transfection. This is the first time that a change from the cp to the noncp phenotype was demonstrated in the course of replication in tissue culture cells.
Collapse
Affiliation(s)
- M Baroth
- Institut für Virologie (FB Veterinärmedizin), Giessen, D-35392, Germany
| | | | | | | |
Collapse
|
7
|
Adegoke OA, McBurney MI, Samuels SE, Baracos VE. Luminal amino acids acutely decrease intestinal mucosal protein synthesis and protease mRNA in piglets. J Nutr 1999; 129:1871-8. [PMID: 10498761 DOI: 10.1093/jn/129.10.1871] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Because parenteral feeding is associated with negative N balance and reduced rates of protein synthesis in intestinal mucosa, we hypothesized that luminal exposure to specific amino acids or energy fuels would stimulate intestinal protein synthesis. We studied the acute effects of luminal nutrients on mucosal protein synthesis in the absence of systemic influences. Multiple jejunal segments constructed in piglets deprived of food overnight (n = 6) were randomly assigned to luminal perfusion with saline, 30 mmol/L amino acid mixture with or without 50 mmol/L glucose, or 30 mmol/L glutamine for 90 min. Protein synthesis was then measured by luminal perfusion with L-[2,6-(3)H]-phenylalanine. Energy substrates (glucose, short-chain fatty acids or beta-hydroxybutyrate) had no effect on mucosal protein synthesis. Relative to saline, a 30 mmol/L amino acid mixture or 30 mmol/L glutamine suppressed mucosal protein synthesis by 20-25% (P < 0.05). On the basis of these surprising results, we speculated that a coordinate reduction of proteolytic processes would be required to maintain positive intestinal N balance. Although intestinal protein catabolism cannot be assessed directly, the 30 mmol/L amino acid mixture acutely suppressed mucosal levels of mRNA encoding ubiquitin, 14-kDa ubiquitin conjugating enzyme and the C9 subunit of the proteasome by 20-30% (P < 0.05), demonstrating the sensitivity of components of the ATP-ubiquitin proteolytic pathway to acute regulation by nutrients. The suppression of protein synthesis by luminal amino acids in the absorptive state might lower intestinal utilization of amino acids to ensure efficient allocation of absorbed nutrients to nonintestinal tissues.
Collapse
Affiliation(s)
- O A Adegoke
- Department of Agricultural, University of Alberta, Edmonton, AB, T6G 2P5 Canada
| | | | | | | |
Collapse
|
8
|
Lam YA, DeMartino GN, Pickart CM, Cohen RE. Specificity of the ubiquitin isopeptidase in the PA700 regulatory complex of 26 S proteasomes. J Biol Chem 1997; 272:28438-46. [PMID: 9353303 DOI: 10.1074/jbc.272.45.28438] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The specificity of the ubiquitin (Ub) isopeptidase in the PA700 regulatory complex of the bovine 26 S proteasome was investigated. Disassembly of poly-Ub by this enzyme is restricted to the distal-end Ub of the substrate, i.e. the Ub farthest from the site of protein attachment in poly-Ub-protein conjugates. The determinants recognized by the isopeptidase were probed by the use of mutant ubiquitins incorporated into Lys48-linked poly-Ub substrates. PA700 could not disassemble poly-Ub chains that contained a distal Ub(L8A,I44A). This suggested either that the enzyme interacts directly with Leu8 or Ile44 or that it recognizes a higher order structure that caps the distal end of a poly-Ub substrate and is destabilized by Ub(L8A,I44A). The previously determined di-Ub crystal structure (Cook, W. J., Jeffrey, L. C., Carson, M., Chen, Z., and Pickart, C. M. (1992) J. Biol. Chem. 267, 16467-16471) offered a candidate for such a "cap." In solution, however, this structure was not observed by 1H NMR spectroscopy. This and the finding that di-Ub with a single proximal Ub(L8A,I44A) is cleaved efficiently suggest that Leu8 and Ile44 in the distal-end Ub contact the isopeptidase directly. In addition to Lys48-linked chains, PA700 also could disassemble Lys6- and Lys-11-linked poly-Ub, but, surprisingly, not alpha-linked di-Ub. Results with these and other substrates suggest that specificity determinants for the PA700 isopeptidase include Leu8, Ile44, and Lys48 on the distal Ub and, for poly-Ub, some features of the Ub-Ub linkage itself.
Collapse
Affiliation(s)
- Y A Lam
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
9
|
Combaret L, Taillandier D, Voisin L, Samuels SE, Boespflug-Tanguy O, Attaix D. No alteration in gene expression of components of the ubiquitin-proteasome proteolytic pathway in dystrophin-deficient muscles. FEBS Lett 1996; 393:292-6. [PMID: 8814307 DOI: 10.1016/0014-5793(96)00910-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Increased expression of critical components of the ubiquitin-dependent proteolytic pathway occurs in any muscle wasting condition so far studied in rodents where proteolysis rises. We have recently reported similar adaptations in head trauma patients [Mansoor et al. (1996) Proc. Natl. Acad. Sci. USA 93, 2714-2718]. We demonstrate here that the increased muscle protein breakdown seen in mdx mice only correlated with enhanced expression of m-calpain, a Ca(2+)-activated proteinase. By contrast, no change in mRNA levels for components of the ubiquitin-proteasome proteolytic process was seen in muscles from both mdx mice and Duchenne muscular dystrophy patients. Thus, gene expression of components of this pathway is not regulated in the chronic wasting that characterizes muscular dystrophy.
Collapse
Affiliation(s)
- L Combaret
- Centre de Recherche en Nutrition Humaine de Clermont-Ferrand, Unité d'Etude du Métabolisme Azote, Ceyrat, France
| | | | | | | | | | | |
Collapse
|
10
|
Taillandier D, Aurousseau E, Meynial-Denis D, Bechet D, Ferrara M, Cottin P, Ducastaing A, Bigard X, Guezennec CY, Schmid HP. Coordinate activation of lysosomal, Ca 2+-activated and ATP-ubiquitin-dependent proteinases in the unweighted rat soleus muscle. Biochem J 1996; 316 ( Pt 1):65-72. [PMID: 8645234 PMCID: PMC1217351 DOI: 10.1042/bj3160065] [Citation(s) in RCA: 216] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nine days of hindlimb suspension resulted in atrophy (55%) and loss of protein (53%) in rat soleus muscle due to a marked elevation in protein breakdown (66%, P < 0.005). To define which proteolytic system(s) contributed to this increase, soleus muscles from unweighted rats were incubated in the presence of proteolytic inhibitors. An increase in lysosomal and Ca 2+-activated proteolysis (254%, P < 0.05) occurred in the atrophying incubated muscles. In agreement with the measurements in vitro, cathepsin B, cathepsins B + L and m-calpain enzyme activities increased by 111%, 92% and 180% (P < 0.005) respectively in the atrophying muscles. Enhanced mRNA levels for these proteinases (P < 0.05 to P < 0.001) paralleled the increased enzyme activities, suggesting a transcriptional regulation of these enzymes. However, the lysosomal and Ca 2+-dependent proteolytic pathways accounted for a minor part of total proteolysis in both control (9%) and unweighted rats (18%). Furthermore the inhibition of these pathways failed to suppress increased protein breakdown in unweighted muscle. Thus a non-lysosomal Ca 2+-independent proteolytic process essentially accounted for the increased proteolysis and subsequent muscle wasting. Increased mRNA levels for ubiquitin, the 14 kDa ubiquitin-conjugating enzyme E2 (involved in the ubiquitylation of protein substrates) and the C2 and C9 subunits of the 20 S proteasome (i.e. the proteolytic core of the 26 S proteasome that degrades ubiquitin conjugates) were observed in the atrophying muscles (P < 0.02 to P < 0.001). Analysis of C9 mRNA in polyribosomes showed equal distribution into both translationally active and inactive mRNA pools, in either unweighted or control rats. These results suggest that increased ATP-ubiquitin-dependent proteolysis is most probably responsible for muscle wasting in the unweighted soleus muscle.
Collapse
Affiliation(s)
- D Taillandier
- Centre de Recherche en Nutrition Humaine, Unité d'Etude du Métabolisme Azoté, Ceyrat, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Mansoor O, Beaufrere B, Boirie Y, Ralliere C, Taillandier D, Aurousseau E, Schoeffler P, Arnal M, Attaix D. Increased mRNA levels for components of the lysosomal, Ca2+-activated, and ATP-ubiquitin-dependent proteolytic pathways in skeletal muscle from head trauma patients. Proc Natl Acad Sci U S A 1996; 93:2714-8. [PMID: 8610106 PMCID: PMC39696 DOI: 10.1073/pnas.93.7.2714] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The cellular mechanisms responsible for enhanced muscle protein breakdown in hospitalized patients, which frequently results in lean body wasting, are unknown. To determine whether the lysosomal, Ca2+-activated, and ubiquitin-proteasome proteolytic pathways are activated, we measured mRNA levels for components of these processes in muscle biopsies from severe head trauma patients. These patients exhibited negative nitrogen balance and increased rates of whole-body protein breakdown (assessed by [13C]leucine infusion) and of myofibrillar protein breakdown (assessed by 3-methylhistidine urinary excretion). Increased muscle mRNA levels for cathepsin D, m-calpain, and critical components of the ubiquitin proteolytic pathway (i.e., ubiquitin, the 14-kDa ubiquitin-conjugating enzyme E2, and proteasome subunits) paralleled these metabolic adaptations. The data clearly support a role for multiple proteolytic processes in increased muscle proteolysis. The ubiquitin proteolytic pathway could be activated by altered glucocorticoid production and/or increased circulating levels of interleukin 1beta and interleukin 6 observed in head trauma patients and account for the breakdown of myofibrillar proteins, as was recently reported in animal studies.
Collapse
Affiliation(s)
- O Mansoor
- Service de Réanimation, Centre Hospitalo-Universitaire, Clermont- Ferrand, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Voisin L, Breuillé D, Combaret L, Pouyet C, Taillandier D, Aurousseau E, Obled C, Attaix D. Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca2+ -activated, and ubiquitin-proteasome proteolytic pathways. J Clin Invest 1996; 97:1610-7. [PMID: 8601625 PMCID: PMC507224 DOI: 10.1172/jci118586] [Citation(s) in RCA: 180] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We studied the alterations in skeletal muscle protein breakdown in long lasting sepsis using a rat model that reproduces a sustained and reversible catabolic state, as observed in humans. Rats were injected intravenously with live Escherichia coli; control rats were pair-fed to the intake of infected rats. Rats were studied in an acute septic phase (day 2 postinfection), in a chronic septic phase (day 6), and in a late septic phase (day 10). The importance of the lysosomal, Ca2+ -dependent, and ubiquitin-proteasome proteolytic processes was investigated using proteolytic inhibitors in incubated epitrochlearis muscles and by measuring mRNA levels for critical components of these pathways. Protein breakdown was elevated during the acute and chronic septic phases (when significant muscle wasting occurred) and returned to control values in the late septic phase (when wasting was stopped). A nonlysosomal and Ca2+ -independent process accounted for the enhanced proteolysis, and only mRNA levels for ubiquitin and subunits of the 20 S proteasome, the proteolytic core of the 26 S proteasome that degrades ubiquitin conjugates, paralleled the increased and decreased rates of proteolysis throughout. However, increased mRNA levels for the 14-kD ubiquitin conjugating enzyme E2, involved in substrate ubiquitylation, and for cathepsin B and m-calpain were observed in chronic sepsis. These data clearly support a major role for the ubiquitin-proteasome dependent proteolytic process during sepsis but also suggest that the activation of lysosomal and Ca2+ -dependent proteolysis may be important in the chronic phase.
Collapse
Affiliation(s)
- L Voisin
- Centre de Recherche en Nutrition Humaine, Ceyrat, France
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Affiliation(s)
- G Meyers
- Federal Research Center for Virus Diseases of Animals, Tübingen, Germany
| | | |
Collapse
|
14
|
Dardevet D, Sornet C, Taillandier D, Savary I, Attaix D, Grizard J. Sensitivity and protein turnover response to glucocorticoids are different in skeletal muscle from adult and old rats. Lack of regulation of the ubiquitin-proteasome proteolytic pathway in aging. J Clin Invest 1995; 96:2113-9. [PMID: 7593595 PMCID: PMC185859 DOI: 10.1172/jci118264] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We studied glucocorticoid-induced muscle wasting and subsequent recovery in adult (7-mo-old) and old (22-mo-old) rats, since the increased incidence of various disease states may result in glucocorticoids hypersecretion in aging. Adult and old rats received dexamethasone in their drinking water and were then allowed to recover. Muscle wasting occurred more rapidly in old rats and the recovery of muscle mass was impaired, suggesting that glucocorticoids may be involved in the emergence of muscle atrophy with advancing age. According to measurements in incubated epitrochlearis muscles, dexamethasone-induced muscle wasting mainly resulted from increased protein breakdown in the adult, but from depressed protein synthesis in the aged animal. Increased expression of cathepsin D, m-calpain, and ubiquitin was observed in the muscles from both dexamethasone-treated adult and old rats. By contrast, the disappearance of the stimulatory effect of glucocorticoids on protein break-down in aging occurred along with a loss of ability of steroids to enhance the expression of the 14-kD ubiquitin carrier protein E2, which is involved in protein substrates ubiquitinylation, and of subunits of the 20 S proteasome (the proteolytic core of the 26 S proteasome that degrades ubiquitin conjugates). Thus, if glucocorticoids play any role in the progressive muscle atrophy seen in aging, this is unlikely to result from an activation of the ubiquitin-proteasome proteolytic pathway.
Collapse
Affiliation(s)
- D Dardevet
- Centre de Recherche en Nutrition Humaine et INRA, Unité d'Etude du Métabolisme Azoté, Ceyrat, France
| | | | | | | | | | | |
Collapse
|
15
|
Joannidis M, Cantley LG, Spokes K, Medina R, Pullman J, Rosen S, Epstein FH. Induction of heat-shock proteins does not prevent renal tubular injury following ischemia. Kidney Int 1995; 47:1752-9. [PMID: 7643546 DOI: 10.1038/ki.1995.242] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The possible protective effect of heat-shock proteins (HSPs) on ischemic injury to renal cells was assessed in two different experimental models: ischemia-reflow in intact rats and medullary hypoxic injury as seen in the isolated perfused rat kidney. Heat shock was induced by raising the core temperature of rats to 42 degrees C for 15 minutes. Following this, Northern blots showed enhanced gene expression of HSP70, HSP60 and ubiquitin at one hour and reaching a maximum by six hours after heat shock in all regions of the kidney, but most prominently in medulla and papilla. The HSP70 protein in the kidney, estimated by immunohistochemical means, was detectable 24 hours following heat shock and further increased at 48 hours following heat shock. In the first set of experiments, the animals underwent uninephrectomy followed by cross clamping of the remaining renal artery for 40 minutes prior to reflow. Serum creatinine and urea nitrogen rose to 3.15 +/- 0.98 and 126.4 +/- 62.5 mg/dl at 24 hours. No significant differences were observed at 24, 48 and 72 hours after reflow between these values in control rats and rats pretreated with heat shock 48 hours earlier. Severe morphological damage to proximal tubules of the renal cortex was observed to the same extent in both groups. In a second set of experiments, the right kidney was removed either 24 or 48 hours after heat shock and perfused in isolation for 90 minutes. Functional and morphological parameters were compared with those of isolated perfused kidneys obtained from animals that had not been subjected to heat shock.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Joannidis
- Department of Medicine, Beth Israel Hospital, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Medina R, Wing SS, Goldberg AL. Increase in levels of polyubiquitin and proteasome mRNA in skeletal muscle during starvation and denervation atrophy. Biochem J 1995; 307 ( Pt 3):631-7. [PMID: 7741690 PMCID: PMC1136697 DOI: 10.1042/bj3070631] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Most of the increased protein degradation in muscle atrophy caused by starvation and denervation is due to activation of a non-lysosomal ATP-dependent proteolytic process. To determine whether expression of the ubiquitin-proteasome-dependent pathway is activated in atrophying muscles, we measured the levels of mRNA for ubiquitin (Ub) and proteasome subunits, and Ub content. After rats had been deprived of food for 1 or 2 days, the concentration of the two polyubiquitin (polyUb) transcripts increased 2-4-fold in the pale extensor digitorum longus muscle and 1-2.5-fold in the red soleus, whereas total muscle RNA and total mRNA content fell by 50%. After denervation of the soleus, there was a progressive 2-3-fold increase in polyUb mRNA for 1-3 days, whereas total RNA content fell. On starvation or denervation, Ub concentration in the muscles also rose by 60-90%. During starvation, polyUb mRNA levels also increased in heart, but not in liver, kidney, spleen, fat, brain or testes. Although the polyUb gene is a heat-shock gene that is induced in muscles under certain stressful conditions, the muscles of starving rats or after denervation did not express other heat-shock genes. On starvation or denervation, mRNA for several proteasome subunits (C-1, C-3, C-5, C-8 and C-9) also increased 2-4-fold in the atrophying muscles. When the food-deprived animals were re-fed, levels of Ub and proteasome mRNA in their muscles returned to control values within 1 day. In contrast, no change occurred in the levels of muscle mRNAs encoding cathepsin L, cathepsin D and calpain 1 on denervation or food deprivation. Thus polyUb and proteasome mRNAs increased in atrophying muscles in co-ordination with activation of the ATP-dependent proteolytic process.
Collapse
Affiliation(s)
- R Medina
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | |
Collapse
|
17
|
Liu L, Maillet DS, Frappier JR, Walden DB, Atkinson BG. Characterization, chromosomal mapping, and expression of different polyubiquitin genes in tissues from control and heat-shocked maize seedlings. Biochem Cell Biol 1995; 73:19-30. [PMID: 7662312 DOI: 10.1139/o95-003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Polyubiquitin transcripts accumulate in plant and animal cells following a heat shock. Most species have a few to several polyubiquitin genes; within a species, the genes may differ in nucleotide (nt) sequence and (or) the number of 228-nt repeats encoding the ubiquitin monomer. This study examines three maize (inbred Oh43) polyubiquitin genes. Two of the genes, MubG9 and MubG5, possess five repeats; the third, MubG1 possesses seven repeats. Sequence analyses of the genomic clones, MubG9 and MubG1 and a cDNA clone, MubG5, reveal that they differ primarily from each other in their nt sequences 5' and 3' to their open reading frames. MubG1 contains a 1004-base pair (bp) intron in its 5' untranslated region. Using gene-specific probes, we show that the amount of polyribosome-associated mRNA transcripts from MubG9 isolated from 2- and 5-day old plumules and radicles is unchanged by heat shock. While the amount of transcript from MubG1 and MubG5 on the polyribosomes in plumules and radicles of 2-day-old seedlings is also unchanged by heat shock, the levels of these transcripts are elevated considerably in similar tissues from heat-shocked 5-day-old seedlings. Similar or identical gene-specific probes were employed to map the genes using the recombinant inbred method. MubG9 maps to chromosome 4L position 186; MubG1 maps to 5L104 and MubG5 to 4L188. The opportunity to use gene-specific probes extends the evidence for distinct modulation (time and tissue) of polyubiquitin gene expression in maize and provides the basis for locus assignment within the genome.
Collapse
Affiliation(s)
- L Liu
- Department of Zoology, University of Western Ontario, London, Canada
| | | | | | | | | |
Collapse
|
18
|
Mitch WE, Medina R, Grieber S, May RC, England BK, Price SR, Bailey JL, Goldberg AL. Metabolic acidosis stimulates muscle protein degradation by activating the adenosine triphosphate-dependent pathway involving ubiquitin and proteasomes. J Clin Invest 1994; 93:2127-33. [PMID: 8182144 PMCID: PMC294343 DOI: 10.1172/jci117208] [Citation(s) in RCA: 267] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Metabolic acidosis often leads to loss of body protein due mainly to accelerated protein breakdown in muscle. To identify which proteolytic pathway is activated, we measured protein degradation in incubated epitrochlearis muscles from acidotic (NH4Cl-treated) and pair-fed rats under conditions that block different proteolytic systems. Inhibiting lysosomal and calcium-activated proteases did not reduce the acidosis-induced increase in muscle proteolysis. However, when ATP production was also blocked, proteolysis fell to the same low level in muscles of acidotic and control rats. Acidosis, therefore, stimulates selectively an ATP-dependent, nonlysosomal, proteolytic process. We also examined whether the activated pathway involves ubiquitin and proteasomes (multicatalytic proteinases). Acidosis was associated with a 2.5- to 4-fold increase in ubiquitin mRNA in muscle. There was no increase in muscle heat shock protein 70 mRNA or in kidney ubiquitin mRNA, suggesting specificity of the response. Ubiquitin mRNA in muscle returned to control levels within 24 h after cessation of acidosis. mRNA for subunits of the proteasome (C2 and C3) in muscle were also increased 4-fold and 2.5-fold, respectively, with acidosis; mRNA for cathepsin B did not change. These results are consistent with, but do not prove that acidosis stimulates muscle proteolysis by activating the ATP-ubiquitin-proteasome-dependent, proteolytic pathway.
Collapse
Affiliation(s)
- W E Mitch
- Renal Division, Emory University School of Medicine, Atlanta, Georgia 30322
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Effects of nerve growth factor on rat peritoneal mast cells. Survival promotion and immediate-early gene induction. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)41999-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
20
|
Schlesinger MJ, Ryan C. An ATP- and hsc70-dependent oligomerization of nascent heat-shock factor (HSF) polypeptide suggests that HSF itself could be a "sensor" for the cellular stress response. Protein Sci 1993; 2:1356-60. [PMID: 8401220 PMCID: PMC2142440 DOI: 10.1002/pro.5560020819] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- M J Schlesinger
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | |
Collapse
|
21
|
|
22
|
Martin DP, Ito A, Horigome K, Lampe PA, Johnson EM. Biochemical characterization of programmed cell death in NGF-deprived sympathetic neurons. JOURNAL OF NEUROBIOLOGY 1992; 23:1205-20. [PMID: 1335032 DOI: 10.1002/neu.480230911] [Citation(s) in RCA: 120] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Young sympathetic neurons die when deprived of nerve growth factor (NGF). Under such circumstances, cell death is appropriate to the developing nervous system and requires RNA and protein synthesis. We have hypothesized the existence of an endogenous death program within neurons that is suppressed by trophic factors. The extent and timing of required changes in the synthetic events that comprise the death program are unknown. In an effort to characterize the biochemical events that mediate the death program further, we performed several experiments on embryonic rat sympathetic neurons in vitro. The death program was blocked with cycloheximide when total protein synthesis was inhibited > or = 80%. When protein synthesis was inhibited within 22 +/- 4 h of NGF deprivation, death was prevented in half the neurons. Hence, we define the commitment point for protein synthesis to be 22 +/- 4 h. Analogously, the commitment point for RNA synthesis was 26 +/- 4 h and that for NGF rescue, 24 +/- 4 h. We tested the ability of a wide variety of chemicals to interfere with the death program. Most compounds tested were unable to prevent neuronal death. Some treatments, however, did save NGF-deprived neurons and were subsequently characterized. These included ultraviolet light and agents that raise intracellular concentrations of cAMP. Finally, we looked for the neuronal expression in vitro and in vivo of genes that have been associated with programmed death in other cell types, including TRPM-2/SGP-2, polyubiquitin, TGF beta-1, c-fos, and c-myc. None of these genes showed significant activation associated with neuronal death.
Collapse
Affiliation(s)
- D P Martin
- Department of Molecular Biology and Pharmacology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | | | | | |
Collapse
|
23
|
Weng J, Nguyen HT. Differences in the heat-shock response between thermotolerant and thermosusceptible cultivars of hexaploid wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 1992; 84:941-946. [PMID: 24201497 DOI: 10.1007/bf00227407] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/1991] [Accepted: 02/26/1992] [Indexed: 06/02/2023]
Abstract
Heat-shock protein (HSP) gene expression in two wheat lines cv 'Mustang' (heat-tolerant) and cv 'Sturdy' (heat-susceptible) were analyzed to determine if wheat genotypes differing in heat tolerance also differ in in-vitro HSP synthesis (translatable HSP mRNAs) and steady-state levels of HSP mRNA. Several sets of mRNA were isolated from seedling leaf tissues which had been heat-stressed at 37 °C for various time intervals. These mRNAs were hybridized with HSP cDNA or genomic DNA probes (HSP17, 26, 70, 98, and ubiquitin). Protein profiles were compared using in-vitro translation and 2-D gels. The Northern slot-blot data from the heat-stress treatment provide evidence that the heat-tolerant cv 'Mustang' synthesized low molecular weight (LMW) HSP mRNA earlier during exposure to heat shock and at a higher level than did the heat-susceptible cv 'Sturdy'. This was especially true for the chloroplast-localized HSP. The protein profiles shown by 2-D gel analysis revealed that there were not only quantitative differences of individual HSPs between the two wheat lines, but also some unique HSPs which were only found in the 'Mustang' HSP profiles. The high level of RFLP between the two wheat lines was revealed by Southern blot hybridization utilizing a HSP17 probe. These data provide a molecular basis for further genetic analysis of the role of HSP genes in thermal tolerance in wheat.
Collapse
Affiliation(s)
- J Weng
- Plant Genetics Laboratory, Department of Agronomy, Horticulture and Entomology, Texas Tech University, 79409, Lubbock, Texas, USA
| | | |
Collapse
|
24
|
Affiliation(s)
- K E Apt
- Carnegie Institution of Washington, 290 Panama Street, Stanford, California 94305-1297
| | | |
Collapse
|
25
|
Abstract
Several of the major heat shock proteins (HSPs) function normally as molecular chaperones to prevent aggregation of immature polypeptides and thereby facilitate folding and oligomerization. To determine their effect on nascent polypeptides, we added purified preparations of different isoforms of HSP70 to in vitro translation reactions primed by the 26S mRNA of Sindbis virus, which encodes an autoprotease that functions cotranslationally, or by the mRNA encoding the yeast vacuolar H+ATPase, which is formed by a novel transpeptidase activity that removes the central region of the initial polypeptide. In the presence of HSP70s both the autoprotease and transpeptidase activities were inhibited, indicating that these chaperones can interact with nascent polypeptides and, in the cases studied here, perturb their normal structures.
Collapse
Affiliation(s)
- C Ryan
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | | | | |
Collapse
|
26
|
Agell N, Ryan C, Schlesinger MJ. Partial purification and substrate specificity of a ubiquitin hydrolase from Saccharomyces cerevisiae. Biochem J 1991; 273 ( Pt 3):615-20. [PMID: 1847617 PMCID: PMC1149808 DOI: 10.1042/bj2730615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A ubiquitin hydrolase that removes ubiquitin from a multi-ubiquitinated protein has been purified 600-fold from Saccharomyces cerevisiae. Four different ubiquitin-protein conjugates were assayed as substrates during the purification procedure. Enzymic activities that removed ubiquitin from ubiquitinated histone H2A, a ubiquitin-ubiquitin dimer and a ubiquitin-ribosomal fusion protein were separated during the purification from an activity that removed a single ubiquitin molecule linked by an isopeptide bond to a ubiquitinated protein. The size of the native enzyme was 160 kDa, based on its sedimentation in a sucrose gradient, and the subunit molecular mass was estimated to be 160 kDa, based on a profile of proteins eluted in different fractions by thiol-affinity chromatography. The partially purified hydrolase was not inhibited by a variety of protease inhibitors, except for thiol-blocking reagents. The natural substrate for this enzyme may be the polyubiquitin chain containing ubiquitin molecules bound to each other in isopeptide bonds, with one of them linked to a lysine residue of a protein targeted for intracellular proteolysis.
Collapse
Affiliation(s)
- N Agell
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110
| | | | | |
Collapse
|
27
|
Liu C, Miller H, Kohr W, Silber J. Purification of a ubiquitin protein peptidase from yeast with efficient in vitro assays. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(19)47067-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
28
|
Jonnalagadda S, Butt TR, Monia BP, Mirabelli CK, Gotlib L, Ecker DJ, Crooke ST. Multiple (α-NH-ubiquitin)Protein Endoproteases in Cells. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)81669-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|