1
|
Bazant J, Weiss A, Baldauf J, Schermuly RT, Hain T, Lucas R, Mraheil MA. Pneumococcal hydrogen peroxide regulates host cell kinase activity. Front Immunol 2024; 15:1414195. [PMID: 38903521 PMCID: PMC11188345 DOI: 10.3389/fimmu.2024.1414195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Introduction Protein kinases are indispensable reversible molecular switches that adapt and control protein functions during cellular processes requiring rapid responses to internal and external events. Bacterial infections can affect kinase-mediated phosphorylation events, with consequences for both innate and adaptive immunity, through regulation of antigen presentation, pathogen recognition, cell invasiveness and phagocytosis. Streptococcus pneumoniae (Spn), a human respiratory tract pathogen and a major cause of community-acquired pneumoniae, affects phosphorylation-based signalling of several kinases, but the pneumococcal mediator(s) involved in this process remain elusive. In this study, we investigated the influence of pneumococcal H2O2 on the protein kinase activity of the human lung epithelial H441 cell line, a generally accepted model of alveolar epithelial cells. Methods We performed kinome analysis using PamGene microarray chips and protein analysis in Western blotting in H441 lung cells infected with Spn wild type (SpnWT) or with SpnΔlctOΔspxB -a deletion mutant strongly attenuated in H2O2 production- to assess the impact of pneumococcal hydrogen peroxide (H2O2) on global protein kinase activity profiles. Results Our kinome analysis provides direct evidence that kinase activity profiles in infected H441 cells significantly vary according to the levels of pneumococcal H2O2. A large number of kinases in H441 cells infected with SpnWT are significantly downregulated, whereas this no longer occurs in cells infected with the mutant SpnΔlctOΔspxB strain, which lacks H2O2. In particular, we describe for the first time H2O2-mediated downregulation of Protein kinase B (Akt1) and activation of lymphocyte-specific tyrosine protein kinase (Lck) via H2O2-mediated phosphorylation.
Collapse
Affiliation(s)
- Jasmin Bazant
- Institute of Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, Germany
| | - Astrid Weiss
- Department of Internal Medicine, Cardio–Pulmonary Institute (CPI), Member of German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Julia Baldauf
- Department of Internal Medicine, Cardio–Pulmonary Institute (CPI), Member of German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Ralph Theo Schermuly
- Department of Internal Medicine, Cardio–Pulmonary Institute (CPI), Member of German Center for Lung Research (DZL), Justus-Liebig University Giessen, Giessen, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, Germany
| | - Rudolf Lucas
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, GA, United States
- Division of Pulmonary, Sleep and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, GA, United States
| | - Mobarak Abu Mraheil
- Institute of Medical Microbiology, German Centre for Infection Giessen-Marburg-Langen Site, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
2
|
Lui VG, Hoenig M, Cabrera-Martinez B, Baxter RM, Garcia-Perez JE, Bailey O, Acharya A, Lundquist K, Capera J, Matusewicz P, Hartl FA, D’Abramo M, Alba J, Jacobsen EM, Niewolik D, Lorenz M, Pannicke U, Schulz AS, Debatin KM, Schamel WW, Minguet S, Gumbart JC, Dustin ML, Cambier JC, Schwarz K, Hsieh EW. A partial human LCK defect causes a T cell immunodeficiency with intestinal inflammation. J Exp Med 2024; 221:e20230927. [PMID: 37962568 PMCID: PMC10644909 DOI: 10.1084/jem.20230927] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/09/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (LCK) is essential for T cell antigen receptor (TCR)-mediated signal transduction. Here, we report two siblings homozygous for a novel LCK variant (c.1318C>T; P440S) characterized by T cell lymphopenia with skewed memory phenotype, infant-onset recurrent infections, failure to thrive, and protracted diarrhea. The patients' T cells show residual TCR signal transduction and proliferation following anti-CD3/CD28 and phytohemagglutinin (PHA) stimulation. We demonstrate in mouse models that complete (Lck-/-) versus partial (LckP440S/P440S) loss-of-function LCK causes disease with differing phenotypes. While both Lck-/- and LckP440S/P440S mice exhibit arrested thymic T cell development and profound T cell lymphopenia, only LckP440S/P440S mice show residual T cell proliferation, cytokine production, and intestinal inflammation. Furthermore, the intestinal disease in the LckP440S/P440S mice is prevented by CD4+ T cell depletion or regulatory T cell transfer. These findings demonstrate that P440S LCK spares sufficient T cell function to allow the maturation of some conventional T cells but not regulatory T cells-leading to intestinal inflammation.
Collapse
Affiliation(s)
- Victor G. Lui
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Manfred Hoenig
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Berenice Cabrera-Martinez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Ryan M. Baxter
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Josselyn E. Garcia-Perez
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Olivia Bailey
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Atanu Acharya
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- BioInspired Syracuse and Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Karl Lundquist
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jesusa Capera
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Paul Matusewicz
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Frederike A. Hartl
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Marco D’Abramo
- Department of Chemistry, Sapienza University of Rome, Rome, Italy
| | - Josephine Alba
- Department of Biology, Université de Fribourg, Fribourg, Switzerland
| | | | - Doris Niewolik
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Myriam Lorenz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ulrich Pannicke
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Ansgar S. Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | | | - Wolfgang W. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signalling Studies and CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency, University Clinics and Medical Faculty, University, Freiburg, Germany
| | - James C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Michael L. Dustin
- Nuffield Department of Orthopaedics Rheumatology and Musculoskeletal Sciences, The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - John C. Cambier
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| | - Klaus Schwarz
- Institute for Transfusion Medicine, University of Ulm, Ulm, Germany
- Institute for Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Service Baden-Wuerttemberg-Hessen, Ulm, Germany
| | - Elena W.Y. Hsieh
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Human Immunology and Immunotherapy Initiative, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
- Department of Pediatrics, Section of Allergy and Immunology, Children’s Hospital Colorado, University of Colorado Anschutz School of Medicine, Aurora, CO, USA
| |
Collapse
|
3
|
Borowicz P, Sundvold V, Chan H, Abrahamsen G, Kjelstrup H, Nyman TA, Spurkland A. Tyr 192 Regulates Lymphocyte-Specific Tyrosine Kinase Activity in T Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:1128-1137. [PMID: 34321230 DOI: 10.4049/jimmunol.2001105] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 06/07/2021] [Indexed: 11/19/2022]
Abstract
TCR signaling critically depends on the tyrosine kinase Lck (lymphocyte-specific protein tyrosine kinase). Two phosphotyrosines, the activating pTyr394 and the inhibitory pTyr505, control Lck activity. Recently, pTyr192 in the Lck SH2 domain emerged as a third regulator. How pTyr192 may affect Lck function remains unclear. In this study, we explored the role of Lck Tyr192 using CRISPR/Cas9-targeted knock-in mutations in the human Jurkat T cell line. Our data reveal that both Lck pTyr394 and pTyr505 are controlled by Lck Tyr192 Lck with a nonphosphorylated SH2 domain (Lck Phe192) displayed hyperactivity, possibly by promoting Lck Tyr394 transphosphorylation. Lck Glu192 mimicking stable Lck pTyr192 was inhibited by Tyr505 hyperphosphorylation. To overcome this effect, we further mutated Tyr505 The resulting Lck Glu192/Phe505 displayed strongly increased amounts of pTyr394 both in resting and activated T cells. Our results suggest that a fundamental role of Lck pTyr192 may be to protect Lck pTyr394 and/or pTyr505 to maintain a pool of already active Lck in resting T cells. This provides an additional mechanism for fine-tuning of Lck as well as T cell activity.
Collapse
Affiliation(s)
- Paweł Borowicz
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Vibeke Sundvold
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Hanna Chan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Greger Abrahamsen
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Hanna Kjelstrup
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| | - Tuula A Nyman
- Department of Immunology, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anne Spurkland
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; and
| |
Collapse
|
4
|
Kreusser LM, Rendall AD. Autophosphorylation and the Dynamics of the Activation of Lck. Bull Math Biol 2021; 83:64. [PMID: 33932170 PMCID: PMC8088428 DOI: 10.1007/s11538-021-00900-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/08/2021] [Indexed: 11/18/2022]
Abstract
Lck (lymphocyte-specific protein tyrosine kinase) is an enzyme which plays a number of important roles in the function of immune cells. It belongs to the Src family of kinases which are known to undergo autophosphorylation. It turns out that this leads to a remarkable variety of dynamical behaviour which can occur during their activation. We prove that in the presence of autophosphorylation one phenomenon, bistability, already occurs in a mathematical model for a protein with a single phosphorylation site. We further show that a certain model of Lck exhibits oscillations. Finally, we discuss the relations of these results to models in the literature which involve Lck and describe specific biological processes, such as the early stages of T cell activation and the stimulation of T cell responses resulting from the suppression of PD-1 signalling which is important in immune checkpoint therapy for cancer.
Collapse
Affiliation(s)
- Lisa Maria Kreusser
- Department for Applied Mathematics and Theoretical Physics, University of Cambridge, Wilberforce Road, Cambridge, CB3 0WA, UK
| | - Alan D Rendall
- Institut für Mathematik, Johannes Gutenberg-Universität, Staudingerweg 9, 55099, Mainz, Germany.
| |
Collapse
|
5
|
The Activity and Stability of p56Lck and TCR Signaling Do Not Depend on the Co-Chaperone Cdc37. Int J Mol Sci 2020; 22:ijms22010126. [PMID: 33374422 PMCID: PMC7795971 DOI: 10.3390/ijms22010126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (Lck) is a pivotal tyrosine kinase involved in T cell receptor (TCR) signaling. Because of its importance, the activity of Lck is regulated at different levels including phosphorylation of tyrosine residues, protein-protein interactions, and localization. It has been proposed that the co-chaperone Cdc37, which assists the chaperone heat shock protein 90 (Hsp90) in the folding of client proteins, is also involved in the regulation of the activity/stability of Lck. Nevertheless, the available experimental data do not clearly support this conclusion. Thus, we assessed whether or not Cdc37 regulates Lck. We performed experiments in which the expression of Cdc37 was either augmented or suppressed in Jurkat T cells. The results of our experiments indicated that neither the overexpression nor the suppression of Cdc37 affected Lck stability and activity. Moreover, TCR signaling proceeded normally in T cells in which Cdc37 expression was either augmented or suppressed. Finally, we demonstrated that also under stress conditions Cdc37 was dispensable for the regulation of Lck activity/stability. In conclusion, our data do not support the idea that Lck is a Cdc37 client.
Collapse
|
6
|
Beyond TCR Signaling: Emerging Functions of Lck in Cancer and Immunotherapy. Int J Mol Sci 2019; 20:ijms20143500. [PMID: 31315298 PMCID: PMC6679228 DOI: 10.3390/ijms20143500] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 01/10/2023] Open
Abstract
In recent years, the lymphocyte-specific protein tyrosine kinase (Lck) has emerged as one of the key molecules regulating T-cell functions. Studies using Lck knock-out mice or Lck-deficient T-cell lines have shown that Lck regulates the initiation of TCR signaling, T-cell development, and T-cell homeostasis. Because of the crucial role of Lck in T-cell responses, strategies have been employed to redirect Lck activity to improve the efficacy of chimeric antigen receptors (CARs) and to potentiate T-cell responses in cancer immunotherapy. In addition to the well-studied role of Lck in T cells, evidence has been accumulated suggesting that Lck is also expressed in the brain and in tumor cells, where it actively takes part in signaling processes regulating cellular functions like proliferation, survival and memory. Therefore, Lck has emerged as a novel druggable target molecule for the treatment of cancer and neuronal diseases. In this review, we will focus on these new functions of Lck.
Collapse
|
7
|
Liaunardy-Jopeace A, Murton BL, Mahesh M, Chin JW, James JR. Encoding optical control in LCK kinase to quantitatively investigate its activity in live cells. Nat Struct Mol Biol 2017; 24:1155-1163. [PMID: 29083415 PMCID: PMC5736103 DOI: 10.1038/nsmb.3492] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 09/25/2017] [Indexed: 11/16/2022]
Abstract
LCK is a tyrosine kinase essential for initiating T-cell antigen receptor (TCR) signaling. A complete understanding of LCK function is constrained by a paucity of methods to quantitatively study its function within live cells. To address this limitation, we generated LCK*, in which a key active site lysine is replaced by a photo-caged equivalent, using genetic code expansion. This enabled fine temporal and spatial control over kinase activity, allowing us to quantify phosphorylation kinetics in situ using biochemical and imaging approaches. We find that auto-phosphorylation of the LCK active site loop is indispensable for its catalytic activity and that LCK can stimulate its own activation by adopting a more open conformation, which can be modulated by point mutations. We then show that CD4 and CD8, the T cell coreceptors, can enhance LCK activity, helping to explain their effect in physiological TCR signaling. Our approach also provides general insights into SRC-family kinase dynamics.
Collapse
Affiliation(s)
| | - Ben L Murton
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC-LMB, Cambridge, UK
| | - Mohan Mahesh
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, UK
| | - John R James
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC-LMB, Cambridge, UK
| |
Collapse
|
8
|
Abstract
Since the inception of the fluid mosaic model, cell membranes have come to be recognized as heterogeneous structures composed of discrete protein and lipid domains of various dimensions and biological functions. The structural and biological properties of membrane domains are represented by CDM (cholesterol-dependent membrane) domains, frequently referred to as membrane ‘rafts’. Biological functions attributed to CDMs include signal transduction. In T-cells, CDMs function in the regulation of the Src family kinase Lck (p56lck) by sequestering Lck from its activator CD45. Despite evidence of discrete CDM domains with specific functions, the mechanism by which they form and are maintained within a fluid and dynamic lipid bilayer is not completely understood. In the present chapter, we discuss recent advances showing that the actomyosin cytoskeleton has an integral role in the formation of CDM domains. Using Lck as a model, we also discuss recent findings regarding cytoskeleton-dependent CDM domain functions in protein regulation.
Collapse
|
9
|
In vitro membrane reconstitution of the T-cell receptor proximal signaling network. Nat Struct Mol Biol 2014; 21:133-42. [PMID: 24463463 PMCID: PMC4062301 DOI: 10.1038/nsmb.2762] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 12/16/2013] [Indexed: 12/31/2022]
Abstract
T-cell receptor (TCR) phosphorylation is controlled by a complex network that includes Lck, a Src family kinase (SFK), the tyrosine phosphatase CD45, and the Lck-inhibitory kinase Csk. How these competing phosphorylation and dephosphorylation reactions are modulated to produce T-cell triggering is not fully understood. Here we reconstituted this signaling network using purified enzymes on liposomes, recapitulating the membrane environment in which they normally interact. We demonstrate that Lck's enzymatic activity can be regulated over a ~10-fold range by controlling its phosphorylation state. By varying kinase and phosphatase concentrations, we constructed phase diagrams that reveal ultrasensitivity in the transition from the quiescent to the phosphorylated state and demonstrate that coclustering TCR-Lck or detaching Csk from the membrane can trigger TCR phosphorylation. Our results provide insight into the mechanism of TCR signaling as well as other signaling pathways involving SFKs.
Collapse
|
10
|
Molecular mechanisms of SH2- and PTB-domain-containing proteins in receptor tyrosine kinase signaling. Cold Spring Harb Perspect Biol 2013; 5:a008987. [PMID: 24296166 DOI: 10.1101/cshperspect.a008987] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Intracellular signaling is mediated by reversible posttranslational modifications (PTMs) that include phosphorylation, ubiquitination, and acetylation, among others. In response to extracellular stimuli such as growth factors, receptor tyrosine kinases (RTKs) typically dimerize and initiate signaling through phosphorylation of their cytoplasmic tails and downstream scaffolds. Signaling effectors are recruited to these phosphotyrosine (pTyr) sites primarily through Src homology 2 (SH2) domains and pTyr-binding (PTB) domains. This review describes how these conserved domains specifically recognize pTyr residues and play a major role in mediating precise downstream signaling events.
Collapse
|
11
|
Nuclear localization of lymphocyte-specific protein tyrosine kinase (Lck) and its role in regulating LIM domain only 2 (Lmo2) gene. Biochem Biophys Res Commun 2011; 417:1058-62. [PMID: 22222369 DOI: 10.1016/j.bbrc.2011.12.095] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 12/18/2011] [Indexed: 01/06/2023]
Abstract
LIM domain only protein 2 (Lmo2) is a transcription factor that plays a critical role in the development of T-acute lymphoblastic leukemia (T-ALL). A previous report established a link between Lmo2 expression and the nuclear presence of oncogenic Janus kinase 2 (JAK2), a non-receptor protein tyrosine kinase. The oncogenic JAK2 kinase phosphorylates histone H3 on Tyr 41 that leads to the relief of Lmo2 promoter repression and subsequent gene expression. Similar to JAK2, constitutive activation of lymphocyte-specific protein tyrosine kinase (Lck) has been implicated in lymphoid malignancies. However, it is not known whether oncogenic Lck regulates Lmo2 expression through a similar mechanism. We show here that Lmo2 expression is significantly elevated in T cell leukemia LSTRA overexpressing active Lck kinase and in HEK 293 cells expressing oncogenic Y505FLck kinase. Nuclear localization of active Lck kinase was confirmed in both Lck-transformed cells by subcellular fractionation and immunofluorescence microscopy. More importantly, in contrast to oncogenic JAK2, oncogenic Lck kinase does not result in significant increase in histone H3 phosphorylation on Tyr 41. Instead, chromatin immunoprecipitation experiment shows that oncogenic Y505FLck kinase binds to the Lmo2 promoter in vivo. This result raises the possibility that oncogenic Lck may activate Lmo2 promoter through direct interaction.
Collapse
|
12
|
Gabaev I, Steinbrück L, Pokoyski C, Pich A, Stanton RJ, Schwinzer R, Schulz TF, Jacobs R, Messerle M, Kay-Fedorov PC. The human cytomegalovirus UL11 protein interacts with the receptor tyrosine phosphatase CD45, resulting in functional paralysis of T cells. PLoS Pathog 2011; 7:e1002432. [PMID: 22174689 PMCID: PMC3234252 DOI: 10.1371/journal.ppat.1002432] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/27/2011] [Indexed: 01/15/2023] Open
Abstract
Human cytomegalovirus (CMV) exerts diverse and complex effects on the immune system, not all of which have been attributed to viral genes. Acute CMV infection results in transient restrictions in T cell proliferative ability, which can impair the control of the virus and increase the risk of secondary infections in patients with weakened or immature immune systems. In a search for new immunomodulatory proteins, we investigated the UL11 protein, a member of the CMV RL11 family. This protein family is defined by the RL11 domain, which has homology to immunoglobulin domains and adenoviral immunomodulatory proteins. We show that pUL11 is expressed on the cell surface and induces intercellular interactions with leukocytes. This was demonstrated to be due to the interaction of pUL11 with the receptor tyrosine phosphatase CD45, identified by mass spectrometry analysis of pUL11-associated proteins. CD45 expression is sufficient to mediate the interaction with pUL11 and is required for pUL11 binding to T cells, indicating that pUL11 is a specific CD45 ligand. CD45 has a pivotal function regulating T cell signaling thresholds; in its absence, the Src family kinase Lck is inactive and signaling through the T cell receptor (TCR) is therefore shut off. In the presence of pUL11, several CD45-mediated functions were inhibited. The induction of tyrosine phosphorylation of multiple signaling proteins upon TCR stimulation was reduced and T cell proliferation was impaired. We therefore conclude that pUL11 has immunosuppressive properties, and that disruption of T cell function via inhibition of CD45 is a previously unknown immunomodulatory strategy of CMV. The human cytomegalovirus (CMV) belongs to a class of viruses that interferes with the immune response of its host. Accordingly, infection with CMV is a severe risk for immunologically immature newborns and immunocompromised patients such as transplant recipients. The mechanisms by which CMV affects the immune system are not completely understood. Here we show that a CMV protein, pUL11, which is expressed on the surface of cells, binds to leukocytes by interacting with the receptor tyrosine phosphatase CD45. In T cells, CD45 is essential for transmission of activating signals received via the T cell receptor (TCR) to downstream effector molecules that ultimately lead to activation and proliferation of these immune cells. Binding of the CMV pUL11 protein to CD45 on T cells prevents signal transduction via the TCR and restricts T cell proliferation. Interestingly, the mechanism by which the activity of CD45 is regulated is a matter of debate and no specific cellular ligand of CD45 has yet been described. The identification of a first viral ligand for CD45 may provide the means to investigate CD45 regulatory mechanisms and also allow the development of therapies to interfere with CMV-mediated immunomodulation.
Collapse
Affiliation(s)
- Ildar Gabaev
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Lars Steinbrück
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Claudia Pokoyski
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Hannover, Germany
| | - Richard J. Stanton
- Section of Medical Microbiology, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Reinhard Schwinzer
- Department of General, Visceral and Transplantation Surgery, Hannover Medical School, Hannover, Germany
| | - Thomas F. Schulz
- Institute of Virology, Hannover Medical School, Hannover, Germany
| | - Roland Jacobs
- Department of Clinical Immunology and Rheumatology, Hannover Medical School, Hannover, Germany
| | - Martin Messerle
- Institute of Virology, Hannover Medical School, Hannover, Germany
- * E-mail:
| | | |
Collapse
|
13
|
Venkitachalam S, Chueh FY, Leong KF, Pabich S, Yu CL. Suppressor of cytokine signaling 1 interacts with oncogenic lymphocyte-specific protein tyrosine kinase. Oncol Rep 2011; 25:677-83. [PMID: 21234523 DOI: 10.3892/or.2011.1144] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 12/13/2010] [Indexed: 01/23/2023] Open
Abstract
Lymphocyte-specific protein tyrosine kinase (Lck) plays a key role in T cell signal transduction and is tightly regulated by phosphorylation and dephosphorylation. Lck can function as an oncoprotein when overexpressed or constantly activated by mutations. Our previous studies showed that Lck-induced cellular transformation could be suppressed by enforced expression of suppressor of cytokine signaling 1 (SOCS1), a SOCS family member involved in the negative feedback control of cytokine signaling. We observed attenuated Lck kinase activity in SOCS1-expressing cells, suggesting an important role of SOCS in regulating Lck functions. It remains largely unknown whether and how SOCS proteins interact with the oncogenic Lck kinase. Here, we report that among four SOCS family proteins, SOCS1, SOCS2, SOCS3 and CIS (cytokine-inducible SH2 domain containing protein), SOCS1 has the highest affinity in binding to the oncogenic Lck kinase. We identified the positive regulatory phosphotyrosine 394 residue in the kinase domain as the key interacting determinant in Lck. Additionally, the Lck kinase domain alone is sufficient to bind SOCS1. While the SH2 domain in SOCS1 is important in its association with the oncogenic Lck kinase, other functional domains may also contribute to overall binding affinity. These findings provide important mechanistic insights into the role of SOCS proteins as tumor suppressors in cells transformed by oncogenic protein tyrosine kinases.
Collapse
Affiliation(s)
- Srividya Venkitachalam
- Department of Microbiology and Immunology, H. M. Bligh Cancer Research Laboratories, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, USA
| | | | | | | | | |
Collapse
|
14
|
Herpes simplex virus requires VP11/12 to activate Src family kinase-phosphoinositide 3-kinase-Akt signaling. J Virol 2011; 85:2803-12. [PMID: 21228233 DOI: 10.1128/jvi.01877-10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We previously showed that the herpes simplex virus 1 (HSV-1) tegument protein VP11/12 activates the lymphocyte-specific Src family kinase (SFK) Lck and is tyrosine phosphorylated in an Lck-dependent manner during T cell infection. We now extend these findings to show that ectopic expression of Lck induces robust tyrosine phosphorylation of VP11/12 in Vero cells, strongly suggesting that VP11/12 participates in an Lck-mediated signaling pathway as a substrate of Lck or a kinase activated by Lck. We sought to elucidate signaling events downstream of VP11/12-SFK interactions. SFKs lie upstream of the canonical phosphoinositide 3-kinase (PI3K)-Akt pathway in signaling emanating from immune receptors, growth factor receptors, and polyomavirus middle T antigen. Here, we show that VP11/12 is required for virus-induced activation of PI3K-Akt signaling in HSV-infected Jurkat T cells and primary fibroblasts. VP11/12 interacts with PI3K or PI3K signaling complexes during infection, suggesting that VP11/12 activates PI3K directly. SFK activity is required for tyrosine phosphorylation of VP11/12, VP11/12-PI3K interactions, and Akt activation in infected fibroblasts, suggesting that SFK-dependent phosphorylation of VP11/12 is required for interactions with downstream signaling effectors. Akt controls many biological functions, including cell survival, cell motility, and translation, but it is currently unclear which Akt targets are modulated by VP11/12 during infection. Although the Akt target mTORC1 is activated during HSV-1 infection, VP11/12 is not required for this effect, implying that one or more additional viral proteins regulate this pathway. Further studies are therefore required to determine which Akt targets and associated biological functions are uniquely modulated by VP11/12.
Collapse
|
15
|
Motiwala T, Datta J, Kutay H, Roy S, Jacob ST. Lyn kinase and ZAP70 are substrates of PTPROt in B-cells: Lyn inactivation by PTPROt sensitizes leukemia cells to VEGF-R inhibitor pazopanib. J Cell Biochem 2010; 110:846-56. [PMID: 20564182 DOI: 10.1002/jcb.22593] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have recently shown that the gene encoding the truncated form of protein tyrosine phosphatase receptor-type O (PTPROt) expressed predominantly in hematopoietic cells is epigenetically silenced in human primary chronic lymphocytic leukemia (B-CLL). To determine whether increased phosphorylation of the PTPROt substrates following PTPROt suppression alters signal transduction pathway(s) that impart a growth advantage to the leukemic lymphocytes, it is critical to discern the key substrates of PTPROt. Here, we used substrate-trapping assay to identify two novel substrates of PTPROt, the tyrosine kinases Lyn and ZAP70. Both Lyn and ZAP70 were dephosphorylated by wild-type PTPROt, but not by its catalytic site (CS) mutant. A critical phosphorylation site in Lyn, Y397, essential for its activity was dephosphorylated by PTPROt. Consequently, the activity of Lyn kinase was compromised when co-expressed with PTPROt-WT compared to vector control or upon co-expression with PTPROt-CS. Ectopic expression of PTPROt in Raji cells reduced phosphorylation of Lyn in the absence of any change in its protein levels. These results have revealed the physiological importance of PTPROt in regulating B-cell receptor signaling at Lyn kinase. Further, ectopic expression of PTPROt also sensitized the cells to the VEGF-R inhibitor Pazopanib.
Collapse
Affiliation(s)
- Tasneem Motiwala
- Department of Molecular and Cellular Biochemistry, College of Medicine, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
16
|
Spatiotemporal control of cyclic AMP immunomodulation through the PKA-Csk inhibitory pathway is achieved by anchoring to an Ezrin-EBP50-PAG scaffold in effector T cells. FEBS Lett 2010; 584:2681-8. [PMID: 20420835 DOI: 10.1016/j.febslet.2010.04.056] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2010] [Revised: 04/16/2010] [Accepted: 04/20/2010] [Indexed: 11/23/2022]
Abstract
A variety of immunoregulatory signals to effector T cells from monocytes, macrophages and regulatory T cells act through cyclic adenosine monophosphate. In the effector T cell, the protein kinase A (PKA) type I isoenzyme localizes to lipid rafts during T cell activation and modulates directly the proximal events that take place after engagement of the T cell receptor. The most proximal target for PKA phosphorylation is C-terminal Src kinase (Csk), which initiates a negative signal pathway that fine-tunes the T cell activation process. The A kinase anchoring protein Ezrin colocalizes PKA and Csk by forming a supramolecular signaling complex consisting of PKA, Ezrin, Ezrin/radixin/moesin (ERM) binding protein of 50 kDa (EBP50), phosphoprotein associated with glycosphingolipid-enriched membrane microdomains (GEMs) (PAG) and Csk.
Collapse
|
17
|
Chichili GR, Westmuckett AD, Rodgers W. T cell signal regulation by the actin cytoskeleton. J Biol Chem 2010; 285:14737-46. [PMID: 20194498 DOI: 10.1074/jbc.m109.097311] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
T cells form an immunological synapse (IS) that sustains and regulates signals for cell stimulation. Enriched in the IS is the Src family kinase Lck. Conversely, the membrane phosphatase CD45, which activates Src family kinases, is excluded, and this is necessary to avoid quenching of T cell receptor phosphosignals. Data suggest that this arrangement occurs by an enrichment of cholesterol-dependent rafts in the IS. However, the role of rafts in structuring the IS remains unclear. To address this question, we used fluorescence resonance energy transfer (FRET) to interrogate the nanoscopic structure of the IS. The FRET probes consisted of membrane-anchored fluorescent proteins with distinct affinities for rafts. Both the raft and nonraft probes exhibited clustering in the IS. However, co-clustering of raft donor-acceptor pairs was 10-fold greater than co-clustering of raft-nonraft pairs. We measured the effect of disrupting rafts in the IS on CD45 localization and Lck regulation by treating stimulated T cells with filipin. The filipin specifically disrupted co-clustering of the raft FRET pairs in the IS and allowed targeting of CD45 to the IS and dephosphorylation of the regulatory tyrosine of Lck. Clustering of the raft probes was also sensitive to latrunctulin B, which disrupts actin filaments. Strikingly, enriching the cortical cytoskeleton using jasplakinolide maintained raft probe co-clustering, CD45 exclusion, and Lck regulation in the IS following the addition of filipin. These data show the actin cytoskeleton maintains a membrane raft environment in the IS that promotes Lck regulation by excluding CD45.
Collapse
Affiliation(s)
- Gurunadh R Chichili
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
18
|
Herpes simplex virus requires VP11/12 to induce phosphorylation of the activation loop tyrosine (Y394) of the Src family kinase Lck in T lymphocytes. J Virol 2009; 83:12452-61. [PMID: 19776125 DOI: 10.1128/jvi.01364-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Herpes simplex virus (HSV) tegument proteins are released into the cytoplasm during viral entry and hence are among the first viral proteins encountered by an infected cell. Despite the implied importance of these proteins in the evasion of host defenses, the function of some, like virion protein 11/12 (VP11/12), have not been clearly defined. Previously, we reported that VP11/12 is strongly tyrosine phosphorylated during the infection of lymphocytes but not in fibroblasts or an epithelial cell line (G. Zahariadis, M. J. Wagner, R. C. Doepker, J. M. Maciejko, C. M. Crider, K. R. Jerome, and J. R. Smiley, J. Virol. 82:6098-6108, 2008). We also showed that tyrosine phosphorylation depends in part on the activity of the lymphocyte-specific Src family kinase (SFK) Lck in Jurkat T cells. These data suggested that VP11/12 is a substrate of Lck and that Lck is activated during HSV infection. Here, we show that HSV infection markedly increases the fraction of Lck phosphorylated on its activation loop tyrosine (Y394), a feature characteristic of activated Lck. A previous report implicated the immediate-early protein ICP0 and the viral serine/threonine kinases US3 and UL13 in the induction of a similar activated phenotype of SFKs other than Lck in fibroblasts and suggested that ICP0 interacts directly with SFKs through their SH3 domain. However, we were unable to detect an interaction between ICP0 and Lck in T lymphocytes, and we show that ICP0, US3, and UL13 are not strictly required for Lck activation. In contrast, VP11/12 interacted with Lck or Lck signaling complexes and was strictly required for Lck activation during HSV infection. Thus, VP11/12 likely modulates host cell signaling pathways for the benefit of the virus.
Collapse
|
19
|
Filipp D, Moemeni B, Ferzoco A, Kathirkamathamby K, Zhang J, Ballek O, Davidson D, Veillette A, Julius M. Lck-dependent Fyn activation requires C terminus-dependent targeting of kinase-active Lck to lipid rafts. J Biol Chem 2008; 283:26409-22. [PMID: 18660530 DOI: 10.1074/jbc.m710372200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms regulating the activation and delivery of function of Lck and Fyn are central to the generation of the most proximal signaling events emanating from the T cell antigen receptor (TcR) complex. Recent results demonstrate that lipid rafts (LR) segregate Lck and Fyn and play a fundamental role in the temporal and spatial coordination of their activation. Specifically, TcR-CD4 co-aggregation-induced Lck activation outside LR results in Lck translocation to LR where the activation of LR-resident Fyn ensues. Here we report a structure-function analysis toward characterizing the mechanism supporting Lck partitioning to LR and its capacity to activate co-localized Fyn. Using NIH 3T3 cells ectopically expressing FynT, we demonstrate that only LR-associated, kinase-active (Y505F)Lck reciprocally co-immunoprecipitates with and activates Fyn. Mutational analyses revealed a profound reduction in the formation of Lck-Fyn complexes and Fyn activation, using kinase domain mutants K273R and Y394F of (Y505F)Lck, both of which have profoundly compromised kinase activity. The only kinase-active Lck mutants tested that revealed impaired physical and enzymatic engagement with Fyn were those involving truncation of the C-terminal sequence YQPQP. Remarkably, sequential truncation of YQPQP resulted in an increasing reduction of kinase-active Lck partitioning to LR, in both fibroblasts and T cells. This in turn correlated with an ablation of the capacity of these truncates to enhance TcR-mediated interleukin-2 production. Thus, Lck-dependent Fyn activation is predicated by proximity-mediated transphosphorylation of the Fyn kinase domain, and targeting kinase-active Lck to LR is dependent on the C-terminal sequence QPQP.
Collapse
Affiliation(s)
- Dominik Filipp
- Sunnybrook Research Institute and the Department of Immunology, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Granum S, Andersen TCB, Sørlie M, Jørgensen M, Koll L, Berge T, Lea T, Fleckenstein B, Spurkland A, Sundvold-Gjerstad V. Modulation of Lck function through multisite docking to T cell-specific adapter protein. J Biol Chem 2008; 283:21909-19. [PMID: 18541536 DOI: 10.1074/jbc.m800871200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
T cell-specific adapter protein (TSAd), encoded by the SH2D2A gene, interacts with Lck through its C terminus and thus modulates Lck activity. Here we mapped Lck phosphorylation and interaction sites on TSAd and evaluated their functional importance. The three C-terminal TSAd tyrosines Tyr(280), Tyr(290), and Tyr(305) were phosphorylated by Lck and functioned as docking sites for the Lck Src homology 2 (SH2) domain. Binding affinities of the TSAd Tyr(P)(280) and Tyr(P)(290) phosphopeptides to the isolated Lck SH2 domain were similar to that observed for the Lck Tyr(P)(505) phosphopeptide, whereas the TSAd Tyr(P)(305) peptide displayed a 10-fold higher affinity. The proline-rich Lck SH3-binding site on TSAd as well as the Lck SH2 domain were required for efficient tyrosine phosphorylation of TSAd by Lck. Interaction sites on TSAd for both Lck SH2 and Lck SH3 were necessary for TSAd-mediated modulation of proximal TCR signaling events. We found that 20-30% of TSAd molecules are phosphorylated in activated T cells and that the proportion of TSAd to Lck molecules in such cells is approximately 1:1. Therefore, in activated T cells, a considerable number of Lck molecules may potentially be engaged by TSAd. In conclusion, Lck binds to TSAd prolines and phosphorylates and interacts with the three C-terminal TSAd tyrosines. We propose that through multivalent interactions with Lck, TSAd diverts Lck from phosphorylating other substrates, thus modulating its functional activity through substrate competition.
Collapse
Affiliation(s)
- Stine Granum
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Box 1105, Blindern, N-0317 Oslo, Norway.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Nika K, Tautz L, Arimura Y, Vang T, Williams S, Mustelin T. A weak Lck tail bite is necessary for Lck function in T cell antigen receptor signaling. J Biol Chem 2007; 282:36000-9. [PMID: 17897955 DOI: 10.1074/jbc.m702779200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Src family kinases are suppressed by a "tail bite" mechanism, in which the binding of a phosphorylated tyrosine in the C terminus of the protein to the Src homology (SH) 2 domain in the N-terminal half of the protein forces the catalytic domain into an inactive conformation stabilized by an additional SH3 interaction. In addition to this intramolecular suppressive function, the SH2 domain also mediates intermolecular interactions, which are crucial for T cell antigen receptor (TCR) signaling. To better understand the relative importance of these two opposite functions of the SH2 domain of the Src family kinase Lck in TCR signaling, we created three mutants of Lck in which the intramolecular binding of the C terminus to the SH2 domain was strengthened. The mutants differed from wild-type Lck only in one to three amino acid residues following the negative regulatory tyrosine 505, which was normally phosphorylated by Csk and dephosphorylated by CD45 in the mutants. In the Lck-negative JCaM1 cell line, the Lck mutants had a much reduced ability to transduce signals from the TCR in a manner that directly correlated with SH2-Tyr(P)(505) affinity. The mutant with the strongest tail bite was completely unable to support any ZAP-70 phosphorylation, mitogen-activated protein kinase activation, or downstream gene activation in response to TCR ligation, whereas other mutants had intermediate abilities. Lipid raft targeting was not affected. We conclude that Lck is regulated by a weak tail bite to allow for its activation and service in TCR signaling, perhaps through a competitive SH2 engagement mechanism.
Collapse
Affiliation(s)
- Konstantina Nika
- Program on Inflammatory Disease Research, Infectious and Inflammatory Disease Center, The Burnham Institute for Medical Research, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Shi M, Cooper JC, Yu CL. A constitutively active Lck kinase promotes cell proliferation and resistance to apoptosis through signal transducer and activator of transcription 5b activation. Mol Cancer Res 2006; 4:39-45. [PMID: 16446405 DOI: 10.1158/1541-7786.mcr-05-0202] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Lck is a Src family protein tyrosine kinase and is expressed predominantly in T cells. Aberrant expression or activation of Lck kinase has been reported in both lymphoid and nonlymphoid malignancies. However, the mechanisms underlying Lck-mediated oncogenesis remain largely unclear. In this report, we establish a tetracycline-inducible system to study the biochemical and biological effects of a constitutively active Lck mutant with a point mutation at the negative regulatory tyrosine. Expression of the active Lck kinase induces both tyrosine phosphorylation and DNA-binding activity of signal transducer and activator of transcription 5b (STAT5b), a STAT family member activated in a variety of tumor cells. The active Lck kinase interacts with STAT5b in cells, suggesting that Lck may directly phosphorylate STAT5b. Expression of the constitutively active Lck mutant in interleukin-3 (IL-3)-dependent BaF3 cells promotes cell proliferation. In addition, the active Lck kinase protects BaF3 cells from IL-3 withdrawal-induced apoptotic death and leads to IL-3-independent growth. These transforming properties of the oncogenic Lck kinase can be further augmented by expression of exogenous wild-type STAT5b but attenuated by a dominant-negative form of STAT5b. All together, our results suggest the potential involvement of STAT5b in Lck-mediated cellular transformation.
Collapse
Affiliation(s)
- Mingjian Shi
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA
| | | | | |
Collapse
|
23
|
McGargill MA, Sharp LL, Bui JD, Hedrick SM, Calbo S. Active Ca2+/calmodulin-dependent protein kinase II gamma B impairs positive selection of T cells by modulating TCR signaling. THE JOURNAL OF IMMUNOLOGY 2005; 175:656-64. [PMID: 16002660 DOI: 10.4049/jimmunol.175.2.656] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
T cell development is regulated at two critical checkpoints that involve signaling events through the TCR. These signals are propagated by kinases of the Src and Syk families, which activate several adaptor molecules to trigger Ca(2+) release and, in turn, Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) activation. In this study, we show that a constitutively active form of CaMKII antagonizes TCR signaling and impairs positive selection of thymocytes in mice. Following TCR engagement, active CaMKII decreases TCR-mediated CD3zeta chain phosphorylation and ZAP70 recruitment, preventing further downstream events. Therefore, we propose that CaMKII belongs to a negative-feedback loop that modulates the strength of the TCR signal through the tyrosine phosphatase Src homology 2 domain-containing phosphatase 2 (SHP-2).
Collapse
MESH Headings
- Animals
- CD3 Complex/metabolism
- Calcium/metabolism
- Calcium/physiology
- Calcium-Calmodulin-Dependent Protein Kinase Type 2
- Calcium-Calmodulin-Dependent Protein Kinases/biosynthesis
- Calcium-Calmodulin-Dependent Protein Kinases/genetics
- Calcium-Calmodulin-Dependent Protein Kinases/physiology
- Cell Differentiation/genetics
- Cell Differentiation/immunology
- Cell Line, Tumor
- Female
- Humans
- Intracellular Fluid/enzymology
- Intracellular Fluid/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- Isoenzymes/biosynthesis
- Isoenzymes/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/genetics
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phosphorylation
- Protein Phosphatase 2
- Protein Tyrosine Phosphatase, Non-Receptor Type 11
- Protein Tyrosine Phosphatases/metabolism
- Receptors, Antigen, T-Cell/antagonists & inhibitors
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- SH2 Domain-Containing Protein Tyrosine Phosphatases
- Signal Transduction/genetics
- Signal Transduction/immunology
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- Tyrosine/antagonists & inhibitors
- Tyrosine/metabolism
- src Homology Domains/genetics
- src Homology Domains/immunology
Collapse
Affiliation(s)
- Maureen A McGargill
- Department of Biology and Cancer Center, University of California-San Diego, La Jolla, CA 92093, USA
| | | | | | | | | |
Collapse
|
24
|
Rahmouni S, Vang T, Alonso A, Williams S, van Stipdonk M, Soncini C, Moutschen M, Schoenberger SP, Mustelin T. Removal of C-terminal SRC kinase from the immune synapse by a new binding protein. Mol Cell Biol 2005; 25:2227-41. [PMID: 15743820 PMCID: PMC1061611 DOI: 10.1128/mcb.25.6.2227-2241.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Csk tyrosine kinase negatively regulates the Src family kinases Lck and Fyn in T cells. Engagement of the T-cell antigen receptor results in a removal of Csk from the lipid raft-associated transmembrane protein PAG/Cbp. Instead, Csk becomes associated with an approximately 72-kDa tyrosine-phosphorylated protein, which we identify here as G3BP, a phosphoprotein reported to bind the SH3 domain of Ras GTPase-activating protein. G3BP reduced the ability of Csk to phosphorylate Lck at Y505 by decreasing the amount of Csk in lipid rafts. As a consequence, G3BP augmented T-cell activation as measured by interleukin-2 gene activation. Conversely, elimination of endogenous G3BP by RNA interference increased Lck Y505 phosphorylation and reduced TCR signaling. In antigen-specific T cells, endogenous G3BP moved into a intracellular location adjacent to the immune synapse, but deeper inside the cell, upon antigen recognition. Csk colocalization with G3BP occurred in this "parasynaptic" location. We conclude that G3BP is a new player in T-cell-antigen receptor signaling and acts to reduce the amount of Csk in the immune synapse.
Collapse
Affiliation(s)
- Souad Rahmouni
- Program of Inflammation, Infectious and Inflammatory Disease Center, and Program of Signal Transduction, Cancer Center, The Burnham Institute, 10901 North Torrey Pines Rd., La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Spertini F, Perret-Menoud V, Barbier N, Chatila T, Barbey C, Corthesy B. Epitope-specific crosslinking of CD45 down-regulates membrane-associated tyrosine phosphatase activity and triggers early signalling events in human activated T cells. Immunology 2005; 113:441-52. [PMID: 15554922 PMCID: PMC1782601 DOI: 10.1111/j.1365-2567.2004.01986.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
CD45 engagement by monoclonal antibodies on human activated T cells triggers tumour necrosis factor-alpha (TNF-alpha) gene transcription in an epitope-specific manner. To dissect the early signalling events leading to TNF-alpha gene expression, we established that CD45 crosslinking resulted in tyrosine phosphorylation of p56lck, ZAP-70, CD3-zeta, LAT and Vav. This was accompanied by down-regulation of membrane-associated protein tyrosine phosphatase activity in the absence of demonstration of enhanced p56lck, p72syk and ZAP-70 kinase activity, which remained constitutive. These early events eventually triggered an intracellular Ca(2+) rise and phosphoinositide turnover. We conclude that down-regulation of membrane-associated tyrosine phosphatase activity by CD45 extracytoplasmic domain multimerization led, in an epitope-specific fashion, to unopposed tyrosine kinase activity and to the activation of the T-cell receptor/CD3 complex signalling cascade, resulting in TNF-alpha gene expression. This model strongly suggests that CD45 extracytoplasmic tail multimerization may contribute to the modulation T-cell functions.
Collapse
Affiliation(s)
- François Spertini
- Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | | | | | | | | | | |
Collapse
|
26
|
Mahabeleshwar GH, Das R, Kundu GC. Tyrosine kinase, p56lck-induced cell motility, and urokinase-type plasminogen activator secretion involve activation of epidermal growth factor receptor/extracellular signal regulated kinase pathways. J Biol Chem 2003; 279:9733-42. [PMID: 14699120 DOI: 10.1074/jbc.m311400200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently reported that tyrosine kinase, p56(lck) regulates cell motility and nuclear factor kappaB-mediated secretion of urokinase-type plasminogen activator (uPA) through tyrosine phosphorylation of IkappaBalpha following hypoxia/reoxygenation (Mahabeleshwar, G. H., and Kundu, G. C. (2003) J. Biol. Chem. 278, 52598-52612). However, the role of hypoxia/reoxygenation (H/R) on ERK1/2-mediated uPA secretion and cell motility and the involvement of p56(lck) and EGF receptor in these processes in breast cancer cells is not well defined. We provide here evidence that H/R induces Lck kinase activity and Lck-dependent tyrosine phosphorylation of EGF receptor in highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. H/R also stimulates MEK-1 and ERK1/2 phosphorylations, and H/R-induced phosphorylations were suppressed by the dominant negative form of Lck (DN Lck, K273R) as well as pharmacological inhibitors of EGF receptor and Lck indicating that EGF receptors and Lck are involved in these processes. Transfection of these cells with wild type Lck or Lck F505 (Y505F) but not with Lck F394 (Y394F) induced phosphorylations of EGF receptor followed by MEK-1 and ERK1/2, suggesting that Lck is upstream of EGF receptor and Tyr-394 of Lck is crucial for these processes. H/R also induced uPA secretion and cell motility in these cells. DN Lck and inhibitors of Lck, EGF receptor, and MEK-1 suppressed H/R-induced uPA secretion and cell motility. To our knowledge, this is the first report that p56(lck) in presence of H/R regulates MEK-1-dependent ERK1/2 phosphorylation and uPA secretion through tyrosine phosphorylation of EGF receptor, and it further demonstrates that all of these signaling molecules ultimately control the motility of breast cancer cells.
Collapse
|
27
|
Mahabeleshwar GH, Kundu GC. Tyrosine Kinase p56 Regulates Cell Motility and Nuclear Factor κB-mediated Secretion of Urokinase Type Plasminogen Activator through Tyrosine Phosphorylation of IκBα following Hypoxia/Reoxygenation. J Biol Chem 2003; 278:52598-612. [PMID: 14534291 DOI: 10.1074/jbc.m308941200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor kappaB (NFkappaB) plays major role in regulating cellular responses as a result of environmental injuries. The molecular mechanism(s) by which hypoxia/reoxygenation (H/R) regulates p56lck-dependent activation of NFkappaB through tyrosine phosphorylation of IkappaBalpha and modulates the expression of downstream genes that are involved in cell migration in human breast cancer cells are not well defined. In this paper, we investigated the involvement of protein-tyrosine kinase p56lck in the redox-regulated activation of NFkappaB following H/R in highly invasive (MDA-MB-231) and low invasive (MCF-7) breast cancer cells. We demonstrated that H/R induces tyrosine phosphorylation of p56lck, nuclear translocation of NFkappaB, NFkappaB-DNA binding, and transactivation of NFkappaB through tyrosine phosphorylation of IkappaBalpha. Transfection of these cells with wild type Lck but not with mutant Lck F394 followed by H/R induces the tyrosine phosphorylation of inhibitor of nuclear factor kappaB (IkappaBalpha) and transcriptional activation of NFkappaB, and these are inhibited by Lck inhibitors. In vitro kinase assay demonstrated that immunoprecipitated p56lck but not Lyn or Fyn directly phosphorylate IkappaBalpha in presence of H/R. Pervanadate, H2O2, and H/R induce the interaction between Lck and tyrosine-phosphorylated IkappaBalpha, and this interaction is inhibited by Src homology 2 domain inhibitory peptide, suggesting that tyrosine-phosphorylated IkappaBalpha interacts with Src homology 2 domain of Lck. Luciferase reporter gene assay indicated that Lck induces NFkappaB-dependent urokinase type plasminogen activator (uPA) promoter activity in presence of H/R. Furthermore, H/R stimulates the cell motility through secretion of uPA. To our knowledge, this is the first report that p56lck in presence of H/R regulates NFkappaB activation, uPA secretion, and cell motility through tyrosine phosphorylation of IkappaBalpha and further demonstrates an important redox-regulated pathway for NFkappaB activation following H/R injury that is independent of IkappaB kinase/IkappaBalpha-mediated signaling pathways.
Collapse
|
28
|
Moon T, Song JS, Lee JK, Yoon CN. QSAR Analysis of SH2-Binding Phosphopeptides: Using Interaction Energies and Cross-Correlation Coefficients. ACTA ACUST UNITED AC 2003; 43:1570-5. [PMID: 14502491 DOI: 10.1021/ci034073o] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Quantitative structure-activity relationships (QSAR) analyses were carried out on the SH2-phosphopeptide complexes using multiple linear regressions. The residue-residue interaction energies and cross-correlation coefficients were used as descriptors. Since the number of descriptors was very large (602 for interaction energies and 951 for cross-correlation coefficients), the stepwise addition method was applied for the multiple linear regressions. The residue-residue interaction energies were good descriptors for structure-activity relationships. The high r(2) regression models were achieved by using interaction energy. In addition, the concerted atomic motions, which show the dynamic properties during the SH2-phosphopeptide interaction, were used as descriptors. They were identified by the cross-correlation coefficients for atomic displacement. The best regression model, derived by using four cross-correlation coefficients, gave a high r(2) value of 0.925. This suggests that the dynamic properties showing concerted atomic motions can be used as good descriptors in QSAR study.
Collapse
Affiliation(s)
- Taesung Moon
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, PO Box 131, Cheongryang, Seoul 130-650, Korea
| | | | | | | |
Collapse
|
29
|
Lee JK, Moon T, Chi MW, Song JS, Choi YS, Yoon CN. An investigation of phosphopeptide binding to SH2 domain. Biochem Biophys Res Commun 2003; 306:225-30. [PMID: 12788092 DOI: 10.1016/s0006-291x(03)00932-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A comparative molecular field analysis (CoMFA) was carried out to investigate quantitative structure-activity relationships for SH2-binding phosphopeptides. Two alignment rules were applied in our CoMFA model. The phosphopeptide backbone atoms were used for superposition in alignment I and the backbone atoms of peptide-binding residues of SH2-phosphopeptide complexes were used in alignment II to consider the position of phosphopeptides in SH2-binding sites. The higher correlation and predictivity in alignment II (r(2) value of 0.961 and cross-validated r(2) value of 0.682) suggest that the consideration of peptide-binding position at the binding sites gives rise to better results when the ligand-receptor complex structure is considered. In addition, CoMFA contour and electrostatic maps were well accorded with the experimental results in which the replacement of N-terminal residues with an acetyl group reduced the binding affinity. Therefore, the modification of molecular size and charge of phosphopeptides can be carried out based on these contour maps in order to increase binding affinities.
Collapse
Affiliation(s)
- Jin Kak Lee
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, P.O. Box 131, Cheongryang, 130-650, Seoul, South Korea
| | | | | | | | | | | |
Collapse
|
30
|
Mustelin T, Taskén K. Positive and negative regulation of T-cell activation through kinases and phosphatases. Biochem J 2003; 371:15-27. [PMID: 12485116 PMCID: PMC1223257 DOI: 10.1042/bj20021637] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 12/12/2002] [Accepted: 12/16/2002] [Indexed: 11/17/2022]
Abstract
The sequence of events in T-cell antigen receptor (TCR) signalling leading to T-cell activation involves regulation of a number of protein tyrosine kinases (PTKs) and the phosphorylation status of many of their substrates. Proximal signalling pathways involve PTKs of the Src, Syk, Csk and Tec families, adapter proteins and effector enzymes in a highly organized tyrosine-phosphorylation cascade. In intact cells, tyrosine phosphorylation is rapidly reversible and generally of a very low stoichiometry even under induced conditions due to the fact that the enzymes removing phosphate from tyrosine-phosphorylated substrates, the protein tyrosine phosphatases (PTPases), have a capacity that is several orders of magnitude higher than that of the PTKs. It follows that a relatively minor change in the PTK/PTPase balance can have a major impact on net tyrosine phosphorylation and thereby on activation and proliferation of T-cells. This review focuses on the involvement of PTKs and PTPases in positive and negative regulation of T-cell activation, the emerging theme of reciprocal regulation of each type of enzyme by the other, as well as regulation of phosphotyrosine turnover by Ser/Thr phosphorylation and regulation of localization of signal components.
Collapse
Affiliation(s)
- Tomas Mustelin
- Program of Signal Transduction, Cancer Center, The Burnham Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | |
Collapse
|
31
|
Ernst M, Inglese M, Scholz GM, Harder KW, Clay FJ, Bozinovski S, Waring P, Darwiche R, Kay T, Sly P, Collins R, Turner D, Hibbs ML, Anderson GP, Dunn AR. Constitutive activation of the SRC family kinase Hck results in spontaneous pulmonary inflammation and an enhanced innate immune response. J Exp Med 2002; 196:589-604. [PMID: 12208875 PMCID: PMC2193996 DOI: 10.1084/jem.20020873] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
To identify the physiological role of Hck, a functionally redundant member of the Src family of tyrosine kinases expressed in myelomonocytic cells, we generated Hck(F/F) "knock-in" mice which carry a targeted tyrosine (Y) to phenylalanine (F) substitution of the COOH-terminal, negative regulatory Y(499)-residue in the Hck protein. Unlike their Hck(-/-) "loss-of-function" counterparts, Hck(F/F) "gain-of-function" mice spontaneously acquired a lung pathology characterized by extensive eosinophilic and mononuclear cell infiltration within the lung parenchyma, alveolar airspaces, and around blood vessels, as well as marked epithelial mucus metaplasia in conducting airways. Lungs from Hck(F/F) mice showed areas of mild emphysema and pulmonary fibrosis, which together with inflammation resulted in altered lung function and respiratory distress in aging mice. When challenged transnasally with lipopolysaccharide (LPS), Hck(F/F) mice displayed an exaggerated pulmonary innate immune response, characterized by excessive release of matrix metalloproteinases and tumor necrosis factor (TNF)alpha. Similarly, Hck(F/F) mice were highly sensitive to endotoxemia after systemic administration of LPS, and macrophages and neutrophils derived from Hck(F/F) mice exhibited enhanced effector functions in vitro (e.g., nitric oxide and TNFalpha production, chemotaxis, and degranulation). Based on the demonstrated functional association of Hck with leukocyte integrins, we propose that constitutive activation of Hck may mimic adhesion-dependent priming of leukocytes. Thus, our observations collectively suggest an enhanced innate immune response in Hck(F/F) mice thereby skewing innate immunity from a reversible physiological host defense response to one causing irreversible tissue damage.
Collapse
Affiliation(s)
- Matthias Ernst
- Ludwig Institute for Cancer Research, Royal Melbourne Hospital, Victoria 3050, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Verweij CL, Gringhuis SI. Oxidants and tyrosine phosphorylation: role of acute and chronic oxidative stress in T-and B-lymphocyte signaling. Antioxid Redox Signal 2002; 4:543-51. [PMID: 12215222 DOI: 10.1089/15230860260196344] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cellular response to an extracellular signal starts with the induction of a signaling cascade that transmits the signal through the cytoplasm to the nucleus, resulting in the activation of transcription factors that activate specific target genes. The signaling cascade involves a series of biochemical modifications that include phosphorylation events on tyrosine residues due to the activation of specific protein kinases. Recently, evidence accumulated that reactive oxygen species, including hydrogen peroxide, superoxide, and the hydroxyl radical, are important chemical mediators that regulate the transduction of signals from the membrane to the nucleus by modulating the protein activity by oxidation and reduction. In this report, the redox regulation of signaling involving protein tyrosine kinase activity, in particular in T- and B-lymphocyte signaling, is reviewed.
Collapse
Affiliation(s)
- Cornelis L Verweij
- Department of Molecular and Cellular Biology, VU Medical Center, Amsterdam, The Netherlands.
| | | |
Collapse
|
33
|
Foti M, Phelouzat MA, Holm A, Rasmusson BJ, Carpentier JL. p56Lck anchors CD4 to distinct microdomains on microvilli. Proc Natl Acad Sci U S A 2002; 99:2008-13. [PMID: 11854499 PMCID: PMC122310 DOI: 10.1073/pnas.042689099] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cell-surface microvilli play a central role in adhesion, fusion, and signaling processes. Some adhesion and signaling receptors segregate on microvilli but the determinants of this localization remain mostly unknown. In this study, we considered CD4, a receptor involved in immune response and HIV infection, and p56(Lck), a CD4-associated tyrosine kinase. Analysis of CD4 trafficking reveals that p56(Lck) binds tightly to CD4 independently of its activation state and inhibits CD4 internalization. Electron microscopy analysis established that p56(Lck) mediates CD4 association with microvilli whereas biochemical data indicate that p56(Lck) expression renders CD4 insoluble by the nonionic detergent Triton X-100. In addition, cytoskeleton-disrupting agent increased CD4 solubility, suggesting the involvement of cytoskeletal elements in CD4 anchoring to microvilli. This concept was supported further by the observation that the lateral mobility of CD4 within the plasma membrane was decreased in cells expressing p56(Lck). Finally, isolation of detergent-resistant membranes revealed that the complex CD4-p56(Lck) is enriched within these domains as opposed to conditions in which CD4 does not interact with p56(Lck). In conclusion, our results show that p56(Lck) targets CD4 to specialized lipid microdomains preferentially localized on microvilli. This localization, which prevents CD4 internalization, might facilitate CD4-mediated adhesion processes and could correspond to the signaling site of the receptor.
Collapse
Affiliation(s)
- Michelangelo Foti
- Department of Morphology, Faculty of Medicine, 1211 Geneva 4, Switzerland
| | | | | | | | | |
Collapse
|
34
|
Eicosapentaenoic acid and docosahexaenoic acid modulate MAP kinase (ERK1/ERK2) signaling in human T cells. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)31530-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Chiang GG, Sefton BM. Specific dephosphorylation of the Lck tyrosine protein kinase at Tyr-394 by the SHP-1 protein-tyrosine phosphatase. J Biol Chem 2001; 276:23173-8. [PMID: 11294838 DOI: 10.1074/jbc.m101219200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The protein-tyrosine phosphatase SHP-1 has been shown to be a negative regulator of multiple signaling pathways in hematopoietic cells. In this study, we demonstrate that SHP-1 dephosphorylates the lymphoid-specific Src family kinase Lck at Tyr-394 when both are transiently co-expressed in nonlymphoid cells. We also demonstrate that a GST-SHP-1 fusion protein specifically dephosphorylates Lck at Tyr-394 in vitro. Because phosphorylation of Tyr-394 activates Lck, the fact that SHP-1 specifically dephosphorylates this site suggests that SHP-1 is a negative regulator of Lck. The failure of SHP-1 to inactivate Lck may contribute to some of the lymphoid abnormalities observed in motheaten mice.
Collapse
Affiliation(s)
- G G Chiang
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA.
| | | |
Collapse
|
36
|
Fujimaki W, Iwashima M, Yagi J, Zhang H, Yagi H, Seo K, Imai Y, Imanishi K, Uchiyama T. Functional uncoupling of T-cell receptor engagement and Lck activation in anergic human thymic CD4+ T cells. J Biol Chem 2001; 276:17455-60. [PMID: 11279170 DOI: 10.1074/jbc.m101072200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human thymic CD1a-CD4+ T cells in the final stage of thymic maturation are susceptible to anergy induced by a superantigen, toxic shock syndrome toxin-1 (TSST-1). Thymic CD4+ T-cell blasts, established by stimulating human thymic CD1a-CD4+ T cells with TSST-1 in vitro, produce a low level of interleukin-2 after restimulation with TSST-1, whereas TSST-1-induced adult peripheral blood (APB) CD4+ T-cell blasts produce high levels of interleukin-2. The extent of tyrosine phosphorylation of the T-cell receptor zeta chain induced after restimulation with TSST-1 was 2-4-fold higher in APB CD4+ T-cell blasts than in thymic CD4+ T-cell blasts. The tyrosine kinase activity of Lck was low in both thymic and APB CD4+ T-cell blasts before restimulation with TSST-1. After restimulation, the Lck kinase activity increased in APB CD4+ T-cell blasts but not in thymic CD4+ T-cell blasts. Surprisingly, Lck was highly tyrosine-phosphorylated in both thymic and APB CD4+ T-cell blasts before restimulation with TSST-1. After restimulation, it was markedly dephosphorylated in APB CD4+ T-cell blasts but not in thymic CD4+ T-cell blasts. Lck from APB CD4+ T-cell blasts bound the peptide containing the phosphotyrosine at the negative regulatory site of Lck-505 indicating that the site of dephosphorylation in TSST-1-activated T-cell blasts is Tyr-505. Confocal microscopy demonstrated that colocalization of Lck and CD45 was induced after restimulation with TSST-1 in APB CD4+ T-cell blasts but not in thymic CD4+ T-cell blasts. Further, remarkable accumulation of Lck in the membrane raft was observed in restimulated APB CD4+ T-cell blasts but not in thymic CD4+ T-cell blasts. These data indicate that interaction between Lck and CD45 is suppressed physically in thymic CD4+ T-cell blasts and plays a critical role in sustaining an anergic state.
Collapse
Affiliation(s)
- W Fujimaki
- Department of Microbiology and Immunology, The Heart Institute of Japan, Tokyo Women's Medical University, Tokyo 162-8666, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hartley DA, Amdjadi K, Hurley TR, Lund TC, Medveczky PG, Sefton BM. Activation of the Lck tyrosine protein kinase by the Herpesvirus saimiri tip protein involves two binding interactions. Virology 2000; 276:339-48. [PMID: 11040125 DOI: 10.1006/viro.2000.0570] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Tip protein of Herpesvirus saimiri strain 484C binds to and activates the Lck tyrosine protein kinase. Two sequences in the Tip protein were previously shown to be involved in binding to Lck. A proline-rich region, residues 132-141, binds to the SH3 domain of the Lck protein. We show here that the other Lck-binding domain, residues 104-113, binds to the carboxyl-terminal half of Lck and that this binding does not require the Lck SH3 domain. Mutated Tip containing only one functional Lck-binding domain can bind stably to Lck, although not as strongly as wild-type Tip. Interaction of Tip with Lck through either Lck-binding domain increases the activity of Lck in vivo. Simultaneous binding of both domains is required for maximal activation of Lck. The transient expression of Tip in T cells was found to stimulate both Stat3-dependent and NF-AT-dependent transcription. Mutant forms of Tip lacking one or the other of the two Lck-binding domains retained the ability to stimulate Stat3-dependent transcription. Tip lacking the proline-rich Lck-binding domain exhibited almost wild-type activity in this assay. In contrast, ablation of either Lck-binding domain abolished the ability of Tip to stimulate NF-AT-dependent transcription. Full biological activity of Tip, therefore, appears to require both Lck-binding domains.
Collapse
Affiliation(s)
- D A Hartley
- Molecular Biology and Virology Laboratory, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, California, 92037, USA
| | | | | | | | | | | |
Collapse
|
38
|
Mitchell PJ, Sara EA, Crompton MR. A novel adaptor-like protein which is a substrate for the non-receptor tyrosine kinase, BRK. Oncogene 2000; 19:4273-82. [PMID: 10980601 DOI: 10.1038/sj.onc.1203775] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The brk gene encodes a non-receptor tyrosine kinase that has been found to be overexpressed in approximately two thirds of breast tumours. Using a yeast two-hybrid based screen, we have cloned cDNAs encoding a novel protein, BKS, that is a substrate for the kinase activity of BRK and has the characteristics of an adaptor protein. BKS possesses an N-terminal PH-like domain followed by an SH2-like domain. In co-transfection experiments, high levels of phosphotyrosine were observed on BKS and BRK was found to be associated with BKS, both of which were dependent on the catalytic activity of BRK. The phosphorylation of and association with BKS by BRK was also dependent on the SH2-like domain present within BKS. In addition, BKS recruited an unidentified 100 kDa protein that was also phosphorylated on tyrosine residues in the presence of BRK. We have determined that the BKS protein is expressed in most adult human tissues. Oncogene (2000) 19, 4273 - 4282
Collapse
Affiliation(s)
- P J Mitchell
- Section of Cell Biology and Experimental Pathology, The Breakthrough Toby Robinson Cancer Research Centre, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK
| | | | | |
Collapse
|
39
|
Laham LE, Mukhopadhyay N, Roberts TM. The activation loop in Lck regulates oncogenic potential by inhibiting basal kinase activity and restricting substrate specificity. Oncogene 2000; 19:3961-70. [PMID: 10962552 DOI: 10.1038/sj.onc.1203738] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The activities of Src-family non-receptor tyrosine kinases are regulated by structural changes that alter the orientation of key residues within the catalytic domain. In this study, we investigate the effects of activation loop mutations on regulation of the lymphocyte-specific kinase Lck (p56lck). Substitution of 5 - 7 residues amino terminal to the conserved activation loop tyrosine (Y394) increases kinase activity and oncogenic potential regardless of regulatory C-terminal tail phosphorylation levels (Y505), while most mutations in the 13 residues carboxyl to Y394 decrease kinase activity. Phosphorylation of the C-terminal regulatory tail is carried out by the cytosolic tyrosine kinase Csk and we find that mutations upstream or downstream of Y394 or mutation of Y394 do not affect the level of Y505 phosphorylation. In addition, we report that mutations on either side of Y394 affect substrate specificity in vivo. We conclude that the high degree of conservation across the entire activation loop of Src-family kinases is critical for normal regulation of kinase activity and oncogenicity as well as substrate selection. Oncogene (2000) 19, 3961 - 3961.
Collapse
Affiliation(s)
- L E Laham
- Department of Cancer Biology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, Massachusetts, MA 02115, USA
| | | | | |
Collapse
|
40
|
Wang G, Liszewski MK, Chan AC, Atkinson JP. Membrane cofactor protein (MCP; CD46): isoform-specific tyrosine phosphorylation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 164:1839-46. [PMID: 10657632 DOI: 10.4049/jimmunol.164.4.1839] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Membrane cofactor protein (MCP; CD46) is a widely expressed type 1 transmembrane glycoprotein that inhibits complement activation on host cells. It also is a receptor for several pathogens including measles virus, Streptococcus pyogenes, Neisseria gonorrhea, and Neisseria meningitidis. That MCP may have signaling capability was suggested by its microbial interactions. That is, binding of MCP on human monocytes by measles virus hemagglutinin or cross-linking by an anti-MCP Ab resulted in IL-12 down-regulation, while binding to MCP by Neisseria on epithelial cells produced a calcium flux. Through alternative splicing, MCP is expressed on most cells with two distinct cytoplasmic tails of 16 (CYT-1) or 23 (CYT-2) amino acids. These play pivotal roles in intracellular precursor processing and basolateral localization. We investigated the putative signal transduction pathway mediated by MCP and demonstrate that CYT-2, but not CYT-1, is phosphorylated on tyrosine. We examined MCP tail peptides and performed Ab cross-linking experiments on several human cell lines and MCP isoform transfectants. We found an MCP peptide of CYT-2 was phosphorylated by a src kinase system. Western blots of the cells lines demonstrated that cells bearing CYT-2 were also phosphorylated on tyrosine. Additionally, we provide genetic and biochemical evidence that the src family of kinases is responsible for the latter phosphorylation events. In particular, the src kinase, Lck, is required for phosphorylation of MCP in the Jurkat T cell line. Taken together, these studies suggest a src family-dependent pathway for signaling through MCP.
Collapse
Affiliation(s)
- G Wang
- Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
41
|
Hartley DA, Hurley TR, Hardwick JS, Lund TC, Medveczky PG, Sefton BM. Activation of the lck tyrosine-protein kinase by the binding of the tip protein of herpesvirus saimiri in the absence of regulatory tyrosine phosphorylation. J Biol Chem 1999; 274:20056-9. [PMID: 10400611 DOI: 10.1074/jbc.274.29.20056] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Tip protein of herpesvirus saimiri 484 binds to the Lck tyrosine-protein kinase at two sites and activates it dramatically. Lck has been shown previously to be activated by either phosphorylation of Tyr394 or dephosphorylation of Tyr505. We examined here whether a change in the phosphorylation of either site was required for the activation of Lck by Tip. Remarkably, mutation of both regulatory sites of tyrosine phosphorylation did not prevent activation of Lck by Tip either in vivo or in a cell free in vitro system. Tip therefore appears to be able to activate Lck through an induced conformational change that does not necessarily involve altered phosphorylation of the kinase. Tip may represent the prototype of a novel type of regulator of tyrosine-protein kinases.
Collapse
Affiliation(s)
- D A Hartley
- Molecular Biology and Virology Laboratory, The Salk Institute, La Jolla, California 92037, USA
| | | | | | | | | | | |
Collapse
|
42
|
Seavitt JR, White LS, Murphy KM, Loh DY, Perlmutter RM, Thomas ML. Expression of the p56(Lck) Y505F mutation in CD45-deficient mice rescues thymocyte development. Mol Cell Biol 1999; 19:4200-8. [PMID: 10330160 PMCID: PMC104379 DOI: 10.1128/mcb.19.6.4200] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/1999] [Accepted: 03/23/1999] [Indexed: 11/20/2022] Open
Abstract
Mice deficient in the transmembrane protein tyrosine phosphatase CD45 exhibit a block in thymocyte development. To determine whether the block in thymocyte development was due to the inability to dephosphorylate the inhibitory phosphorylation site (Y505) in p56(lck) (Lck), we generated CD45-deficient mice that express transgenes for the Lck Y505F mutation and the DO11.10 T-cell antigen receptor (TCR). CD4 single-positive T cells developed and accumulated in the periphery. Treatment with antigen resulted in thymocyte apoptosis and the loss of transgenic-TCR-bearing cells. Peripheral CD45-deficient T cells from the mice expressing both transgenes responded to antigen by increasing CD69 expression, interleukin-2 production, and proliferation. These results indicate that thymocyte development requires the dephosphorylation of the inhibitory site in Lck by CD45.
Collapse
Affiliation(s)
- J R Seavitt
- Center for Immunology, Department of Pathology and Howard Hughes Medical Institute, Washington University, St. Louis, Missouri 63110, USA
| | | | | | | | | | | |
Collapse
|
43
|
Jin YJ, Friedman J, Burakoff SJ. Regulation of Tyrosine Phosphorylation in Isolated T Cell Membrane by Inhibition of Protein Tyrosine Phosphatases. THE JOURNAL OF IMMUNOLOGY 1998. [DOI: 10.4049/jimmunol.161.4.1743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Jurkat T cells activated by the phosphotyrosine phosphatase inhibitors H2O2 or vanadate were found to have a similar pattern of tyrosine phosphorylation when compared with T cells stimulated by anti-CD3 Ab cross-linking, suggesting that protein tyrosine phosphatase (PTP) inhibitors affect the early steps of TCR signaling. To study the role of PTPs in the most proximal membrane events of tyrosine phosphorylation, subcellular fractions of T cells were treated with the PTP inhibitors in the presence of ATP. In the membrane fraction, tyrosine phosphorylation of Lck, Fyn, and CD3ζ can be induced by PTP inhibitors, but not by anti-CD3. Detailed characterization of this cell-free system showed that the pattern and the order of induced tyrosine phosphorylation is similar to that induced in intact cells. Upon removal of the PTP inhibitor, the tyrosine-phosphorylated proteins, including Lck, Fyn, Syk, Zap70, and CD3ζ, are rapidly dephosphorylated. Preliminary characterizations indicate that a PTP distinct from CD45, SHP1, and SHP2 is present in T cell membranes and the inhibition of this yet unidentified PTP is most likely responsible for the Lck-dependent tyrosine phosphorylation triggered by PTP inhibitors.
Collapse
Affiliation(s)
- Yong-Jiu Jin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Jeff Friedman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| | - Steven J. Burakoff
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, and Department of Pediatrics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
44
|
Lowe GM, Hulley CE, Rhodes ES, Young AJ, Bilton RF. Free radical stimulation of tyrosine kinase and phosphatase activity in human peripheral blood mononuclear cells. Biochem Biophys Res Commun 1998; 245:17-22. [PMID: 9535775 DOI: 10.1006/bbrc.1998.8370] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human lymphocytes were challenged with reactive oxygen species (ROS) generated by xanthine/xanthine oxidase leading to an increase in tyrosine phosphorylation, together with an increase in tyrosine phosphatase activity. In the presence of 50 microM vanadate and xanthine/xanthine oxidase, tyrosine phosphatase activity was inhibited and a marked increase in tyrosine phosphorylation was observed. The addition of catalase abolished the increase in tyrosine phosphorylation while the addition of superoxide dismutase had no effect. This suggests that vanadate together with hydrogen peroxide derived from xanthine/xanthine oxidase activity, interact to produce an agent that is an effective inhibitor of tyrosine phosphatase activity. When human lymphocytes were challenged with xanthine/xanthine oxidase in the presence of 50 microM CuCl2, an increase in both tyrosine phosphatase and kinase activity was observed. Cupric ions inhibited xanthine oxidase activity by 84%; neither superoxide or hydroxyl radicals could be detected, but traces of hydrogen peroxide were detected in the medium. We conclude that unbound metals can interact with ROS and readily influence signalling mechanisms in human lymphocytes.
Collapse
Affiliation(s)
- G M Lowe
- School of Biomolecular Sciences, School of Biological and Earth Sciences, Liverpool John Moores University, Byrom Street, Liverpool, L3 3AF, United Kingdom.
| | | | | | | | | |
Collapse
|
45
|
Amrein KE, Molnos J, zur Hausen JD, Flint N, Takacs B, Burn P. Csk-mediated phosphorylation of substrates is regulated by substrate tyrosine phosphorylation. FARMACO (SOCIETA CHIMICA ITALIANA : 1989) 1998; 53:266-72. [PMID: 9658584 DOI: 10.1016/s0014-827x(98)00020-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Csk is a cellular protein tyrosine kinase (PTK) that has been shown to specifically regulate the activity of Src kinase family members by phosphorylation of a carboxy-terminal tyrosine residue. The molecular mechanisms controlling Csk regulation and its substrate specificity have not been elucidated. Here we report a novel type of overlay kinase assay that allows to probe for Csk-mediated phosphorylation of cellular substrates separated by polyacrylamide gel electrophoresis and transferred to nitrocellulose filters. Most of the cell lines analyzed with this method revealed only a few potential Csk substrates. However, an increased number of Csk substrates was detected in NIH3T3 cells expressing a constitutively activated form of the Src kinase Lck or in PC12 and NIH3T3 cells that had been treated with pervanadate. These cells all display an increased level of cellular protein tyrosine phosphorylation which led to the conclusion that Csk preferentially phosphorylates tyrosine-phosphorylated proteins. To verify this hypothesis we analyzed Csk-mediated phosphorylation of recombinant Lck, a known Csk substrate. Results demonstrated that autophosphorylation of Lck (at Tyr394) facilitates Csk-mediated phosphorylation of Lck at its regulatory site (Tyr505). Subsequent peptide binding studies revealed that Csk can bind to a peptide corresponding to the Lck-autophosphorylation site only when it is phosphorylated. These findings suggest that autophosphorylation of Lck at Tyr394 triggers an interaction with Csk and thereby facilitates subsequent phosphorylation and inactivation of Lck. The phosphorylation of other cellular Csk substrates may be regulated by a similar mechanism.
Collapse
Affiliation(s)
- K E Amrein
- Department of Metabolic Diseases, Hoffmann-La Roche Inc., Nutley, NJ 07110, USA
| | | | | | | | | | | |
Collapse
|
46
|
Péléraux A, Peyron JF, Devaux C. Inhibition of HIV-1 replication by a monoclonal antibody directed toward the complementarity determining region 3-like domain of CD4 in CD45 expressing and CD45-deficient cells. Virology 1998; 242:233-7. [PMID: 9501032 DOI: 10.1006/viro.1997.8932] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Monoclonal antibodies directed toward the complementarity determining region (CDR)3-like loop of the aminoterminal domain of CD4 have been shown to inhibit the replication of human immunodeficiency virus (HIV) in CD4 positive T cells. The mechanism of action of these antibodies is not yet elucidated, although several observations suggest that they inhibit viral transcription by signal transduction through the CD4 molecule, potentially implicating the activation of a protein tyrosine kinase (PTK) cascade. Since CD45 is the major protein tyrosine phosphatase associated to the plasma membrane in T cells, and has been shown to regulate the activity of several PTK, we postulated that CD45 may be necessary for the inhibitory action of the CDR3-like specific anti-CD4 antibodies. Therefore we tested the effect of one such anti-CD4 monoclonal antibody, 13B8.2, in repressing HIV replication in CD45 positive cell lines and CD45 deficient variants. Our data show that cells respond to 13B8.2 postinfection treatment regardless of CD45 expression, indicating that neither CD45 nor PTK regulated by CD45 are implicated in the mechanism of action of this antibody.
Collapse
Affiliation(s)
- A Péléraux
- Laboratoire d'Immunologie des Infections Rétrovirales, Centre de Recherches de Biologie Macromoléculaire CNRS ERS 155, Montpellier, France
| | | | | |
Collapse
|
47
|
Czyzyk JK, Fernsten PD, Brtva TR, Der CJ, Winfield JB. CD45 and Src-related protein tyrosine kinases regulate the T cell response to phorbol esters. Biochem Biophys Res Commun 1998; 243:444-50. [PMID: 9480828 DOI: 10.1006/bbrc.1998.8114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Protein kinase C (PKC)-dependent activation of the Ras signal transduction cascade is essential for induction of the IL-2 promoter during stimulation of T lymphocytes via the T cell receptor (TCR). In this study, the effects of PKC-activating phorbol myristate acetate (PMA) on Ras-dependent activation of transcription from the ets/AP-1 Ras-responsive promoter element were examined in human T cells. Pretreatment of Jurkat cells with the Src-family PTK inhibitor herbimycin A resulted in a 50% inhibition of transactivation of the reporter following incubation with PMA. Evidence was also obtained to suggest the participation of the leukocyte-specific protein tyrosine phosphatase CD45, a regulator of Src-like PTKs, in the PMA-induced activation of the Ras/Raf pathway. First, PMA-induced transactivation of ets/AP-1 is diminished 75% in CD45-negative variants, compared with CD45-positive cells. Second, engagement of CD45 by monoclonal antibodies suppresses the PMA response from the reporter construct. Taken together, these data suggest that Src-related proteins mediate PKC-dependent activation of the Ras/Raf pathway and implicate CD45 in the TCR-independent activation of T lymphocytes induced by agents such as PMA.
Collapse
Affiliation(s)
- J K Czyzyk
- Division of Rheumatology and Immunology, Thurston Arthritis Research Center, Chapel Hill, NC 27599-7280, USA
| | | | | | | | | |
Collapse
|
48
|
von Willebrand M, Williams S, Saxena M, Gilman J, Tailor P, Jascur T, Amarante-Mendes GP, Green DR, Mustelin T. Modification of phosphatidylinositol 3-kinase SH2 domain binding properties by Abl- or Lck-mediated tyrosine phosphorylation at Tyr-688. J Biol Chem 1998; 273:3994-4000. [PMID: 9461588 DOI: 10.1074/jbc.273.7.3994] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In cells expressing the oncogenic Bcr-Abl tyrosine kinase, the regulatory p85 subunit of phosphatidylinositol 3-kinase is phosphorylated on tyrosine residues. We report that this phosphorylation event is readily catalyzed by the Abl and Lck protein-tyrosine kinases in vitro, by Bcr-Abl or a catalytically activated Lck-Y505F in co-transfected COS cells, and by endogenous kinases in transfected Jurkat T cells upon triggering of their T cell antigen receptor. Using these systems, we have mapped a major phosphorylation site to Tyr-688 in the C-terminal SH2 domain of p85. Tyrosine phosphorylation of p85 in vitro or in vivo was not associated with detectable change in the enzymatic activity of the phosphatidylinositol 3-kinase heterodimer, but correlated with a strong reduction in the binding of some, but not all, phosphoproteins to the SH2 domains of p85. This provides an additional candidate to the list of SH2 domains regulated by tyrosine phosphorylation and may explain why association of phosphatidylinositol 3-kinase with some cellular ligands is transient or of lower stoichiometry than anticipated.
Collapse
Affiliation(s)
- M von Willebrand
- Divisions of Cell Biology and Cellular Immunology, La Jolla Institute for Allergy and Immunology, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Role of Immunoreceptor Tyrosine-Based Activation Motif in Signal Transduction from Antigen and Fc Receptors**Received for publication October 7, 1997. Adv Immunol 1998. [DOI: 10.1016/s0065-2776(08)60608-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
D'Oro U, Vacchio MS, Weissman AM, Ashwell JD. Activation of the Lck tyrosine kinase targets cell surface T cell antigen receptors for lysosomal degradation. Immunity 1997; 7:619-28. [PMID: 9390686 DOI: 10.1016/s1074-7613(00)80383-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mechanism by which TCR expression is regulated was explored by expressing a constitutively active form of the tyrosine kinase Lck (Lck505F) in T cells. Expression of Lck505F down-regulated TCR levels, an effect that was even more pronounced in CD45- T cells, in which the activity of this tyrosine kinase is further enhanced. Cells expressing Lck505F synthesized all TCR subunits, but lysosomal degradation of assembled receptors was enhanced. TCRs were rapidly internalized and degraded after removal of a tyrosine kinase inhibitor that had permitted cell surface expression. Finally, TCR levels on thymocytes were increased by an Lck inhibitor, and activation- but not phorbol ester-induced internalization of TCRs on Jurkat cells was prevented by inhibition or loss of Lck. These studies identify a regulated nonreceptor tyrosine kinase-mediated pathway for targeting cell surface receptors for lysosomal degradation.
Collapse
Affiliation(s)
- U D'Oro
- Laboratory of Immune Cell Biology, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-1152, USA
| | | | | | | |
Collapse
|