1
|
Rogers J, Bajur AT, Salaita K, Spillane KM. Mechanical control of antigen detection and discrimination by T and B cell receptors. Biophys J 2024; 123:2234-2255. [PMID: 38794795 PMCID: PMC11331051 DOI: 10.1016/j.bpj.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024] Open
Abstract
The adaptive immune response is orchestrated by just two cell types, T cells and B cells. Both cells possess the remarkable ability to recognize virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signaling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signaling activity, and spatial organization of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.
Collapse
Affiliation(s)
- Jhordan Rogers
- Department of Chemistry, Emory University, Atlanta, Georgia
| | - Anna T Bajur
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, Georgia; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia.
| | - Katelyn M Spillane
- Department of Physics, King's College London, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, King's College London, London, United Kingdom; Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
2
|
Matz H, Taylor RS, Redmond AK, Hill TM, Ruiz Daniels R, Beltran M, Henderson NC, Macqueen DJ, Dooley H. Organized B cell sites in cartilaginous fishes reveal the evolutionary foundation of germinal centers. Cell Rep 2023; 42:112664. [PMID: 37342909 PMCID: PMC10529500 DOI: 10.1016/j.celrep.2023.112664] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 02/28/2023] [Accepted: 06/04/2023] [Indexed: 06/23/2023] Open
Abstract
The absence of germinal centers (GCs) in cartilaginous fishes lies at odds with data showing that nurse sharks can produce robust antigen-specific responses and affinity mature their B cell repertoires. To investigate this apparent incongruity, we performed RNA sequencing on single nuclei, allowing us to characterize the cell types present in the nurse shark spleen, and RNAscope to provide in situ cellular resolution of key marker gene expression following immunization with R-phycoerythrin (PE). We tracked PE to the splenic follicles where it co-localizes with CXCR5high centrocyte-like B cells and a population of putative T follicular helper (Tfh) cells, surrounded by a peripheral ring of Ki67+ AID+ CXCR4+ centroblast-like B cells. Further, we reveal selection of mutations in B cell clones dissected from these follicles. We propose that the B cell sites identified here represent the evolutionary foundation of GCs, dating back to the jawed vertebrate ancestor.
Collapse
Affiliation(s)
- Hanover Matz
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Richard S Taylor
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Anthony K Redmond
- Smurfit Institute of Genetics, Trinity College Dublin, Dublin, Ireland
| | - Thomas M Hill
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, MD, USA
| | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Mariana Beltran
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK
| | - Neil C Henderson
- Centre for Inflammation Research, The Queen's Medical Research Institute, Edinburgh BioQuarter, University of Edinburgh, Edinburgh, UK; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Daniel J Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Helen Dooley
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, Baltimore, MD, USA.
| |
Collapse
|
3
|
Rivera CE, Zhou Y, Chupp DP, Yan H, Fisher AD, Simon R, Zan H, Xu Z, Casali P. Intrinsic B cell TLR-BCR linked coengagement induces class-switched, hypermutated, neutralizing antibody responses in absence of T cells. SCIENCE ADVANCES 2023; 9:eade8928. [PMID: 37115935 PMCID: PMC10146914 DOI: 10.1126/sciadv.ade8928] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/23/2023] [Indexed: 05/03/2023]
Abstract
Maturation of antibody responses entails somatic hypermutation (SHM), class-switch DNA recombination (CSR), plasma cell differentiation, and generation of memory B cells, and it is thought to require T cell help. We showed that B cell Toll-like receptor 4 (TLR4)-B cell receptor (BCR) (receptor for antigen) coengagement by 4-hydroxy-3-nitrophenyl acetyl (NP)-lipopolysaccharide (LPS) (Escherichia coli lipid A polysaccharide O-antigen) or TLR5-BCR coengagement by Salmonella flagellin induces mature antibody responses to NP and flagellin in Tcrβ-/-Tcrδ-/- and NSG/B mice. TLR-BCR coengagement required linkage of TLR and BCR ligands, "linked coengagement." This induced B cell CSR/SHM, germinal center-like differentiation, clonal expansion, intraconal diversification, plasma cell differentiation, and an anamnestic antibody response. In Tcrβ-/-Tcrδ-/- mice, linked coengagement of TLR4-BCR by LPS or TLR5-BCR by flagellin induced protective antibodies against E. coli or Salmonella Typhimurium. Our findings unveiled a critical role of B cell TLRs in inducing neutralizing antibody responses, including those to microbial pathogens, without T cell help.
Collapse
Affiliation(s)
- Carlos E. Rivera
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Yulai Zhou
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Daniel P. Chupp
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Hui Yan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Amanda D. Fisher
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Raphael Simon
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hong Zan
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Zhenming Xu
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| | - Paolo Casali
- Department of Microbiology, Immunology & Molecular Genetics, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
- Department of Medicine, University of Texas Long School of Medicine, UT Health Science Center, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Jenkins GW, Safonova Y, Smider VV. Germline-Encoded Positional Cysteine Polymorphisms Enhance Diversity in Antibody Ultralong CDR H3 Regions. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:2141-2148. [PMID: 36426974 PMCID: PMC9940733 DOI: 10.4049/jimmunol.2200455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/25/2022] [Indexed: 01/04/2023]
Abstract
Ab "ultralong" third H chain complementarity-determining regions (CDR H3) appear unique to bovine Abs and may enable binding to difficult epitopes that shorter CDR H3 regions cannot easily access. Diversity is concentrated in the "knob" domain of the CDR H3, which is encoded by the DH gene segment and sits atop a β-ribbon "stalk" that protrudes far from the Ab surface. Knob region cysteine content is quite diverse in terms of total number of cysteines, sequence position, and disulfide bond pattern formation. We investigated the role of germline cysteines in production of a diverse CDR H3 structural repertoire. The relationship between DH polymorphisms and deletions relative to germline at the nucleotide level, as well as diversity in cysteine and disulfide bond content at the structural level, was ascertained. Structural diversity is formed through (1) DH polymorphisms with altered cysteine positions, (2) DH deletions, and (3) new cysteines that arise through somatic hypermutation that form new, unique disulfide bonds to alter the knob structure. Thus, a combination of mechanisms at both the germline and somatic immunogenetic levels results in diversity in knob region cysteine content, contributing to remarkable complexity in knob region disulfide patterns, loops, and Ag binding surface.
Collapse
Affiliation(s)
| | - Yana Safonova
- Computer Science and Engineering Department, University of California, San Diego, La Jolla, CA
- Department of Computer Science, Johns Hopkins University, Baltimore, MD; and
| | - Vaughn V Smider
- Applied Biomedical Science Institute, San Diego, CA
- Department of Molecular Medicine, Scripps Research, La Jolla, CA
| |
Collapse
|
5
|
Fraley ER, Khanal S, Pierce SH, LeMaster CA, McLennan R, Pastinen T, Bradley T. Effects of Prior Infection with SARS-CoV-2 on B Cell Receptor Repertoire Response during Vaccination. Vaccines (Basel) 2022; 10:1477. [PMID: 36146555 PMCID: PMC9506540 DOI: 10.3390/vaccines10091477] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/24/2022] [Accepted: 08/29/2022] [Indexed: 11/24/2022] Open
Abstract
Understanding the B cell response to SARS-CoV-2 vaccines is a high priority. High-throughput sequencing of the B cell receptor (BCR) repertoire allows for dynamic characterization of B cell response. Here, we sequenced the BCR repertoire of individuals vaccinated by the Pfizer SARS-CoV-2 mRNA vaccine. We compared BCR repertoires of individuals with previous COVID-19 infection (seropositive) to individuals without previous infection (seronegative). We discovered that vaccine-induced expanded IgG clonotypes had shorter heavy-chain complementarity determining region 3 (HCDR3), and for seropositive individuals, these expanded clonotypes had higher somatic hypermutation (SHM) than seronegative individuals. We uncovered shared clonotypes present in multiple individuals, including 28 clonotypes present across all individuals. These 28 shared clonotypes had higher SHM and shorter HCDR3 lengths compared to the rest of the BCR repertoire. Shared clonotypes were present across both serotypes, indicating convergent evolution due to SARS-CoV-2 vaccination independent of prior viral exposure.
Collapse
Affiliation(s)
- Elizabeth R. Fraley
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Santosh Khanal
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Stephen H. Pierce
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Cas A. LeMaster
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Rebecca McLennan
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
| | - Tomi Pastinen
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
| | - Todd Bradley
- Genomic Medicine Center, Children’s Mercy Research Institute, Children’s Mercy Kansas City, Kansas City, MO 64108, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pediatrics, University of Missouri-Kansas City School of Medicine, Kansas City, MO 64108, USA
- Department of Pediatrics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
6
|
Catalytic Antibodies in Bipolar Disorder: Serum IgGs Hydrolyze Myelin Basic Protein. Int J Mol Sci 2022; 23:ijms23137397. [PMID: 35806400 PMCID: PMC9267049 DOI: 10.3390/ijms23137397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 12/03/2022] Open
Abstract
The pathogenesis of bipolar affective disorder is associated with immunological imbalances, a general pro-inflammatory status, neuroinflammation, and impaired white matter integrity. Myelin basic protein (MBP) is one of the major proteins in the myelin sheath of brain oligodendrocytes. For the first time, we have shown that IgGs isolated from sera of bipolar patients can effectively hydrolyze human myelin basic protein (MBP), unlike other test proteins. Several stringent criteria were applied to assign the studied activity to serum IgG. The level of MBP-hydrolyzing activity of IgG from patients with bipolar disorder was statistically significantly 1.6-folds higher than that of healthy individuals. This article presents a detailed characterization of the catalytic properties of MBP-hydrolyzing antibodies in bipolar disorder, including the substrate specificity, inhibitory analysis, pH dependence of hydrolysis, and kinetic parameters of IgG-dependent MBP hydrolysis, providing the heterogeneity of polyclonal MBP-hydrolyzing IgGs and their difference from canonical proteases. The ability of serum IgG to hydrolyze MBP in bipolar disorder may become an additional link between the processes of myelin damage and inflammation.
Collapse
|
7
|
Bartlett ML, Suwanmanee S, Peart Akindele N, Ghimire S, Chan AK, Guo C, Gould SJ, Cox AL, Griffin DE. Continued Virus-Specific Antibody-Secreting Cell Production, Avidity Maturation and B Cell Evolution in Patients Hospitalized with COVID-19. Viral Immunol 2022; 35:259-272. [PMID: 35285743 PMCID: PMC9063170 DOI: 10.1089/vim.2021.0191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Understanding the development and sustainability of the virus-specific protective immune response to infection with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) remains incomplete with respect to the appearance and disappearance of virus-specific antibody-secreting cells (ASCs) in circulation. Therefore, we performed cross-sectional and longitudinal analyses of peripheral blood mononuclear cells and plasma collected from 55 hospitalized patients up to 4 months after onset of COVID-19 symptoms. Spike (S)- and nucleocapsid (N)-specific IgM and IgG ASCs appeared within 2 weeks accompanied by flow cytometry increases in double negative plasmablasts consistent with a rapid extrafollicular B cell response. Total and virus-specific IgM and IgG ASCs peaked at 3-4 weeks and were still being produced at 3-4 months accompanied by increasing antibody avidity consistent with a slower germinal center B cell response. N-specific ASCs were produced for longer than S-specific ASCs and avidity maturation was greater for antibody to N than S. Patients with more severe disease produced more S-specific IgM and IgG ASCs than those with mild disease and had higher levels of N- and S-specific antibody. Women had more B cells in circulation than men and produced more S-specific IgA and IgG and N-specific IgG ASCs. Flow cytometry analysis of B cell phenotypes showed an increase in circulating B cells at 4-6 weeks with decreased percentages of switched and unswitched memory B cells. These data indicate ongoing antigen-specific stimulation, maturation, and production of ASCs for several months after onset of symptoms in patients hospitalized with COVID-19.
Collapse
Affiliation(s)
- Maggie L. Bartlett
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - San Suwanmanee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nadine Peart Akindele
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shristi Ghimire
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Andy K.P. Chan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Chenxu Guo
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephen J. Gould
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Andrea L. Cox
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Affinity maturation for an optimal balance between long-term immune coverage and short-term resource constraints. Proc Natl Acad Sci U S A 2022; 119:2113512119. [PMID: 35177475 PMCID: PMC8872716 DOI: 10.1073/pnas.2113512119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2022] [Indexed: 12/15/2022] Open
Abstract
Humoral immunity relies on the mutation and selection of B cells to better recognize pathogens. This affinity maturation process produces cells with diverse recognition capabilities. Examining optimal immune strategies that maximize the long-term immune coverage at a minimal metabolic cost, we show when the immune system should mount a de novo response rather than rely on existing memory cells. Our theory recapitulates known modes of the B cell response, predicts the empirical form of the distribution of clone sizes, and rationalizes as a trade-off between metabolic and immune costs the antigenic imprinting effects that limit the efficacy of vaccines (original antigenic sin). Our predictions provide a framework to interpret experimental results that could be used to inform vaccination strategies. In order to target threatening pathogens, the adaptive immune system performs a continuous reorganization of its lymphocyte repertoire. Following an immune challenge, the B cell repertoire can evolve cells of increased specificity for the encountered strain. This process of affinity maturation generates a memory pool whose diversity and size remain difficult to predict. We assume that the immune system follows a strategy that maximizes the long-term immune coverage and minimizes the short-term metabolic costs associated with affinity maturation. This strategy is defined as an optimal decision process on a finite dimensional phenotypic space, where a preexisting population of cells is sequentially challenged with a neutrally evolving strain. We show that the low specificity and high diversity of memory B cells—a key experimental result—can be explained as a strategy to protect against pathogens that evolve fast enough to escape highly potent but narrow memory. This plasticity of the repertoire drives the emergence of distinct regimes for the size and diversity of the memory pool, depending on the density of de novo responding cells and on the mutation rate of the strain. The model predicts power-law distributions of clonotype sizes observed in data and rationalizes antigenic imprinting as a strategy to minimize metabolic costs while keeping good immune protection against future strains.
Collapse
|
9
|
Wang Q, Zeng H, Zhu Y, Wang M, Zhang Y, Yang X, Tang H, Li H, Chen Y, Ma C, Lan C, Liu B, Yang W, Yu X, Zhang Z. Dual UMIs and Dual Barcodes With Minimal PCR Amplification Removes Artifacts and Acquires Accurate Antibody Repertoire. Front Immunol 2021; 12:778298. [PMID: 35003093 PMCID: PMC8727365 DOI: 10.3389/fimmu.2021.778298] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 11/25/2021] [Indexed: 12/03/2022] Open
Abstract
Antibody repertoire sequencing (Rep-seq) has been widely used to reveal repertoire dynamics and to interrogate antibodies of interest at single nucleotide-level resolution. However, polymerase chain reaction (PCR) amplification introduces extensive artifacts including chimeras and nucleotide errors, leading to false discovery of antibodies and incorrect assessment of somatic hypermutations (SHMs) which subsequently mislead downstream investigations. Here, a novel approach named DUMPArts, which improves the accuracy of antibody repertoires by labeling each sample with dual barcodes and each molecule with dual unique molecular identifiers (UMIs) via minimal PCR amplification to remove artifacts, is developed. Tested by ultra-deep Rep-seq data, DUMPArts removed inter-sample chimeras, which cause artifactual shared clones and constitute approximately 15% of reads in the library, as well as intra-sample chimeras with erroneous SHMs and constituting approximately 20% of the reads, and corrected base errors and amplification biases by consensus building. The removal of these artifacts will provide an accurate assessment of antibody repertoires and benefit related studies, especially mAb discovery and antibody-guided vaccine design.
Collapse
Affiliation(s)
- Qilong Wang
- Center for Precision Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Huikun Zeng
- Center for Precision Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yan Zhu
- Center for Precision Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Minhui Wang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanfang Zhang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiujia Yang
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Haipei Tang
- Center for Precision Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Hongliang Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Yuan Chen
- Center for Precision Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Cuiyu Ma
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chunhong Lan
- Center for Precision Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Wei Yang
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Yang, ; Xueqing Yu, ; Zhenhai Zhang, ;
| | - Xueqing Yu
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Division of Nephrology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- *Correspondence: Wei Yang, ; Xueqing Yu, ; Zhenhai Zhang, ;
| | - Zhenhai Zhang
- Center for Precision Medicine, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong-Hong Kong Joint Laboratory on Immunological and Genetic Kidney Diseases, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- State Key Laboratory of Organ Failure Research, National Clinical Research Center for Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, China
- *Correspondence: Wei Yang, ; Xueqing Yu, ; Zhenhai Zhang, ;
| |
Collapse
|
10
|
Mathew NR, Jayanthan JK, Smirnov IV, Robinson JL, Axelsson H, Nakka SS, Emmanouilidi A, Czarnewski P, Yewdell WT, Schön K, Lebrero-Fernández C, Bernasconi V, Rodin W, Harandi AM, Lycke N, Borcherding N, Yewdell JW, Greiff V, Bemark M, Angeletti D. Single-cell BCR and transcriptome analysis after influenza infection reveals spatiotemporal dynamics of antigen-specific B cells. Cell Rep 2021; 35:109286. [PMID: 34161770 PMCID: PMC7612943 DOI: 10.1016/j.celrep.2021.109286] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/07/2021] [Accepted: 06/01/2021] [Indexed: 12/15/2022] Open
Abstract
B cell responses are critical for antiviral immunity. However, a comprehensive picture of antigen-specific B cell differentiation, clonal proliferation, and dynamics in different organs after infection is lacking. Here, by combining single-cell RNA and B cell receptor (BCR) sequencing of antigen-specific cells in lymph nodes, spleen, and lungs after influenza infection in mice, we identify several germinal center (GC) B cell subpopulations and organ-specific differences that persist over the course of the response. We discover transcriptional differences between memory cells in lungs and lymphoid organs and organ-restricted clonal expansion. Remarkably, we find significant clonal overlap between GC-derived memory and plasma cells. By combining BCR-mutational analyses with monoclonal antibody (mAb) expression and affinity measurements, we find that memory B cells are highly diverse and can be selected from both low- and high-affinity precursors. By linking antigen recognition with transcriptional programming, clonal proliferation, and differentiation, these finding provide important advances in our understanding of antiviral immunity.
Collapse
Affiliation(s)
- Nimitha R Mathew
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jayalal K Jayanthan
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ilya V Smirnov
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Jonathan L Robinson
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Göteborg, Sweden
| | - Hannes Axelsson
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sravya S Nakka
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Aikaterini Emmanouilidi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Paulo Czarnewski
- Department of Biochemistry and Biophysics, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - William T Yewdell
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karin Schön
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Cristina Lebrero-Fernández
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Valentina Bernasconi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - William Rodin
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Ali M Harandi
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Vaccine Evaluation Center, BC Children's Hospital Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Nils Lycke
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Jonathan W Yewdell
- Laboratory of Viral Diseases, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Mats Bemark
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden; Region Västra Götaland, Department of Clinical Immunology and Transfusion Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Davide Angeletti
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
11
|
Bello A, Jungnickel B. Impact of Chk1 dosage on somatic hypermutation in vivo. Immunol Cell Biol 2021; 99:879-893. [PMID: 34042197 DOI: 10.1111/imcb.12480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 04/19/2021] [Accepted: 05/24/2021] [Indexed: 12/14/2022]
Abstract
Checkpoint signaling in the context of a functional DNA damage response is crucial for the prevention of oncogenic transformation of cells. Our immune system, though, takes the risk of attenuated checkpoint responses during immunoglobulin diversification. B cells undergo continuous DNA damage and error-prone repair of their immunoglobulin genes during the process of somatic hypermutation. An accompanying attenuation of the DNA damage response via the ATR-Chk1 axis in B cells is believed to allow for a better DNA damage tolerance and for evasion of apoptosis, so as to ensure mutations to be passed on. We sought to determine whether the downregulation of Chk1 could also directly influence the process of hypermutation in vivo by altering the relative activity of error-prone DNA repair pathways. We analyzed the humoral response and the hypermutation process in mice whose B cells express reduced levels of the Chk1 protein. We found that Chk1 heterozygosity limits the accumulation of mutations in the immunoglobulin loci, likely by impacting on the survival of B cells as they accumulate DNA damage. Nevertheless, we unveiled an unanticipated role for Chk1 downregulation in favoring A/T mutagenesis at the antibody-variable regions during hypermutation. Even though immunoglobulin mutagenesis was found to be reduced, Chk1 signaling attenuation allows for sustained mutagenesis outside the immunoglobulin loci. Our study thus reveals that a proper Chk1 dosage is crucial for adequate somatic hypermutation in B cells.
Collapse
Affiliation(s)
- Amanda Bello
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Berit Jungnickel
- Department of Cell Biology, Institute of Biochemistry and Biophysics, School of Biological Sciences, Friedrich Schiller University, Jena, Germany
| |
Collapse
|
12
|
Sequential immunization induces strong and broad immunity against all four dengue virus serotypes. NPJ Vaccines 2020; 5:68. [PMID: 32728482 PMCID: PMC7382454 DOI: 10.1038/s41541-020-00216-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/06/2020] [Indexed: 11/24/2022] Open
Abstract
A major challenge in dengue vaccine development is the need to induce immunity against four dengue (DENV) serotypes. Dengvaxia®, the only licensed dengue vaccine, consists of four variant dengue antigens, one for each serotype. Three doses of immunization with the tetravalent vaccine induced only suboptimal protection against DENV1 and DENV2. Furthermore, vaccination paradoxically and adversely primes dengue naïve subjects to more severe dengue. Here, we have tested whether sequential immunization induces stronger and broader immunity against four DENV serotypes than tetravalent-formulated immunization. Mice were immunized with four DNA plasmids, each encoding the pre-membrane and envelope from one DENV serotype, either sequentially or simultaneously. The sequential immunization induced significantly higher levels of interferon (IFN)γ- or tumor necrosis factor (TNF)α-expressing CD4+ and CD8+ T cells to both serotype-specific and conserved epitopes than tetravalent immunization. Moreover, sequential immunization induced higher levels of neutralizing antibodies to all four DENV serotypes than tetravalent vaccination. Consistently, sequential immunization resulted in more diversified immunoglobulin repertoire, including increased complementarity determining region 3 (CDR3) length and more robust germinal center reactions. These results show that sequential immunization offers a simple approach to potentially overcome the current challenges encountered with tetravalent-formulated dengue vaccines.
Collapse
|
13
|
Trinklein ND, Pham D, Schellenberger U, Buelow B, Boudreau A, Choudhry P, Clarke SC, Dang K, Harris KE, Iyer S, Jorgensen B, Pratap PP, Rangaswamy US, Ugamraj HS, Vafa O, Wiita AP, van Schooten W, Buelow R, Force Aldred S. Efficient tumor killing and minimal cytokine release with novel T-cell agonist bispecific antibodies. MAbs 2019; 11:639-652. [PMID: 30698484 PMCID: PMC6601548 DOI: 10.1080/19420862.2019.1574521] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
T-cell-recruiting bispecific antibodies (T-BsAbs) have shown potent tumor killing activity in humans, but cytokine release-related toxicities have affected their clinical utility. The use of novel anti-CD3 binding domains with more favorable properties could aid in the creation of T-BsAbs with improved therapeutic windows. Using a sequence-based discovery platform, we identified new anti-CD3 antibodies from humanized rats that bind to multiple epitopes and elicit varying levels of T-cell activation. In T-BsAb format, 12 different anti-CD3 arms induce equivalent levels of tumor cell lysis by primary T-cells, but potency varies by a thousand-fold. Our lead CD3-targeting arm stimulates very low levels of cytokine release, but drives robust tumor antigen-specific killing in vitro and in a mouse xenograft model. This new CD3-targeting antibody underpins a next-generation T-BsAb platform in which potent cytotoxicity is uncoupled from high levels of cytokine release, which may lead to a wider therapeutic window in the clinic.
Collapse
Affiliation(s)
| | - Duy Pham
- a Teneobio, Inc ., Menlo Park , CA , USA
| | | | - Ben Buelow
- a Teneobio, Inc ., Menlo Park , CA , USA
| | | | - Priya Choudhry
- b Department of Laboratory Medicine , University of California , San Francisco , CA , USA
| | | | - Kevin Dang
- a Teneobio, Inc ., Menlo Park , CA , USA
| | | | | | | | | | | | | | - Omid Vafa
- a Teneobio, Inc ., Menlo Park , CA , USA
| | - Arun P Wiita
- b Department of Laboratory Medicine , University of California , San Francisco , CA , USA
| | | | | | | |
Collapse
|
14
|
van der Rijst MVE, Lissenberg-Thunnissen SN, Ligthart PC, Visser R, Jongerius JM, Voorn L, Veldhuisen B, Vidarsson G, van den Akker E, van der Schoot CE. Development of a recombinant anti-Vel immunoglobulin M to identify Vel-negative donors. Transfusion 2019; 59:1359-1366. [PMID: 30702752 DOI: 10.1111/trf.15147] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 11/28/2018] [Accepted: 12/03/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Alloimmunization against the high-frequency Vel blood group antigen may result in transfusion reactions or hemolytic disease of fetus and newborn. Patients with anti-Vel alloantibodies require Vel-negative blood but Vel-negative individuals are rare (1:4000). Identification of Vel-negative donors ensures availability of Vel-negative blood; however, accurate Vel blood group typing is difficult due to variable Vel antigen expression and limited availability of anti-Vel typing sera. We report the production of a recombinant anti-Vel that also identifies weak Vel expression. STUDY DESIGN AND METHODS A recombinant anti-Vel monoclonal antibody was produced by cloning the variable regions from an anti-Vel-specific B cell isolated from an alloimmunized patient into a vector harboring the constant regions of immunoglobulin (Ig)G1-kappa or IgM-kappa. Antibody Vel specificity was tested by reactivity to SMIM1-transfected HEK293T cells and by testing various red blood cells (RBCs) of donors with normal, weak, or no Vel expression. High-throughput donor screening applicability was tested using an automated blood group analyzer. RESULTS A Vel-specific IgM class antibody was produced. The antibody was able to distinguish between Vel-negative and very weak Vel antigen-expressing RBCs by direct agglutination and in high-throughput settings using a fully automated blood group analyzer and performed better than currently used human anti-Vel sera. High-throughput screening of 13,288 blood donations identified three new Vel-negative donors. CONCLUSION We generated a directly agglutinating recombinant anti-Vel IgM, M3F5S-IgM, functional in manual, automated agglutination assays and flow cytometry settings. This IgM anti-Vel will improve diagnostics by facilitating the identification of Vel-negative blood donors.
Collapse
Affiliation(s)
- Marea V E van der Rijst
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, AUMC, Amsterdam, The Netherlands.,Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, AUMC, Amsterdam, The Netherlands
| | | | - Peter C Ligthart
- Department of Immunohematology Diagnostic Services, Sanquin, Amsterdam, The Netherlands
| | - Remco Visser
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, AUMC, Amsterdam, The Netherlands
| | - John M Jongerius
- Department of Research and Lab Services, National Screening Laboratory Sanquin, Sanquin, Amsterdam, the Netherlands
| | - Lesley Voorn
- Department of Research and Lab Services, National Screening Laboratory Sanquin, Sanquin, Amsterdam, the Netherlands
| | - Barbera Veldhuisen
- Department of Immunohematology Diagnostic Services, Sanquin, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, AUMC, Amsterdam, The Netherlands
| | - Emile van den Akker
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, AUMC, Amsterdam, The Netherlands
| | - C Ellen van der Schoot
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, AUMC, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Sequencing HIV-neutralizing antibody exons and introns reveals detailed aspects of lineage maturation. Nat Commun 2018; 9:4136. [PMID: 30297708 PMCID: PMC6175870 DOI: 10.1038/s41467-018-06424-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/02/2018] [Indexed: 01/07/2023] Open
Abstract
The developmental pathways of broadly neutralizing antibodies (bNAbs) against HIV are of great importance for the design of immunogens that can elicit protective responses. Here we show the maturation features of the HIV-neutralizing anti-V1V2 VRC26 lineage by simultaneously sequencing the exon together with the downstream intron of VRC26 members. Using the mutational landscapes of both segments and the selection-free nature of the intron region, we identify multiple events of amino acid mutational convergence in the complementarity-determining region 3 (CDR3) of VRC26 members, and determine potential intermediates with diverse CDR3s to a late stage bNAb from 2 years prior to its isolation. Moreover, we functionally characterize the earliest neutralizing intermediates with critical CDR3 mutations, with some emerging only 14 weeks after initial lineage detection and containing only ~6% V gene mutations. Our results thus underscore the utility of analyzing exons and introns simultaneously for studying antibody maturation and repertoire selection. Knowledge on how antibody responses have evolved is critical for the induction of protective immunity. Here the authors analyse, using high-throughput sequencing of both exon and intron regions, the mutation and lineage development of an HIV-neutralizing antibody to find an unexpected early emergence of broadly neutralizing species.
Collapse
|
16
|
Takatsuka S, Yamada H, Haniuda K, Saruwatari H, Ichihashi M, Renauld JC, Kitamura D. IL-9 receptor signaling in memory B cells regulates humoral recall responses. Nat Immunol 2018; 19:1025-1034. [PMID: 30082831 DOI: 10.1038/s41590-018-0177-0] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 06/08/2018] [Indexed: 12/22/2022]
Abstract
Memory B cells (Bmem cells) are the basis of long-lasting humoral immunity. They respond to re-encountered antigens by rapidly producing specific antibodies and forming germinal centers (GCs), a recall response that has been known for decades but remains poorly understood. We found that the receptor for the cytokine IL-9 (IL-9R) was induced selectively on Bmem cells after primary immunization and that IL-9R-deficient mice exhibited a normal primary antibody response but impaired recall antibody responses, with attenuated population expansion and plasma-cell differentiation of Bmem cells. In contrast, there was augmented GC formation, possibly due to defective downregulation of the ligand for the co-stimulatory receptor ICOS on Bmem cells. A fraction of Bmem cells produced IL-9. These findings indicate that IL-9R signaling in Bmem cells regulates humoral recall responses.
Collapse
Affiliation(s)
- Shogo Takatsuka
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan.,Department of Chemotherapy and Mycoses, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Yamada
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Kei Haniuda
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Hiroshi Saruwatari
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Marina Ichihashi
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research and Experimental Medicine Unit, Universite catholique de Louvain, Brussels, Belgium
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan.
| |
Collapse
|
17
|
Functional Relevance of Improbable Antibody Mutations for HIV Broadly Neutralizing Antibody Development. Cell Host Microbe 2018; 23:759-765.e6. [PMID: 29861171 PMCID: PMC6002614 DOI: 10.1016/j.chom.2018.04.018] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 03/10/2018] [Accepted: 04/24/2018] [Indexed: 12/16/2022]
Abstract
HIV-1 broadly neutralizing antibodies (bnAbs) require high levels of activation-induced cytidine deaminase (AID)-catalyzed somatic mutations for optimal neutralization potency. Probable mutations occur at sites of frequent AID activity, while improbable mutations occur where AID activity is infrequent. One bottleneck for induction of bnAbs is the evolution of viral envelopes (Envs) that can select bnAb B cell receptors (BCR) with improbable mutations. Here we define the probability of bnAb mutations and demonstrate the functional significance of key improbable mutations in three bnAb B cell lineages. We show that bnAbs are enriched for improbable mutations, which implies that their elicitation will be critical for successful vaccine induction of potent bnAb B cell lineages. We discuss a mutation-guided vaccine strategy for identification of Envs that can select B cells with BCRs that have key improbable mutations required for bnAb development. HIV-1 broadly neutralizing antibodies are enriched with low-probability mutations Improbable mutations can be functionally critical for bnAb neutralization breadth Critical improbable mutations are high-value targets for selection with vaccines
Collapse
|
18
|
Harris KE, Aldred SF, Davison LM, Ogana HAN, Boudreau A, Brüggemann M, Osborn M, Ma B, Buelow B, Clarke SC, Dang KH, Iyer S, Jorgensen B, Pham DT, Pratap PP, Rangaswamy US, Schellenberger U, van Schooten WC, Ugamraj HS, Vafa O, Buelow R, Trinklein ND. Sequence-Based Discovery Demonstrates That Fixed Light Chain Human Transgenic Rats Produce a Diverse Repertoire of Antigen-Specific Antibodies. Front Immunol 2018; 9:889. [PMID: 29740455 PMCID: PMC5928204 DOI: 10.3389/fimmu.2018.00889] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 04/10/2018] [Indexed: 11/13/2022] Open
Abstract
We created a novel transgenic rat that expresses human antibodies comprising a diverse repertoire of heavy chains with a single common rearranged kappa light chain (IgKV3-15-JK1). This fixed light chain animal, called OmniFlic, presents a unique system for human therapeutic antibody discovery and a model to study heavy chain repertoire diversity in the context of a constant light chain. The purpose of this study was to analyze heavy chain variable gene usage, clonotype diversity, and to describe the sequence characteristics of antigen-specific monoclonal antibodies (mAbs) isolated from immunized OmniFlic animals. Using next-generation sequencing antibody repertoire analysis, we measured heavy chain variable gene usage and the diversity of clonotypes present in the lymph node germinal centers of 75 OmniFlic rats immunized with 9 different protein antigens. Furthermore, we expressed 2,560 unique heavy chain sequences sampled from a diverse set of clonotypes as fixed light chain antibody proteins and measured their binding to antigen by ELISA. Finally, we measured patterns and overall levels of somatic hypermutation in the full B-cell repertoire and in the 2,560 mAbs tested for binding. The results demonstrate that OmniFlic animals produce an abundance of antigen-specific antibodies with heavy chain clonotype diversity that is similar to what has been described with unrestricted light chain use in mammals. In addition, we show that sequence-based discovery is a highly effective and efficient way to identify a large number of diverse monoclonal antibodies to a protein target of interest.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Biao Ma
- Teneobio, Inc., Menlo Park, CA, United States
| | | | | | | | | | | | - Duy T Pham
- Teneobio, Inc., Menlo Park, CA, United States
| | | | | | | | | | | | - Omid Vafa
- Teneobio, Inc., Menlo Park, CA, United States
| | | | | |
Collapse
|
19
|
Murugan R, Buchauer L, Triller G, Kreschel C, Costa G, Pidelaserra Martí G, Imkeller K, Busse CE, Chakravarty S, Sim BKL, Hoffman SL, Levashina EA, Kremsner PG, Mordmüller B, Höfer T, Wardemann H. Clonal selection drives protective memory B cell responses in controlled human malaria infection. Sci Immunol 2018; 3:3/20/eaap8029. [DOI: 10.1126/sciimmunol.aap8029] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 11/30/2017] [Indexed: 01/20/2023]
|
20
|
Wang S. Optimal Sequential Immunization Can Focus Antibody Responses against Diversity Loss and Distraction. PLoS Comput Biol 2017; 13:e1005336. [PMID: 28135270 PMCID: PMC5279722 DOI: 10.1371/journal.pcbi.1005336] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 12/29/2016] [Indexed: 11/18/2022] Open
Abstract
Affinity maturation is a Darwinian process in which B lymphocytes evolve potent antibodies to encountered antigens and generate immune memory. Highly mutable complex pathogens present an immense antigenic diversity that continues to challenge natural immunity and vaccine design. Induction of broadly neutralizing antibodies (bnAbs) against this diversity by vaccination likely requires multiple exposures to distinct but related antigen variants, and yet how affinity maturation advances under such complex stimulation remains poorly understood. To fill the gap, we present an in silico model of affinity maturation to examine two realistic new aspects pertinent to vaccine development: loss in B cell diversity across successive immunization periods against different variants, and the presence of distracting epitopes that entropically disfavor the evolution of bnAbs. We find these new factors, which introduce additional selection pressures and constraints, significantly influence antibody breadth development, in a way that depends crucially on the temporal pattern of immunization (or selection forces). Curiously, a less diverse B cell seed may even favor the expansion and dominance of cross-reactive clones, but only when conflicting selection forces are presented in series rather than in a mixture. Moreover, the level of frustration due to evolutionary conflict dictates the degree of distraction. We further describe how antigenic histories select evolutionary paths of B cell lineages and determine the predominant mode of antibody responses. Sequential immunization with mutationally distant variants is shown to robustly induce bnAbs that focus on conserved elements of the target epitope, by thwarting strain-specific and distracted lineages. An optimal range of antigen dose underlies a fine balance between efficient adaptation and persistent reaction. These findings provide mechanistic guides to aid in design of vaccine strategies against fast mutating pathogens.
Collapse
Affiliation(s)
- Shenshen Wang
- Department of Physics and Astronomy, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
21
|
Arthur CM, Patel SR, Mener A, Kamili NA, Fasano RM, Meyer E, Winkler AM, Sola-Visner M, Josephson CD, Stowell SR. Innate immunity against molecular mimicry: Examining galectin-mediated antimicrobial activity. Bioessays 2016; 37:1327-37. [PMID: 26577077 DOI: 10.1002/bies.201500055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adaptive immunity provides the unique ability to respond to a nearly infinite range of antigenic determinants. Given the inherent plasticity of the adaptive immune system, a series of tolerance mechanisms exist to reduce reactivity toward self. While this reduces the probability of autoimmunity, it also creates an important gap in adaptive immunity: the ability to recognize microbes that look like self. As a variety of microbes decorate themselves in self-like carbohydrate antigens and tolerance reduces the ability of adaptive immunity to react with self-like structures, protection against molecular mimicry likely resides within the innate arm of immunity. In this review, we will explore the potential consequences of microbial molecular mimicry, including factors within innate immunity that appear to specifically target microbes expressing self-like antigens, and therefore provide protection against molecular mimicry.
Collapse
Affiliation(s)
- Connie M Arthur
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Seema R Patel
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda Mener
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Nourine A Kamili
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Ross M Fasano
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Erin Meyer
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Annie M Winkler
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Martha Sola-Visner
- Division of Newborn Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Cassandra D Josephson
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| | - Sean R Stowell
- Department of Laboratory Medicine and Pathology, Center for Transfusion Medicine and Cellular Therapies, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
22
|
Chou C, Verbaro DJ, Tonc E, Holmgren M, Cella M, Colonna M, Bhattacharya D, Egawa T. The Transcription Factor AP4 Mediates Resolution of Chronic Viral Infection through Amplification of Germinal Center B Cell Responses. Immunity 2016; 45:570-582. [PMID: 27566940 DOI: 10.1016/j.immuni.2016.07.023] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/09/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022]
Abstract
B cells diversify and affinity mature their antigen receptor repertoire in germinal centers (GCs). GC B cells receive help signals during transient interaction with T cells, yet it remains unknown how these transient T-B interactions in the light zone sustain the subsequent proliferative program of selected B cells that occurs in the anatomically distant dark zone. Here, we show that the transcription factor AP4 was required for sustained GC B cell proliferation and subsequent establishment of a diverse and protective antibody repertoire. AP4 was induced by c-MYC during the T-B interactions, was maintained by T-cell-derived interleukin-21 (IL-21), and promoted repeated rounds of divisions of selected GC B cells. B-cell-specific deletion of AP4 resulted in reduced GC sizes and reduced somatic hypermutation coupled with a failure to control chronic viral infection. These results indicate that AP4 integrates T-cell-mediated selection and sustained expansion of GC B cells for humoral immunity.
Collapse
Affiliation(s)
- Chun Chou
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Daniel J Verbaro
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Elena Tonc
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Melanie Holmgren
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Marina Cella
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Deepta Bhattacharya
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Takeshi Egawa
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
| |
Collapse
|
23
|
DeWitt WS, Lindau P, Snyder TM, Sherwood AM, Vignali M, Carlson CS, Greenberg PD, Duerkopp N, Emerson RO, Robins HS. A Public Database of Memory and Naive B-Cell Receptor Sequences. PLoS One 2016; 11:e0160853. [PMID: 27513338 PMCID: PMC4981401 DOI: 10.1371/journal.pone.0160853] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 07/26/2016] [Indexed: 11/25/2022] Open
Abstract
The vast diversity of B-cell receptors (BCR) and secreted antibodies enables the recognition of, and response to, a wide range of epitopes, but this diversity has also limited our understanding of humoral immunity. We present a public database of more than 37 million unique BCR sequences from three healthy adult donors that is many fold deeper than any existing resource, together with a set of online tools designed to facilitate the visualization and analysis of the annotated data. We estimate the clonal diversity of the naive and memory B-cell repertoires of healthy individuals, and provide a set of examples that illustrate the utility of the database, including several views of the basic properties of immunoglobulin heavy chain sequences, such as rearrangement length, subunit usage, and somatic hypermutation positions and dynamics.
Collapse
Affiliation(s)
| | - Paul Lindau
- Fred Hutchinson Cancer Research Center, Seattle, United States of America
- University of Washington, Seattle, United States of America
| | | | | | | | | | | | - Natalie Duerkopp
- Fred Hutchinson Cancer Research Center, Seattle, United States of America
| | | | - Harlan S. Robins
- Adaptive Biotechnologies, Seattle, United States of America
- Fred Hutchinson Cancer Research Center, Seattle, United States of America
- * E-mail:
| |
Collapse
|
24
|
Vadnais ML, Smider VV. Bos taurus ultralong CDR H3 antibodies. Curr Opin Struct Biol 2016; 38:62-7. [PMID: 27295423 PMCID: PMC6667352 DOI: 10.1016/j.sbi.2016.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 05/14/2016] [Accepted: 05/18/2016] [Indexed: 02/03/2023]
Abstract
Cow antibodies are unusual in having an exceptionally long third complementarity determining region of the heavy chain (CDR H3). These CDR H3s have a multitude of cysteines and form a distinct domain characterized by a β-ribbon 'stalk' and disulfide bonded 'knob'. Cows appear to utilize somatic hypermutation of a single VDJ rearrangement to produce an astounding variety of distinct CDR H3 sequences with different disulfide bonding patterns within the knob. Thus, cows may be unique amongst vertebrates in evolving an antibody system with both a different scaffold for binding antigen as well as an unusual diversity creating process.
Collapse
Affiliation(s)
- Melissa L Vadnais
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, United States
| | - Vaughn V Smider
- Department of Cell and Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines, La Jolla, CA 92037, United States.
| |
Collapse
|
25
|
Sheng Z, Schramm CA, Connors M, Morris L, Mascola JR, Kwong PD, Shapiro L. Effects of Darwinian Selection and Mutability on Rate of Broadly Neutralizing Antibody Evolution during HIV-1 Infection. PLoS Comput Biol 2016; 12:e1004940. [PMID: 27191167 PMCID: PMC4871536 DOI: 10.1371/journal.pcbi.1004940] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 04/24/2016] [Indexed: 01/09/2023] Open
Abstract
Accumulation of somatic mutations in antibody variable regions is critical for antibody affinity maturation, with HIV-1 broadly neutralizing antibodies (bnAbs) generally requiring years to develop. We recently found that the rate at which mutations accumulate decreases over time, but the mechanism governing this slowing is unclear. In this study, we investigated whether natural selection and/or mutability of the antibody variable region contributed significantly to observed decrease in rate. We used longitudinally sampled sequences of immunoglobulin transcripts of single lineages from each of 3 donors, as determined by next generation sequencing. We estimated the evolutionary rates of the complementarity determining regions (CDRs), which are most significant for functional selection, and found they evolved about 1.5- to 2- fold faster than the framework regions. We also analyzed the presence of AID hotspots and coldspots at different points in lineage development and observed an average decrease in mutability of less than 10 percent over time. Altogether, the correlation between Darwinian selection strength and evolutionary rate trended toward significance, especially for CDRs, but cannot fully explain the observed changes in evolutionary rate. The mutability modulated by AID hotspots and coldspots changes correlated only weakly with evolutionary rates. The combined effects of Darwinian selection and mutability contribute substantially to, but do not fully explain, evolutionary rate change for HIV-1-targeting bnAb lineages. In an infected individual, the HIV-1 Env gene evolves at a rate of about 0.015 substitutions per site per year. Changes in viral epitopes in turn stimulate the co-evolution of recognizing antibody lineages. We previously showed that young antibody lineages can evolve at a rate ~10-fold faster than observed for HIV-1 and the rate of antibody evolution decreases over time. Here we investigate two factors, Darwinian selection and genetic mutability, which have been shown to influence evolutionary rates in other settings. We quantified both of these factors for three broadly HIV-1-neutralizing antibody lineages, and analyzed the association of these factors with changes in evolutionary rate. We found that Darwinian selection is a major factor in the slowing of evolutionary rate, while genetic mutability modulates antibody evolutionary rate weakly. Moreover, the combined effects of the two factors are unlikely to fully account for the slowing of antibody evolutionary rate.
Collapse
Affiliation(s)
- Zizhang Sheng
- Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Chaim A. Schramm
- Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, New York, United States of America
| | - Mark Connors
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Congella, South Africa
| | - John R. Mascola
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics and Department of Systems Biology, Columbia University, New York, New York, United States of America
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
26
|
Yaari G, Benichou JIC, Vander Heiden JA, Kleinstein SH, Louzoun Y. The mutation patterns in B-cell immunoglobulin receptors reflect the influence of selection acting at multiple time-scales. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2014.0242. [PMID: 26194756 DOI: 10.1098/rstb.2014.0242] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
During the several-week course of an immune response, B cells undergo a process of clonal expansion, somatic hypermutation of the immunoglobulin (Ig) genes and affinity-dependent selection. Over a lifetime, each B cell may participate in multiple rounds of affinity maturation as part of different immune responses. These two time-scales for selection are apparent in the structure of B-cell lineage trees, which often contain a 'trunk' consisting of mutations that are shared across all members of a clone, and several branches that form a 'canopy' consisting of mutations that are shared by a subset of clone members. The influence of affinity maturation on the B-cell population can be inferred by analysing the pattern of somatic mutations in the Ig. While global analysis of mutation patterns has shown evidence of strong selection pressures shaping the B-cell population, the effect of different time-scales of selection and diversification has not yet been studied. Analysis of B cells from blood samples of three healthy individuals identifies a range of clone sizes with lineage trees that can contain long trunks and canopies indicating the significant diversity introduced by the affinity maturation process. We here show that observed mutation patterns in the framework regions (FWRs) are determined by an almost purely purifying selection on both short and long time-scales. By contrast, complementarity determining regions (CDRs) are affected by a combination of purifying and antigen-driven positive selection on the short term, which leads to a net positive selection in the long term. In both the FWRs and CDRs, long-term selection is strongly dependent on the heavy chain variable gene family.
Collapse
Affiliation(s)
- Gur Yaari
- Bioengineering Program, Faculty of Engineering, Bar-Ilan University, Ramat Gan 5290002, Israel
| | | | - Jason A Vander Heiden
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06511, USA Departments of Pathology and Immunobiology, Yale School of Medicine, New Haven, CT 06511, USA
| | - Yoram Louzoun
- Department of Mathematics, Bar-Ilan University, Ramat Gan 5290002, Israel Gonda Brain Research Center, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
27
|
Ohlin M, Söderberg-Nauclér C. Human antibody technology and the development of antibodies against cytomegalovirus. Mol Immunol 2015; 67:153-70. [DOI: 10.1016/j.molimm.2015.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/13/2015] [Accepted: 02/15/2015] [Indexed: 02/08/2023]
|
28
|
Gitlin AD, Mayer CT, Oliveira TY, Shulman Z, Jones MJK, Koren A, Nussenzweig MC. HUMORAL IMMUNITY. T cell help controls the speed of the cell cycle in germinal center B cells. Science 2015; 349:643-6. [PMID: 26184917 DOI: 10.1126/science.aac4919] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 07/08/2015] [Indexed: 12/20/2022]
Abstract
The germinal center (GC) is a microanatomical compartment wherein high-affinity antibody-producing B cells are selectively expanded. B cells proliferate and mutate their antibody genes in the dark zone (DZ) of the GC and are then selected by T cells in the light zone (LZ) on the basis of affinity. Here, we show that T cell help regulates the speed of cell cycle phase transitions and DNA replication of GC B cells. Genome sequencing and single-molecule analyses revealed that T cell help shortens S phase by regulating replication fork progression, while preserving the relative order of replication origin activation. Thus, high-affinity GC B cells are selected by a mechanism that involves prolonged dwell time in the DZ where selected cells undergo accelerated cell cycles.
Collapse
Affiliation(s)
- Alexander D Gitlin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Christian T Mayer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Ziv Shulman
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
| | - Mathew J K Jones
- Molecular Biology Program, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Amnon Koren
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA. Howard Hughes Medical Institute (HHMI), The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
29
|
Wang S, Mata-Fink J, Kriegsman B, Hanson M, Irvine DJ, Eisen HN, Burton DR, Wittrup KD, Kardar M, Chakraborty AK. Manipulating the selection forces during affinity maturation to generate cross-reactive HIV antibodies. Cell 2015; 160:785-797. [PMID: 25662010 PMCID: PMC4357364 DOI: 10.1016/j.cell.2015.01.027] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/03/2014] [Accepted: 12/19/2014] [Indexed: 01/16/2023]
Abstract
Generation of potent antibodies by a mutation-selection process called affinity maturation is a key component of effective immune responses. Antibodies that protect against highly mutable pathogens must neutralize diverse strains. Developing effective immunization strategies to drive their evolution requires understanding how affinity maturation happens in an environment where variants of the same antigen are present. We present an in silico model of affinity maturation driven by antigen variants which reveals that induction of cross-reactive antibodies often occurs with low probability because conflicting selection forces, imposed by different antigen variants, can frustrate affinity maturation. We describe how variables such as temporal pattern of antigen administration influence the outcome of this frustrated evolutionary process. Our calculations predict, and experiments in mice with variant gp120 constructs of the HIV envelope protein confirm, that sequential immunization with antigen variants is preferred over a cocktail for induction of cross-reactive antibodies focused on the shared CD4 binding site epitope.
Collapse
Affiliation(s)
- Shenshen Wang
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jordi Mata-Fink
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Barry Kriegsman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Melissa Hanson
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Darrell J Irvine
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Herman N Eisen
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Dennis R Burton
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - K Dane Wittrup
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Arup K Chakraborty
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139.
| |
Collapse
|
30
|
Eisen HN. Affinity enhancement of antibodies: how low-affinity antibodies produced early in immune responses are followed by high-affinity antibodies later and in memory B-cell responses. Cancer Immunol Res 2014; 2:381-92. [PMID: 24795350 DOI: 10.1158/2326-6066.cir-14-0029] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The antibodies produced initially in response to most antigens are high molecular weight (MW) immunoglobulins (IgM) with low affinity for the antigen, while the antibodies produced later are lower MW classes (e.g., IgG and IgA) with, on average, orders of magnitude higher affinity for that antigen. These changes, often termed affinity maturation, take place largely in small B-cell clusters (germinal center; GC) in lymphoid tissues in which proliferating antigen-stimulated B cells express the highly mutagenic cytidine deaminase that mediates immunoglobulin class-switching and sequence diversification of the immunoglobulin variable domains of antigen-binding receptors on B cells (BCR). Of the large library of BCR-mutated B cells thus rapidly generated, a small minority with affinity-enhancing mutations are selected to survive and differentiate into long-lived antibody-secreting plasma cells and memory B cells. BCRs are also endocytic receptors; they internalize and cleave BCR-bound antigen, yielding peptide-MHC complexes that are recognized by follicular helper T cells. Imperfect correlation between BCR affinity for antigen and cognate T-cell engagement may account for the increasing affinity heterogeneity that accompanies the increasing average affinity of antibodies. Conservation of mechanisms underlying mutation and selection of high-affinity antibodies over the ≈200 million years of evolution separating bird and mammal lineages points to the crucial role of antibody affinity enhancement in adaptive immunity.
Collapse
Affiliation(s)
- Herman N Eisen
- Authors' Affiliations: Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts
| |
Collapse
|
31
|
Gitlin AD, Shulman Z, Nussenzweig MC. Clonal selection in the germinal centre by regulated proliferation and hypermutation. Nature 2014; 509:637-40. [PMID: 24805232 DOI: 10.1038/nature13300] [Citation(s) in RCA: 449] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/01/2014] [Indexed: 01/20/2023]
Abstract
During immune responses, B lymphocytes clonally expand and undergo secondary diversification of their immunoglobulin genes in germinal centres (GCs). High-affinity B cells are expanded through iterative interzonal cycles of division and hypermutation in the GC dark zone followed by migration to the GC light zone, where they are selected on the basis of affinity to return to the dark zone. Here we combine a transgenic strategy to measure cell division and a photoactivatable fluorescent reporter to examine whether the extent of clonal expansion and hypermutation are regulated during interzonal GC cycles. We find that both cell division and hypermutation are directly proportional to the amount of antigen captured and presented by GC B cells to follicular helper T cells in the light zone. Our data explain how GC B cells with the highest affinity for antigen are selectively expanded and diversified.
Collapse
Affiliation(s)
- Alexander D Gitlin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Ziv Shulman
- Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA
| | - Michel C Nussenzweig
- 1] Laboratory of Molecular Immunology, The Rockefeller University, New York, New York 10065, USA [2] Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10065, USA
| |
Collapse
|
32
|
Targeting of somatic hypermutation by immunoglobulin enhancer and enhancer-like sequences. PLoS Biol 2014; 12:e1001831. [PMID: 24691034 PMCID: PMC3972084 DOI: 10.1371/journal.pbio.1001831] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/21/2014] [Indexed: 11/19/2022] Open
Abstract
Immunoglobulin gene enhancers have a conserved function in targeting somatic hypermutation to immunoglobulin genes, thereby supporting the production of high affinity antibodies. Somatic hypermutation (SH) generates point mutations within rearranged immunoglobulin (Ig) genes of activated B cells, providing genetic diversity for the affinity maturation of antibodies. SH requires the activation-induced cytidine deaminase (AID) protein and transcription of the mutation target sequence, but how the Ig gene specificity of mutations is achieved has remained elusive. We show here using a sensitive and carefully controlled assay that the Ig enhancers strongly activate SH in neighboring genes even though their stimulation of transcription is negligible. Mutations in certain E-box, NFκB, MEF2, or Ets family binding sites—known to be important for the transcriptional role of Ig enhancers—impair or abolish the activity. Full activation of SH typically requires a combination of multiple Ig enhancer and enhancer-like elements. The mechanism is evolutionarily conserved, as mammalian Ig lambda and Ig heavy chain intron enhancers efficiently stimulate hypermutation in chicken cells. Our results demonstrate a novel regulatory function for Ig enhancers, indicating that they either recruit AID or alter the accessibility of the nearby transcription units. During the B cell immune response, immunoglobulin (Ig) genes are subject to a unique mutation process known as somatic hypermutation that allows the immune system to generate high-affinity antibodies. Somatic hypermutation preferentially affects Ig genes, relative to other genes, and this is important in preventing catastrophic levels of general genomic mutations that could lead to B cell cancers. We hypothesized that this preferential targeting of somatic hypermutation is assisted by specific DNA sequences in or near Ig genes that focus the action of the mutation machinery on those genes. In this study, we show that Ig genes across species—from human, mouse, and chicken—do indeed contain such mutation targeting sequences and that they coincide with transcriptional regulatory regions known as enhancers. We show that combinations of Ig enhancers cooperate to achieve strong mutation targeting and that this action depends on well-known transcription factor binding sites in these enhancer elements. Our findings establish an evolutionarily conserved function for enhancers in somatic hypermutation targeting, which operates by a mechanism distinct from the conventional enhancer function of increasing levels of transcription. We propose that combinations of Ig enhancers target somatic mutation to Ig genes by recruiting the mutation machinery and/or by making the Ig genes better substrates for mutation.
Collapse
|
33
|
Affinity Maturation of an ERBB2-Targeted SPECT Imaging Peptide by In Vivo Phage Display. Mol Imaging Biol 2014; 16:449-58. [DOI: 10.1007/s11307-014-0724-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
34
|
|
35
|
Uduman M, Shlomchik MJ, Vigneault F, Church GM, Kleinstein SH. Integrating B cell lineage information into statistical tests for detecting selection in Ig sequences. THE JOURNAL OF IMMUNOLOGY 2013; 192:867-74. [PMID: 24376267 DOI: 10.4049/jimmunol.1301551] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Detecting selection in B cell Ig sequences is critical to understanding affinity maturation and can provide insights into Ag-driven selection in normal and pathologic immune responses. The most common sequence-based methods for detecting selection analyze the ratio of replacement and silent mutations using a binomial statistical analysis. However, these approaches have been criticized for low sensitivity. An alternative method is based on the analysis of lineage trees constructed from sets of clonally related Ig sequences. Several tree shape measures have been proposed as indicators of selection that can be statistically compared across cohorts. However, we show that tree shape analysis is confounded by underlying experimental factors that are difficult to control for in practice, including the sequencing depth and number of generations in each clone. Thus, although lineage tree shapes may reflect selection, their analysis alone is an unreliable measure of in vivo selection. To usefully capture the information provided by lineage trees, we propose a new method that applies the binomial statistical framework to mutations identified based on lineage tree structure. This hybrid method is able to detect selection with increased sensitivity in both simulated and experimental data sets. We anticipate that this approach will be especially useful in the analysis of large-scale Ig sequencing data sets generated by high-throughput sequencing technologies.
Collapse
Affiliation(s)
- Mohamed Uduman
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520
| | | | | | | | | |
Collapse
|
36
|
Boulianne B, Rojas OL, Haddad D, Zaheen A, Kapelnikov A, Nguyen T, Li C, Hakem R, Gommerman JL, Martin A. AID and caspase 8 shape the germinal center response through apoptosis. THE JOURNAL OF IMMUNOLOGY 2013; 191:5840-7. [PMID: 24244021 DOI: 10.4049/jimmunol.1301776] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Germinal centers (GCs) are clusters of activated B cells that form in secondary lymphoid organs during a T-dependent immune response. B cells enter GCs and become rapidly proliferating centroblasts that express the enzyme activation-induced deaminase (AID) to undergo somatic hypermutation and class-switch recombination. Centroblasts then mature into centrocytes to undergo clonal selection. Within the GC, the highest affinity B cell clones are selected to mature into memory or plasma cells while lower affinity clones undergo apoptosis. We reported previously that murine Aicda(-/-) GC B cells have enhanced viability and accumulate in GCs. We now show that murine Aicda(-/-) GC B cells accumulate as centrocytes and inefficiently generate plasma cells. The reduced rate of plasma cell formation was not due to an absence of AID-induced DNA lesions. In addition, we show that the deletion of caspase 8 specifically in murine GC-B cells results in larger GCs and a delay in affinity maturation, demonstrating the importance of apoptosis in GC homeostasis and clonal selection.
Collapse
Affiliation(s)
- Bryant Boulianne
- Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Conformational inactivation induces immunogenicity of the receptor-binding pocket of a bacterial adhesin. Proc Natl Acad Sci U S A 2013; 110:19089-94. [PMID: 24191044 DOI: 10.1073/pnas.1314395110] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Inhibiting antibodies targeting receptor-binding pockets in proteins is a major focus in the development of vaccines and in antibody-based therapeutic strategies. Here, by using a common mannose-specific fimbrial adhesin of Escherichia coli, FimH, we demonstrate that locking the adhesin in a low-binding conformation induces the production of binding pocket-specific, adhesion-inhibiting antibodies. A di-sulfide bridge was introduced into the conformationally dynamic FimH lectin domain, away from the mannose-binding pocket but rendering it defective with regard to mannose binding. Unlike the native, functionally active lectin domain, the functionally defective domain was potent in inducing inhibitory monoclonal antibodies that blocked FimH-mediated bacterial adhesion to epithelial cells and urinary bladder infection in mice. Inhibition of adhesion involved direct competition between the antibodies and mannose for the binding pocket. Binding pocket-specific inhibitory antibodies also were abundant in polyclonal immune serum raised against the functionally defective lectin domain. The monoclonal antibodies elicited against the binding-defective protein bound to the high-affinity conformation of the adhesin more avidly than to the low-affinity form. However, both soluble mannose and blood plasma more strongly inhibited antibody recognition of the high-affinity FimH conformation than the low-affinity form. We propose that in the functionally active conformation the binding-pocket epitopes are shielded from targeted antibody development by ligand masking and that strong immunogenicity of the binding pocket is unblocked when the adhesive domain is in the nonbinding conformation.
Collapse
|
38
|
Kim M, Song L, Moon J, Sun ZYJ, Bershteyn A, Hanson M, Cain D, Goka S, Kelsoe G, Wagner G, Irvine D, Reinherz EL. Immunogenicity of membrane-bound HIV-1 gp41 membrane-proximal external region (MPER) segments is dominated by residue accessibility and modulated by stereochemistry. J Biol Chem 2013; 288:31888-901. [PMID: 24047898 DOI: 10.1074/jbc.m113.494609] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural characterization of epitope-paratope pairs has contributed to the understanding of antigenicity. By contrast, few structural studies relate to immunogenicity, the process of antigen-induced immune responses in vivo. Using a lipid-arrayed membrane-proximal external region (MPER) of HIV-1 glycoprotein 41 as a model antigen, we investigated the influence of physicochemical properties on immunogenicity in relation to structural modifications of MPER/liposome vaccines. Anchoring the MPER to the membrane via an alkyl tail or transmembrane domain retained the MPER on liposomes in vivo, while preserving MPER secondary structure. However, structural modifications that affected MPER membrane orientation and antigenic residue accessibility strongly impacted induced antibody responses. The solvent-exposed MPER tryptophan residue (Trp-680) was immunodominant, focusing immune responses, despite sequence variability elsewhere. Nonetheless, immunogenicity could be readily manipulated using site-directed mutagenesis or structural constraints to modulate amino acid surface display. These studies provide fundamental insights for immunogen design aimed at targeting B cell antibody responses.
Collapse
Affiliation(s)
- Mikyung Kim
- From the Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02115
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Liberman G, Benichou J, Tsaban L, Glanville J, Louzoun Y. Multi Step Selection in Ig H Chains is Initially Focused on CDR3 and Then on Other CDR Regions. Front Immunol 2013; 4:274. [PMID: 24062742 PMCID: PMC3775539 DOI: 10.3389/fimmu.2013.00274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 08/28/2013] [Indexed: 11/13/2022] Open
Abstract
AFFINITY MATURATION OCCURS THROUGH TWO SELECTION PROCESSES the choice of appropriate clones (clonal selection), and the internal evolution within clones, induced by somatic hyper-mutations, where high affinity mutants are selected for. When a final population of immunoglobulin sequences is observed, the genetic composition of this population is affected by a combination of these two processes. Different immune induced diseases can result from the failure of regulation of clonal selection or of the regulation of the within clone affinity maturation. In order to understand each of these processes separately, we propose a mixed lineage tree/sequence based method to detect within clone selection as defined by the effect of mutations on the average number of offspring. Specifically, we measure the imbalance in the number of leaves in lineage trees branches following synonymous and non-synonymous (NS) mutations. If a mutation is positively selected, we expect the number of leaves in the sub-tree below this mutation to be larger than in the parallel sub-tree without the mutation. The ratio between the number of leaves in such branches following NS mutations can be used to measure selection within a clone. We apply this method to the sampled Ig repertoire from multiple healthy volunteers and show that within clone selection is positive in the CDR2 region and either positive or negative in the CDR3 and FWR3 regions. Selection occurs already at the IgM isotype level mainly in the DH gene region, with a strong negative selection in the join region. This is followed in the later memory stages in the CDR2 region. We have not studied here the FWR1 and CDR1 regions. An important advantage of this method is that it is very weakly affected by the baseline mutation model or by sampling biases, as are most synonymous to NS mutations ratio based methods.
Collapse
Affiliation(s)
- Gilad Liberman
- Gonda Multidisciplinary Brain Research Center, Bar-Ilan University , Ramat Gan , Israel
| | | | | | | | | |
Collapse
|
40
|
Wang F, Ekiert DC, Ahmad I, Yu W, Zhang Y, Bazirgan O, Torkamani A, Raudsepp T, Mwangi W, Criscitiello MF, Wilson IA, Schultz PG, Smider VV. Reshaping antibody diversity. Cell 2013; 153:1379-93. [PMID: 23746848 DOI: 10.1016/j.cell.2013.04.049] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/15/2013] [Accepted: 04/23/2013] [Indexed: 11/16/2022]
Abstract
Some species mount a robust antibody response despite having limited genome-encoded combinatorial diversity potential. Cows are unusual in having exceptionally long CDR H3 loops and few V regions, but the mechanism for creating diversity is not understood. Deep sequencing reveals that ultralong CDR H3s contain a remarkable complexity of cysteines, suggesting that disulfide-bonded minidomains may arise during repertoire development. Indeed, crystal structures of two cow antibodies reveal that these CDR H3s form a very unusual architecture composed of a β strand "stalk" that supports a structurally diverse, disulfide-bonded "knob" domain. Diversity arises from somatic hypermutation of an ultralong DH with a severe codon bias toward mutation to cysteine. These unusual antibodies can be elicited to recognize defined antigens through the knob domain. Thus, the bovine immune system produces an antibody repertoire composed of ultralong CDR H3s that fold into a diversity of minidomains generated through combinations of somatically generated disulfides.
Collapse
Affiliation(s)
- Feng Wang
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Affiliation(s)
- Klaus Rajewsky
- Program in Cellular and Molecular Medicine, Children's Hospital, and Immune Disease Institute, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
42
|
Immunopaleontology reveals how affinity enhancement is achieved during affinity maturation of antibodies to influenza virus. Proc Natl Acad Sci U S A 2013; 110:7-8. [PMID: 23284164 DOI: 10.1073/pnas.1219396110] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
43
|
Bøgh KL, Nielsen H, Madsen CB, Mills ENC, Rigby N, Eiwegger T, Szépfalusi Z, Roggen EL. IgE epitopes of intact and digested Ara h 1: a comparative study in humans and rats. Mol Immunol 2012; 51:337-46. [PMID: 22555070 DOI: 10.1016/j.molimm.2012.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 04/02/2012] [Accepted: 04/08/2012] [Indexed: 11/26/2022]
Abstract
BACKGROUND Allergen epitope characterization provides valuable information useful for the understanding of proteins as food allergens. It is believed that IgE epitopes in general are conformational, nevertheless, for food allergens known to sensitize through the gastrointestinal tract linear epitopes have been suggested to be of great importance. OBJECTIVE The aim of this study was to identify IgE specific epitopes of intact and digested Ara h 1, and to compare epitope patterns between humans and rats. METHODS Sera from five peanut allergic patients and five Brown Norway rats were used to identify intact and digested Ara h 1-specific IgE epitopes by competitive immunoscreening of a phage-displayed random hepta-mer peptide library using polyclonal IgE from the individual sera. The resulting peptide sequences were mapped on the surface of a three-dimensional structure of the Ara h 1 molecule to mimic epitopes using a computer-based algorithm. RESULTS Patients as well as rats were shown to have individual IgE epitope patterns. All epitope mimics were conformational and found to cluster into three different areas of the Ara h 1 molecule. Five epitope motifs were identified by patient IgE, which by far accounted for most of the eluted peptide sequences. Epitope patterns were rather similar for both intact and digested Ara h 1 as well as for humans and rats. CONCLUSIONS Individual patient specific epitope patterns have been identified for the major allergen Ara h 1. IgE binding epitopes have been suggested as biomarkers for persistency and severity of food allergy, wherefore recognition of particular epitope patterns or motifs could be a valuable tool for prevention, diagnosis, and treatment of food allergy.
Collapse
Affiliation(s)
- K L Bøgh
- National Food Institute, Division of Toxicology and Risk Assessment, Technical University of Denmark, Mørkhøj Bygade 19, Søborg, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Affiliation(s)
- Gabriel D. Victora
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142;
| | - Michel C. Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065
| |
Collapse
|
45
|
De Paschale M, Clerici P. Serological diagnosis of Epstein-Barr virus infection: Problems and solutions. World J Virol 2012; 1:31-43. [PMID: 24175209 PMCID: PMC3782265 DOI: 10.5501/wjv.v1.i1.31] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/19/2011] [Accepted: 10/28/2011] [Indexed: 02/05/2023] Open
Abstract
Serological tests for antibodies specific for Epstein-Barr virus (EBV) antigens are frequently used to define infection status and for the differential diagnosis of other pathogens responsible for mononucleosis syndrome. Using only three parameters [viral capsid antigen (VCA) IgG, VCA IgM and EBV nuclear antigen (EBNA)-1 IgG],it is normally possible to distinguish acute from past infection: the presence of VCA IgM and VCA IgG without EBNA-1 IgG indicates acute infection, whereas the presence of VCA IgG and EBNA-1 IgG without VCA IgM is typical of past infection. However, serological findings may sometimes be difficult to interpret as VCA IgG can be present without VCA IgM or EBNA-1 IgG in cases of acute or past infection, or all the three parameters may be detected simultaneously in the case of recent infection or during the course of reactivation. A profile of isolated EBNA-1 IgG may also create some doubts. In order to interpret these patterns correctly, it is necessary to determine IgG avidity, identify anti-EBV IgG and IgM antibodies by immunoblotting, and look for heterophile antibodies, anti-EA (D) antibodies or viral genome using molecular biology methods. These tests make it possible to define the status of the infection and solve any problems that may arise in routine laboratory practice.
Collapse
Affiliation(s)
- Massimo De Paschale
- Massimo De Paschale, Pierangelo Clerici, Microbiology Unit, Hospital of Legnano, 20025 Legnano (MI), Italy
| | | |
Collapse
|
46
|
Abstract
The immunoglobulin (Ig) genes of B cells are diversified at high rate by point mutations whereas the non-Ig genes of B cells accumulate no or significantly fewer mutations. Ig hypermutations are critical for the affinity maturation of antibodies for most of jawed vertebrates and also contribute to the primary Ig diversity repertoire formation in some species. How the hypermutation activity is specifically targeted to the Ig loci is a long-standing debate. Here we describe a new experimental approach to investigate the locus specificity of Ig hypermutation using the chicken B-cell line DT40. One feature is the use of a green fluorescent protein (GFP) gene as a mutation reporter. Some nucleotide changes produced by somatic hypermutation can cripple the GFP gene which leads to a decrease or loss of the green fluorescence. Therefore such changes can be easily quantified by fluorescence-activated cell sorting (FACS). Another advantage of this approach is the targeted integration of the mutation reporter into a defined chromosomal position. This system allowed us to identify a 10 kb sequence within the Ig light chain (IgL) locus, which is both necessary and sufficient to activate hypermutation in the neighboring reporter gene. We have called this sequence Diversification Activator (DIVAC) and postulated that similar cis-acting sequences exist in the heavy and light chain Ig loci of all jawed vertebrate species. Our experimental system promises further insight into the molecular mechanism of Ig hypermutation. For example, it may be possible to identify smaller functional motifs within DIVAC and address the role of putative transacting binding factors by gene knock-outs.
Collapse
|
47
|
Nishimura M, Murakami A, Hara Y, Azuma T. Characterization of memory B cells responsible for affinity maturation of anti- (4-hydroxy-3-nitrophenyl)acetyl (NP) antibodies. Int Immunol 2011; 23:271-85. [PMID: 21421736 DOI: 10.1093/intimm/dxr002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We searched for memory B cells responsible for high-affinity anti-(4-hydroxy-3-nitrophenyl)acetyl (NP) antibody production by C57BL/6 mice immunized with NP-chicken γ-globulin (CGG), using flow cytometry. We first prepared transfectants expressing B-cell antigen receptor (BCR) of known affinity as a memory B-cell model as well as NP-allophycocyanin (APC) of different NP valences, NP(lo), NP(med) and NP(hi). We then used the latter as probes capable of distinguishing BCR affinities: NP(lo)-APC bound to BCRs with an affinity higher than 3.4 × 10(6) M(-1), while NP(med)-APC bound to those with a higher than germline affinity. B cells capable of binding to NP(lo)-APC appeared in spleens on day 14 post-immunization, and harbored Tyr95 (Tyr95 type) as well as a mutation from Trp33 to Leu. B cells with BCRs harboring Gly95 (Gly95 type) appeared only in the NP(med)-APC-binding fraction on day 56 and in the NP(lo)-APC-binding fraction on day 77, indicating that this long duration was necessary for Gly95 type B cells to acquire high affinity and to become a member of the group of memory B cells with high affinity. Administration of NP-CGG on day 77 caused little change in the proportion of the Gly95 type in NP(lo)-APC-binding B cells in the following 2 weeks but brought about an increase in the number of high-affinity antibody-secreting cells (ASC), suggesting that the memory B-cell compartment established was maintained at a later stage and supplied high-affinity ASCs. The relationship between these Gly95 type memory B cells and ASCs is discussed.
Collapse
Affiliation(s)
- Miyuki Nishimura
- Research Institute for Biological Sciences, Tokyo University of Science, 2669 Yamazaki, Noda, Chiba 278-0022, Japan
| | | | | | | |
Collapse
|
48
|
Zuckerman NS, Hazanov H, Barak M, Edelman H, Hess S, Shcolnik H, Dunn-Walters D, Mehr R. Somatic hypermutation and antigen-driven selection of B cells are altered in autoimmune diseases. J Autoimmun 2010; 35:325-35. [PMID: 20727711 DOI: 10.1016/j.jaut.2010.07.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 07/20/2010] [Accepted: 07/23/2010] [Indexed: 11/19/2022]
Abstract
B cells have been found to play a critical role in the pathogenesis of several autoimmune (AI) diseases. A common feature amongst many AI diseases is the formation of ectopic germinal centers (GC) within the afflicted tissue or organ, in which activated B cells expand and undergo somatic hypermutation (SHM) and antigen-driven selection on their immunoglobulin variable region (IgV) genes. However, it is not yet clear whether these processes occurring in ectopic GCs are identical to those in normal GCs. The analysis of IgV mutations has aided in revealing many aspects concerning B cell expansion, mutation and selection in GC reactions. We have applied several mutation analysis methods, based on lineage tree construction, to a large set of data, containing IgV productive and non-productive heavy and light chain sequences from several different tissues, to examine three of the most profoundly studied AI diseases - Rheumatoid Arthritis (RA), Multiple Sclerosis (MS) and Sjögren's Syndrome (SS). We have found that RA and MS sequences exhibited normal mutation spectra and targeting motifs, but a stricter selection compared to normal controls, which was more apparent in RA. SS sequence analysis results deviated from normal controls in both mutation spectra and indications of selection, also showing differences between light and heavy chain IgV and between different tissues. The differences revealed between AI diseases and normal control mutation patterns may result from the different microenvironmental influences to which ectopic GCs are exposed, relative to those in normal secondary lymphoid tissues.
Collapse
Affiliation(s)
- Neta S Zuckerman
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Zhang J, Shakhnovich EI. Optimality of mutation and selection in germinal centers. PLoS Comput Biol 2010; 6:e1000800. [PMID: 20532164 PMCID: PMC2880589 DOI: 10.1371/journal.pcbi.1000800] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 04/29/2010] [Indexed: 11/18/2022] Open
Abstract
The population dynamics theory of B cells in a typical germinal center could play an important role in revealing how affinity maturation is achieved. However, the existing models encountered some conflicts with experiments. To resolve these conflicts, we present a coarse-grained model to calculate the B cell population development in affinity maturation, which allows a comprehensive analysis of its parameter space to look for optimal values of mutation rate, selection strength, and initial antibody-antigen binding level that maximize the affinity improvement. With these optimized parameters, the model is compatible with the experimental observations such as the ∼100-fold affinity improvements, the number of mutations, the hypermutation rate, and the “all or none” phenomenon. Moreover, we study the reasons behind the optimal parameters. The optimal mutation rate, in agreement with the hypermutation rate in vivo, results from a tradeoff between accumulating enough beneficial mutations and avoiding too many deleterious or lethal mutations. The optimal selection strength evolves as a balance between the need for affinity improvement and the requirement to pass the population bottleneck. These findings point to the conclusion that germinal centers have been optimized by evolution to generate strong affinity antibodies effectively and rapidly. In addition, we study the enhancement of affinity improvement due to B cell migration between germinal centers. These results could enhance our understanding of the functions of germinal centers. The antibodies in our immune system could efficiently improve their abilities in recognizing new antigens. This is done with the help of proliferation, mutation and selection of B cells which carry antibodies, but we have difficulties in developing a quantitative description of this adaptation process which is consistent with the various aspects of experimental observations. Based on the knowledge from experiments, here we present a theoretical model to calculate the numbers of B cells with different antigen recognizing abilities all the time, and look for the best possible design that improves the antigen recognizing ability most efficiently. We find that the best possible design is consistent with the experimental observations, pointing to the conclusion that the immune system has been optimized in evolution. We then study the trade-offs leading to the optimization of the design. The results will not only improve our understanding of the functions in immune system, but also reveal the design principles behind the details. In addition, the study enhances our understanding of the population dynamics in evolution.
Collapse
Affiliation(s)
- Jingshan Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
| | - Eugene I. Shakhnovich
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
50
|
Anderson SM, Khalil A, Uduman M, Hershberg U, Louzoun Y, Haberman AM, Kleinstein SH, Shlomchik MJ. Taking advantage: high-affinity B cells in the germinal center have lower death rates, but similar rates of division, compared to low-affinity cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 183:7314-25. [PMID: 19917681 PMCID: PMC4106706 DOI: 10.4049/jimmunol.0902452] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
B lymphocytes producing high-affinity Abs are critical for protection from extracellular pathogens, such as bacteria and parasites. The process by which high-affinity B cells are selected during the immune response has never been elucidated. Although it has been shown that high-affinity cells directly outcompete low-affinity cells in the germinal center (GC), whether there are also intrinsic differences between these cells has not been addressed. It could be that higher affinity cells proliferate more rapidly or are more likely to enter cell cycle, thereby outgrowing lower affinity cells. Alternatively, higher affinity cells could be relatively more resistant to cell death in the GC. By comparing high- and low-affinity B cells for the same Ag, we show here that low-affinity cells have an intrinsically higher death rate than do cells of higher affinity, even in the absence of competition. This suggests that selection in the GC reaction is due at least in part to the control of survival of higher affinity B cells and not by a proliferative advantage conferred upon these cells compared with lower affinity B cells. Control over survival rather than proliferation of low- and high-affinity B cells in the GC allows greater diversity not only in the primary response but also in the memory response.
Collapse
Affiliation(s)
- Shannon M Anderson
- Departments of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|