1
|
Purcell O, Cao J, Müller IE, Chen YC, Lu TK. Artificial Repeat-Structured siRNA Precursors as Tunable Regulators for Saccharomyces cerevisiae. ACS Synth Biol 2018; 7:2403-2412. [PMID: 30176724 DOI: 10.1021/acssynbio.8b00185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
RNA interference (RNAi) is widely used as a research tool for studying biological systems and implementing artificial genetic circuits that function by modulating RNA concentrations. Here we engineered Saccharomyces cerevisiae containing a heterologous Saccharomyces castelli RNAi system as a test-bed for RNAi-based circuits. Unlike prior approaches, we describe a strategy that leverages repeat-structured siRNA precursors with incrementally sized stems formed from 23 bp-repeats to achieve modular RNAi-based gene regulation. These enable repression strength to be tuned in a systematic manner by changing the size of the siRNA precursor hairpin stem, without modifying the number or sequence of target sites in the target RNA. We demonstrate that this hairpin-based regulation is able to target both cytoplasmic and nuclear localized RNAs and is stable over extended growth periods. This platform enables the targeting of cellular RNAs as a tunable regulatory layer for sophisticated gene circuits in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Oliver Purcell
- Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jicong Cao
- Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Isaak E. Müller
- Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Microbiology Program, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ying-Chou Chen
- Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Timothy K. Lu
- Synthetic Biology Center, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Freddolino L, Yang J, Momen-Roknabadi A, Tavazoie S. Stochastic tuning of gene expression enables cellular adaptation in the absence of pre-existing regulatory circuitry. eLife 2018; 7:e31867. [PMID: 29620524 PMCID: PMC5919758 DOI: 10.7554/elife.31867] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022] Open
Abstract
Cells adapt to familiar changes in their environment by activating predefined regulatory programs that establish adaptive gene expression states. These hard-wired pathways, however, may be inadequate for adaptation to environments never encountered before. Here, we reveal evidence for an alternative mode of gene regulation that enables adaptation to adverse conditions without relying on external sensory information or genetically predetermined cis-regulation. Instead, individual genes achieve optimal expression levels through a stochastic search for improved fitness. By focusing on improving the overall health of the cell, the proposed stochastic tuning mechanism discovers global gene expression states that are fundamentally new and yet optimized for novel environments. We provide experimental evidence for stochastic tuning in the adaptation of Saccharomyces cerevisiae to laboratory-engineered environments that are foreign to its native gene-regulatory network. Stochastic tuning operates locally at individual gene promoters, and its efficacy is modulated by perturbations to chromatin modification machinery.
Collapse
Affiliation(s)
- Lydia Freddolino
- Department of Systems BiologyColumbia UniversityNew York CityUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew York CityUnited States
| | - Jamie Yang
- Department of Systems BiologyColumbia UniversityNew York CityUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew York CityUnited States
| | - Amir Momen-Roknabadi
- Department of Systems BiologyColumbia UniversityNew York CityUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew York CityUnited States
| | - Saeed Tavazoie
- Department of Systems BiologyColumbia UniversityNew York CityUnited States
- Department of Biochemistry and Molecular BiophysicsColumbia UniversityNew York CityUnited States
| |
Collapse
|
3
|
Lebo KJ, Niederer RO, Zappulla DC. A second essential function of the Est1-binding arm of yeast telomerase RNA. RNA (NEW YORK, N.Y.) 2015; 21:862-876. [PMID: 25737580 PMCID: PMC4408794 DOI: 10.1261/rna.049379.114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 12/29/2014] [Indexed: 06/04/2023]
Abstract
The enzymatic ribonucleoprotein telomerase maintains telomeres in many eukaryotes, including humans, and plays a central role in aging and cancer. Saccharomyces cerevisiae telomerase RNA, TLC1, is a flexible scaffold that tethers telomerase holoenzyme protein subunits to the complex. Here we test the hypothesis that a lengthy conserved region of the Est1-binding TLC1 arm contributes more than simply Est1-binding function. We separated Est1 binding from potential other functions by tethering TLC1 to Est1 via a heterologous RNA-protein binding module. We find that Est1-tethering rescues in vivo function of telomerase RNA alleles missing nucleotides specifically required for Est1 binding, but not those missing the entire conserved region. Notably, however, telomerase function is restored for this condition by expressing the arm of TLC1 in trans. Mutational analysis shows that the Second Essential Est1-arm Domain (SEED) maps to an internal loop of the arm, which SHAPE chemical mapping and 3D modeling suggest could be regulated by conformational change. Finally, we find that the SEED has an essential, Est1-independent role in telomerase function after telomerase recruitment to the telomere. The SEED may be required for establishing telomere extendibility or promoting telomerase RNP holoenzyme activity.
Collapse
Affiliation(s)
- Kevin J Lebo
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | - Rachel O Niederer
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| | - David C Zappulla
- Department of Biology, Johns Hopkins University, Baltimore, Maryland 21218-2685, USA
| |
Collapse
|
4
|
Franck E, Hulsen T, Huynen MA, de Jong WW, Lubsen NH, Madsen O. Evolution of closely linked gene pairs in vertebrate genomes. Mol Biol Evol 2008; 25:1909-1921. [PMID: 18566020 DOI: 10.1093/molbev/msn136] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The orientation of closely linked genes in mammalian genomes is not random: there are more head-to-head (h2h) gene pairs than expected. To understand the origin of this enrichment in h2h gene pairs, we have analyzed the phylogenetic distribution of gene pairs separated by less than 600 bp of intergenic DNA (gene duos). We show here that a lack of head-to-tail (h2t) gene duos is an even more distinctive characteristic of mammalian genomes, with the platypus genome as the only exception. In nonmammalian vertebrate and in nonvertebrate genomes, the frequency of h2h, h2t, and tail-to-tail (t2t) gene duos is close to random. In tetrapod genomes, the h2t and t2t gene duos are more likely to be part of a larger gene cluster of closely spaced genes than h2h gene duos; in fish and urochordate genomes, the reverse is seen. In human and mouse tissues, the expression profiles of gene duos were skewed toward positive coexpression, irrespective of orientation. The organization of orthologs of both members of about 40% of the human gene duos could be traced in other species, enabling a prediction of the organization at the branch points of gnathostomes, tetrapods, amniotes, and euarchontoglires. The accumulation of h2h gene duos started in tetrapods, whereas that of h2t and t2t gene duos only started in amniotes. The apparent lack of evolutionary conservation of h2t and t2t gene duos relative to that of h2h gene duos is thus a result of their relatively late origin in the lineage leading to mammals; we show that once they are formed h2t and t2t gene duos are as stable as h2h gene duos.
Collapse
Affiliation(s)
- Erik Franck
- Biomolecular Chemistry, 271 Nijmegen Center of Molecular Life Science, Radboud University Nijmegen, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
5
|
Steinmetz EJ, Warren CL, Kuehner JN, Panbehi B, Ansari AZ, Brow DA. Genome-wide distribution of yeast RNA polymerase II and its control by Sen1 helicase. Mol Cell 2007; 24:735-746. [PMID: 17157256 DOI: 10.1016/j.molcel.2006.10.023] [Citation(s) in RCA: 252] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 08/12/2006] [Accepted: 10/13/2006] [Indexed: 11/17/2022]
Abstract
Functional engagement of RNA polymerase II (Pol II) with eukaryotic chromosomes is a fundamental and highly regulated biological process. Here we present a high-resolution map of Pol II occupancy across the entire yeast genome. We compared a wild-type strain with a strain bearing a substitution in the Sen1 helicase, which is a Pol II termination factor for noncoding RNA genes. The wild-type pattern of Pol II distribution provides unexpected insights into the mechanisms by which genes are repressed or silenced. Remarkably, a single amino acid substitution that compromises Sen1 function causes profound changes in Pol II distribution over both noncoding and protein-coding genes, establishing an important function of Sen1 in the regulation of transcription. Given the strong similarity of the yeast and human Sen1 proteins, our results suggest that progressive neurological disorders caused by substitutions in the human Sen1 homolog Senataxin may be due to misregulation of transcription.
Collapse
Affiliation(s)
- Eric J Steinmetz
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706
| | - Christopher L Warren
- Department of Biochemistry, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706
| | - Jason N Kuehner
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706
| | - Bahman Panbehi
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706
| | - Aseem Z Ansari
- Department of Biochemistry, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706; The Genome Center, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706
| | - David A Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, 1300 University Avenue, Madison, Wisconsin 53706.
| |
Collapse
|
6
|
López de Saro FJ, Georgescu RE, Goodman MF, O'Donnell M. Competitive processivity-clamp usage by DNA polymerases during DNA replication and repair. EMBO J 2004; 22:6408-18. [PMID: 14633999 PMCID: PMC291844 DOI: 10.1093/emboj/cdg603] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Protein clamps are ubiquitous and essential components of DNA metabolic machineries, where they serve as mobile platforms that interact with a large variety of proteins. In this report we identify residues that are required for binding of the beta-clamp to DNA polymerase III of Escherichia coli, a polymerase of the Pol C family. We show that the alpha polymerase subunit of DNA polymerase III interacts with the beta-clamp via its extreme seven C-terminal residues, some of which are conserved. Moreover, interaction of Pol III with the clamp takes place at the same site as that of the delta-subunit of the clamp loader, providing the basis for a switch between the clamp loading machinery and the polymerase itself. Escherichia coli DNA polymerases I, II, IV and V (UmuC) interact with beta at the same site. Given the limited amounts of clamps in the cell, these results suggest that clamp binding may be competitive and regulated, and that the different polymerases may use the same clamp sequentially during replication and repair.
Collapse
Affiliation(s)
- Francisco J López de Saro
- Howard Hughes Medical Institute, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA
| | | | | | | |
Collapse
|
7
|
Steinmetz EJ, Brow DA. Ssu72 protein mediates both poly(A)-coupled and poly(A)-independent termination of RNA polymerase II transcription. Mol Cell Biol 2003; 23:6339-49. [PMID: 12944462 PMCID: PMC193702 DOI: 10.1128/mcb.23.18.6339-6349.2003] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2003] [Revised: 05/06/2003] [Accepted: 06/04/2003] [Indexed: 11/20/2022] Open
Abstract
Termination of transcription by RNA polymerase II (Pol II) is a poorly understood yet essential step in eukaryotic gene expression. Termination of pre-mRNA synthesis is coupled to recognition of RNA signals that direct cleavage and polyadenylation of the nascent transcript. Termination of nonpolyadenylated transcripts made by Pol II in the yeast Saccharomyces cerevisiae, including the small nuclear and small nucleolar RNAs, requires distinct RNA elements recognized by the Nrd1 protein and other factors. We have used genetic selection to characterize the terminator of the SNR13 snoRNA gene, revealing a bipartite structure consisting of an upstream element closely matching a Nrd1-binding sequence and a downstream element similar to a cleavage/polyadenylation signal. Genome-wide selection for factors influencing recogniton of the SNR13 terminator yielded mutations in the gene coding for the essential Pol II-binding protein Ssu72. Ssu72 has recently been found to associate with the pre-mRNA cleavage/polyadenylation machinery, and we find that an ssu72 mutation that disrupts Nrd1-dependent termination also results in deficient poly(A)-dependent termination. These findings extend the parallels between the two termination pathways and suggest that they share a common mechanism to signal Pol II termination.
Collapse
Affiliation(s)
- Eric J Steinmetz
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, 1300 University Avenue, Madison, WI 53706-1532, USA
| | | |
Collapse
|
8
|
Nedea E, He X, Kim M, Pootoolal J, Zhong G, Canadien V, Hughes T, Buratowski S, Moore CL, Greenblatt J. Organization and function of APT, a subcomplex of the yeast cleavage and polyadenylation factor involved in the formation of mRNA and small nucleolar RNA 3'-ends. J Biol Chem 2003; 278:33000-10. [PMID: 12819204 DOI: 10.1074/jbc.m304454200] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Messenger RNA 3'-end formation is functionally coupled to transcription by RNA polymerase II. By tagging and purifying Ref2, a non-essential protein previously implicated in mRNA cleavage and termination, we isolated a multiprotein complex, holo-CPF, containing the yeast cleavage and polyadenylation factor (CPF) and six additional polypeptides. The latter can form a distinct complex, APT, in which Pti1, Swd2, a type I protein phosphatase (Glc7), Ssu72 (a TFIIB and RNA polymerase II-associated factor), Ref2, and Syc1 are associated with the Pta1 subunit of CPF. Systematic tagging and purification of holo-CPF subunits revealed that yeast extracts contain similar amounts of CPF and holo-CPF. By purifying holo-CPF from strains lacking Ref2 or containing truncated subunits, subcomplexes were isolated that revealed additional aspects of the architecture of APT and holo-CPF. Chromatin immunoprecipitation was used to localize Ref2, Ssu72, Pta1, and other APT subunits on small nucleolar RNA (snoRNA) genes and primarily near the polyadenylation signals of the constitutively expressed PYK1 and PMA1 genes. Use of mutant components of APT revealed that Ssu72 is important for preventing readthrough-dependent expression of downstream genes for both snoRNAs and polyadenylated transcripts. Ref2 and Pta1 similarly affect at least one snoRNA transcript.
Collapse
Affiliation(s)
- Eduard Nedea
- Banting and Best Department of Medical Research and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cardoza RE, Gutiérrez S, Ortega N, Colina A, Casqueiro J, Martín JF. Expression of a synthetic copy of the bovine chymosin gene in Aspergillus awamori from constitutive and pH-regulated promoters and secretion using two different pre-pro sequences. Biotechnol Bioeng 2003; 83:249-59. [PMID: 12783481 DOI: 10.1002/bit.10666] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A copy of the bovine chymosin gene (chy) with a codon usage optimized for its expression in Aspergillus awamori was constructed starting from synthetic oligonucleotides. To study the ability of this filamentous fungus to secrete bovine prochymosin, two plasmids were constructed in which the transcriptional, translational, and secretory control regions of the A. nidulans gpdA gene and pepB genes were coupled to either preprochymosin or prochymosin genes. Secretion of a protein enzymatically and immunologically indistinguishable from bovine chymosin was achieved in A. awamori transformants with each of these constructions. In all cases, the primary translation product (40.5 kDa) was self-processed to a mature chymosin polypeptide having a molecular weight of 35.6 kDa. Immunological assays indicated that most of the chymosin was secreted to the extracellular medium. Hybridization analysis of genomic DNA from chymosin transformants showed chromosomal integration of prochymosin sequences and, in some transformants, multiple copies of the expression cassettes were observed. Expression from the gpdA promoter was constitutive, whereas expression from the pepB promoter was strongly influenced by pH. A very high expression from the pepB promoter was observed during the growth phase. The A. awamori pepB gene terminator was more favorable for chymosin production than the S. cerevisiae CYC1 terminator.
Collapse
Affiliation(s)
- R E Cardoza
- Institute of Biotechnology of León (INBIOTEC), Science Park of León, León, Spain
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
The molecular connections between mRNA 3' end processing and transcriptional termination have been investigated in S. pombe using a genetic screen. By this approach, we have identified a RNAP II termination domain in the well-defined cleavage polyadenylation factor called CstF-64 in metazoans and Rna15p in S. cerevisiae. Furthermore, this C-terminal domain interacts with Res2, previously identified as a component of the G1/S transition-specific transcription factor MBF. Deletion of res2 in both fission and budding yeast results in a defect in 3' end formation. This raises the possibility that RNAP II transcriptional termination may in some situations be integrated with cell cycle events.
Collapse
Affiliation(s)
- A Aranda
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
11
|
Magrath C, Hyman LE. A mutation in GRS1, a glycyl-tRNA synthetase, affects 3'-end formation in Saccharomyces cerevisiae. Genetics 1999; 152:129-41. [PMID: 10224248 PMCID: PMC1460614 DOI: 10.1093/genetics/152.1.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
3'-end formation is a complex and incompletely understood process involving both cis-acting and trans-acting factors. As part of an effort to examine the mechanisms of transcription termination by RNA polymerase II, a mutant hunt for strains defective in 3'-end formation was conducted. Following random mutagenesis, a temperature-sensitive strain exhibiting several phenotypes consistent with a role in transcription termination was isolated. First, readthrough of a terminator increases significantly in the mutant strain. Accordingly, RNA analysis indicates a decrease in the level of terminated transcripts, both in vivo and in vitro. Moreover, a plasmid stability assay in which high levels of readthrough lead to high levels of plasmid loss and transcription run-on analysis also demonstrate defective termination of transcription. Examination of polyadenylation and cleavage by the mutant strain indicates these processes are not affected. These results represent the first example of a transcription termination factor in Saccharomyces cerevisiae that affects transcription termination independent of 3'-end processing of mRNA. Complementation studies identified GRS1, an aminoacyl-tRNA synthetase, as the complementing gene. Sequence analysis of grs1-1 in the mutant strain revealed that nucleotides 1656 and 1657 were both C to T transitions, resulting in a single amino acid change of proline to phenylalanine. Further studies revealed GRS1 is essential, and the grs1-1 allele confers the temperature-sensitive growth defect associated with the mutant strain. Finally, we observed structures with some similarity to tRNA molecules within the 3'-end of various yeast genes. On the basis of our results, we suggest Grs1p is a transcription termination factor that may interact with the 3'-end of pre-mRNA to promote 3'-end formation.
Collapse
Affiliation(s)
- C Magrath
- Interdisciplinary Program in Molecular and Cellular Biology, Tulane University, New Orleans, Louisiana 70112, USA
| | | |
Collapse
|
12
|
Abstract
Downstream elements (DSEs) with transcriptional pausing activity play an important role in transcription termination of RNA polymerase II. We have defined two such DSEs in Schizosaccharomyces pombe, one for the ura4 gene and a new one in the 3'-end region of the nmt2 gene. Although these DSEs do not have sequence homology, both are orientation specific and are composed of multiple and redundant sequence elements that work together to achieve full pausing activity. Previous studies on the nmt1 and nmt2 genes revealed that transcription extends several kilobases past the genes' poly(A) sites. We show that the insertion of either DSE immediately downstream of the nmt1 poly(A) site induces more immediate termination. nmt2 termination efficiency can be increased by moving the DSE closer to the poly(A) site. These results suggest that DSEs may be a common feature in yeast genes.
Collapse
Affiliation(s)
- A Aranda
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | |
Collapse
|
13
|
Hani J, Schelbert B, Bernhardt A, Domdey H, Fischer G, Wiebauer K, Rahfeld JU. Mutations in a peptidylprolyl-cis/trans-isomerase gene lead to a defect in 3'-end formation of a pre-mRNA in Saccharomyces cerevisiae. J Biol Chem 1999; 274:108-16. [PMID: 9867817 DOI: 10.1074/jbc.274.1.108] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In a genetic screen aimed at the identification of trans-acting factors involved in mRNA 3'-end processing of budding yeast, we have previously isolated two temperature-sensitive mutants with an apparent defect in the 3'-end formation of a plasmid-derived pre-mRNA. Surprisingly, both mutants were rescued by the essential gene ESS1/PTF1 that encoded a putative peptidylprolyl-cis/trans-isomerase (PPIase) (Hani, J., Stumpf, G., and Domdey, H. (1995) FEBS Lett. 365, 198-202). Such enzymes, which catalyze the cis/trans-interconversion of peptide bonds N-terminal of prolines, are suggested to play a role in protein folding or trafficking. Here we report that Ptf1p shows PPIase activity in vitro, displaying an unusual substrate specificity for peptides with phosphorylated serine and threonine residues preceding proline. Both mutations were found to result in amino acid substitutions of highly conserved residues within the PPIase domain, causing a marked decrease in PPIase activity of the mutant enzymes. Our results are suggestive of a so far unknown involvement of a PPIase in mRNA 3'-end formation in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- J Hani
- Genzentrum der Ludwig-Maximilians-Universität München, Feodor-Lynen Strasse 25, 81377 München, Germany
| | | | | | | | | | | | | |
Collapse
|
14
|
Gerads M, Ernst JF. Overlapping coding regions and trancriptional units of two essential chromosomal genes (CCT8, TRP1)in the fungal pathogen Candida albicans. Nucleic Acids Res 1998; 26:5061-6. [PMID: 9801300 PMCID: PMC147973 DOI: 10.1093/nar/26.22.5061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sequencing of the 3'-untranslated region of the CCT8 gene of the fungal pathogen Candida albicans revealed that the CCT8 coding region overlaps 13 bp with the coding region of the convergently orientated TRP1 gene. The same overlap was found in three strains with different genetic backgrounds. 3'-RACE was used to determine that the CCT8 and TRP1 transcripts extended significantly into the coding region of the adjacent gene, which also contained sequences encoding the poly(A) addition site. A strain retaining one wild-type CCT8/TRP1 locus on one chromosome and a deletion on the other homologous chromosome contained both CCT8 and TRP1 transcripts; this result indicates that both transcripts are synthesized from the same gene locus. The CCT8/TRP1 gene pair of C . albicans constitutes an extreme natural case of transcriptional overlap in a eukaryote. The results confirm that convergent overlapping transcription units are compatible with expression of the overlapping genes.
Collapse
Affiliation(s)
- M Gerads
- Institut für Mikrobiologie and Biologisch-Medizinisches Forschungszentrum, Heinrich-Heine-Universität, Universitätsstrasse 1/26.12, D-40225 Düsseldorf, Germany
| | | |
Collapse
|
15
|
Aranda A, Pérez-Ortín JE, Moore C, del Olmo M. The yeast FBP1 poly(A) signal functions in both orientations and overlaps with a gene promoter. Nucleic Acids Res 1998; 26:4588-96. [PMID: 9753725 PMCID: PMC147910 DOI: 10.1093/nar/26.20.4588] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This report provides an analysis of a region of chromosome XII in which the FBP1 and YLR376c genes transcribe in the same direction. Our investigation indicates that the Saccharomyces cerevisiae FBP1 gene contains strong signals for polyadenylation and transcription termination in both orientations in vivo . A (TA)14 element plays a major role in directing polyadenylation in both orientations. While this region has four nonoverlapping copies of a TATATA hexanucleotide, which is a very potent polyadenylation efficiency element in yeast, it alone is not sufficient for full activation in the reverse orientation of a cluster of downstream poly(A) sites, and an additional upstream sequence is required. The putative RNA hairpin formed from the (TA)14 element is not involved in 3'-end formation. Surprisingly, deletion of the entire (TA)14 stretch affects transcription termination in the reverse orientation, in contrast to our previous results with the forward orientation, indicating that the transcription termination element operating in the reverse orientation has very different sequence requirements. Promoter elements for the YLR376c gene overlap with the signal for FBP1 3'-end formation. To our knowledge, this is the first time that overlapping of both types of regulatory signals has been found in two adjacent yeast genes.
Collapse
Affiliation(s)
- A Aranda
- Departament de Bioquímica i Biologia Molecular, Facultats de Ciències, Universitat de València, andDepartamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Apartado 73,-46100 Burjassot, Spain
| | | | | | | |
Collapse
|
16
|
Greger IH, Proudfoot NJ. Poly(A) signals control both transcriptional termination and initiation between the tandem GAL10 and GAL7 genes of Saccharomyces cerevisiae. EMBO J 1998; 17:4771-9. [PMID: 9707436 PMCID: PMC1170806 DOI: 10.1093/emboj/17.16.4771] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have investigated transcriptional interactions between the GAL10 and GAL7 genes of Saccharomyces cerevisiae. Both genes are part of the galactose (GAL) gene cluster which is transcriptionally activated to high levels in the presence of galactose. Since GAL7 is positioned downstream of GAL10 and both genes are expressed co-ordinately at high levels, the possibility that GAL10 transcription influences GAL7 was analysed. Using transcriptional run-on assays, we show that high levels of polymerase are found in the 600 bp GAL10-7 intergenic region that accumulate over the GAL7 promoter. Furthermore, GAL7 transcription is enhanced when the GAL10 upstream activating sequence (UASG) is deleted, indicating that interference between GAL10 and GAL7 is likely to occur in the chromosomal locus. Deletions in the GAL10 poly(A) signal result in complete inactivation of the GAL7 promoter and cause a dramatic increase in bi-cistronic GAL10-7 mRNA, predominantly utilizing the downstream, GAL7 poly(A) site. These data demonstrate a pivotal role for the GAL10 poly(A) site in allowing the simultaneous expression of GAL10 and GAL7. In effect, this RNA processing signal has a direct influence on both transcriptional termination and initiation.
Collapse
Affiliation(s)
- I H Greger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | | |
Collapse
|
17
|
Hansen K, Birse CE, Proudfoot NJ. Nascent transcription from the nmt1 and nmt2 genes of Schizosaccharomyces pombe overlaps neighbouring genes. EMBO J 1998; 17:3066-77. [PMID: 9606189 PMCID: PMC1170646 DOI: 10.1093/emboj/17.11.3066] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have determined the extent of the primary transcription unit for the two highly expressed genes nmt1 and nmt2 of Schizosaccharomyces pombe. Transcription run-on analysis in permeabilized yeast cells was employed to map polymerase density across the 3'-flanking region of these two genes. Surprisingly, polymerases were detected 4.3 kb beyond the nmt1 polyadenylation [poly(A)] site and 2.4 kb beyond the nmt2 poly(A) site, which in each case have transcribed through an entire convergent downstream transcription unit. However, the steady-state levels of both downstream genes were unaffected by the high level of nmt1 or nmt2 nascent transcription. Analysis of nmt1 and nmt2 RNA 3' end formation signals indicates that efficient termination of transcription requires not only a poly(A) signal but also additional pause elements. The absence of such pause elements close to the poly(A) sites of these genes may account for their extended nascent transcripts.
Collapse
Affiliation(s)
- K Hansen
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | | | | |
Collapse
|
18
|
Aranda A, Pérez-Ortín JE, Moore C, del Olmo ML. Transcription termination downstream of the Saccharomyces cerevisiae FBP1 [changed from FPB1] poly(A) site does not depend on efficient 3'end processing. RNA (NEW YORK, N.Y.) 1998; 4:303-318. [PMID: 9510332 PMCID: PMC1369619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Efficient transcription termination downstream of poly(A) sites has been shown to correlate with the strength of an upstream polyadenylation signal and the presence of a polymerase pause site. To further investigate the mechanism linking termination with 3'-end processing, we analyzed the cis-acting elements that contribute to these events in the Saccharomyces cerevisiae FBP1 gene. FBP1 has a complex polyadenylation signal, and at least three efficiency elements must be present for efficient processing. However, not all combinations of these elements are equally effective. This gene also shows a novel organization of sequence elements. A strong positioning element is located upstream, rather than downstream, of the efficiency elements, and functions to select the cleavage site in vitro and in vivo. Transcription run-on analysis indicated that termination occurs within 61 nt past the poly(A) site. Deletion of two UAUAUA-type efficiency elements greatly reduces polyadenylation in vivo and in vitro, but transcription termination is still efficient, implying that FBP1 termination signals may be distinct from those for polyadenylation. Alternatively, assembly of a partial, but nonfunctional, polyadenylation complex on the nascent transcript may be sufficient to cause termination.
Collapse
Affiliation(s)
- A Aranda
- Departament de Bioquímica i Biologia Molecular, Facultats de Ciències, Universitat de València, Spain
| | | | | | | |
Collapse
|
19
|
Børsting C, Hummel R, Schultz ER, Rose TM, Pedersen MB, Knudsen J, Kristiansen K. Saccharomyces carlsbergensis contains two functional genes encoding the acyl-CoA binding protein, one similar to the ACB1 gene from S. cerevisiae and one identical to the ACB1 gene from S. monacensis. Yeast 1997; 13:1409-21. [PMID: 9434347 DOI: 10.1002/(sici)1097-0061(199712)13:15<1409::aid-yea188>3.0.co;2-a] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Saccharomyces carlsbergensis is an amphiploid, and it has previously been suggested that the genomes of S. carlsbergensis originate from S. cerevisiae and S. monacensis. We have cloned the ACB1 genes encoding the acyl-CoA binding protein (ACBP) from S. carlsbergensis, S. cerevisiae and S. monacensis. Two genes were found in S. carlsbergensis and named ACB1 type 1 and type 2, respectively. The type 1 gene is identical to the S. cerevisiae ACB1 gene except for three substitutions, one single base pair deletion and one double base pair insertion, all located in the promoter region. The type 2 gene is completely identical to the S. monacensis ACB1 gene. These findings substantiate the notion that S. carlsbergensis is a hybrid between S. cerevisiae and S. monacensis. Both ACB1 type 1 and type 2 are actively transcribed in S. carlsbergensis and transcription is initiated at sites identical to those used for transcriptional initiation of the ACB1 genes in S. cerevisiae and S. monacensis, respectively. Two polyadenylation sites, spaced 225 bp apart, are present in the S. cerevisiae ACB1 gene. The upstream polyadenylation site is used exclusively during exponential growth, whereas both sites are utilized during later stages of growth.
Collapse
Affiliation(s)
- C Børsting
- Department of Molecular Biology, Odense University, Denmark.
| | | | | | | | | | | | | |
Collapse
|
20
|
Affiliation(s)
- E J Steinmetz
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706-1532, USA
| |
Collapse
|
21
|
Abstract
We address here the question of the in vivo structure of a natural alternating d(TA)n sequence found at the 3' region of the Saccharomyces cerevisiae FBP1 gene. This sequence consists of 13 TA pairs interrupted by a TT dinucleotide in the middle of the tract. Previous experiments with cruciform-specific nucleases S1 and Endonuclease VII demonstrated the presence in vitro of a cruciform in this region. We also showed this region to be part of a nuclease hypersensitive site flanked by nucleosomes in yeast chromatin. Here we demonstrate, by means of S1 in vivo footprinting, that in yeast plasmids also adopts in vivo a non B-DNA structure where is not a cruciform. A theoretical analysis of this region that it contains a site susceptible to superhelical stress duplex destabilization. The locations and conditions under which alternative structures form in the wild-type sequence and in deletion mutants agree with these theoretical predictions, suggesting that some kind of denaturation is the alternative structure adopted by the sequence in vivo. This suggests that negative superhelical stress sufficient for local denaturation exists in nucleosomal DNA. We also demonstrate by micrococcal nuclease digestions that the deletion of the alternating d(TA)n sequence modifies the chromatin hypersensitive site but does not affect nucleosome positioning.
Collapse
Affiliation(s)
- A Aranda
- Departamento de Bioquímica y Biología Molecular, Universitat de València and Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Burjassot, Spain
| | | | | | | |
Collapse
|
22
|
Steinmetz EJ, Brow DA. Repression of gene expression by an exogenous sequence element acting in concert with a heterogeneous nuclear ribonucleoprotein-like protein, Nrd1, and the putative helicase Sen1. Mol Cell Biol 1996; 16:6993-7003. [PMID: 8943355 PMCID: PMC231703 DOI: 10.1128/mcb.16.12.6993] [Citation(s) in RCA: 113] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have fortuitously identified a nucleotide sequence that decreases expression of a reporter gene in the yeast Saccharomyces cerevisiae 20-fold when inserted into an intron. The primary effect of the insertion is a decrease in pre-mRNA abundance accompanied by the appearance of 3'-truncated transcripts, consistent with premature transcriptional termination and/or pre-mRNA degradation. Point mutations in the cis element relieve the negative effect, demonstrating its sequence specificity. A novel yeast protein, named Nrd1, and a previously identified putative helicase, Sen1, help mediate the negative effect of the cis element. Sen1 is an essential nuclear protein that has been implicated in a variety of nuclear functions. Nrd1 has hallmarks of a heterogeneous nuclear ribonucleoprotein, including an RNA recognition motif, a region rich in RE and RS dipeptides, and a proline- and glutamine-rich domain. An N-terminal domain of Nrd1 may facilitate direct interaction with RNA polymerase II. Disruption of the NRD1 gene is lethal, yet C-terminal truncations that delete the RNA recognition motif and abrogate the negative effect of the cis element nevertheless support cell growth. Thus, expression of a gene containing the cis element could be regulated through modulation of the activity of Nrd1. The recent identification of Nrd1-related proteins in mammalian cells suggests that this potential regulatory pathway is widespread among eukaryotes.
Collapse
Affiliation(s)
- E J Steinmetz
- Department of Biomolecular Chemistry, University of Wisconsin Medical School, Madison 53706-1532, USA
| | | |
Collapse
|
23
|
Ferbeyre G, Bratty J, Chen H, Cedergren R. Cell cycle arrest promotes trans-hammerhead ribozyme action in yeast. J Biol Chem 1996; 271:19318-23. [PMID: 8702616 DOI: 10.1074/jbc.271.32.19318] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A hammerhead ribozyme designed to cleave the yeast ADE1 mRNA has been expressed in yeast under the control of a galactose-inducible promoter. RNA prepared from the galactose-induced yeast cultures possesses an activity that cleaves ADE1 mRNA in vitro. However, in spite of high expression levels of the ribozyme, no cleavage activity could be demonstrated in vivo. On the other hand, when the yeast cells expressing hammerhead RNA were treated with the alpha-factor mating pheromone, the level of ADE1 mRNA was reduced by 50%. Similar reductions were observed when this strain was cultured in the presence of lithium acetate or in nitrogen-free medium. Moreover, control experiments in which disabled hammerhead genes were expressed showed no such reductions. Extension of the length of the flanking recognition arms of the ribozyme from a total of 10 to 16 or 24 nucleotides diminished the inhibitory effect of the ribozyme. These data suggest that ribozymes are able to cleave a trans-RNA target in yeast.
Collapse
Affiliation(s)
- G Ferbeyre
- Département de Biochimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
24
|
Chen S, Reger R, Miller C, Hyman LE. Transcriptional terminators of RNA polymerase II are associated with yeast replication origins. Nucleic Acids Res 1996; 24:2885-93. [PMID: 8760869 PMCID: PMC146059 DOI: 10.1093/nar/24.15.2885] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The compact organization of the Saccharomyces cerevisiae genome necessitates that non-coding regulatory sequences reside in close proximity to one another. Here we show there is an intimate association between transcription terminators and DNA replication origins. Four replication origins were analyzed in a reporter gene assay that detects sequences that direct 3' end formation of mRNA transcripts. All four replication origins function as orientation-independent transcription terminators in this system, producing truncated polyadenylated mRNAs. Despite this close association, the cis-acting elements that confer replication origin function are genetically separable from those required for transcription termination. Several models are explored in an attempt to address how and why the signals specifying transcription termination and replication initiation overlap.
Collapse
Affiliation(s)
- S Chen
- Department of Biochemistry, SL-43, School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|
25
|
Russo P, Laakkonen P, Ahola T, Kääriäinen L. Synthesis of Semliki Forest virus RNA polymerase components nsP1 through nsP4 in Saccharomyces cerevisiae by expression of cDNA encoding the nonstructural polyprotein. J Virol 1996; 70:4086-9. [PMID: 8648747 PMCID: PMC190290 DOI: 10.1128/jvi.70.6.4086-4089.1996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A Semliki Forest virus nonstructural polyprotein, P1234, expressed in the yeast Saccharomyces cerevisiae in the absence of a replicative RNA template appeared to be properly cleaved into nsP1 to nsP4. All nsPs were membrane associated, and nsP2 was also transported to the nucleus. The membrane fraction containing nsPs showed guanine-7-methyltransferase and guanylyltransferase-like activities, typical for Semliki Forest virus nsP1.
Collapse
Affiliation(s)
- P Russo
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
26
|
Abstract
It was previously shown that three distinct but interdependent elements are required for 3' end formation of mRNA in the yeast Saccharomyces cerevisiae: (i) the efficiency element TATATA and related sequences, which function by enhancing the efficiency of positioning elements; (ii) positioning elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation. In this study, we have shown that several A-rich sequences, including the vertebrate poly(A) signal AATAAA, are also positioning elements. Saturated mutagenesis revealed that optimum sequences of the positioning element were AATAAA and AAAAAA and that this element can tolerate various extents of replacements. However, the GATAAA sequence was completely ineffective. The major cleavage sites determined in vitro corresponded to the major poly(A) sites observed in vivo. Our findings support the assumption that some components of the basic polyadenylation machinery could have been conserved among yeasts, plants, and mammals, although 3' end formation in yeasts is clearly distinct from that of higher eukaryotes.
Collapse
Affiliation(s)
- Z Guo
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | |
Collapse
|
27
|
Li Q, Hunt AG. A near-upstream element in a plant polyadenylation signal consists of more than six nucleotides. PLANT MOLECULAR BIOLOGY 1995; 28:927-34. [PMID: 7640363 DOI: 10.1007/bf00042076] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A plant polyadenylation signal consists of three distinct components: a far-upstream element (FUE) that can control utilization of several polyadenylation sites, one or more near-upstream elements (NUEs) that control utilization of each site in a transcription unit, and polyadenylation site (CSs) themselves. NUEs have previously been suggested to be related to the mammalian polyadenylation signal AAUAAA. However, many plant genes do not contain AAUAAA-like motifs near their polyadenylation sites. To better understand the nature of NUEs, we conducted a systematic analysis of the NUE for one polyadenylation site (site 1) in the pea rbcS-E9 gene; this NUE lacks an AAUAAA motif. Linker substitution studies showed that the NUE for site 1 in this gene resides in the sequence AAAUGGAAA. Single-nucleotide substitutions in this domain had modest effects on the functioning of this NUE. Replacement of part of this sequence with the sequence AAUAAA increased the efficiency of this NUE. However, alteration of nucleotides immediately 3' of the AAUAAA reversed this effect. Our results indicate that the NUE for site 1 consists of as many as 9 nucleotides, that these 9 bases do not include an element that is intolerant of single base changes, that the sequence AAUAAA can function as a NUE for site 1, and that sequences flanking AAUAAA can affect the efficiency of functioning as a NUE.
Collapse
Affiliation(s)
- Q Li
- Plant Physiology/Biochemistry/Molecular Biology Program, University of Kentucky, Lexington 40546-0091, USA
| | | |
Collapse
|
28
|
Guo Z, Russo P, Yun DF, Butler JS, Sherman F. Redundant 3' end-forming signals for the yeast CYC1 mRNA. Proc Natl Acad Sci U S A 1995; 92:4211-4. [PMID: 7753784 PMCID: PMC41913 DOI: 10.1073/pnas.92.10.4211] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cyc1-512 mutation is a 38-bp deletion in the 3' untranslated region of the CYC1 gene, which encodes iso-1-cytochrome c in Saccharomyces cerevisiae. This deletion caused a 90% reduction in the levels of the CYC1 mRNA and protein because of the absence of the normal 3' end-forming signal. Although the 3' end-forming signal was not defined by previous analyses, we report that concomitant alteration by base-pair substitution of three 3' end-forming signals within and adjacent to the 38-bp region produced the same phenotype as the cyc1-512 mutation. Furthermore, these signals appear to be related to the previously identified 3' end-forming signal TATATA. A computer analysis revealed that TATATA and related sequences were present in the majority of 3' untranslated regions of yeast genes. Although TATATA may be the strongest and most frequently used signal in yeast genes, the CYC1+ gene concomitantly employed the weaker signals TT-TATA, TATGTT, and TATTTA, resulting in a strong signal.
Collapse
Affiliation(s)
- Z Guo
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, NY 14642, USA
| | | | | | | | | |
Collapse
|
29
|
Russo P. Saccharomyces cerevisiae mRNA 3' end forming signals are also involved in transcription termination. Yeast 1995; 11:447-53. [PMID: 7597848 DOI: 10.1002/yea.320110507] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previously, a 38-base-pair (bp) region in the 3' untranslated portion of the Saccharomyces cerevisiae iso-1-cytochrome c gene, was shown to be required for both normal CYC1 mRNA 3' end formation (Zaret and Sherman, 1982), and efficient transcription termination (Russo and Sherman, 1989). In another study, specific sequences such as TATATA, TACATA, and TAGTAGTA were shown to be involved in mRNA 3' end formation in S. cerevisiae (Russo et al., 1991). In this report, an in vivo plasmid stability assay has been utilized to show that these and related sequences are also involved in transcription termination, at varying efficiencies, and in an orientation-dependent manner. For example: the sequence TATATA appeared to terminate transcription almost as efficiently as the original wild type 38-bp region; whereas, the sequences TAGATATATGTAA and TACATA were less efficient, and TTTTTTTATA had little, if any, transcription termination function. In contrast, none of these sequences appeared to terminate transcription in the reverse orientation. Therefore, it appears that certain sequence signals capable of promoting mRNA 3' end formation in yeast, are also directly involved in transcription termination.
Collapse
Affiliation(s)
- P Russo
- Institute of Biotechnology, University of Helsinki, Finland
| |
Collapse
|
30
|
Russnak R, Nehrke KW, Platt T. REF2 encodes an RNA-binding protein directly involved in yeast mRNA 3'-end formation. Mol Cell Biol 1995; 15:1689-97. [PMID: 7862160 PMCID: PMC230393 DOI: 10.1128/mcb.15.3.1689] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Saccharomyces cerevisiae mutant ref2-1 (REF = RNA end formation) was originally identified by a genetic strategy predicted to detect decreases in the use of a CYC1 poly(A) site interposed within the intron of an ACT1-HIS4 fusion reporter gene. Direct RNA analysis now proves this effect and also demonstrates the trans action of the REF2 gene product on cryptic poly(A) sites located within the coding region of a plasmid-borne ACT1-lacZ gene. Despite impaired growth of ref2 strains, possibly because of a general defect in the efficiency of mRNA 3'-end processing, the steady-state characteristics of a variety of normal cellular mRNAs remain unaffected. Sequencing of the complementing gene predicts the Ref2p product to be a novel, basic protein of 429 amino acids (M(r), 48,000) with a high-level lysine/serine content and some unusual features. Analysis in vitro, with a number of defined RNA substrates, confirms that efficient use of weak poly(A) sites requires Ref2p: endonucleolytic cleavage is carried out accurately but at significantly lower rates in extracts prepared from delta ref2 cells. The addition of purified, epitope-tagged Ref2p (Ref2pF) reestablishes wild-type levels of activity in these extracts, demonstrating direct involvement of this protein in the cleavage step of 3' mRNA processing. Together with the RNA-binding characteristics of Ref2pF in vitro, our results support an important contributing role for the REF2 locus in 3'-end processing. As the first gene genetically identified to participate in mRNA 3'-end maturation prior to the final polyadenylation step, REF2 provides an ideal starting point for identifying related genes in this event.
Collapse
Affiliation(s)
- R Russnak
- Department of Biochemistry, University of Rochester, New York 14642
| | | | | |
Collapse
|
31
|
Berger SL, Meselson M. Production and cleavage of Drosophila hsp70 transcripts extending beyond the polyadenylation site. Nucleic Acids Res 1994; 22:3218-25. [PMID: 8065938 PMCID: PMC310299 DOI: 10.1093/nar/22.15.3218] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Transcription downstream of the polyadenylation site was studied in the Drosophila hsp70 gene, whose high level of transcription in response to temperature elevation facilitates detection of rare and possibly short-lived transcripts. Transcription downstream of the polyadenylation site was detected both in cultured cells and in intact animals. Even shortly after temperature elevation the extended nonpolyadenylated RNAs were rare relative to mature message, and their level continued to increase following temperature elevation even after the amount of mature message stopped increasing. The extended transcripts therefore are unlikely to be message precursors. Although continuous transcripts were detected extending as far as 2 kb downstream of the normal polyadenylation site, the predominant extended transcript was 0.45 kb long, apparently produced by cleavage of longer transcripts. Its amount relative to mature message increased with the duration and severity of heat-shock. As is the case in nonpolyadenylated histone mRNA, there is a potential stem-loop structure just upstream of the cleavage site. These data and other lines of evidence suggest that this extended transcript results from an alternative mode of stable 3'-end formation.
Collapse
Affiliation(s)
- S L Berger
- Department of Biochemistry and Molecular Biology, Harvard University, Cambridge, MA 02138
| | | |
Collapse
|
32
|
Flexibility and interchangeability of polyadenylation signals in Saccharomyces cerevisiae. Mol Cell Biol 1994. [PMID: 7911972 DOI: 10.1128/mcb.14.7.4633] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various signal motifs have been reported to be essential for proper mRNA 3'-end formation in the yeast Saccharomyces cerevisiae. However, none of these motifs has been shown to be sufficient to direct 3'-end processing and/or transcription termination. Therefore, several structural motifs have to act in concert for efficient 3'-end formation. In the region upstream of the three polyadenylation sites of the yeast gene for alcohol dehydrogenase I (ADH1), we have identified a hitherto unknown signal sequence contained within the octamer AAAAAAAA. This motif, located 11 nucleotides upstream of the first ADH1 polyadenylation site, is responsible for the utilization of this site in vitro and in vivo, since mutational alteration drastically reduced 3'-end formation at this position. Insertion of 38 ADH1-derived nucleotides encompassing the (A)8 motif into the 3'-end formation-deficient cyc1-512 deletion mutant restored full processing capacity in vitro. Insertion of the octamer alone did not restore 3'-end formation, although mutation of the (A)8 motif in the functional construct had abolished 3'-end processing activity almost completely. This demonstrates that the sequence AAAAAAAA is a necessary, although not sufficient, signal for efficient mRNA 3'-end formation in S. cerevisiae.
Collapse
|
33
|
Heidmann S, Schindewolf C, Stumpf G, Domdey H. Flexibility and interchangeability of polyadenylation signals in Saccharomyces cerevisiae. Mol Cell Biol 1994; 14:4633-42. [PMID: 7911972 PMCID: PMC358836 DOI: 10.1128/mcb.14.7.4633-4642.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Various signal motifs have been reported to be essential for proper mRNA 3'-end formation in the yeast Saccharomyces cerevisiae. However, none of these motifs has been shown to be sufficient to direct 3'-end processing and/or transcription termination. Therefore, several structural motifs have to act in concert for efficient 3'-end formation. In the region upstream of the three polyadenylation sites of the yeast gene for alcohol dehydrogenase I (ADH1), we have identified a hitherto unknown signal sequence contained within the octamer AAAAAAAA. This motif, located 11 nucleotides upstream of the first ADH1 polyadenylation site, is responsible for the utilization of this site in vitro and in vivo, since mutational alteration drastically reduced 3'-end formation at this position. Insertion of 38 ADH1-derived nucleotides encompassing the (A)8 motif into the 3'-end formation-deficient cyc1-512 deletion mutant restored full processing capacity in vitro. Insertion of the octamer alone did not restore 3'-end formation, although mutation of the (A)8 motif in the functional construct had abolished 3'-end processing activity almost completely. This demonstrates that the sequence AAAAAAAA is a necessary, although not sufficient, signal for efficient mRNA 3'-end formation in S. cerevisiae.
Collapse
Affiliation(s)
- S Heidmann
- Laboratorium für molekulare Biologie-Genzentrum der Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | | | | |
Collapse
|
34
|
Abstract
The cyc1-512 mutant was previously shown to contain a 38-bp deletion, 8 nucleotides upstream from the major wild-type poly(A) site, in the CYC1 gene, which encodes iso-1-cytochrome c of the yeast Saccharomyces cerevisiae. This 38-bp deletion caused a 90% reduction in the CYC1 transcripts, which were heterogeneous in size, aberrantly long, and presumably labile (K. S. Zaret and F. Sherman, Cell 28:563-573, 1982). Site-directed mutagenesis in and adjacent to the 38-bp region was used to identify signals involved in the formation and positioning of CYC1 mRNA 3' ends. In addition, combinations of various putative 3' end-forming signals were introduced by in vitro mutagenesis into the 3' region of the cyc1-512 mutant. The combined results from both studies suggest that 3' end formation in yeast cells involves signals having the following three distinct but integrated elements acting in concert: (i) the upstream element, including sequences TATATA, TAG ... TATGTA, and TTTTTATA, which function by enhancing the efficiency of downstream elements; (ii) downstream elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation, which often occurs after cytidine residues that are 3' to the so-called downstream element. While the upstream element is required for efficient 3' end formation, alterations of the downstream element and poly(A) sites generally do not affect the efficiency of 3' end formation but appear to alter the positions of poly(A) sites. In addition, we have better defined the upstream elements by examining various derivatives of TATATA and TAG ... TATGTA, and we have examined the spatial requirements of the three elements by systematically introducing or deleting upstream and downstream elements and cytidine poly(A) sites.
Collapse
|
35
|
Kirsch DR, DiDomenico BJ. Mechanism-based screening for the discovery of novel antifungals. BIOTECHNOLOGY (READING, MASS.) 1994; 26:177-221. [PMID: 7749303 DOI: 10.1016/b978-0-7506-9003-4.50012-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- D R Kirsch
- Agricultural Research Division, American Cyanamid, Princeton, New Jersey, USA
| | | |
Collapse
|
36
|
Russo P, Li WZ, Guo Z, Sherman F. Signals that produce 3' termini in CYC1 mRNA of the yeast Saccharomyces cerevisiae. Mol Cell Biol 1993; 13:7836-49. [PMID: 8246998 PMCID: PMC364855 DOI: 10.1128/mcb.13.12.7836-7849.1993] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The cyc1-512 mutant was previously shown to contain a 38-bp deletion, 8 nucleotides upstream from the major wild-type poly(A) site, in the CYC1 gene, which encodes iso-1-cytochrome c of the yeast Saccharomyces cerevisiae. This 38-bp deletion caused a 90% reduction in the CYC1 transcripts, which were heterogeneous in size, aberrantly long, and presumably labile (K. S. Zaret and F. Sherman, Cell 28:563-573, 1982). Site-directed mutagenesis in and adjacent to the 38-bp region was used to identify signals involved in the formation and positioning of CYC1 mRNA 3' ends. In addition, combinations of various putative 3' end-forming signals were introduced by in vitro mutagenesis into the 3' region of the cyc1-512 mutant. The combined results from both studies suggest that 3' end formation in yeast cells involves signals having the following three distinct but integrated elements acting in concert: (i) the upstream element, including sequences TATATA, TAG ... TATGTA, and TTTTTATA, which function by enhancing the efficiency of downstream elements; (ii) downstream elements, such as TTAAGAAC and AAGAA, which position the poly(A) site; and (iii) the actual site of polyadenylation, which often occurs after cytidine residues that are 3' to the so-called downstream element. While the upstream element is required for efficient 3' end formation, alterations of the downstream element and poly(A) sites generally do not affect the efficiency of 3' end formation but appear to alter the positions of poly(A) sites. In addition, we have better defined the upstream elements by examining various derivatives of TATATA and TAG ... TATGTA, and we have examined the spatial requirements of the three elements by systematically introducing or deleting upstream and downstream elements and cytidine poly(A) sites.
Collapse
Affiliation(s)
- P Russo
- Department of Biochemistry, University of Rochester School of Medicine and Dentistry, New York 14642
| | | | | | | |
Collapse
|
37
|
Peterson JA, Myers AM. Functional analysis of mRNA 3' end formation signals in the convergent and overlapping transcription units of the S. cerevisiae genes RHO1 and MRP2. Nucleic Acids Res 1993; 21:5500-8. [PMID: 8265368 PMCID: PMC310593 DOI: 10.1093/nar/21.23.5500] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Saccharomyces cerevisiae genes RHO1 and MRP2 are convergently transcribed, with 281 base pairs separating their termination codons. Transcript mapping revealed at least 111 base pairs within the RHO1-MRP2 intercoding region are transcribed in both directions. Transplacement experiments showed distinct sequences of 70 nt for MRP2 and 179 nt for RHO1 were sufficient for normal mRNA 3' end formation. The MRP2 signal functioned in either orientation, although relatively inefficiently in the non-native orientation. This element contains a polyAT sequence essential for 3' end formation in both orientations. RHO1 or MRP2 3' end formation was not affected by overproduction or elimination of the complementary, natural antisense transcript. In contrast, insertion of a strong promoter that extended antisense transcripts beyond their normal 3' ends inactivated either MRP2 or RHO1. These data suggest that transcript termination in the compact yeast genome can be important to prevent inactivation of downstream genes as a result of antisense transcription.
Collapse
Affiliation(s)
- J A Peterson
- Department of Biochemistry and Biophysics, Iowa State University, Ames 50011
| | | |
Collapse
|
38
|
Termination and pausing of RNA polymerase II downstream of yeast polyadenylation sites. Mol Cell Biol 1993. [PMID: 8355675 DOI: 10.1128/mcb.13.9.5159] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Little is known about the transcriptional events which occur downstream of polyadenylation sites. Although the polyadenylation site of a gene can be easily identified, it has been difficult to determine the site of transcription termination in vivo because of the rapid processing of pre-mRNAs. Using an in vitro approach, we have shown that sequences from the 3' ends of two different Saccharomyces cerevisiae genes, ADH2 and GAL7, direct transcription termination and/or polymerase pausing in yeast nuclear extracts. In the case of the ADH2 sequence, the RNA synthesized in vitro ends approximately 50 to 150 nucleotides downstream of the poly(A) site. This RNA is not polyadenylated and may represent the primary transcript. A similarly sized nonpolyadenylated [poly(A)-] transcript can be detected in vivo from the same transcriptional template. A GAL7 template also directs the in vitro synthesis of an RNA which extends a short distance past the poly(A) site. However, a significant amount of the GAL7 RNA is polyadenylated at or close to the in vivo poly(A) site. Mutations of GAL7 or ADH2 poly(A) signals prevent polyadenylation but do not affect the in vitro synthesis of the extended poly(A)- transcript. Since transcription of the mutant template continues through this region in vivo, it is likely that a strong RNA polymerase II pause site lies within the 3'-end sequences. Our data support the hypothesis that the coupling of this pause site to a functional polyadenylation signal results in transcription termination.
Collapse
|
39
|
Hyman LE, Moore CL. Termination and pausing of RNA polymerase II downstream of yeast polyadenylation sites. Mol Cell Biol 1993; 13:5159-67. [PMID: 8355675 PMCID: PMC360204 DOI: 10.1128/mcb.13.9.5159-5167.1993] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Little is known about the transcriptional events which occur downstream of polyadenylation sites. Although the polyadenylation site of a gene can be easily identified, it has been difficult to determine the site of transcription termination in vivo because of the rapid processing of pre-mRNAs. Using an in vitro approach, we have shown that sequences from the 3' ends of two different Saccharomyces cerevisiae genes, ADH2 and GAL7, direct transcription termination and/or polymerase pausing in yeast nuclear extracts. In the case of the ADH2 sequence, the RNA synthesized in vitro ends approximately 50 to 150 nucleotides downstream of the poly(A) site. This RNA is not polyadenylated and may represent the primary transcript. A similarly sized nonpolyadenylated [poly(A)-] transcript can be detected in vivo from the same transcriptional template. A GAL7 template also directs the in vitro synthesis of an RNA which extends a short distance past the poly(A) site. However, a significant amount of the GAL7 RNA is polyadenylated at or close to the in vivo poly(A) site. Mutations of GAL7 or ADH2 poly(A) signals prevent polyadenylation but do not affect the in vitro synthesis of the extended poly(A)- transcript. Since transcription of the mutant template continues through this region in vivo, it is likely that a strong RNA polymerase II pause site lies within the 3'-end sequences. Our data support the hypothesis that the coupling of this pause site to a functional polyadenylation signal results in transcription termination.
Collapse
Affiliation(s)
- L E Hyman
- Department of Molecular Biology and Microbiology, Tufts University Health Sciences Campus, Boston, Massachusetts 02111-1800
| | | |
Collapse
|
40
|
Wu SY, Platt T. Transcriptional arrest of yeast RNA polymerase II by Escherichia coli rho protein in vitro. Proc Natl Acad Sci U S A 1993; 90:6606-10. [PMID: 8341675 PMCID: PMC46981 DOI: 10.1073/pnas.90.14.6606] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
A promoter-independent assay utilizing poly(dC)-tailed DNA templates has revealed that Saccharomyces cerevisiae whole-cell extracts can be proficient for transcription by the endogenous yeast RNA polymerase II as well as for correct 3'-end RNA processing. Our attempts to examine the fate of polymerase II itself were inconclusive, because only trace transcription products corresponded to the expected size of terminated RNA species. Transcription in our processing-proficient extract was thus insufficient to cause termination. To test our system with a known, albeit heterologous, signal, we examined a dC-tailed template carrying the E. coli rho-dependent termination signal trp t' in the yeast extract. Transcripts from this template were not susceptible to processing, but addition of rho protein resulted in two distinct truncated transcripts that could not be chased by excess unlabeled nucleotides. These RNA species thus represented stably paused or terminated polymerase II products, and their absence when a mutated unresponsive trp t' template was used affirmed that they were due to the effects of rho. E. coli RNA polymerase added to a yeast extract pretreated with alpha-amanitin was also halted by rho at these same two sites. A mutated rho protein, while only partly defective with E. coli polymerase, failed to provoke arrest when transcription was carried out by RNA polymerase II. Thus, functional rho and its cognate site, trp t', appear necessary and sufficient to elicit the production of truncated transcripts by RNA polymerase II in a yeast whole-cell extract. The ability of rho to halt the eukaryotic enzyme strengthens the likelihood that a rho-like helicase may be involved in RNA polymerase II transcription termination.
Collapse
Affiliation(s)
- S Y Wu
- Department of Biochemistry, University of Rochester Medical Center, NY 14642
| | | |
Collapse
|
41
|
Russo P, Simonen M, Uimari A, Teesalu T, Makarow M. Dual regulation by heat and nutrient stress of the yeast HSP150 gene encoding a secretory glycoprotein. MOLECULAR & GENERAL GENETICS : MGG 1993; 239:273-80. [PMID: 8510655 DOI: 10.1007/bf00281628] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have cloned and characterized the HSP150 gene of Saccharomyces cerevisiae, which encodes a glycoprotein (hsp150) that is secreted into the growth medium. Unexpectedly, the HSP150 gene was found to be regulated by heat shock and nitrogen starvation. Shifting the cells from 24 degrees C to 37 degrees C resulted in an abrupt increase in the steady-state level of the HSP150 mRNA, and de novo synthesized hsp150 protein. Returning the cells to 24 degrees C caused a rapid decrease in mRNA and protein synthesis to basal levels. The HSP150 5'-flanking region contains several heat shock element-like sequences (HSE). To study the function of these sequences, a strain bearing a disrupted copy of the HSP150 gene was transformed with plasmids in which the coding region of HSP150, or a HSP150-lacZ fusion gene, was preceded by 5' deletion derivatives of the HSP150 promoter. Site-directed mutagenesis of one HSE-like element, located between the TATA box and transcription initiation sites, abolished heat activation of transcription. In addition to heat shock, the HSP150 gene is regulated by the availability of nutrients in the growth medium. The HSP150 mRNA level was increased by nitrogen limitation at 24 degrees C, even when under the control of a HSP150 promoter region of 137 bp carrying the mutagenized HSE.
Collapse
Affiliation(s)
- P Russo
- Institute of Biotechnology, University of Helsinki, Finland
| | | | | | | | | |
Collapse
|
42
|
Irniger S, Egli CM, Braus GH. Messenger RNA 3'-end formation of a DNA fragment from the human c-myc 3'-end region in Saccharomyces cerevisiae. Curr Genet 1993; 23:201-4. [PMID: 7916669 DOI: 10.1007/bf00351496] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have tested the functioning of the human c-myc polyadenylation signal in Saccharomyces cerevisiae. A DNA fragment containing the two AATAAA polyadenylation signals of the c-myc gene was inserted into a plasmid designed for the in-vivo testing of polyadenylation signals in yeast. The c-myc fragment had a partial capacity for directing mRNA 3'-end formation in yeast. The 3'-endpoints were 50-100 bp distant from the mRNA 3'-ends mapped in humans. This human DNA fragment is therefore unspecifically functional in yeast, indicating that other sequence elements than the human polyadenylation signal, AATAAA, are necessary for 3'-end formation.
Collapse
Affiliation(s)
- S Irniger
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH), Zürich
| | | | | |
Collapse
|
43
|
Unusual aspects of in vitro RNA processing in the 3' regions of the GAL1, GAL7, and GAL10 genes in Saccharomyces cerevisiae. Mol Cell Biol 1992. [PMID: 1406619 DOI: 10.1128/mcb.12.10.4262] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A striking feature of the 3'-end regions in polymerase II transcripts of Saccharomyces cerevisiae adjacent to their processing and polyadenylation sites is the lack of well-defined signal elements. Nonetheless, essential signals have seemed to be confined to compact regions in vivo, and we find that a short RNA with only 70 bases of GAL7 sequence upstream and 8 to 10 bases downstream of the poly(A) addition site is processed in vitro, as is an analogous CYC1 pre-RNA. Specific polyadenylation of a precleaved species further delimits the poly(A) signal and rules out obligatory coupling between cleavage and poly(A) addition. Although little proximal and even less distal sequence is required for accurate cleavage with CYC1 and GAL7, we have been unable to identify common features to which processing could be ascribed. We therefore turned to the coregulated set of genes in the galactose cluster (GAL1, GAL7, and GAL10) to assay their corresponding pre-mRNAs in vitro, in hopes of finding a common theme. By contrast to GAL7, short pre-mRNAs corresponding to GAL1 and GAL10 fail to be cleaved detectably, and only much longer transcripts are susceptible to processing. This indicates that signals, even if preserved, are more widely dispersed than the poly(A) addition site, and these results are unchanged whether extracts are from cells grown on glucose or galactose. As a further surprise, RNAs corresponding to the antisense orientation of the 3'-end regions of all three GAL genes are also effective substrates for the processing machinery in vitro. Computer analysis reveals the presence of polydisperse dyad symmetries that might account for these observations.
Collapse
|
44
|
Sadhale PP, Platt T. Unusual aspects of in vitro RNA processing in the 3' regions of the GAL1, GAL7, and GAL10 genes in Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:4262-70. [PMID: 1406619 PMCID: PMC360349 DOI: 10.1128/mcb.12.10.4262-4270.1992] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A striking feature of the 3'-end regions in polymerase II transcripts of Saccharomyces cerevisiae adjacent to their processing and polyadenylation sites is the lack of well-defined signal elements. Nonetheless, essential signals have seemed to be confined to compact regions in vivo, and we find that a short RNA with only 70 bases of GAL7 sequence upstream and 8 to 10 bases downstream of the poly(A) addition site is processed in vitro, as is an analogous CYC1 pre-RNA. Specific polyadenylation of a precleaved species further delimits the poly(A) signal and rules out obligatory coupling between cleavage and poly(A) addition. Although little proximal and even less distal sequence is required for accurate cleavage with CYC1 and GAL7, we have been unable to identify common features to which processing could be ascribed. We therefore turned to the coregulated set of genes in the galactose cluster (GAL1, GAL7, and GAL10) to assay their corresponding pre-mRNAs in vitro, in hopes of finding a common theme. By contrast to GAL7, short pre-mRNAs corresponding to GAL1 and GAL10 fail to be cleaved detectably, and only much longer transcripts are susceptible to processing. This indicates that signals, even if preserved, are more widely dispersed than the poly(A) addition site, and these results are unchanged whether extracts are from cells grown on glucose or galactose. As a further surprise, RNAs corresponding to the antisense orientation of the 3'-end regions of all three GAL genes are also effective substrates for the processing machinery in vitro. Computer analysis reveals the presence of polydisperse dyad symmetries that might account for these observations.
Collapse
Affiliation(s)
- P P Sadhale
- Department of Biochemistry, University of Rochester Medical Center, University of Rochester, New York 14642
| | | |
Collapse
|
45
|
Irniger S, Egli CM, Kuenzler M, Braus GH. The yeast actin intron contains a cryptic promoter that can be switched on by preventing transcriptional interference. Nucleic Acids Res 1992; 20:4733-9. [PMID: 1408785 PMCID: PMC334225 DOI: 10.1093/nar/20.18.4733] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We show that the single intron of the actin gene of the yeast Saccharomyces cerevisiae contains a cryptic promoter for transcription of the second exon. This promoter is inactive in the normal actin gene, but can be activated when the actin gene promoter is deleted. An identical activation was induced by placing efficient transcriptional terminators at position 61 of the 309 bp intron. In all cases transcripts with identical 5' ends close to the boundary of the intron and the second exon were produced. These results indicate that the cryptic promoter in the actin intron is occluded in the normal actin gene by transcriptional interference with the actin gene promoter. Transcription initiation near the intron/exon 2 boundary is enabled by protection from traversing polymerases, that initiated transcription at the upstream located actin gene promoter. A partial promoter protection using leaky terminators resulted in small amounts of transcripts initiated from the cryptic promoter. Although we do not know any function of the cryptic promoter in actin gene expression, it is tentative to speculate that the cryptic intron promoter might be a relict of a promoter that was functional earlier in evolution.
Collapse
MESH Headings
- Actins/biosynthesis
- Actins/genetics
- Base Sequence
- Blotting, Northern
- Cloning, Molecular
- Exons
- Gene Expression Regulation, Fungal
- Genes, Fungal
- Introns
- Molecular Sequence Data
- Oligodeoxyribonucleotides
- Plasmids
- Promoter Regions, Genetic
- RNA, Fungal/genetics
- RNA, Fungal/isolation & purification
- RNA, Messenger/genetics
- RNA, Messenger/isolation & purification
- Recombinant Fusion Proteins/biosynthesis
- Saccharomyces cerevisiae/genetics
- Transcription, Genetic
- beta-Galactosidase/genetics
- beta-Galactosidase/metabolism
Collapse
Affiliation(s)
- S Irniger
- Institute of Microbiology, Swiss Federal Institute of Technology (ETH), Zürich
| | | | | | | |
Collapse
|
46
|
Abstract
In contrast to higher eukaryotes, little is known about the nature of the sequences which direct 3'-end formation of pre-mRNAs in the yeast Saccharomyces cerevisiae. The hexanucleotide AAUAAA, which is highly conserved and crucial in mammals, does not seem to have any functional importance for 3'-end formation in yeast cells. Instead, other elements have been proposed to serve as signal sequences. We performed a detailed investigation of the yeast ACT1, ADH1, CYC1, and YPT1 cDNAs, which showed that the polyadenylation sites used in vivo can be scattered over a region spanning up to 200 nucleotides. It therefore seems very unlikely that a single signal sequence is responsible for the selection of all these polyadenylation sites. Our study also showed that in the large majority of mRNAs, polyadenylation starts directly before or after an adenosine residue and that 3'-end formation of ADH1 transcripts occurs preferentially at the sequence PyAAA. Site-directed mutagenesis of these sites in the ADH1 gene suggested that this PyAAA sequence is essential for polyadenylation site selection both in vitro and in vivo. Furthermore, the 3'-terminal regions of the yeast genes investigated here are characterized by their capacity to act as signals for 3'-end formation in vivo in either orientation.
Collapse
|
47
|
Heidmann S, Obermaier B, Vogel K, Domdey H. Identification of pre-mRNA polyadenylation sites in Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:4215-29. [PMID: 1508215 PMCID: PMC360329 DOI: 10.1128/mcb.12.9.4215-4229.1992] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
In contrast to higher eukaryotes, little is known about the nature of the sequences which direct 3'-end formation of pre-mRNAs in the yeast Saccharomyces cerevisiae. The hexanucleotide AAUAAA, which is highly conserved and crucial in mammals, does not seem to have any functional importance for 3'-end formation in yeast cells. Instead, other elements have been proposed to serve as signal sequences. We performed a detailed investigation of the yeast ACT1, ADH1, CYC1, and YPT1 cDNAs, which showed that the polyadenylation sites used in vivo can be scattered over a region spanning up to 200 nucleotides. It therefore seems very unlikely that a single signal sequence is responsible for the selection of all these polyadenylation sites. Our study also showed that in the large majority of mRNAs, polyadenylation starts directly before or after an adenosine residue and that 3'-end formation of ADH1 transcripts occurs preferentially at the sequence PyAAA. Site-directed mutagenesis of these sites in the ADH1 gene suggested that this PyAAA sequence is essential for polyadenylation site selection both in vitro and in vivo. Furthermore, the 3'-terminal regions of the yeast genes investigated here are characterized by their capacity to act as signals for 3'-end formation in vivo in either orientation.
Collapse
Affiliation(s)
- S Heidmann
- Laboratorium für Molekulare Biologie-Genzentrum, Ludwig-Maximilians-Universität München, Martinsried, Germany
| | | | | | | |
Collapse
|
48
|
Abstract
Cleavage and polyadenylation of yeast precursor RNA require at least four functionally distinct factors (cleavage factor I [CF I], CF II, polyadenylation factor I [PF I], and poly(A) polymerase [PAP]) obtained from yeast whole cell extract. Cleavage of precursor occurs upon combination of the CF I and CF II fractions. The cleavage reaction proceeds in the absence of PAP or PF I. The cleavage factors exhibit low but detectable activity without exogenous ATP but are stimulated when this cofactor is included in the reaction. Cleavage by CF I and CF II is dependent on the presence of a (UA)6 sequence upstream of the GAL7 poly(A) site. The factors will also efficiently cleave precursor with the CYC1 poly(A) site. This RNA does not contain a UA repeat, and processing at this site is thought to be directed by a UAG...UAUGUA-type motif. Specific polyadenylation of a precleaved GAL7 RNA requires CF I, PF I, and a crude fraction containing PAP activity. The PAP fraction can be replaced by recombinant PAP, indicating that this enzyme is the only factor in this fraction needed for the reconstituted reaction. The poly(A) addition step is also dependent on the UA repeat. Since CF I is the only factor necessary for both cleavage and poly(A) addition, it is likely that this fraction contains a component which recognizes processing signals located upstream of the poly(A) site. The initial separation of processing factors in yeast cells suggests both interesting differences from and similarities to the mammalian system.
Collapse
|
49
|
Abstract
Cleavage and polyadenylation of yeast precursor RNA require at least four functionally distinct factors (cleavage factor I [CF I], CF II, polyadenylation factor I [PF I], and poly(A) polymerase [PAP]) obtained from yeast whole cell extract. Cleavage of precursor occurs upon combination of the CF I and CF II fractions. The cleavage reaction proceeds in the absence of PAP or PF I. The cleavage factors exhibit low but detectable activity without exogenous ATP but are stimulated when this cofactor is included in the reaction. Cleavage by CF I and CF II is dependent on the presence of a (UA)6 sequence upstream of the GAL7 poly(A) site. The factors will also efficiently cleave precursor with the CYC1 poly(A) site. This RNA does not contain a UA repeat, and processing at this site is thought to be directed by a UAG...UAUGUA-type motif. Specific polyadenylation of a precleaved GAL7 RNA requires CF I, PF I, and a crude fraction containing PAP activity. The PAP fraction can be replaced by recombinant PAP, indicating that this enzyme is the only factor in this fraction needed for the reconstituted reaction. The poly(A) addition step is also dependent on the UA repeat. Since CF I is the only factor necessary for both cleavage and poly(A) addition, it is likely that this fraction contains a component which recognizes processing signals located upstream of the poly(A) site. The initial separation of processing factors in yeast cells suggests both interesting differences from and similarities to the mammalian system.
Collapse
Affiliation(s)
- J Chen
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts 02111-1800
| | | |
Collapse
|
50
|
Different sequence elements are required for function of the cauliflower mosaic virus polyadenylation site in Saccharomyces cerevisiae compared with in plants. Mol Cell Biol 1992. [PMID: 1373813 DOI: 10.1128/mcb.12.5.2322] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We show that the polyadenylation site derived from the plant cauliflower mosaic virus (CaMV) is specifically functional in the yeast Saccharomyces cerevisiae. The mRNA 3' endpoints were mapped at the same position in yeast cells as in plants, and the CaMV polyadenylation site was recognized in an orientation-dependent manner. Mutational analysis of the CaMV 3'-end-formation signal revealed that multiple elements are essential for proper activity in yeast cells, including two upstream elements that are situated more than 100 and 43 to 51 nucleotides upstream of the poly(A) addition site and the sequences at or near the poly(A) addition site. A comparison of the sequence elements that are essential for proper function of the CaMV signal in yeast cells and plants showed that both organisms require a distal and a proximal upstream element but that these sequence elements are not identical in yeast cells and plants. The key element for functioning of the CaMV signal in yeast cells is the sequence TAGTATGTA, which is similar to a sequence previously proposed to act in yeast cells as a bipartite signal, namely, TAG ... TATGTA. Deletion of this sequence in the CaMV polyadenylation signal abolished 3'-end formation in yeast cells, and a single point mutation in this motif reduced the activity of the CaMV signal to below 15%. These results indicate that the bipartite sequence element acts as a signal for 3'-end formation in yeast cells but only together with other cis-acting elements.
Collapse
|