1
|
Borde M, Caputi ÁA. The sensory-effector cycle, contributions from a native species. Neuroscience 2025; 571:108-129. [PMID: 39947508 DOI: 10.1016/j.neuroscience.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 03/16/2025]
Abstract
The analysis of the action-perception cycle in Gymnotus omarorum has proven that this native species is an excellent model system to study the dynamics of this loop and the implementation mechanisms of its different stages. This analysis provided insight into cell and synaptic function, plasticity, circuitry ensemble, and neural codes. This research has also contributed to the development of Neuroscience that led to the foundation of the Sociedad Uruguaya de Neurociencias which anniversary this issue celebrates. This article first considers the features that these fish offer to the conceptual analysis of reafferent systems. Second, it focuses on some of the stages involved in the sensory effector cycle. This includes the analysis of: a) how the electromotor system contributes to the understanding of central pattern generators of rhythms and action patterns; b) how electric images are formed, peripherally encoded, and contribute to the understanding of how imaging molds perception; c) how sensory detection and behavioral responses to novel events may be used for describing the dynamics of the cycle; d) how the pulsed imaging strategy illustrates the importance of using a code of packeted well timed spikes for fast detection of sensory features; and e) how the interactions between electro- and skeletomotor control using the Mauthner initiated escape response serve as a useful neuroethological case study. We conclude by considering some still open questions and research perspectives that, together with the exceptional advantages offered by electric fish, provide promising advances in the general understanding of the neural basis of the sensory-motor loop.
Collapse
Affiliation(s)
- Michel Borde
- Unidad Académica de Fisiología, Facultad de Medicina, Universidad de la República. Montevideo, Uruguay.
| | - Ángel A Caputi
- Sistema Nacional de Investigadores. Montevideo, Uruguay.
| |
Collapse
|
2
|
The effect of urethane and MS-222 anesthesia on the electric organ discharge of the weakly electric fish Apteronotus leptorhynchus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:437-457. [PMID: 36799986 DOI: 10.1007/s00359-022-01606-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/16/2022] [Accepted: 12/20/2022] [Indexed: 02/18/2023]
Abstract
Urethane and MS-222 are agents widely employed for general anesthesia, yet, besides inducing a state of unconsciousness, little is known about their neurophysiological effects. To investigate these effects, we developed an in vivo assay using the electric organ discharge (EOD) of the weakly electric fish Apteronotus leptorhynchus as a proxy for the neural output of the pacemaker nucleus. The oscillatory neural activity of this brainstem nucleus drives the fish's EOD in a one-to-one fashion. Anesthesia induced by urethane or MS-222 resulted in pronounced decreases of the EOD frequency, which lasted for up to 3 h. In addition, each of the two agents caused a manifold increase in the generation of transient modulations of the EOD known as chirps. The reduction in EOD frequency can be explained by the modulatory effect of urethane on neurotransmission, and by the blocking of voltage-gated sodium channels by MS-222, both within the circuitry controlling the neural oscillations of the pacemaker nucleus. The present study demonstrates a marked effect of urethane and MS-222 on neural activity within the central nervous system and on the associated animal's behavior. This calls for caution when conducting neurophysiological experiments under general anesthesia and interpreting their results.
Collapse
|
3
|
Comas V, Borde M. Glutamatergic control of a pattern-generating central nucleus in a gymnotiform fish. J Neurophysiol 2021; 125:2339-2355. [PMID: 33978492 DOI: 10.1152/jn.00584.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The activity of central pattern-generating networks (CPGs) may change under the control exerted by various neurotransmitters and modulators to adapt its behavioral outputs to different environmental demands. Although the mechanisms underlying this control have been well established in invertebrates, most of their synaptic and cellular bases are not yet well understood in vertebrates. Gymnotus omarorum, a pulse-type gymnotiform electric fish, provides a well-suited vertebrate model to investigate these mechanisms. G. omarorum emits rhythmic and stereotyped electric organ discharges (EODs), which function in both perception and communication, under the command of an electromotor CPG. This nucleus is composed of electrotonically coupled intrinsic pacemaker cells, which pace the rhythm, and bulbospinal projecting relay cells that contribute to organize the pattern of the muscle-derived effector activation that produce the EOD. Descending influences target CPG neurons to produce adaptive behavioral electromotor responses to different environmental challenges. We used electrophysiological and pharmacological techniques in brainstem slices of G. omarorum to investigate the underpinnings of the fast transmitter control of its electromotor CPG. We demonstrate that pacemaker, but not relay cells, are endowed with ionotropic and metabotropic glutamate receptor subtypes. We also show that glutamatergic control of the CPG likely involves two types of synapses contacting pacemaker cells, one type containing both α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and N-methyl-d-aspartate (NMDA) receptors and the other one only-NMDA receptor. Fast neurotransmitter control of vertebrate CPGs seems to exploit the kinetics of the involved postsynaptic receptors to command different behavioral outputs. The prospect of common neural designs to control CPG activity in vertebrates is discussed.NEW & NOTEWORTHY Underpinnings of neuromodulation of central pattern-generating networks (CPG) have been well characterized in many species. The effects of fast neurotransmitter systems remain, however, poorly understood. This research uses in vitro electrophysiological and pharmacological techniques to show that the neurotransmitter control of a vertebrate CPG in gymnotiform fish involves the convergence of only-NMDA and AMPA-NMDA glutamatergic synapses onto neurons that pace the rhythm. These inputs may organize different behavioral outputs according to their distinct functional properties.
Collapse
Affiliation(s)
- Virginia Comas
- Laboratorio de Neurofisiología Celular y Sináptica, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Michel Borde
- Laboratorio de Neurofisiología Celular y Sináptica, Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
4
|
Lucas KM, Warrington J, Lewis TJ, Lewis JE. Neuronal Dynamics Underlying Communication Signals in a Weakly Electric Fish: Implications for Connectivity in a Pacemaker Network. Neuroscience 2019; 401:21-34. [PMID: 30641115 DOI: 10.1016/j.neuroscience.2019.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 11/19/2022]
Abstract
Neuronal networks can produce stable oscillations and synchrony that are under tight control yet flexible enough to rapidly switch between dynamical states. The pacemaker nucleus in the weakly electric fish comprises a network of electrically coupled neurons that fire synchronously at high frequency. This activity sets the timing for an oscillating electric organ discharge with the lowest cycle-to-cycle variability of all known biological oscillators. Despite this high temporal precision, pacemaker activity is behaviorally modulated on millisecond time-scales for the generation of electrocommunication signals. The network mechanisms that allow for this combination of stability and flexibility are not well understood. In this study, we use an in vitro pacemaker preparation from Apteronotus leptorhynchus to characterize the neural responses elicited by the synaptic inputs underlying electrocommunication. These responses involve a variable increase in firing frequency and a prominent desynchronization of neurons that recovers within 5 oscillation cycles. Using a previously developed computational model of the pacemaker network, we show that the frequency changes and rapid resynchronization observed experimentally are most easily explained when model neurons are interconnected more densely and with higher coupling strengths than suggested by published data. We suggest that the pacemaker network achieves both stability and flexibility by balancing coupling strength with interconnectivity and that variation in these network features may provide a substrate for species-specific evolution of electrocommunication signals.
Collapse
Affiliation(s)
- Kathleen M Lucas
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Julie Warrington
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Timothy J Lewis
- Department of Mathematics, University of California Davis, Davis, CA 95616, USA
| | - John E Lewis
- Department of Biology, University of Ottawa, Ottawa K1N 6N5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa K1N 6N5, Canada.
| |
Collapse
|
5
|
Comas V, Langevin K, Silva A, Borde M. Distinctive mechanisms underlie the emission of social electric signals of submission in Gymnotus omarorum. J Exp Biol 2019; 222:jeb.195354. [DOI: 10.1242/jeb.195354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 05/07/2019] [Indexed: 11/20/2022]
Abstract
South American weakly electric fish (order Gymnotiformes) rely on a highly conserved and relatively fixed electromotor circuit to produce species-specific electric organ discharges (EOD) and a variety of meaningful adaptive EOD modulations. The command for each EOD arises from a medullary pacemaker nucleus composed by electrotonically coupled intrinsic pacemaker and bulbospinal projecting relay cells. During agonistic encounters Gymnotus omarorum signals submission by interrupting its EOD (offs) and by emitting transient high rate barrages of low amplitude discharges (chirps). Previous studies in gymnotiformes have shown that electric signal diversity is based on the segregation of descending synaptic inputs to pacemaker or relay cells and differential activation of the neurotransmitter receptors -for glutamate or γ-aminobutyric acid (GABA)- of these cells. Therefore, we tested whether GABAergic and glutamatergic inputs to pacemaker nucleus neurons are involved in the emission of submissive electric signals in G. omarorum. We found that GABA applied to pacemaker cells evokes EOD interruptions that closely resembled natural offs. Although in other species chirping is likely due to glutamatergic suprathreshold depolarization of relay cells, here, application of glutamate to these cells was unable to replicate the emission of this submissive signal. Nevertheless, chirp-like discharges were emitted after the enhancement of excitability of relay cells by blocking an IA-type potassium current and, in some cases, by application of vasotocin, a status-dependent modulator peptide of G. omarorum agonistic behavior. Modulation of electrophysiological properties of pacemaker nucleus neurons in gymnotiformes emerges as a novel putative mechanism, endowing electromotor networks with higher functional versatility.
Collapse
Affiliation(s)
- Virginia Comas
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Kim Langevin
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Ana Silva
- Laboratorio de Neurociencias, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Michel Borde
- Departamento de Fisiología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
6
|
de Jesus IS, Ferreira M, Silva-Júnior UL, Alves-Gomes JA. Effects of Neuroactive Drugs in the Discharge Patterns of Microsternarchus (Hypopomidae: Gymnotiformes) Electric Organ. Zebrafish 2017; 14:526-535. [PMID: 28968184 DOI: 10.1089/zeb.2017.1459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Considering the conserved nature of synaptic physiology among vertebrates, we tested the effects of three psychotropics (diazepam, doxapram, and nicotine) on Microsternarchus cf. bilineatus, measuring 10 parameters associated to the electric organ discharges rhythm and waveform before and after the administration of each drug and a control group. There were statistically significant differences (p < 0.005) among all the experimental groups, F (70, 22619.25) = 77.7, between the two experimental phases within their respective drug treatment, F (80, 24604.51) = 16.0, and among the six experimental hours within their respective phases and groups, F (320, 37124.15) = 4.1. We observed a common general trend of reduction in the electric organ's (EO) firing rate, regardless of the expected stimulant or depressor effect of the drugs on the central nervous system (CNS). The intensity of the response changed with the treatment. The observed changes in the fishes' behavior may be a result of the drugs' direct action on the CNS or a combination of this with systemic effects of each substance tested, also in the EO.
Collapse
Affiliation(s)
- Isac Silva de Jesus
- 1 Behavioral Physiology and Evolution Laboratory, National Institute of Amazon Research , Manaus, Brazil
| | - Milena Ferreira
- 2 Animal Genetics Laboratory, National Institute of Amazon Research , Manaus, Brazil
| | | | - José Antônio Alves-Gomes
- 1 Behavioral Physiology and Evolution Laboratory, National Institute of Amazon Research , Manaus, Brazil
| |
Collapse
|
7
|
Quintana L, Harvey-Girard E, Lescano C, Macadar O, Lorenzo D. Sex-specific role of a glutamate receptor subtype in a pacemaker nucleus controlling electric behavior. ACTA ACUST UNITED AC 2014; 108:155-66. [PMID: 24794754 DOI: 10.1016/j.jphysparis.2014.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/12/2014] [Accepted: 04/22/2014] [Indexed: 02/03/2023]
Abstract
Electric communication signals, produced by South American electric fish, vary across sexes and species and present an ideal opportunity to examine the bases of signal diversity, and in particular, the mechanisms underlying sexually dimorphic behavior. Gymnotiforms produce electric organ discharges (EOD) controlled by a hindbrain pacemaker nucleus (PN). Background studies have identified the general cellular mechanisms that underlie the production of communication signals, EOD chirps and interruptions, typically displayed in courtship and agonistic contexts. Brachyhypopomus gauderio emit sexually dimorphic signals, and recent studies have shown that the PN acquires the capability of generating chirps seasonally, only in breeding males, by modifying its glutamatergic system. We hypothesized that sexual dimorphism was caused by sexual differences in the roles of glutamate receptors. To test this hypothesis, we analyzed NMDA and AMPA mediated responses in PN slice preparations by field potential recordings, and quantified one AMPA subunit mRNA, in the PNs of males and females during the breeding season. In situ hybridization of GluR2B showed no sexual differences in quantities between the male and female PN. Functional responses of the PN to glutamate and AMPA, on the other hand, showed a clear cut sexual dimorphism. In breeding males, but not females, the PN responded to glutamate and AMPA with bursting activity, with a temporal pattern that resembled the pattern of EOD chirps. In this study, we have been successful in identifying cellular mechanisms of sexual dimorphic communication signals. The involvement of AMPA receptors in PN activity is part of the tightly regulated changes that account for the increase in signal diversity during breeding in this species, necessary for a successful reproduction.
Collapse
Affiliation(s)
- Laura Quintana
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay.
| | - Erik Harvey-Girard
- Department of Cell and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
| | - Carolina Lescano
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Omar Macadar
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Daniel Lorenzo
- Unidad Bases Neurales de la Conducta, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
8
|
Zupanc GKH, Ilies I, Sîrbulescu RF, Zupanc MM. Large-scale identification of proteins involved in the development of a sexually dimorphic behavior. J Neurophysiol 2014; 111:1646-54. [PMID: 24478160 DOI: 10.1152/jn.00750.2013] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sexually dimorphic behaviors develop under the influence of sex steroids, which induce reversible changes in the underlying neural network of the brain. However, little is known about the proteins that mediate these activational effects of sex steroids. Here, we used a proteomics approach for large-scale identification of proteins involved in the development of a sexually dimorphic behavior, the electric organ discharge of brown ghost knifefish, Apteronotus leptorhynchus. In this weakly electric fish, the discharge frequency is controlled by the medullary pacemaker nucleus and is higher in males than in females. After lowering the discharge frequency by chronic administration of β-estradiol, 2-dimensional difference gel electrophoresis revealed 62 proteins spots in tissue samples from the pacemaker nucleus that exhibited significant changes in abundance of >1.5-fold. The 20 identified protein spots indicated, among others, a potential involvement of astrocytes in the establishment of the behavioral dimorphism. Indeed, immunohistochemical analysis demonstrated higher expression of the astrocytic marker protein GFAP and increased gap-junction coupling between astrocytes in females compared with males. We hypothesize that changes in the size of the glial syncytium, glial coupling, and/or number of glia-specific potassium channels lead to alterations in the firing frequency of the pacemaker nucleus via a mechanism mediating the uptake of extracellular potassium ions from the extracellular space.
Collapse
Affiliation(s)
- Günther K H Zupanc
- Department of Biology, Northeastern University, Boston, Massachusetts; and
| | | | | | | |
Collapse
|
9
|
Caputi AA, Aguilera PA, Carolina Pereira A, Rodríguez-Cattáneo A. On the haptic nature of the active electric sense of fish. Brain Res 2013; 1536:27-43. [PMID: 23727613 DOI: 10.1016/j.brainres.2013.05.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/17/2013] [Accepted: 05/20/2013] [Indexed: 11/18/2022]
Abstract
Electroreception is a sensory modality present in chondrichthyes, actinopterygii, amphibians, and mammalian monotremes. The study of this non-intuitive sensory modality has provided insights for better understanding of sensory systems in general and inspired the development of innovative artificial devices. Here we review evidence obtained from the analysis of electrosensory images, neurophysiological data from the recording of unitary activity in the electrosensory lobe, and psychophysical data from analysis of novelty responses provoked in well-defined stimulus conditions, which all confirm that active electroreception has a short range, and that the influence of exploratory movements on object identification is strong. In active electric images two components can be identified: a "global" image profile depending on the volume, shape and global impedance of an object and a "texture" component depending on its surface attributes. There is a short range of the active electric sense and the progressive "blurring" of object image with distance. Consequently, the lack of precision regarding object location, considered together, challenge the current view of this sense as serving long range electrolocation and the commonly used metaphor of "electric vision". In fact, the active electric sense shares more commonalities with human active touch than with teleceptive senses as vision or audition. Taking into account that other skin exteroceptors and proprioception may be congruently stimulated during fish exploratory movements we propose that electric, mechanoceptive and proprioceptive sensory modalities found in electric fish could be considered together as a single haptic sensory system. This article is part of a Special Issue entitled Neural Coding 2012.
Collapse
Affiliation(s)
- Angel A Caputi
- Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay.
| | | | | | | |
Collapse
|
10
|
Quintana L, Sierra F, Silva A, Macadar O. A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: functional aspects revealed by glutamate stimulation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 197:211-25. [DOI: 10.1007/s00359-010-0603-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 09/21/2010] [Accepted: 10/17/2010] [Indexed: 01/31/2023]
|
11
|
A central pacemaker that underlies the production of seasonal and sexually dimorphic social signals: anatomical and electrophysiological aspects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 197:75-88. [PMID: 20924588 DOI: 10.1007/s00359-010-0588-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 09/05/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
Abstract
Our long-term goal is to approach the understanding of the anatomical and physiological bases for communication signal diversity in gymnotiform fishes as a model for vertebrate motor pattern generation. Brachyhypopomus gauderio emits, in addition to its electric organ discharge (EOD) at basal rate, a rich repertoire of rate modulations. We examined the structure of the pacemaker nucleus, responsible for the EOD rate, to explore whether its high output signal diversity was correlated to complexity in its neural components or regional organization. We confirm the existence of only two neuron types and show that the previously reported dorsal-caudal segregation of these neurons is accompanied by rostral-caudal regionalization. Pacemaker cells are grouped dorsally in the rostral half of the nucleus, and relay cells are mainly ventral and more abundant in the caudal half. Relay cells are loosely distributed from the center to the periphery of the nucleus in correlation to somata size. Our findings support the hypothesis that regional organization enables a higher diversity of rate modulations, possibly offering distinct target areas to modulatory inputs. Since no anatomical or electrophysiological seasonal or sexual differences were found, we explored these aspects from a functional point of view in a companion article.
Collapse
|
12
|
Turner CR, Derylo M, de Santana CD, Alves-Gomes JA, Smith GT. Phylogenetic comparative analysis of electric communication signals in ghost knifefishes (Gymnotiformes: Apteronotidae). J Exp Biol 2007; 210:4104-22. [DOI: 10.1242/jeb.007930] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Electrocommunication signals in electric fish are diverse, easily recorded and have well-characterized neural control. Two signal features, the frequency and waveform of the electric organ discharge (EOD), vary widely across species. Modulations of the EOD (i.e. chirps and gradual frequency rises) also function as active communication signals during social interactions, but they have been studied in relatively few species. We compared the electrocommunication signals of 13 species in the largest gymnotiform family,Apteronotidae. Playback stimuli were used to elicit chirps and rises. We analyzed EOD frequency and waveform and the production and structure of chirps and rises. Species diversity in these signals was characterized with discriminant function analyses, and correlations between signal parameters were tested with phylogenetic comparative methods. Signals varied markedly across species and even between congeners and populations of the same species. Chirps and EODs were particularly evolutionarily labile, whereas rises differed little across species. Although all chirp parameters contributed to species differences in these signals, chirp amplitude modulation, frequency modulation (FM) and duration were particularly diverse. Within this diversity,however, interspecific correlations between chirp parameters suggest that mechanistic trade-offs may shape some aspects of signal evolution. In particular, a consistent trade-off between FM and EOD amplitude during chirps is likely to have influenced the evolution of chirp structure. These patterns suggest that functional or mechanistic linkages between signal parameters(e.g. the inability of electromotor neurons increase their firing rates without a loss of synchrony or amplitude of action potentials) constrain the evolution of signal structure.
Collapse
Affiliation(s)
- Cameron R. Turner
- Department of Biology, Indiana University, Bloomington, IN 47405,USA
- Center for the Integrative Study of Animal Behavior (CISAB), Indiana University, Bloomington, IN 47405, USA
| | - Maksymilian Derylo
- CISAB Research Experience for Undergraduates Program, Indiana University,Bloomington, IN 47405, USA
- Dominican University, River Forest, IL 60305, USA
| | - C. David de Santana
- Laboratório de Fisiologia Comportamental (LFC), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM 69083-000, Brazil
- Smithsonian Institution, National Museum of Natural History, Division of Fishes, Washington, DC 20560, USA
| | - José A. Alves-Gomes
- Laboratório de Fisiologia Comportamental (LFC), Instituto Nacional de Pesquisas da Amazônia (INPA), Manaus, AM 69083-000, Brazil
| | - G. Troy Smith
- Department of Biology, Indiana University, Bloomington, IN 47405,USA
- Center for the Integrative Study of Animal Behavior (CISAB), Indiana University, Bloomington, IN 47405, USA
- Program in Neuroscience, Indiana University, Bloomington, IN 47405,USA
| |
Collapse
|
13
|
Zhang Y, Kawasaki M. Interruption of pacemaker signals is mediated by GABAergic inhibition of the pacemaker nucleus in the African electric fish Gymnarchus niloticus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:665-75. [PMID: 17406874 DOI: 10.1007/s00359-007-0219-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Revised: 03/03/2007] [Accepted: 03/10/2007] [Indexed: 11/26/2022]
Abstract
The wave-type African weakly electric fish Gymnarchus niloticus produces electric organ discharges (EODs) from an electric organ in the tail that is driven by a pacemaker complex in the medulla, which consists of a pacemaker nucleus, two lateral relay nuclei and a medial relay nucleus. The prepacemaker nucleus (PPn) in the area of the dorsal posterior nucleus of the thalamus projects exclusively to the pacemaker nucleus and is responsible for EOD interruption behavior. The goal of the present study is to test the existence of inhibition of the pacemaker nucleus by the PPn. Immunohistochemical results showed clear anti-GABA immunoreactive labeling of fibers and terminals in the pacemaker nucleus, but no apparent anti-glycine immunoreactivity anywhere in the pacemaker complex. GABA injection into the pacemaker nucleus could induce EOD interruptions that are comparable to the interruptions induced by glutamate injection into the PPn. Application of the GABA(A) receptor blocker bicuculline methiodide reversibly eliminated the effects of stimulation of the PPn. Thus the EOD interruption behavior in Gymnarchus is mediated through GABAergic inhibition of the pacemaker nucleus by the PPn.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biology, Gilmer Hall, University of Virginia, P.O. Box 400328, Charlottesville, VA 22904-4328, USA
| | | |
Collapse
|
14
|
Duarte TT, Corrêa SAL, Santana UJ, Pereira ASF, Hoffmann A. Agonistic-like responses from the torus semicircularis dorsalis elicited by GABA A blockade in the weakly electric fish Gymnotus carapo. Braz J Med Biol Res 2006; 39:945-55. [PMID: 16862286 DOI: 10.1590/s0100-879x2006000700013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 03/30/2006] [Indexed: 11/22/2022] Open
Abstract
Findings by our group have shown that the dorsolateral telencephalon of Gymnotus carapo sends efferents to the mesencephalic torus semicircularis dorsalis (TSd) and that presumably this connection is involved in the changes in electric organ discharge (EOD) and in skeletomotor responses observed following microinjections of GABA A antagonist bicuculline into this telencephalic region. Other studies have implicated the TSd or its mammalian homologue, the inferior colliculus, in defensive responses. In the present study, we explore the possible involvement of the TSd and of the GABA-ergic system in the modulation of the electric and skeletomotor displays. For this purpose, different doses of bicuculline (0.98, 0.49, 0.245, and 0.015 mM) and muscimol (15.35 mM) were microinjected (0.1 microL) in the TSd of the awake G. carapo. Microinjection of bicuculline induced dose-dependent interruptions of EOD and increased skeletomotor activity resembling defense displays. The effects of the two highest doses showed maximum values at 5 min (4.3 +/- 2.7 and 3.8 +/- 2.0 Hz, P < 0.05) and persisted until 10 min (11 +/- 5.7 and 8.7 +/- 5.2 Hz, P < 0.05). Microinjections of muscimol were ineffective. During the interruptions of EOD, the novelty response (increased frequency in response to sensory novelties) induced by an electric stimulus delivered by a pair of electrodes placed in the water of the experimental cuvette was reduced or abolished. These data suggest that the GABA-ergic mechanisms of the TSd inhibit the neural substrate of the defense reaction at this midbrain level.
Collapse
Affiliation(s)
- T T Duarte
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.
| | | | | | | | | |
Collapse
|
15
|
Teixeira Duarte T, Hoffmann A, de Souza Fim Pereira A, Aparecida Lopes Corrêa S. Potential output pathways for agonistic-like responses resulting from the GABAA blockade of the torus semicircularis dorsalis in weakly electric fish, Gymnotus carapo. Brain Res 2006; 1092:117-28. [PMID: 16696952 DOI: 10.1016/j.brainres.2006.03.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 03/22/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
The purpose of this study is to examine the pathways involved in the electromotor (electric organ discharge interruptions) and skeletomotor responses (defense-like) observed by blockade of GABAergic control of the torus semicircularis dorsalis (TSd) of the awake weakly electric fish Gymnotus carapo, described in a former study. Microinjection of NMDA (5 mM) into the pacemaker nucleus (PM) through a guide cannula previously implanted caused a prolonged interruption of the electric organ discharge (EOD) intermingled with reduction in frequency, similar to that described for TSd GABA(A) blockade, but without noticeable skeletomotor effects. The EOD alterations elicited by bicuculline microinjections (0.245 mM) into the TSd could be blocked or attenuated by a previous microinjection of AP-5 (0.5 mM), an NMDA antagonist, into the PM. Labeled terminals are found in the nucleus electrosensorius (nE) after injection of the biotinylated dextran amine (BDA) tracer into the TSd and into the sublemniscal prepacemaker nucleus (SPPn) subsequent to the tracer injection into the nE. Defense-like responses but not EOD interruptions are observed after microinjections of NMDA (5 mM) into the rhombencephalic reticular formation (RF), where labeled terminals are seen after BDA injection into the TSd and somata are filled after injection of the tracer into the spinal cord. In this last structure, marked fibers are seen subsequent to injection of BDA into the RF. These results suggest that two distinct pathways originate from the torus: one for EOD control, reaching PM through nE and SPPn, and the other one for skeletomotor control reaching premotor reticular neurons. Both paths could be activated by toral GABA(A) blockade.
Collapse
Affiliation(s)
- Terence Teixeira Duarte
- Department of Physiology, School of Medicine, University of São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil.
| | | | | | | |
Collapse
|
16
|
Zupanc GKH, Bullock TH. Walter Heiligenberg: the jamming avoidance response and beyond. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:561-72. [PMID: 16645884 DOI: 10.1007/s00359-006-0098-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2004] [Revised: 11/28/2005] [Accepted: 12/26/2005] [Indexed: 11/25/2022]
Abstract
Walter Heiligenberg (1938-1994) was an exceptionally gifted behavioral physiologist who made enormous contributions to the analysis of behavior and to our understanding of how the brain initiates and controls species-typical behavioral patterns. He was distinguished by his rigorous analytical approach used in both behavioral studies and neuroethological investigations. Among his most significant contributions to neuroethology are a detailed analysis of the computational rules governing the jamming avoidance response in weakly electric fish and the elucidation of the principal neural pathway involved in neural control of this behavior. Based on his work, the jamming avoidance response is perhaps the best-understood vertebrate behavior pattern in terms of the underlying neural substrate. In addition to this pioneering work, Heiligenberg stimulated research in a significant number of other areas of ethology and neuroethology, including: the quantitative assessment of aggressivity in cichlid fish; the ethological analysis of the stimulus-response relationship in the chirping behavior of crickets; the exploration of the neural and endocrine basis of communicatory behavior in weakly electric fish; the study of cellular mechanisms of neuronal plasticity in the adult fish brain; and the phylogenetic analysis of electric fishes using a combination of morphology, electrophysiology, and mitochondrial sequence data.
Collapse
Affiliation(s)
- G K H Zupanc
- School of Engineering and Science, International University Bremen, 750 561, 28725, Bremen, Germany.
| | | |
Collapse
|
17
|
Oestreich J, Dembrow NC, George AA, Zakon HH. A "sample-and-hold" pulse-counting integrator as a mechanism for graded memory underlying sensorimotor adaptation. Neuron 2006; 49:577-88. [PMID: 16476666 DOI: 10.1016/j.neuron.2006.01.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2005] [Revised: 12/05/2005] [Accepted: 01/29/2006] [Indexed: 11/19/2022]
Abstract
The mechanisms behind the induction of cellular correlates of memory by sensory input and their contribution to meaningful behavioral changes are largely unknown. We previously reported a graded memory in the form of sensorimotor adaptation in the electromotor output of electric fish. Here we show that the mechanism for this adaptation is a synaptically induced long-lasting shift in intrinsic neuronal excitability. This mechanism rapidly integrates hundreds of spikes in a second, or gradually integrates the same number of spikes delivered over tens of minutes. Thus, this mechanism appears immune to frequency-dependent fluctuations in input and operates as a simple pulse counter over a wide range of time scales, enabling it to transduce graded sensory information into a graded memory and a corresponding change in the behavioral output. This adaptation is based on an NMDA receptor-mediated change in intrinsic excitability of the postsynaptic neurons involving the Ca2+-dependent activation of TRP channels.
Collapse
Affiliation(s)
- Jörg Oestreich
- Section of Neurobiology, The University of Texas at Austin, 1 University Station C0920, Austin, Texas 78712, USA
| | | | | | | |
Collapse
|
18
|
Zhang Y, Kawasaki M. Interruption of pacemaker signals by a diencephalic nucleus in the African electric fish, Gymnarchus niloticus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:509-21. [PMID: 16450119 DOI: 10.1007/s00359-005-0089-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Revised: 12/08/2005] [Accepted: 12/21/2005] [Indexed: 10/25/2022]
Abstract
The African electric fish Gymnarchus niloticus rhythmically emits electric organ discharges (EODs) for communication and navigation. The EODs are generated by the electric organ in the tail in response to the command signals from the medullary pacemaker complex, which consists of a pacemaker nucleus (PN), two lateral relay nuclei (LRN) and a medial relay nucleus (MRN). The premotor structure and its modulatory influences on the pacemaker complex have been investigated in this paper. A bilateral prepacemaker nucleus (PPn) was found in the area of the dorsal posterior nucleus (DP) of the thalamus by retrograde labeling from the PN. No retrogradely labeled neurons outside the pacemaker complex were found after tracer injection into the LRN or MRN. Accordingly, anterogradely labeled terminal fibers from PPn neurons were found only in the PN. Iontophoresis of L-glutamate into the region of the PPn induced EOD interruptions. Despite the exclusive projection of the PPn neurons to the PN, extracellular and intracellular recordings showed that PN neurons continue their firing while MRN neurons ceased their firing during EOD interruption. This mode of EOD interruption differs from those found in any other weakly electric fishes in which EOD cessation mechanisms have been known.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biology, University of Virginia, Charlottesville, VA 22904-4328, USA
| | | |
Collapse
|
19
|
Fortune ES, Rose GJ, Kawasaki M. Encoding and processing biologically relevant temporal information in electrosensory systems. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:625-35. [PMID: 16450118 DOI: 10.1007/s00359-006-0102-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2005] [Revised: 10/28/2005] [Accepted: 12/26/2005] [Indexed: 10/25/2022]
Abstract
Wave-type weakly electric fish are specialists in time-domain processing: behaviors in these animals are often tightly correlated with the temporal structure of electrosensory signals. Behavioral responses in these fish can be dependent on differences in the temporal structure of electrosensory signals alone. This feature has facilitated the study of temporal codes and processing in central nervous system circuits of these animals. The temporal encoding and mechanisms used to transform temporal codes in the brain have been identified and characterized in several species, including South American gymnotid species and in the African mormyrid genus Gymnarchus. These distantly related groups use similar strategies for neural computations of information on the order of microseconds, milliseconds, and seconds. Here, we describe a suite of mechanisms for behaviorally relevant computations of temporal information that have been elucidated in these systems. These results show the critical role that behavioral experiments continue to have in the study of the neural control of behavior and its evolution.
Collapse
Affiliation(s)
- E S Fortune
- Department of Psychological and Brain Sciences, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218, USA.
| | | | | |
Collapse
|
20
|
Curti S, Comas V, Rivero C, Borde M. Analysis of behavior-related excitatory inputs to a central pacemaker nucleus in a weakly electric fish. Neuroscience 2006; 140:491-504. [PMID: 16563638 DOI: 10.1016/j.neuroscience.2006.02.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2005] [Revised: 02/13/2006] [Accepted: 02/14/2006] [Indexed: 10/24/2022]
Abstract
Gymnotid electric fish explore their environment and communicate with conspecifics by means of rhythmic electric organ discharges. The neural command for each electric organ discharge arises from activity of a medullary pacemaker nucleus composed of two neuronal types: pacemaker and relay cells. During different behaviors as in courtship, exploration and agonistic interactions, these species display specific electric organ discharge frequency and/or waveform modulations. The neural bases of these modulations have been explained in terms of segregation of inputs to pacemaker or relay cells, as well as differential activation of the glutamate receptors of these cells. One of the most conspicuous electric organ discharge frequency modulations in Gymnotus carapo results from the activation of Mauthner cells, a pair of reticulospinal neurons that are involved in the organization of sensory-evoked escape responses in teleost fish. The activation of Mauthner cells in these animals produces a prolonged increase in electric organ discharge rate, whose neural mechanisms involves the activation of both N-methyl-D-aspartate (NMDA) and metabotropic glutamatergic receptors of pacemaker cells. Here we provide evidence which indicates that pacemaker cells are the only cellular target of the synaptic inputs responsible for the Mauthner cell initiated electric organ discharge modulation at the medullary pacemaker nucleus. Additionally, although pacemaker cells express both NMDA and non-NMDA ionotropic receptors, we found that non-NMDA receptors are not involved in this synaptic action which suggests that NMDA and non-NMDA receptor subtypes are not co-localized at the subsynaptic membrane. NMDA receptor activation of pacemaker cells seems to be an efficient neural strategy to produce long-lasting enhancements of the fish sampling capability during Mauthner cell-initiated motor behaviors.
Collapse
Affiliation(s)
- S Curti
- Dpto. de Fisiología, Laboratorio de Neurofisiología Celular, Facultad de Medicina and Facultad de Ciencias, Gral. Flores 2125, CP 11800, Montevideo, Uruguay
| | | | | | | |
Collapse
|
21
|
Oestreich J, Zakon HH. Species-specific differences in sensorimotor adaptation are correlated with differences in social structure. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:845-56. [PMID: 16007457 DOI: 10.1007/s00359-005-0006-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2004] [Revised: 03/23/2005] [Accepted: 04/09/2005] [Indexed: 10/25/2022]
Abstract
Here, we report a species difference in the strength and duration of long-term sensorimotor adaptation in the electromotor output of weakly electric fish. The adaptation is produced by changes in intrinsic excitability in the electromotor pacemaker nucleus; this change is a form of memory that correlates with social structure. A weakly electric fish may be jammed by a similar electric organ discharge (EOD) frequency of another fish and prevents jamming by transiently raising its own emission frequency, a behavior called the jamming avoidance response (JAR). The JAR requires activation of NMDA receptors, and prolonged JAR performance results in long-term frequency elevation (LTFE) of a fish's EOD frequency for many hours after the jamming stimulus. We find that LTFE is stronger in a shoaling species (Eigenmannia virescens) with a higher probability of encountering jamming conspecifics, when compared to a solitary species (Apteronotus leptorhynchus). Additionally, LTFE persists in Eigenmannia, whereas, it decays over 5-9 h in Apteronotus.
Collapse
Affiliation(s)
- Jörg Oestreich
- Section of Neurobiology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
22
|
Zupanc GKH. From oscillators to modulators: behavioral and neural control of modulations of the electric organ discharge in the gymnotiform fish, Apteronotus leptorhynchus. ACTA ACUST UNITED AC 2004; 96:459-72. [PMID: 14692494 DOI: 10.1016/s0928-4257(03)00002-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The brown ghost (Apteronotus leptorhynchus) is a weakly electric gymnotiform fish that produces wave-like electric organ discharges distinguished by their enormous degree of regularity. Transient modulations of these discharges occur both spontaneously and when stimulating the fish with external electric signals that mimic encounters with a neighboring fish. Two prominent forms of modulations are chirps and gradual frequency rises. Chirps are complex frequency and amplitude modulations lasting between 20 ms and more than 200 ms. Based on their biophysical characteristics, they can be divided into four distinct categories. Gradual frequency rises consist of a rise in discharge frequency, followed by a slow return to baseline frequency. Although the modulatory phase may vary considerably between a few 100 ms and almost 100 s, there is no evidence for the existence of distinct categories of this type of modulation signal. Stimulation of the fish with external electric signals results almost exclusively in the generation of type-2 chirps. This effect is independent of the chirp type generated by the respective individual under non-evoked conditions. By contrast, no proper stimulation condition is known to evoke the other three types of chirps or gradual frequency rises in non-breeding fish. In contrast to the type-2 chirps evoked when subjecting the fish to external electric stimulation, the rate of spontaneously produced chirps is quite low. However, their rate appears to be optimized according to the probability of encountering a conspecific. As a result, the rate of non-evoked chirping is increased during the night when the fish exhibit high locomotor activity and in the time period following external electric stimulation. These, as well as other, observations demonstrate that both the type and rate of modulatory behavior are affected by a variety of behavioral conditions. This diversity at the behavioral level correlates with, and is likely to be causally linked to, the diversity of inputs received by the neurons that control chirps and gradual frequency rises, respectively. These neurons form two distinct sub-nuclei within the central posterior/prepacemaker nucleus in the dorsal thalamus. In vitro tract-tracing experiments have elucidated some of the connections of this complex with other brain regions. Direct input is received from the optic tectum. Indirect input arising from telencephalic and hypothalamic regions, as well as from the preoptic area, is relayed to the central posterior/prepacemaker nucleus via the preglomerular nucleus. Feedback loops may be provided by projections of the central posterior/prepacemaker nucleus to the preglomerular nucleus and the nucleus preopticus periventricularis.
Collapse
Affiliation(s)
- Günther K H Zupanc
- School of Biological Sciences, University of Manchester, 3.614 Stopford Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
23
|
Dunlap KD, Larkins-Ford J. Diversity in the structure of electrocommunication signals within a genus of electric fish, Apteronotus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2003; 189:153-61. [PMID: 12607044 DOI: 10.1007/s00359-003-0393-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2002] [Revised: 11/21/2002] [Accepted: 01/01/2003] [Indexed: 10/25/2022]
Abstract
Some gymnotiform electric fish modulate their electric organ discharge for intraspecific communication. In Apteronotus leptorhynchus, chirps are usually rapid (10-30 ms) modulations that are activated through non- N-methyl- d-aspartate (non-NMDA) glutamate receptors in the hindbrain pacemaker nucleus. Males produce longer chirp types than females and chirp at higher rates. In Apteronotus albifrons, chirp rate is sexually monomorphic, but chirp structure (change in frequency and amplitude during a chirp) was unknown. To better understand the neural regulation and evolution of chirping behavior, we compared chirp structure in these two species under identical stimulus regimes. A. albifrons, like A. leptorhynchus, produced distinct types of chirps that varied, in part, by frequency excursion. However, unlike in A. leptorhynchus, chirp types in A. albifrons varied little in duration, and chirps were all longer (70-200 ms) than those of A. leptorhynchus. Chirp type production was not sexually dimorphic in A. albifrons, but within two chirp types males produced longer chirps than females. We suggest that species differences in chirp duration might be attributable to differences in the relative proportions of fast-acting (non-NMDA) and slow-acting (NMDA) glutamate receptors in the pacemaker. Additionally, we map species difference onto a phylogeny and hypothesize an evolutionary sequence for the diversification of chirp structure.
Collapse
Affiliation(s)
- K D Dunlap
- Department of Biology, Trinity College, Hartford, CT 06106, USA.
| | | |
Collapse
|
24
|
The long-term resetting of a brainstem pacemaker nucleus by synaptic input: a model for sensorimotor adaptation. J Neurosci 2002. [PMID: 12223583 DOI: 10.1523/jneurosci.22-18-08287.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cellular mechanisms behind sensorimotor adaptations, such as the adaptation to a sustained change in visual inputs by prism goggles in humans, are not known. Here we present a novel example of long-term sensorimotor adaptation in a well known neuroethological model, the jamming-avoidance response of a weakly electric fish. The adaptation is relatively long lasting, up to 9 hr in vivo, and is likely to be mediated by NMDA receptors. We demonstrate in a brain slice preparation that the pacemaker nucleus is the locus of adaptation and that it responds to long-lasting synaptic stimulation with an increase in the postsynaptic spike frequency persisting for hours after stimulus termination. The mechanism for the neuronal memory behaves as an integrator, and memory duration and strength are quantitatively related to the estimated amount of synaptic stimulation. This finding is contrary to the idea that neurons respond solely to long-lasting synaptic input by turning down their intrinsic excitability. We show that this positive feedback at the cellular level actually contributes to a negative feedback loop at the organismic level if the entire neural circuit and the behavioral link are considered.
Collapse
|
25
|
Oestreich J, Zakon HH. The long-term resetting of a brainstem pacemaker nucleus by synaptic input: a model for sensorimotor adaptation. J Neurosci 2002; 22:8287-96. [PMID: 12223583 PMCID: PMC6758098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023] Open
Abstract
The cellular mechanisms behind sensorimotor adaptations, such as the adaptation to a sustained change in visual inputs by prism goggles in humans, are not known. Here we present a novel example of long-term sensorimotor adaptation in a well known neuroethological model, the jamming-avoidance response of a weakly electric fish. The adaptation is relatively long lasting, up to 9 hr in vivo, and is likely to be mediated by NMDA receptors. We demonstrate in a brain slice preparation that the pacemaker nucleus is the locus of adaptation and that it responds to long-lasting synaptic stimulation with an increase in the postsynaptic spike frequency persisting for hours after stimulus termination. The mechanism for the neuronal memory behaves as an integrator, and memory duration and strength are quantitatively related to the estimated amount of synaptic stimulation. This finding is contrary to the idea that neurons respond solely to long-lasting synaptic input by turning down their intrinsic excitability. We show that this positive feedback at the cellular level actually contributes to a negative feedback loop at the organismic level if the entire neural circuit and the behavioral link are considered.
Collapse
Affiliation(s)
- Jörg Oestreich
- Section of Neurobiology, University of Texas at Austin, Patterson Laboratories, Austin, Texas 78712, USA.
| | | |
Collapse
|
26
|
Zakon H, Oestreich J, Tallarovic S, Triefenbach F. EOD modulations of brown ghost electric fish: JARs, chirps, rises, and dips. ACTA ACUST UNITED AC 2002; 96:451-8. [PMID: 14692493 DOI: 10.1016/s0928-4257(03)00012-3] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Weakly electric "wave" fish make highly regular electric organ discharges (EODs) for precise electrolocation. Yet, they modulate the ongoing rhythmicity of their EOD during social interactions. These modulations may last from a few milliseconds to tens of minutes. In this paper we describe the different types of EOD modulations, what they may signal to recipient fish, and how they are generated on a neural level. Our main conclusions, based on a species called the brown ghost (Apteronotus leptorhynchus) are that fish: (1) show sexual dimorphism in the signals that they generate; (2) make different signals depending on Whether they are interacting with a fish of the opposite sex or, within their own sex, to a fish of that which is dominant or subordinate to it; (3) are able to assess relative dominance from electrical cues; (4) have a type of plasticity in the pacemaker nucleus, the control center for the EOD, that occurs after stimulation of NMDA receptors that causes a long-lasting (tens of minutes to hours) change in EOD frequency; (5) that this NMDA receptor-dependent change may occur in reflexive responses, like the jamming avoidance response (JAR), as well as after certain long-lasting social signals. We propose that NMDA-receptor dependent increases in EOD frequency during the JAR adaptively shift the EOD frequency to a new value to avoid jamming by another fish and that such increases in EOD frequency during social encounters may be advantageous since social dominance seems to be positively correlated with EOD frequency in both sexes.
Collapse
Affiliation(s)
- Harold Zakon
- Section of Neurobiology and Institute for Neuroscience, The University of Texas, Austin, TX 78712, USA.
| | | | | | | |
Collapse
|
27
|
Moortgat KT, Bullock TH, Sejnowski TJ. Precision of the pacemaker nucleus in a weakly electric fish: network versus cellular influences. J Neurophysiol 2000; 83:971-83. [PMID: 10669509 DOI: 10.1152/jn.2000.83.2.971] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the relative influence of cellular and network properties on the extreme spike timing precision observed in the medullary pacemaker nucleus (Pn) of the weakly electric fish Apteronotus leptorhynchus. Of all known biological rhythms, the electric organ discharge of this and related species is the most temporally precise, with a coefficient of variation (CV = standard deviation/mean period) of 2 x 10(-4) and standard deviation (SD) of 0.12-1.0 micros. The timing of the electric organ discharge is commanded by neurons of the Pn, individual cells of which we show in an in vitro preparation to have only a slightly lesser degree of precision. Among the 100-150 Pn neurons, dye injection into a pacemaker cell resulted in dye coupling in one to five other pacemaker cells and one to three relay cells, consistent with previous results. Relay cell fills, however, showed profuse dendrites and contacts never seen before: relay cell dendrites dye-coupled to one to seven pacemaker and one to seven relay cells. Moderate (0.1-10 nA) intracellular current injection had no effect on a neuron's spiking period, and only slightly modulated its spike amplitude, but could reset the spike phase. In contrast, massive hyperpolarizing current injections (15-25 nA) could force the cell to skip spikes. The relative timing of subthreshold and full spikes suggested that at least some pacemaker cells are likely to be intrinsic oscillators. The relative amplitudes of the subthreshold and full spikes gave a lower bound to the gap junctional coupling coefficient of 0.01-0.08. Three drugs, called gap junction blockers for their mode of action in other preparations, caused immediate and substantial reduction in frequency, altered the phase lag between pairs of neurons, and later caused the spike amplitude to drop, without altering the spike timing precision. Thus we conclude that the high precision of the normal Pn rhythm does not require maximal gap junction conductances between neurons that have ordinary cellular precision. Rather, the spiking precision can be explained as an intrinsic cellular property while the gap junctions act to frequency- and phase-lock the network oscillations.
Collapse
Affiliation(s)
- K T Moortgat
- Howard Hughes Medical Institute, Computational Neurobiology Laboratory, The Salk Institute, La Jolla 92037, University of California, San Diego, La Jolla, California 92093, USA
| | | | | |
Collapse
|
28
|
Mauthner cell-initiated electromotor behavior is mediated via NMDA and metabotropic glutamatergic receptors on medullary pacemaker neurons in a gymnotid fish. J Neurosci 1999. [PMID: 10516331 DOI: 10.1523/jneurosci.19-20-09133.1999] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Weakly electric fish generate meaningful electromotor behaviors by specific modulations of the discharge of their medullary pacemaker nucleus from which the rhythmic command for each electric organ discharge (EOD) arises. Certain electromotor behaviors seem to involve the activation of specific neurotransmitter receptors on particular target cells within the nucleus, i.e., on pacemaker or on relay cells. This paper deals with the neural basis of the electromotor behavior elicited by activation of Mauthner cells in Gymnotus carapo. This behavior consists of an abrupt and prolonged increase in the rate of the EOD. The effects of specific glutamate agonists and antagonists on basal EOD frequency and on EOD accelerations induced by Mauthner cell activation were assessed. Injections of both ionotropic (AMPA, kainate, and NMDA) and metabotropic (trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid) glutamate agonists induced increases in EOD rate that were maximal when performed close to the soma of pacemaker cells. In contrast, injections in the proximity of relay cells were ineffective. Therefore, pacemaker neurons are probably endowed with diverse glutamate receptor subtypes, whereas relay cells are probably not. The Mauthner cell-evoked electromotor behavior was suppressed by injections of AP-5 and (+/-)-amino-4-carboxy-methyl-phenylacetic acid, NMDA receptor and metabotropic glutamate receptor antagonists, respectively. Thus, this electromotor behavior relies on the activation of the NMDA and metabotropic glutamate receptor subtypes of pacemaker cells. Our study gives evidence for the synergistic effects of NMDA and metabotropic receptor activation and shows how a simple circuit can produce specific electromotor outputs.
Collapse
|
29
|
Curti S, Falconi A, Morales FR, Borde M. Mauthner cell-initiated electromotor behavior is mediated via NMDA and metabotropic glutamatergic receptors on medullary pacemaker neurons in a gymnotid fish. J Neurosci 1999; 19:9133-40. [PMID: 10516331 PMCID: PMC6782784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023] Open
Abstract
Weakly electric fish generate meaningful electromotor behaviors by specific modulations of the discharge of their medullary pacemaker nucleus from which the rhythmic command for each electric organ discharge (EOD) arises. Certain electromotor behaviors seem to involve the activation of specific neurotransmitter receptors on particular target cells within the nucleus, i.e., on pacemaker or on relay cells. This paper deals with the neural basis of the electromotor behavior elicited by activation of Mauthner cells in Gymnotus carapo. This behavior consists of an abrupt and prolonged increase in the rate of the EOD. The effects of specific glutamate agonists and antagonists on basal EOD frequency and on EOD accelerations induced by Mauthner cell activation were assessed. Injections of both ionotropic (AMPA, kainate, and NMDA) and metabotropic (trans-(+/-)-1-amino-1,3-cyclopentanedicarboxylic acid) glutamate agonists induced increases in EOD rate that were maximal when performed close to the soma of pacemaker cells. In contrast, injections in the proximity of relay cells were ineffective. Therefore, pacemaker neurons are probably endowed with diverse glutamate receptor subtypes, whereas relay cells are probably not. The Mauthner cell-evoked electromotor behavior was suppressed by injections of AP-5 and (+/-)-amino-4-carboxy-methyl-phenylacetic acid, NMDA receptor and metabotropic glutamate receptor antagonists, respectively. Thus, this electromotor behavior relies on the activation of the NMDA and metabotropic glutamate receptor subtypes of pacemaker cells. Our study gives evidence for the synergistic effects of NMDA and metabotropic receptor activation and shows how a simple circuit can produce specific electromotor outputs.
Collapse
Affiliation(s)
- S Curti
- Departamento de Fisiología, Laboratorio de Neurofisiología Celular, Facultad de Medicina and Facultad de Ciencias, Montevideo, Uruguay
| | | | | | | |
Collapse
|
30
|
Metzner W. Neural circuitry for communication and jamming avoidance in gymnotiform electric fish. J Exp Biol 1999; 202:1365-75. [PMID: 10210677 DOI: 10.1242/jeb.202.10.1365] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Over the past decade, research on the neural basis of communication and jamming avoidance in gymnotiform electric fish has concentrated on comparative studies of the premotor control of these behaviors, on the sensory processing of communication signals and on their control through the endocrine system, and tackled the question of the degree to which these behaviors share neural elements in the sensory-motor command chain by which they are controlled. From this wealth of investigations, we learned, first, how several segregated premotor pathways controlling a single central pattern generator, the medullary pacemaker nucleus, can provide a large repertoire of behaviorally relevant motor patterns. The results suggest that even small evolutionary modifications in the premotor circuitry can yield extensive changes in the behavioral output. Second, we have gained some insight into the concerted action of the brainstem, the diencephalon and the long-neglected forebrain in sensory processing and premotor control of communication behavior. Finally, these studies shed some light on the behavioral significance of multiple sensory brain maps in the electrosensory lateral line lobe that long have been a mystery. From these latter findings, it is tempting to interpret the information processing in the electrosensory system as a first step in the evolution towards the ‘distributed hierarchical’ organization commonly realized in sensory systems of higher vertebrates.
Collapse
Affiliation(s)
- W Metzner
- Department of Biology, University of California at Riverside, Riverside, CA 92521-0427, USA.
| |
Collapse
|
31
|
Abstract
The complete sequences and expression patterns of the NR1 (aptNR1) subunit of the N-methyl-d-aspartate (NMDA) receptor and its alternative splice isoforms have been determined for the weakly electric fish Apteronotus leptorhynchus. The deduced amino acid sequence of aptNR1 is approximately 88 % identical to the NR1 sequences of other vertebrate. Two of the three alternative splice cassettes previously described for mammalian NR1s, N1 and C1, are present in aptNR1, but the third cassette, C2, is not found. In addition, two teleost-specific splice cassettes occur on the N-terminal side of the C1 sequence. The cellular patterns of aptNR1 expression, including the patterns of N1 and C1 splicing, have been mapped using the in situ hybridization technique. High levels of aptNR1 mRNA were detected throughout the central nervous system including most neurons of the electrosensory system, with the highest levels in electrosensory lateral line lobe pyramidal cells. Expression of the N1 splice isoform was higher in more caudal regions of the brain, and expression of the C1 splice isoform was higher in more rostral regions. The N1 splice isoform was present in almost all NR1-positive cells, in contrast to the C1 splice isoform which was restricted to a subset of NR1-positive cells. These results demonstrate that the NR1 subunit of the NMDA receptor is evolutionarily conserved across species and that regulation of alternative RNA splicing modulates the properties of NR1 in different neurons of the central nervous system of A. leptorhynchus.
Collapse
Affiliation(s)
- R J Dunn
- Center for Research in Neuroscience, Montreal General Hospital Research Institute, Montreal, Quebec, Canada H3G 1A4.
| | | | | |
Collapse
|
32
|
Zakon H, Mcanelly L, Smith GT, Dunlap K, Lopreato G, Oestreich J, Few WP. Plasticity of the electric organ discharge: implications for the regulation of ionic currents. J Exp Biol 1999; 202:1409-16. [PMID: 10210681 DOI: 10.1242/jeb.202.10.1409] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Weakly electric fish emit electric organ discharges (EODs) to locate objects around themselves and for communication. The EOD is generated by a simple hierarchically organized, neurophysiologically accessible circuit, the electromotor system. A number of forms of plasticity of the EOD waveform are initiated by social or environmental factors and mediated by hormones or neurotransmitters. Because the behavior itself is in the form of electric discharges, behavioral observations easily lead to testable hypotheses about the biophysical bases of these plasticities. This allows us to study ionic channels in their native cellular environments, where the regulation of various parameters of these currents have obvious functional consequences. In this review, we discuss three types of plasticity: a rapidly occurring, long-lasting, N-methyl-d-aspartate (NMDA)-receptor-dependent increase in baseline firing frequency of neurons in the pacemaker nucleus that underlies a readjustment of the baseline EOD frequency after long bouts of the jamming avoidance response; a rapidly occurring diurnal change in amplitude and duration of the EOD pulse that depends in part on modulation of the magnitude of the electrocyte Na+ current by a protein kinase; and a slowly occurring, hormonally modulated tandem change in pacemaker firing frequency and in the duration of the EOD pulse in which changes in EOD pulse duration are mediated by coordinated shifts in the activation and inactivation kinetics of the electrocyte Na+ and K+ currents.
Collapse
Affiliation(s)
- H Zakon
- Division of Biological Sciences, Section of Neurobiology and Institute for Neuroscience, Patterson Laboratory, The University of Texas, Austin, TX 78712, USA.
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Although essential for understanding the mechanisms underlying sensorimotor integration and motor control of behaviors, very little is known about the degree to which different behaviors share neural elements of the sensorimotor command chain by which they are controlled. Here, we provide, to our knowledge, the first direct physiological evidence that various modulatory premotor inputs to a vertebrate central pattern generator, the pacemaker nucleus in gymnotiform electric fish, carrying distinctly different behavioral information, can remain segregated from their various sites of origin in the diencephalon to the synaptic termination sites on different target neurons in the medullary pacemaker nucleus. During pharmacological activation of each of the premotor inputs originating from the three prepacemaker nuclei so far identified, we determined in vivo the changes in input resistance in the neuronal elements of the pacemaker nucleus, i.e., relay cells and pacemaker cells. We found that each input yields significantly different effects on these cells; the inputs from the two diencephalic prepacemaker nuclei, PPnC and PPnG, which resulted in increased oscillator activity, caused significantly lower input resistances in relay and pacemaker cells, respectively, exhibiting drastically different time courses. The input from the sublemniscal prepacemaker nucleus, which resulted in reduced oscillator activity, however, caused a significant increase in input resistance only in relay cells. Considering that the sensory pathways processing stimuli yielding these behaviors are separated as well, this study indicates that sensorimotor control of different behaviors can occur in strictly segregated channels from the sensory input of the brain all through to the synaptic input level of the final premotor command nucleus.
Collapse
|
34
|
Juranek J, Metzner W. Segregation of behavior-specific synaptic inputs to a vertebrate neuronal oscillator. J Neurosci 1998; 18:9010-9. [PMID: 9787006 PMCID: PMC6793514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Although essential for understanding the mechanisms underlying sensorimotor integration and motor control of behaviors, very little is known about the degree to which different behaviors share neural elements of the sensorimotor command chain by which they are controlled. Here, we provide, to our knowledge, the first direct physiological evidence that various modulatory premotor inputs to a vertebrate central pattern generator, the pacemaker nucleus in gymnotiform electric fish, carrying distinctly different behavioral information, can remain segregated from their various sites of origin in the diencephalon to the synaptic termination sites on different target neurons in the medullary pacemaker nucleus. During pharmacological activation of each of the premotor inputs originating from the three prepacemaker nuclei so far identified, we determined in vivo the changes in input resistance in the neuronal elements of the pacemaker nucleus, i.e., relay cells and pacemaker cells. We found that each input yields significantly different effects on these cells; the inputs from the two diencephalic prepacemaker nuclei, PPnC and PPnG, which resulted in increased oscillator activity, caused significantly lower input resistances in relay and pacemaker cells, respectively, exhibiting drastically different time courses. The input from the sublemniscal prepacemaker nucleus, which resulted in reduced oscillator activity, however, caused a significant increase in input resistance only in relay cells. Considering that the sensory pathways processing stimuli yielding these behaviors are separated as well, this study indicates that sensorimotor control of different behaviors can occur in strictly segregated channels from the sensory input of the brain all through to the synaptic input level of the final premotor command nucleus.
Collapse
Affiliation(s)
- J Juranek
- Program in Neuroscience, Department of Psychology, University of California at Riverside, Riverside, California 92521-0427, USA
| | | |
Collapse
|
35
|
Abstract
Multiple brain maps are commonly found in virtually every vertebrate sensory system. Although their functional significance is generally relatively little understood, they seem to specialize in processing distinct sensory parameters. Nevertheless, to yield the stimulus features that ultimately elicit the adaptive behavior, it appears that information streams have to be combined across maps. Results from current lesion experiments in the electrosensory system, however, suggest an alternative possibility. Inactivations of different maps of the first-order electrosensory nucleus in electric fish, the electrosensory lateral line lobe, resulted in markedly different behavioral deficits. The centromedial map is both necessary and sufficient for a particular electrolocation behavior, the jamming avoidance response, whereas it does not affect the communicative response to external electric signals. Conversely, the lateral map does not affect the jamming avoidance response but is necessary and sufficient to evoke communication behavior. Because the premotor pathways controlling the two behaviors in these fish appear to be separated as well, this system illustrates that sensory-motor control of different behaviors can occur in strictly segregated channels from the sensory input of the brain all through to its motor output. This might reflect an early evolutionary stage where multiplication of brain maps can satisfy the demand on processing a wider range of sensory signals ensuing from an enlarged behavioral repertoire, and bridging across maps is not yet required.
Collapse
Affiliation(s)
- W Metzner
- Department of Biology, Department of Psychology, University of California, Riverside, CA 92521, USA.
| | | |
Collapse
|
36
|
Bottai D, Dunn RJ, Ellis W, Maler L. N-methyl-D-aspartate receptor 1 mRNA distribution in the central nervous system of the weakly electric fish Apteronotus leptorhynchus. J Comp Neurol 1997; 389:65-80. [PMID: 9390760 DOI: 10.1002/(sici)1096-9861(19971208)389:1<65::aid-cne5>3.0.co;2-c] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We have isolated a partial cDNA for the N-methyl-D-aspartate (NMDA) receptor 1 (NMDAR1) subunit from an Apteronotus leptorhynchus brain cDNA library. The A. leptorhynchus cDNA fragment, which corresponds to nucleotides 135-903 within the 5' region of the rat NR1 mRNA, encodes 252 amino acids that are >80% identical to the homologous segments of the rat, human, and duck NR1 proteins. RNAse protection assays revealed that the A. leptorhynchus NR1 mRNA was highly enriched in the forebrain and hypothalamus, with lesser amounts in the brainstem, and very low levels in the cerebellum. In situ hybridization also demonstrated that neurons in the pallial forebrain were highly enriched in NR1 transcripts. High levels of NR1 mRNA were found in pyramidal cells within the optic tectum and octavolateral regions. Pyramidal cells of the electrosensory lateral line lobe had the highest levels of expression, and the NR1 mRNA was found to be selectively enriched in their apical dendrites.
Collapse
Affiliation(s)
- D Bottai
- Center for Research in Neuroscience, Montreal General Hospital Research Institute, Quebec, Canada.
| | | | | | | |
Collapse
|
37
|
Spiro JE. Differential activation of glutamate receptor subtypes on a single class of cells enables a neural oscillator to produce distinct behaviors. J Neurophysiol 1997; 78:835-47. [PMID: 9307117 DOI: 10.1152/jn.1997.78.2.835] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Electric fish generate different types of abrupt modulations of their electric organ discharge (EOD) rhythm to convey specific social signals. Intracellular recordings were made from neurons of the medullary pacemaker nucleus, which generates and transmits the rhythm that drives the EOD, to study the neuronal basis of two such modulations of the regular EOD rhythm, sudden accelerations, and abrupt interruptions. Recordings were both in vivo, and in a new in vitro brain preparation of Hypopomus pinnicaudatus (order Gymnotiformes). In vivo recordings during triggered behaviors indicated that abrupt modulations of the EOD rhythm are generated in the medullary pacemaker nucleus at the level of the relay cells, which are the projection cells of the nucleus, and not the pacemaker cells. In the in vitro brain stem preparation, cells of the pacemaker nucleus were spontaneously and rhythmically active as in the intact animal. Distinct modulations of the pacemaker nucleus rhythm that closely resembled those seen during natural behaviors could be triggered by electrical stimulation of afferent fibers. Modulations of the rhythm also could be triggered by direct pharmacological activation of the relay cells. When non-N-methyl-D-aspartate (NMDA) receptors were activated, relay cells were transiently depolarized and generated bursts of synchronized action potentials. NMDA receptor activation, alternatively, initiated a prolonged depolarization in the relay cells, during which time they failed to relay the regular pacemaker rhythm. The two firing states of the relay cell directly correlate with sudden accelerations and abrupt interruptions of the EOD.
Collapse
Affiliation(s)
- J E Spiro
- Department of Biology, University of California at San Diego, La Jolla 92093-0202, USA.
| |
Collapse
|
38
|
Bass AH, Baker R. Phenotypic specification of hindbrain rhombomeres and the origins of rhythmic circuits in vertebrates. BRAIN, BEHAVIOR AND EVOLUTION 1997; 50 Suppl 1:3-16. [PMID: 9217990 PMCID: PMC3023276 DOI: 10.1159/000113351] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
This essay considers the ontogeny and phylogeny of the cranial neural circuitry producing rhythmic behaviors in vertebrates. These behaviors are characterized by predictable temporal patterns established by a neuronal network variously referred to as either a pacemaker, neural oscillator or central pattern generator. Comparative vertebrate studies have demonstrated that the embryonic hindbrain is divided into segmented compartments called rhombomeres, each of which gives rise to a distinct complement of cranial motoneurons and, as yet, unidentified populations of interneurons. We now propose that novel rhythmic circuits were innovations associated with the adoption of cardiac and respiratory pumps during the protochordate-vertebrate transition. We further suggest that the pattern-generating circuits of more recent innovations, such as the vocal, electromotor and extraocular systems, have originated from the same Hox gene-specified compartments of the embryonic hindbrain (rhombomeres 7-8) that gave rise to rhythmically active cardiac and respiratory circuits. Lastly, we propose that the capability for pattern generation by neurons originating from rhombomeres 7 and 8 is due to their electroresponsive properties producing pacemaker oscillations, as best typified by the inferior olive which also has origins from these same hindbrain compartments and has been suggested to establish rhythmic oscillations coupled to sensorimotor function throughout the neuraxis of vertebrates.
Collapse
Affiliation(s)
- A H Bass
- Section of Neurobiology and Behavior, Cornell University, Ithaca, N.Y. 14853, USA.
| | | |
Collapse
|
39
|
Heiligenberg W, Metzner W, Wong CJ, Keller CH. Motor control of the jamming avoidance response of Apteronotus leptorhynchus: evolutionary changes of a behavior and its neuronal substrates. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1996; 179:653-74. [PMID: 8888577 DOI: 10.1007/bf00216130] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The two closely related gymnotiform fishes, Apteronotus and Eigenmannia, share many similar communication and electrolocation behaviors that require modulation of the frequency of their electric organ discharges. The premotor linkages between their electrosensory system and their medullary pacemaker nucleus, which controls the repetition rate of their electric organ discharges, appear to function differently, however. In the context of the jamming avoidance response, Eigenmannia can raise or lower its electric organ discharge frequency from its resting level. A normally quiescent input from the diencephalic pre-pacemaker nucleus can be recruited to raise the electric organ discharge frequency above the resting level. Another normally active input, from the sublemniscal pre-pacemaker nucleus, can be inhibited to lower the electric organ discharge frequency below the resting level (Metzner 1993). In contrast, during a jamming avoidance response, Apteronotus cannot lower its electric organ discharge frequency below the resting level. The sublemniscal pre-pacemaker is normally completely inhibited and release of this inhibition allows the electric organ discharge frequency to rise during the jamming avoidance response. Further inhibition of this nucleus cannot lower the electric organ discharge frequency below the resting level. Lesions of the diencephalic pre-pacemaker do not affect performance of the jamming avoidance response. Thus, in Apteronotus, the sublemniscal pre-pacemaker alone controls the changes of the electric organ discharge frequency during the jamming avoidance response.
Collapse
Affiliation(s)
- W Heiligenberg
- Scripps Institution of Oceanography, University of California at San Diego, La Jolla 92093-0202, USA
| | | | | | | |
Collapse
|
40
|
The neuronal basis of communication and orientation in the weakly electric fish,Eigenmannia. Naturwissenschaften 1996. [DOI: 10.1007/bf01141873] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Abstract
New- and old-world tropical electric fish lack a common electrical ancestor, suggesting that the mechanisms of signal generation and recognition evolved independently in the two groups. Recent research on convergent designs for electrogenesis and electroreception has focused on the structure of electric organs, the neural circuitry controlling the pacemaker driving the electric organ, and the neural circuitry underlying time coding of electric waveforms.
Collapse
Affiliation(s)
- C D Hopkins
- Section of Neurobiology and Behavior, Cornell University, Ithaca, New York 14853, USA.
| |
Collapse
|
42
|
Turner RW, Moroz LL. Localization of nicotinamide adenine dinucleotide phosphate-diaphorase activity in electrosensory and electromotor systems of a gymnotiform teleost, Apteronotus leptorhynchus. J Comp Neurol 1995; 356:261-74. [PMID: 7629318 DOI: 10.1002/cne.903560209] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The distribution of nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d) activity was determined in electrosensory and electromotor systems of the weakly electric gymnotiform teleost Apteronotus leptorhynchus as an indicator of putative nitric oxide synthase-containing cells. NADPH-d activity was detected in electroreceptors and in afferent nerves of both ampullary and type I and type II tuberous organs. All cell bodies within the anterior lateral line nerve ganglion were positive for NADPH-d activity, as were the primary afferent axons and termination fields in the medullary electrosensory lateral line lobe. In the corpus cerebelli and valvula cerebelli, NADPH-d label was present in Purkinje cell somata, mossy fiber synaptic glomeruli, granule cells, and parallel fibers. In the midbrain, NADPH-d activity was apparent in layer VIIIB of the torus semicircularis dorsalis and in electrosensory laminae of the optic tectum. NADPH-d was particularly associated with diencephalic electrosensory and electromotor nuclei, including the prepacemaker nucleus, the nucleus subelectrosensorius, and the central posterior nucleus of the thalamus. Intense NADPH-d activity was present in pacemaker and relay cells of the medullary pacemaker nucleus but was absent from a novel class of smaller cells in this structure. Relay cell axons and spinal electromotor neurons and their axons within the electric organ were positive for NADPH-d activity. These results indicate that putative nitric oxide synthase-containing neurons in Apteronotus are localized preferentially to electrosensory and electromotor structures, suggesting a role for nitric oxide in determining the activity of cells involved in detecting or generating weakly electric fields.
Collapse
Affiliation(s)
- R W Turner
- Department of Medical Physiology, University of Calgary, Alberta, Canada
| | | |
Collapse
|
43
|
Kennedy G, Heiligenberg W. Ultrastructural evidence of GABA-ergic inhibition and glutamatergic excitation in the pacemaker nucleus of the gymnotiform electric fish, Hypopomus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1994; 174:267-80. [PMID: 7908694 DOI: 10.1007/bf00240210] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The medullary pacemaker nucleus of Hypopomus triggers each electric organ discharge (EOD) by a single command pulse. It consists of electrotonically coupled 'pacemaker' cells, which generate the rhythm, and 'relay' cells, which follow the pacemaker cells and excite the spinal motoneurons of the electric organ. The pacemaker cells receive two inputs from the complex of the diencephalic prepacemaker nucleus (PPn), a GABA-ergic inhibition and a glutamatergic excitation. Relay cells, on the other hand, receive two glutamatergic inputs, one from a subnucleus of the PPn, the PPn-C, and a second from the sublemniscal prepacemaker nucleus (SPPn). We have labelled afferents to the pacemaker nucleus by injecting HRP to specific sites of the prepacemaker complex. By using immunogold-labelled antibodies and en-grid staining techniques, we demonstrated GABA and glutamate immunoreactivity in labelled synaptic profiles of ultra-thin sections of the pacemaker nucleus. The two types of synapses were interspersed on the surfaces of pacemaker cells, with GABA-immunoreactive synapses apparently representing the GABA-mediated input of the 'PPn-I', an inhibitory subdivision of the PPn, and glutamate-immunoreactive synapses representing the input of the 'PPn-G', an excitatory subdivision of the PPn. Only glutamate-immunoreactive synapses were found on relay cells.
Collapse
Affiliation(s)
- G Kennedy
- Neurobiology Unit, Scripps Institution of Oceanography, La Jolla, CA 92093-0202
| | | |
Collapse
|
44
|
Contributions of electrosensory systems to neurobiology and neuroethology. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1993. [DOI: 10.1007/bf02451906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Zupanc GK, Heiligenberg W. The structure of the diencephalic prepacemaker nucleus revisited: light microscopic and ultrastructural studies. J Comp Neurol 1992; 323:558-69. [PMID: 1385493 DOI: 10.1002/cne.903230408] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The prepacemaker nucleus (PPn), a bilateral cluster of neurons at the boundary of diencephalon and mesencephalon, controls frequency modulations of the electric organ discharge in weakly electric knifefish (Eigenmannia sp.). Previous light microscopic studies employing retrograde labelling with horseradish peroxidase suggested that the PPn is restricted to a small area, located approximately 400 microns laterally from the third ventricle and fusing at its medial edge with the thalamic central posterior nucleus (CP). In the present investigation we used Phaseolus vulgaris-leucoagglutinin and cholera toxin as highly sensitive markers. In contrast to the previous studies, these experiments yielded a large number of labelled cells not only in the region of the traditionally defined PPn but also in an area reaching far into the CP. Since the PPn has been defined by retrograde labelling rather than by topographic criteria, this result questions the traditional separation between PPn and CP. Such a notion is in agreement with observations of Nissl-stained sections at the light microscopic level and with a quantitative analysis of several morphological characteristics of the cell bodies in the PPn and CP at the ultrastructural level. Both sets of experiments failed to find differences between the two nuclei. Furthermore, autoradiographic studies have shown that, even in adulthood, cells are continuously born within the ventricular zone of the CP, and at least some of these newborn cells differentiate into CP cells and migrate laterally towards the PPn. Therefore, we postulate that CP and PPn form one large complex, with the medial CP providing precursors of neurons in the lateral CP and PPn.
Collapse
Affiliation(s)
- G K Zupanc
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla 92093-0202
| | | |
Collapse
|
46
|
Zupanc GK. The synaptic organization of the prepacemaker nucleus in weakly electric knifefish, Eigenmannia: a quantitative ultrastructural study. JOURNAL OF NEUROCYTOLOGY 1991; 20:818-33. [PMID: 1783940 DOI: 10.1007/bf01191733] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Weakly electric knifefish (Eigenmannia sp.) produce continuous electric organ discharges at very constant frequencies. Modulations of the discharges occur during social interactions and are under control of the diencephalic prepacemaker nucleus. Abrupt frequency modulations, or 'chirps', which are observed predominantly during the breeding season, can be elicited by stimulation of neurons in a ventro-lateral portion of the prepacemaker nucleus, the so-called PPn-C. The PPn-C consists of approximately 100 loosely scattered large multipolar neurons which send dendrites into three territories, called 'dorso-medial', 'dorso-lateral', and 'ventral'. In the present ultrastructural investigation, the synaptic organization of these neurons, identified by retrograde labelling with horseradish peroxidase, was studied quantitatively. Somata and dendrites of the PPn-C receive input from two classes of chemical synapses. Class-1 boutons contain predominantly agranular, round vesicles and are believed to be excitatory. Class-2 boutons display predominantly flattened or pleiomorphic vesicles and are probably inhibitory. The action of the agranular vesicles in the synaptic boutons of these two classes may be modulated by the content of large dense-core vesicles. These comprise approximately 1% of the total vesicle population and are found predominantly in regions distant from the active zone of the synaptic bouton. The density of chemical synapses exhibits marked topographic differences. Class-1 boutons occur typically at densities of 3-12 synapses per 100 microns of profile length on dendrites and cell bodies. No significant differences in density of class-1 boutons could be found between distal dendrites of the three territories, proximal dendrites and cell bodies. The density of class-2 synapses, on the other hand, increases significantly from usually less than 1 synapse per 100 microns of profile length on distal dendrites to 2-3 synapses per 100 microns of profile length on proximal dendrites and cell bodies. Such a topographic organization could enable the proximal elements to 'veto' the depolarizing response of distal dendrites to excitatory inputs. The growth of dendrites in the dorso-medial territory during the breeding season, as shown in a previous study, and the concurrent doubling of excitatory input received by class-1 synapses, could overcome the inhibition caused on somata and proximal dendrites by class-2 synapses and thus account for the dramatic increase in the fish's propensity to chirp in the context of sexual maturity.
Collapse
Affiliation(s)
- G K Zupanc
- Department of Neurosciences, School of Medicine, University of California, San Diego, La Jolla 92093-0202
| |
Collapse
|
47
|
Keller CH, Kawasaki M, Heiligenberg W. The control of pacemaker modulations for social communication in the weakly electric fish Sternopygus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1991; 169:441-50. [PMID: 1685751 DOI: 10.1007/bf00197656] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nearly sinusoidal electric organ discharges (EODs) of the weakly electric fish Sternopygus, occur at a regular rate within a range from 50 to 200 Hz and are commanded by a medullary pacemaker nucleus (Pn). During courtship and aggression, the rate of EODs is modulated as smooth EOD-frequency rises or brief EOD-interruptions (Hopkins 1974b). The present study examines the control of such modulations. Rises were elicited by L-glutamate stimulation of the diencephalic prepacemaker nucleus, the only previously known source of input to the Pn. We demonstrate an additional input to the Pn, the sublemniscal prepacemaker nucleus (SPPn). L-glutamate stimulation of this area caused EOD-interruptions. The Pn contains electrotonically coupled 'pacemaker cells' which generate the rhythm of the EODs, as well as 'relay cells' which transmit the command pulse to the spinal motor neurons that innervate the electric organ. Pacemaker cells recorded intracellularly during EOD-interruptions continued firing at their regular frequency but with slightly increased jitter. Relay cells, on the other hand, were strongly depolarized and fired spikelets at a greatly increased frequency during EOD-interruptions. Thus EOD-interruptions were caused by SPPn input to relay cells that caused their massive depolarization, blocking the normal input from pacemaker cells without greatly affecting pacemaker cell firing characteristics. Application to the Pn of an antagonist to NMDA-type glutamate receptors blocked EOD-frequency rises and EOD-interruptions. Antagonists to quisqualate/kainate receptor-types were ineffective.
Collapse
Affiliation(s)
- C H Keller
- Institute of Neuroscience, University of Oregon, Eugene 97403
| | | | | |
Collapse
|
48
|
Smith PF, de Waele C, Vidal PP, Darlington CL. Excitatory amino acid receptors in normal and abnormal vestibular function. Mol Neurobiol 1991; 5:369-87. [PMID: 1668393 DOI: 10.1007/bf02935559] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although excitatory amino acid (EAA) receptors have been investigated extensively in the limbic system and neocortex, less is known of the function of EAA receptors in the brainstem. A number of biochemical and electrophysiological studies suggest that the synapse between the ipsilateral vestibular (VIIIth) nerve and the brainstem vestibular nucleus (VN) is mediated by an EAA acting predominantly on kainate or alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) receptors. In addition, there is electrophysiological evidence that input from the contralateral vestibular nerve via the contralateral VN is partially mediated by N-methyl-D-aspartate (NMDA) receptors. Input to the VN from the spinal cord may also be partially mediated by NMDA receptors. All of the electrophysiological studies conducted so far have used in vitro preparations, and it is possible that denervation of the VN during the preparation of an explant or slice causes changes in EAA receptor function. Nonetheless, these results suggest that EAA receptors may be important in many different parts of the vestibular reflex pathways. Studies of the peripheral vestibular system have also shown that EAAs are involved in transmission between the receptor hair cells and the vestibular nerve fibers. A number of recent studies in the area of vestibular plasticity have reported that antagonists for the NMDA receptor subtype disrupt the behavioral recovery that occurs following unilateral deafferentation of the vestibular nerve fibers (vestibular compensation). It has been suggested that vestibular compensation may be owing to an upregulation or increased affinity of NMDA receptors in the VN ipsilateral to the peripheral deafferentation; however; at present, there is no clear evidence to support this hypothesis.
Collapse
MESH Headings
- Afferent Pathways/physiology
- Animals
- Cats
- Denervation
- Electrophysiology
- Guinea Pigs
- Hair Cells, Auditory/chemistry
- Hair Cells, Auditory/physiology
- Mammals/physiology
- Neuronal Plasticity/physiology
- Ranidae/physiology
- Rats
- Receptors, AMPA
- Receptors, Kainic Acid
- Receptors, N-Methyl-D-Aspartate/analysis
- Receptors, N-Methyl-D-Aspartate/drug effects
- Receptors, N-Methyl-D-Aspartate/physiology
- Receptors, Neurotransmitter/analysis
- Receptors, Neurotransmitter/drug effects
- Receptors, Neurotransmitter/physiology
- Spinal Cord/physiology
- Vestibular Nerve/chemistry
- Vestibular Nerve/physiology
- Vestibular Nuclei/chemistry
- Vestibular Nuclei/physiology
Collapse
Affiliation(s)
- P F Smith
- Department of Psychology, Dunedin, New Zealand
| | | | | | | |
Collapse
|
49
|
Mooney R, Konishi M. Two distinct inputs to an avian song nucleus activate different glutamate receptor subtypes on individual neurons. Proc Natl Acad Sci U S A 1991; 88:4075-9. [PMID: 11607180 PMCID: PMC51600 DOI: 10.1073/pnas.88.10.4075] [Citation(s) in RCA: 118] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although neural circuits mediating various simple behaviors have been delineated, those generating more complex behaviors are less well described. The discrete structure of avian song control nuclei promises that circuits controlling complex behaviors, such as birdsong, can also be understood. To this end, we developed an in vitro brain slice preparation containing the robust nucleus of the archistriatum (RA), a forebrain song control nucleus, and its inputs from two other song nuclei, the caudal nucleus of the ventral hyperstriatum (HVc) and the lateral part of the magnocellular nucleus of the anterior neostriatum (L-MAN). Using intracellular recordings, we examined the pharmacological properties of the synapses made on RA neurons by L-MAN and HVc axons. Electrical stimulation of the L-MAN and the HVc fiber tracts evoked excitatory postsynaptic potentials (EPSPs) from >70% of RA neurons when slices were prepared from male birds of 40-90 days of age, suggesting that many individual RA neurons receive excitatory input from L-MAN and HVc axons. The "L-MAN" EPSPs were blocked by the N-methyl-D-aspartate (NMDA) receptor antagonist D-(-)-2-amino-5-phosphonovaleric acid (D-APV) as well as the broad-spectrum glutamate receptor antagonist kynurenic acid but were relatively unaffected by the non-NMDA receptor blocker 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX). In contrast, "HVc" EP-SPs were relatively insensitive to D-APV but almost completely abolished by CNQX. These experiments suggest that L-MAN and HVc axons provide pharmacologically distinct types of excitatory input to many of the same RA neurons.
Collapse
Affiliation(s)
- R Mooney
- Division of Biology, California Institute of Technology, Pasadena, CA 91125, USA
| | | |
Collapse
|
50
|
Dye J. Ionic and synaptic mechanisms underlying a brainstem oscillator: an in vitro study of the pacemaker nucleus of Apteronotus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 1991; 168:521-32. [PMID: 1681093 DOI: 10.1007/bf00215074] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. In an in vitro preparation of the medullary pacemaker nucleus of Apteronotus, the consequences of a variety of ionic and pharmacological manipulations upon both ongoing activity and synaptic modulation of the nucleus were assessed. 2. Spontaneous rhythmicity in the pacemaker nucleus was found to be Na+-, K+-, and Ca(2+)-dependent. The extreme sensitivity to 4-aminopyridine (4-AP) relative to other treatments suggested that the K+ A-current is a critical element in the oscillations. 3. Elevated K+ or 4-AP were titrated to concentrations that suppressed spontaneous oscillations, but allowed modulatory, 'chirp' epsps to persist. The transition to elevated K+ revealed oscillatory properties in some neurons in the form of epsp-induced ringing 4. Threshold concentrations of 4-AP sufficient to halt oscillations, caused epsps to become larger and complex, increased input resistance, and enhanced the effects of current injection on epsp amplitude. A greater degree of voltage-sensitivity was also seen in later components of the complex epsp. 5. Several treatments presumed to increase Ca2+ caused desynchronization of firing and revealed diverging intrinsic frequencies among cells.
Collapse
Affiliation(s)
- J Dye
- Department of Neurosciences & Neurobiology Unit, Scripps Institution of Oceanography, UCSD, La Jolla, CA 92093
| |
Collapse
|