1
|
Jin H, Li D, Lin MH, Li L, Harrich D. Tat-Based Therapies as an Adjuvant for an HIV-1 Functional Cure. Viruses 2020; 12:v12040415. [PMID: 32276443 PMCID: PMC7232260 DOI: 10.3390/v12040415] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/04/2020] [Indexed: 12/18/2022] Open
Abstract
The human immunodeficiency virus type 1 (HIV) establishes a chronic infection that can be well controlled, but not cured, by combined antiretroviral therapy (cART). Interventions have been explored to accomplish a functional cure, meaning that a patient remains infected but HIV is undetectable in the blood, with the aim of allowing patients to live without cART. Tat, the viral transactivator of transcription protein, plays a critical role in controlling HIV transcription, latency, and viral rebound following the interruption of cART treatment. Therefore, a logical approach for controlling HIV would be to block Tat. Tackling Tat with inhibitors has been a difficult task, but some recent discoveries hold promise. Two anti-HIV proteins, Nullbasic (a mutant of Tat) and HT1 (a fusion of HEXIM1 and Tat functional domains) inhibit viral transcription by interfering with the interaction of Tat and cellular factors. Two small molecules, didehydro-cortistatin A (dCA) and triptolide, inhibit Tat by different mechanisms: dCA through direct binding and triptolide through enhanced proteasomal degradation. Finally, two Tat-based vaccines under development elicit Tat-neutralizing antibodies. These vaccines have increased the levels of CD4+ cells and reduced viral loads in HIV-infected people, suggesting that the new vaccines are therapeutic. This review summarizes recent developments of anti-Tat agents and how they could contribute to a functional cure for HIV.
Collapse
Affiliation(s)
- Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Min-Hsuan Lin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia;
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; (H.J.); (D.L.); (M.-H.L.)
- Correspondence: ; Tel.: +617-3845-3679
| |
Collapse
|
2
|
RNA glycosidase and other agents target Tat to inhibit HIV-1 transcription. Biochem J 2018; 475:1059-1062. [PMID: 29559581 DOI: 10.1042/bcj20170669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/08/2018] [Accepted: 02/12/2018] [Indexed: 11/17/2022]
Abstract
The HIV-1 tat gene encodes a small 86-104 amino acid protein depending on the HIV-1 strain. Tat is essential for HIV-1 replication through interactions with numerous cellular transcription factors. The interaction between Tat and P-TEFb, which is a cellular protein complex composed of cyclin T1 and CDK9, delivers P-TEFb to the newly transcribed viral mRNAs where phosphorylation of RNA polymerase II by CDK9 leads to highly efficient mRNA transcription. It has long been recognized that Tat is a potential anti-HIV-1 target and possibly a viral Achilles' heel. However, specifically targeting Tat without affecting normal host cell functions has been challenging. Means to inactivate Tat have been reported that includes small compounds, transdominant negative Tat proteins, and by plant-derived antivirals. Investigations of these agents have reported encouraging outcomes that inform and may hopefully affect strategies for a functional HIV-1 cure.
Collapse
|
3
|
Rustanti L, Jin H, Li D, Lor M, Sivakumaran H, Harrich D. Differential Effects of Strategies to Improve the Transduction Efficiency of Lentiviral Vector that Conveys an Anti-HIV Protein, Nullbasic, in Human T Cells. Virol Sin 2018. [PMID: 29541943 DOI: 10.1007/s12250-018-0004-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Nullbasic is a mutant form of HIV-1 Tat that has strong ability to protect cells from HIV-1 replication by inhibiting three different steps of viral replication: reverse transcription, Rev export of viral mRNA from the nucleus to the cytoplasm and transcription of viral mRNA by RNA polymerase II. We previously showed that Nullbasic inhibits transduction of human cells including T cells by HIV-1-based lentiviral vectors. Here we investigated whether the Nullbasic antagonists huTat2 (a Tat targeting intrabody), HIV-1 Tat or Rev proteins or cellular DDX1 protein could improve transduction by a HIV-1 lentiviral vector conveying Nullbasic-ZsGreen1 to human T cells. We show that overexpression of huTat2, Tat-FLAG and DDX1-HA in virus-like particle (VLP) producer cells significantly improved transduction efficiency of VLPs that convey Nullbasic in Jurkat cells. Specifically, co-expression of Tat-FLAG and DDX1-HA in the VLP producer cell improved transduction efficiency better than if used individually. Transduction efficiencies could be further improved by including a spinoculation step. However, the same optimised protocol and using the same VLPs failed to transduce primary human CD4+ T cells. The results imply that the effects of Nullbasic on VLPs on early HIV-1 replication are robust in human CD4+ T cells. Given this significant block to lentiviral vector transduction by Nullbasic in primary CD4+ T cells, our data indicate that gammaretroviral, but not lentiviral, vectors are suitable for delivering Nullbasic to primary human T cells.
Collapse
Affiliation(s)
- Lina Rustanti
- Faculty of Medicine, The University of Queensland, Herston, QLD, 4029, Australia
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
- National Institute of Health Research and Development, the Ministry of Health of Republic of Indonesia, Central Jakarta, DKI Jakarta, 10560, Indonesia
| | - Hongping Jin
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Dongsheng Li
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Mary Lor
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - Haran Sivakumaran
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia
| | - David Harrich
- Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4029, Australia.
| |
Collapse
|
4
|
Abstract
Despite its small genome size, the Human Immunodeficiency Virus 1 (HIV-1) is one of the most successful pathogens and has infected more than 70 million people worldwide within the last decades. In total, HIV-1 expresses 16 canonical proteins from only nine genes within its 10 kb genome. Expression of the structural genes gag, pol, and env, the regulatory genes rev and tat and the accessory genes vpu, nef, vpr, and vif enables assembly of the viral particle, regulates viral gene transcription, and equips the virus to evade or counteract host immune responses. In addition to the canonically expressed proteins, a growing number of publications describe the existence of non-canonical fusion proteins in HIV-1 infected cells. Most of them are encoded by the tat-env-rev locus. While the majority of these fusion proteins (e.g., TNV/p28 tev , p186Drev, Tat1-Rev2, Tat^8c, p17tev, or Ref) are the result of alternative splicing events, Tat-T/Vpt is produced upon programmed ribosomal frameshifting, and a Rev1-Vpu fusion protein is expressed due to a nucleotide polymorphism that is unique to certain HIV-1 clade A and C strains. A better understanding of the expression and activity of these non-canonical viral proteins will help to dissect their potential role in viral replication and reveal how HIV-1 optimized the coding potential of its genes. The goal of this review is to provide an overview of previously described HIV-1 fusion proteins and to summarize our current knowledge of their expression patterns and putative functions.
Collapse
Affiliation(s)
- Simon Langer
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center Ulm, Germany
| |
Collapse
|
5
|
Abstract
Nullbasic is a derivative of the HIV-1 transactivator of transcription (Tat) protein that strongly inhibits HIV-1 replication in lymphocytes. Here we show that lentiviral vectors that constitutively express a Nullbasic-ZsGreen1 (NB-ZSG1) fusion protein by the eEF1α promoter led to robust long-term inhibition of HIV-1 replication in Jurkat cells. Although Jurkat-NB-ZSG1 cells were infected by HIV-1, no virus production could be detected and addition of phorbol ester 12-myristate 13-acetate (PMA) and JQ1 had no effect, while suberanilohydroxamic acid (SAHA) modestly stimulated virus production but at levels 300-fold lower than those seen in HIV-1-infected Jurkat-ZSG1 cells. Virus replication was not recovered by coculture of HIV-1-infected Jurkat-NB-ZSG1 cells with uninfected Jurkat cells. Latently infected Jurkat latent 6.3 and ACH2 cells treated with latency-reversing agents produced measurable viral capsid (CA), but little or none was made when they expressed NB-ZSG1. When Jurkat cells chronically infected with HIV-1 were transduced with lentiviral virus-like particles conveying NB-ZSG1, a >3-log reduction in CA production was observed. Addition of PMA increased virus CA production but at levels 500-fold lower than those seen in nontransduced Jurkat cells. Transcriptome sequencing analysis confirmed that HIV-1 mRNA was strongly inhibited by NB-ZSG1 but indicated that full-length viral mRNA was made. Analysis of HIV-1-infected Jurkat cells expressing NB-ZSG1 by chromatin immunoprecipitation assays indicated that recruitment of RNA polymerase II (RNAPII) and histone 3 lysine 9 acetylation were inhibited. The reduction of HIV-1 promoter-associated RNAPII and epigenetic changes in viral nucleosomes indicate that Nullbasic can inhibit HIV-1 replication by enforcing viral silencing in cells. HIV-1 infection is effectively controlled by antiviral therapy that inhibits virus replication and reduces measurable viral loads in patients below detectable levels. However, therapy interruption leads to viral rebound due to latently infected cells that serve as a source of continued viral infection. Interest in strategies leading to a functional cure of HIV infection by permanent viral suppression, which may be achievable, is growing. Here we show that a mutant form of the HIV-1 Tat protein, referred to as Nullbasic, can inhibit HIV-1 transcription in infected Jurkat T cell to undetectable levels. Analysis shows that Nullbasic alters the epigenetic state of the HIV-1 long terminal repeat promoter, inhibiting its association with RNA polymerase II. This study indicates that key cellular proteins and pathways targeted here can silence HIV-1 transcription. Further elucidation could lead to functional-cure strategies by suppression of HIV transcription, which may be achievable by a pharmacological method.
Collapse
|
6
|
Musinova YR, Sheval EV, Dib C, Germini D, Vassetzky YS. Functional roles of HIV-1 Tat protein in the nucleus. Cell Mol Life Sci 2016; 73:589-601. [PMID: 26507246 PMCID: PMC11108392 DOI: 10.1007/s00018-015-2077-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 09/01/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023]
Abstract
Human immunodeficiency virus-1 (HIV-1) Tat protein is one of the most important regulatory proteins for viral gene expression in the host cell and can modulate different cellular processes. In addition, Tat is secreted by the infected cell and can be internalized by neighboring cells; therefore, it affects both infected and uninfected cells. Tat can modulate cellular processes by interacting with different cellular structures and signaling pathways. In the nucleus, Tat might be localized either in the nucleoplasm or the nucleolus depending on its concentration. Here we review the distinct functions of Tat in the nucleoplasm and the nucleolus in connection with viral infection and HIV-induced oncogenesis.
Collapse
Affiliation(s)
- Yana R Musinova
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
| | - Eugene V Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
| | - Carla Dib
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France
| | - Diego Germini
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France
| | - Yegor S Vassetzky
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119991, Moscow, Russia.
- LIA 1066 French-Russian Joint Cancer Research Laboratory, 94805, Villejuif, France.
- UMR8126, Université Paris-Sud, CNRS, Institut de cancérologie Gustave Roussy, 94805, Villejuif, France.
| |
Collapse
|
7
|
Engineering T Cells to Functionally Cure HIV-1 Infection. Mol Ther 2015; 23:1149-1159. [PMID: 25896251 DOI: 10.1038/mt.2015.70] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/13/2015] [Indexed: 02/07/2023] Open
Abstract
Despite the ability of antiretroviral therapy to minimize human immunodeficiency virus type 1 (HIV-1) replication and increase the duration and quality of patients' lives, the health consequences and financial burden associated with the lifelong treatment regimen render a permanent cure highly attractive. Although T cells play an important role in controlling virus replication, they are themselves targets of HIV-mediated destruction. Direct genetic manipulation of T cells for adoptive cellular therapies could facilitate a functional cure by generating HIV-1-resistant cells, redirecting HIV-1-specific immune responses, or a combination of the two strategies. In contrast to a vaccine approach, which relies on the production and priming of HIV-1-specific lymphocytes within a patient's own body, adoptive T-cell therapy provides an opportunity to customize the therapeutic T cells prior to administration. However, at present, it is unclear how to best engineer T cells so that sustained control over HIV-1 replication can be achieved in the absence of antiretrovirals. This review focuses on T-cell gene-engineering and gene-editing strategies that have been performed in efforts to inhibit HIV-1 replication and highlights the requirements for a successful gene therapy-mediated functional cure.
Collapse
|
8
|
Musinova YR, Sheval EV. The accumulation of the basic domain of HIV-1 Tat protein in the nuclei and the nucleoli is different from the accumulation of full-length Tat proteins. ACTA ACUST UNITED AC 2015. [DOI: 10.7124/bc.0008db] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Y. R. Musinova
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University
- LIA 1066 French-Russian Joint Cancer Research Laboratory
| | - E. V. Sheval
- A. N. Belozersky Institute of Physico-Chemical Biology, M. V. Lomonosov Moscow State University
- LIA 1066 French-Russian Joint Cancer Research Laboratory
| |
Collapse
|
9
|
A mutant tat protein inhibits HIV-1 reverse transcription by targeting the reverse transcription complex. J Virol 2015; 89:4827-36. [PMID: 25673710 DOI: 10.1128/jvi.03440-14] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 02/03/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED Previously, we reported that a mutant of Tat referred to as Nullbasic inhibits HIV-1 reverse transcription although the mechanism of action is unknown. Here we show that Nullbasic is a reverse transcriptase (RT) binding protein that targets the reverse transcription complex rather than directly inhibiting RT activity. An interaction between Nullbasic and RT was observed by using coimmunoprecipitation and pulldown assays, and a direct interaction was measured by using a biolayer interferometry assay. Mixtures of recombinant 6×His-RT and Nullbasic-FLAG-V5-6×His at molar ratios of up to 1:20,000 did not inhibit RT activity in standard homopolymer primer template assays. An analysis of virus made by cells that coexpressed Nullbasic showed that Nullbasic copurified with virus particles, indicating that it was a virion protein. In addition, analysis of reverse transcription complexes (RTCs) isolated from cells infected with wild type or Nullbasic-treated HIV-1 showed that Nullbasic reduced the levels of viral DNA in RTC fractions. In addition, a shift in the distribution of viral DNA and CAp24 to less-dense non-RTC fractions was observed, indicating that RTC activity from Nullbasic-treated virus was impaired. Further analysis showed that viral cores isolated from Nullbasic-treated HIV undergo increased disassembly in vitro compared to untreated HIV-1. To our knowledge, this is the first description of an antiviral protein that inhibits reverse transcription by targeting the RTC and affecting core stability. IMPORTANCE HIV-1 infection is treated by using combinations of antiretroviral drugs that target independent steps of virus replication. A newly described antiviral protein called Nullbasic can also inhibit a combination of different steps in virus replication (transcription, reverse transcription, and Rev-mediated viral mRNA transport), although the precise mechanism of action is unknown. This study shows that Nullbasic can inhibit reverse transcription by binding to the viral enzyme called reverse transcriptase, which results in accelerated uncoating of the viral core and instability of the viral apparatus called the reverse transcription complex (RTC). This unique antiviral activity may inform development of other RTC inhibitors, as well as providing a unique investigative tool for dissecting the RTC cellular composition.
Collapse
|
10
|
Herrera-Carrillo E, Berkhout B. Potential mechanisms for cell-based gene therapy to treat HIV/AIDS. Expert Opin Ther Targets 2014; 19:245-63. [PMID: 25388088 DOI: 10.1517/14728222.2014.980236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION An estimated 35 million people are infected with HIV worldwide. Anti-retroviral therapy (ART) has reduced the morbidity and mortality of HIV-infected patients but efficacy requires strict adherence and the treatment is not curative. Most importantly, the emergence of drug-resistant virus strains and drug toxicity can restrict the long-term therapeutic efficacy in some patients. Therefore, novel treatment strategies that permanently control or eliminate the virus and restore the damaged immune system are required. Gene therapy against HIV infection has been the topic of intense investigations for the last two decades because it can theoretically provide such a durable anti-HIV control. AREAS COVERED In this review we discuss two major gene therapy strategies to combat HIV. One approach aims to kill HIV-infected cells and the other is based on the protection of cells from HIV infection. We discuss the underlying molecular mechanisms for candidate approaches to permanently block HIV infection, including the latest strategies and future therapeutic applications. EXPERT OPINION Hematopoietic stem cell-based gene therapy for HIV/AIDS may eventually become an alternative for standard ART and should ideally provide a functional cure in which the virus is durably controlled without medication. Recent results from preclinical research and early-stage clinical trials support the feasibility and safety of this novel strategy.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Academic Medical Center University of Amsterdam, Department of Medical Microbiology , Meibergdreef 15, Amsterdam, 1105 AZ , The Netherlands
| | | |
Collapse
|
11
|
Autophagy restricts HIV-1 infection by selectively degrading Tat in CD4+ T lymphocytes. J Virol 2014; 89:615-25. [PMID: 25339774 DOI: 10.1128/jvi.02174-14] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Autophagy is a ubiquitous mechanism involved in the lysosomal-mediated degradation of cellular components when they are engulfed in vacuoles called autophagosomes. Autophagy is also recognized as an important regulator of the innate and adaptive immune responses against numerous pathogens, which have, therefore, developed strategies to block or use the autophagy machinery to their own benefit. Upon human immunodeficiency virus type 1 (HIV-1) infection, viral envelope (Env) glycoproteins induce autophagy-dependent apoptosis of uninfected bystander CD4(+) T lymphocytes, a mechanism likely contributing to the loss of CD4(+) T cells. In contrast, in productively infected CD4(+) T cells, HIV-1 is able to block Env-induced autophagy in order to avoid its antiviral effect. To date, nothing is known about how autophagy restricts HIV-1 infection in CD4(+) T lymphocytes. Here, we report that autophagy selectively degrades the HIV-1 transactivator Tat, a protein essential for viral transcription and virion production. We demonstrated that this selective autophagy-mediated degradation of Tat relies on its ubiquitin-independent interaction with the p62/SQSTM1 adaptor. Taken together, our results provide evidence that the anti-HIV effect of autophagy is specifically due to the degradation of the viral transactivator Tat but that this process is rapidly counteracted by the virus to favor its replication and spread. IMPORTANCE Autophagy is recognized as one of the most ancient and conserved mechanisms of cellular defense against invading pathogens. Cross talk between HIV-1 and autophagy has been demonstrated depending on the virally challenged cell type, and HIV-1 has evolved strategies to block this process to replicate efficiently. However, the mechanisms by which autophagy restricts HIV-1 infection remain to be elucidated. Here, we report that the HIV-1 transactivator Tat, a protein essential for viral replication, is specifically degraded by autophagy in CD4(+) T lymphocytes. Both Tat present in infected cells and incoming Tat secreted from infected cells are targeted for autophagy degradation through a ubiquitin-independent interaction with the autophagy receptor p62/SQSTM1. This study is the first to demonstrate that selective autophagy can be an antiviral process by degrading a viral transactivator. In addition, the results could help in the design of new therapies against HIV-1 by specifically targeting this mechanism.
Collapse
|
12
|
Sivakumaran H, Cutillas V, Harrich D. Revisiting transdominant-negative proteins in HIV gene therapy. Future Virol 2013. [DOI: 10.2217/fvl.13.65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
HIV remains a global public health issue and new therapies are actively being developed. Traditional treatments such as small-molecule inhibitors are being investigated; however, newer modalities are also being pursued, including the use of transdominant-negative proteins. A transdominant negative is a mutant of a protein designed to interfere with the normal activity of its wild-type counterpart. Transdominant negatives designed to block HIV replication are based on viral proteins; however, recent approaches show that transdominant negatives of cellular proteins have therapeutic potential. Recent discoveries have revealed that treatments based on transdominant negatives can greatly disrupt the replication cycle of the virus. This article aims to review viral and cellular protein-based transdominant negatives, the recent elucidation of their modes of action and their potential use in HIV gene therapy.
Collapse
Affiliation(s)
- Haran Sivakumaran
- Queensland Institute of Medical Research, Molecular Virology Laboratory, 300 Herston Road, Herston, Brisbane, 4006, Australia
| | - Vincent Cutillas
- Queensland Institute of Medical Research, Molecular Virology Laboratory, 300 Herston Road, Herston, Brisbane, 4006, Australia
| | - David Harrich
- Queensland Institute of Medical Research, Molecular Virology Laboratory, 300 Herston Road, Herston, Brisbane, 4006, Australia
| |
Collapse
|
13
|
Apolloni A, Lin MH, Sivakumaran H, Li D, Kershaw MHR, Harrich D. A mutant Tat protein provides strong protection from HIV-1 infection in human CD4+ T cells. Hum Gene Ther 2013; 24:270-82. [PMID: 23298160 DOI: 10.1089/hum.2012.176] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Here we show potent inhibition of HIV-1 replication in a human T cell line and primary human CD4(+) cells by expressing a single antiviral protein. Nullbasic is a mutant form of the HIV-1 Tat protein that was previously shown to strongly inhibit HIV-1 replication in nonhematopoietic cell lines by targeting three steps of HIV-1 replication: reverse transcription, transport of viral mRNA, and trans-activation of HIV-1 gene expression. Here we investigated gene delivery of Nullbasic, using lentiviral and retroviral vectors. Although Nullbasic could be delivered by lentiviral vectors to target cells, transduction efficiencies were sharply reduced primarily because of negative effects on reverse transcription mediated by Nullbasic. However, Nullbasic did not inhibit transduction of HEK293T cells by a murine leukemia virus (MLV)-based retroviral vector. Therefore, MLV-based virus-like particles were used to transduce and express Nullbasic-EGFP or EGFP in Jurkat cells, a human leukemia T cell line, and Nullbasic-ZsGreen1 or ZsGreen1 in primary human CD4(+) cells. HIV-1 replication kinetics were similar in parental Jurkat and Jurkat-EGFP cells, but were strongly attenuated in Jurkat-Nullbasic-EGFP cells. Similarly, virus replication in primary CD4(+) cells expressing a Nullbasic-ZsGreen1 fusion protein was inhibited by approximately 8- to 10-fold. These experiments demonstrate the potential of Nullbasic, which has unique inhibitory activity, as an antiviral agent against HIV-1 infection.
Collapse
Affiliation(s)
- Ann Apolloni
- Queensland Institute of Medical Research, Molecular Virology Laboratory, Herston, Brisbane, Queensland 4006, Australia
| | | | | | | | | | | |
Collapse
|
14
|
Lin MH, Sivakumaran H, Apolloni A, Wei T, Jans DA, Harrich D. Nullbasic, a potent anti-HIV tat mutant, induces CRM1-dependent disruption of HIV rev trafficking. PLoS One 2012; 7:e51466. [PMID: 23251541 PMCID: PMC3519632 DOI: 10.1371/journal.pone.0051466] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 11/02/2012] [Indexed: 12/30/2022] Open
Abstract
Nullbasic, a mutant of the HIV-1 Tat protein, has anti-HIV-1 activity through mechanisms that include inhibition of Rev function and redistribution of the HIV-1 Rev protein from the nucleolus to the nucleoplasm and cytoplasm. Here we investigate the mechanism of this effect for the first time, establishing that redistribution of Rev by Nullbasic is not due to direct interaction between the two proteins. Rather, Nullbasic affects subcellular localization of cellular proteins that regulate Rev trafficking. In particular, Nullbasic induced redistribution of exportin 1 (CRM1), nucleophosmin (B23) and nucleolin (C23) from the nucleolus to the nucleus when Rev was coexpressed, but never in its absence. Inhibition of the Rev:CRM1 interaction by leptomycin B or a non-interacting RevM10 mutant completely blocked redistribution of Rev by Nullbasic. Finally, Nullbasic did not inhibit importin β- or transportin 1-mediated nuclear import, suggesting that cytoplasmic accumulation of Rev was due to increased export by CRM1. Overall, our data support the conclusion that CRM1-dependent subcellular redistribution of Rev from the nucleolus by Nullbasic is not through general perturbation of either nuclear import or export. Rather, Nullbasic appears to interact with and disrupt specific components of a Rev trafficking complex required for its nucleocytoplasmic shuttling and, in particular, its nucleolar accumulation.
Collapse
Affiliation(s)
- Min-Hsuan Lin
- Queensland Institute of Medical Research, Molecular Virology Laboratory, Herston, Brisbane, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Haran Sivakumaran
- Queensland Institute of Medical Research, Molecular Virology Laboratory, Herston, Brisbane, Australia
| | - Ann Apolloni
- Queensland Institute of Medical Research, Molecular Virology Laboratory, Herston, Brisbane, Australia
| | - Ting Wei
- Queensland Institute of Medical Research, Molecular Virology Laboratory, Herston, Brisbane, Australia
| | - David A. Jans
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - David Harrich
- Queensland Institute of Medical Research, Molecular Virology Laboratory, Herston, Brisbane, Australia
| |
Collapse
|
15
|
Impact of Tat Genetic Variation on HIV-1 Disease. Adv Virol 2012; 2012:123605. [PMID: 22899925 PMCID: PMC3414192 DOI: 10.1155/2012/123605] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Accepted: 05/14/2012] [Indexed: 01/08/2023] Open
Abstract
The human immunodeficiency virus type 1 (HIV-1) promoter or long-terminal repeat (LTR) regulates viral gene expression by interacting with multiple viral and host factors. The viral transactivator protein Tat plays an important role in transcriptional activation of HIV-1 gene expression. Functional domains of Tat and its interaction with transactivation response element RNA and cellular transcription factors have been examined. Genetic variation within tat of different HIV-1 subtypes has been shown to affect the interaction of the viral transactivator with cellular and/or viral proteins, influencing the overall level of transcriptional activation as well as its action as a neurotoxic protein. Consequently, the genetic variability within tat may impact the molecular architecture of functional domains of the Tat protein that may impact HIV pathogenesis and disease. Tat as a therapeutic target for anti-HIV drugs has also been discussed.
Collapse
|
16
|
Imai K, Asamitsu K, Victoriano AFB, Cueno ME, Fujinaga K, Okamoto T. Cyclin T1 stabilizes expression levels of HIV-1 Tat in cells. FEBS J 2010; 276:7124-33. [PMID: 20064163 DOI: 10.1111/j.1742-4658.2009.07424.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transcription from HIV-1 proviral DNA is a rate-determining step for HIV-1 replication. Interaction between the cyclin T1 (CycT1) subunit of positive transcription elongation factor b (P-TEFb) and the Tat transactivator protein of HIV-1 is crucial for viral transcription. CycT1 also interacts directly with the transactivation-responsive element (TAR) located on the 5'end of viral mRNA, as well as with Tat through the Tat-TAR recognition motif (TRM). These molecular interactions represent a critical step for stimulation of HIV transcription. Thus, Tat and CycT1 are considered to be feasible targets for the development of novel anti-HIV therapies. In this study, we demonstrate that CycT1 is positively involved in the Tat protein stability. Selective degradation of CycT1 by small interfering RNA (siRNA) culminated in proteasome-mediated degradation of Tat and eventual inhibition of HIV-1 gene expression. We noted that the siRNA-mediated knockdown of CycT1 could inhibit HIV-1 transcription without affecting cell viability and Tat mRNA levels. These findings clearly indicate that CycT1 is a feasible therapeutic target, and inactivation or depletion of CycT1 should effectively inhibit HIV replication by destabilizing Tat and suppressing Tat-mediated HIV transcription.
Collapse
Affiliation(s)
- Kenichi Imai
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Abstract
Herein we describe a mutant of the two-exon HIV-1 Tat protein, termed Nullbasic, that potently inhibits multiple steps of the HIV-1 replication cycle. Nullbasic was created by replacing the entire arginine-rich basic domain of wild type Tat with glycine/alanine residues. Like similarly mutated one-exon Tat mutants, Nullbasic exhibited transdominant negative effects on Tat-dependent transactivation. However, unlike previously reported mutants, we discovered that Nullbasic also strongly suppressed the expression of unspliced and singly-spliced viral mRNA, an activity likely caused by redistribution and thus functional inhibition of HIV-1 Rev. Furthermore, HIV-1 virion particles produced by cells expressing Nullbasic had severely reduced infectivity, a defect attributable to a reduced ability of the virions to undergo reverse transcription. Combination of these inhibitory effects on transactivation, Rev-dependent mRNA transport and reverse transcription meant that permissive cells constitutively expressing Nullbasic were highly resistant to a spreading infection by HIV-1. Nullbasic and its activities thus provide potential insights into the development of potent antiviral therapeutics that target multiple stages of HIV-1 infection.
Collapse
|
18
|
Abstract
This chapter describes the major gene therapeutic approaches for viral infections. The vast majority of published approaches target severe chronic viral infections such as hepatitis B or C and HIV infection. Two basic gene therapy strategies are introduced here. The first involves the expression of a protein or an RNA that inhibits viral replication by targeting crucial steps of the viral life cycle or by interfering with a cellular factor required for virus replication. The major limitation of this approach is that primary levels of gene modification have generally not been sufficient to reduce the availability of target cells permissive for virus replication to a level that significantly decreases overall viral load. Thus, investigators have banked on the expectation that gene-protected cells have a sufficient selective advantage to accumulate and gain prevalence over time, a prediction that so far could not be confirmed in clinical trials. In vivo levels of gene modification can be improved, however, by introducing an additional selectable marker. In addition, a secreted antiviral gene product that exerts a bystander effect could significantly reduce overall virus replication despite relatively low levels of gene modification. In addition to these direct antiviral approaches, several strategies have been developed that employ or aim to enhance host immune responses. The innate immune response has been enhanced, for example, by the in vivo expression of interferons. Alternatively, T cells can be grafted with recombinant receptors to boost adaptive virus-specific immunity. These approaches are especially promising for chronic virus infection, where natural immune responses are evidently not sufficient to effectively control virus replication.
Collapse
|
19
|
D'Orso I, Grunwell JR, Nakamura RL, Das C, Frankel AD. Targeting tat inhibitors in the assembly of human immunodeficiency virus type 1 transcription complexes. J Virol 2008; 82:9492-504. [PMID: 18667497 PMCID: PMC2546947 DOI: 10.1128/jvi.00763-08] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/21/2008] [Indexed: 01/22/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) transcription is regulated by the viral Tat protein, which relieves a block to elongation by recruiting an elongation factor, P-TEFb, to the viral promoter. Here, we report the discovery of potent Tat inhibitors that utilize a localization signal to target a dominant negative protein to its site of action. Fusing the Tat activation domain to some splicing factors, particularly to the Arg-Ser (RS) domain of U2AF65, creates Tat inhibitors that localize to subnuclear speckles, sites where pre-mRNA processing factors are stored for assembly into transcription complexes. A U2AF65 fusion named T-RS interacts with the nonphosphorylated C-terminal domain of RNA polymerase II (RNAP II) via its RS domain and is loaded into RNAP II holoenzyme complexes. T-RS is recruited efficiently to the HIV-1 promoter in a TAR-independent manner before RNAP II hyperphosphorylation but not to cellular promoters. The "preloading" of T-RS into HIV-1 preinitiation complexes prevents the entry of active Tat molecules, leaving the complexes in an elongation-incompetent state and effectively suppressing HIV-1 replication. The ability to deliver inhibitors to transcription complexes through the use of targeting/localization signals may provide new avenues for designing viral and transcription inhibitors.
Collapse
Affiliation(s)
- Iván D'Orso
- Department of Biochemistry and Biophysics, University of California-San Francisco, 600 16th St., San Francisco, CA 94143-2280, USA
| | | | | | | | | |
Collapse
|
20
|
Miklóssy G, Tözsér J, Kádas J, Ishima R, Louis JM, Bagossi P. Novel macromolecular inhibitors of human immunodeficiency virus-1 protease. Protein Eng Des Sel 2008; 21:453-61. [PMID: 18480092 PMCID: PMC2902902 DOI: 10.1093/protein/gzn022] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 03/28/2008] [Accepted: 03/31/2008] [Indexed: 01/12/2023] Open
Abstract
An intracellularly expressed defective human immunodeficiency virus type-1 (HIV-1) protease (PR) monomer could function as a dominant-negative inhibitor of the enzyme that requires dimerization for activity. Based on in silico studies, two mutant PRs harboring hydrophilic mutations, capable of forming favorable inter- and intra-subunit interactions, were selected: PR(RE) containing Asp25Arg and Gly49Glu mutations, and PR(RER) containing an additional Ile50Arg mutation. The mutants were expressed and tested by PR assays, nuclear magnetic resonance (NMR) and cell culture experiments. The mutant PRs showed dose-dependent inhibition of the wild-type PR in a fluorescent microtiter plate PR assay. Furthermore, both mutants were retained by hexahistidine-tagged wild-type HIV-1 PR immobilized on nickel-chelate affinity resin. For the first time, heterodimerization between wild-type and dominant-negative mutant PRs were also demonstrated by NMR spectroscopy. (1)H-(15)N Heteronuclear Single Quantum Coherence NMR spectra showed that although PR(RE) has a high tendency to aggregate, PR(RER) exists mainly as a folded monomer at 25-35 microM concentration, but in the presence of wild-type PR in a ratio of 1:1, heterodimerization occurs with both mutants. While the recombinant virus containing the PR(RE) sequence showed only very low level of expression, expression of the viral proteins of the virus with the PR(RER) sequence was comparable with that of the wild-type. In cell culture experiments, infectivity of viral particles containing PR(RER) protein was reduced by 82%, at mutant to wild-type infective DNA ratio of 2:1.
Collapse
Affiliation(s)
- Gabriella Miklóssy
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, PO Box 6, Debrecen H-4012, Hungary
| | - József Tözsér
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, PO Box 6, Debrecen H-4012, Hungary
| | - János Kádas
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, PO Box 6, Debrecen H-4012, Hungary
| | - Rieko Ishima
- Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260
| | - John M. Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA
| | - Péter Bagossi
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, Medical and Health Science Center, University of Debrecen, PO Box 6, Debrecen H-4012, Hungary
| |
Collapse
|
21
|
von Laer D, Hasselmann S, Hasselmann K. Gene therapy for HIV infection: what does it need to make it work? J Gene Med 2006; 8:658-67. [PMID: 16598816 DOI: 10.1002/jgm.908] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The efficacy of antiviral drug therapy for HIV infection is limited by toxicity and viral resistance. Thus, alternative therapies need to be explored. Several gene therapeutic strategies for HIV infection have been developed, but in clinical testing therapeutically effective levels of the transgene product were not achieved. This review focuses on the determinants of therapeutic efficacy and discusses the potential and also the limits of current gene therapy approaches for HIV infection.
Collapse
Affiliation(s)
- Dorothee von Laer
- Georg-Speyer-Haus, Paul-Ehrlich-Strasse 42, Frankfurt a.M., Germany.
| | | | | |
Collapse
|
22
|
Abstract
The central role of endoconvertases and HIV-1 protease (HIV-1 PR) in the processing of HIV proproteins makes the design of specific inhibitors important in anti-HIV gene therapy. Accordingly, we tested native alpha(1) antitrypsin (alpha(1)AT) delivered by a recombinant simian virus-40-based vector, SV(AT), as an inhibitor of HIV-1 proprotein maturation. Cell lines and primary human lymphocytes were transduced with SV(AT) without selection and detectable toxicity. Expression of alpha(1)AT was confirmed by Northern blotting, immunoprecipitation and immunostaining. SV(AT)-transduced cells showed no evidence of HIV-1-related cytopathic effects when challenged with high doses of HIV-1(NL4-3). As measured by HIV-1 p24 assay, SV(AT)-transduced cells were protected from HIV-1(NL4-3) at challenge dose of 40 000 TCID(50) (MOI = 0.04). In addition, peripheral blood lymphocytes treated with SV(AT) were protected from HIV doses challenge up to 40 000 TCID(50) (MOI = 0.04). By Western blot analyses, the delivered alpha(1)AT inhibited cellular processing of gp160 to gp120 and decreased HIV-1 virion gp120. SV(AT) inhibited processing of p55(Gag) as well. Furthermore, high levels of uncleaved p55(Gag) protein were detected in HIV virus particles recovered from SV(AT)-transduced cells lines and primary lymphocytes. Thus, delivering alpha(1)AT using SV(AT) to human lymphocytes strongly inhibits replication of HIV-1, most likely by inhibiting the activities both of the cellular serine proteases involved in processing gp160 and of the aspartyl protease, HIV-1 PR, which cleaves p55(Gag). alpha(1)AT delivered by SV(AT) may represent a novel and effective strategy for gene therapy to interfere with HIV replication, by blocking a stage in the virus replicative cycle that has until now been inaccessible to gene therapeutic intervention.
Collapse
Affiliation(s)
- P Cordelier
- Department of Pathology, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
23
|
Buchschacher GL, Wong-Staal F. Approaches to gene therapy for human immunodeficiency virus infection. Hum Gene Ther 2001; 12:1013-9. [PMID: 11399224 DOI: 10.1089/104303401750214249] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Much progress has been made in developing new and more efficient treatments for human immunodeficiency virus (HIV) infection, the cause of acquired immunodeficiency syndrome (AIDS). However, the scope of the HIV epidemic and the limitations of existing treatments necessitate the continued development of novel treatment strategies. Gene therapy is one such forward-looking strategy. Gene therapy approaches for HIV infection include efforts to interfere with viral replication directly by engineering HIV-resistant cells or indirectly by eliminating infected cells from the body, primarily by eliciting a therapeutic immune response to destroy HIV-infected cells. Although the prospect of gene therapy as a routine treatment for HIV infection remains distant, continuous progress is being made, which should also have implications for gene therapy strategies for a variety of other diseases. This article reviews some of the strategies for investigating the feasibility of gene transfer for the treatment of HIV infection.
Collapse
Affiliation(s)
- G L Buchschacher
- Division of Hematology/Oncology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
24
|
Mayhood T, Kaushik N, Pandey PK, Kashanchi F, Deng L, Pandey VN. Inhibition of Tat-mediated transactivation of HIV-1 LTR transcription by polyamide nucleic acid targeted to TAR hairpin element. Biochemistry 2000; 39:11532-11539. [PMID: 10995220 DOI: 10.1021/bi000708q] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tat, an essential human immunodeficiency virus type 1 protein interacts with the transactivation response element (TAR) and stimulates transcription from the viral long-terminal repeat (LTR). Blockage of Tat-TAR interaction halts viral transcription and hence replication. We have found that polyamide nucleic acid (PNA), targeted to the TAR sequences of viral RNA genome is able to prevent Tat-TAR interaction by efficient sequestration of the TAR. Anti-TAR PNA competes for TAR and prevents Tat-mediated stimulation of HIV-1 LTR transcription in vitro but has no influence on the basal level of transcription in the absence of Tat. Using a reporter gene construct pHIV LTR-CAT and pCMV-Tat in cell culture, we have further shown that anti-TAR PNA is able to block Tat-mediated transactivation of HIV-1 LTR transcription in vivo as judged by the extent of LTR driven CAT gene expression in the absence and presence of anti-TAR PNA. Supplementation of 100 nM of anti-TAR PNA into the culture medium further enhances the suppression of transactivation. Nonspecific scrambled PNA had no influence on Tat-TAR interaction and LTR-driven CAT gene expression in cell culture. These results suggest that PNA targeted to the TAR sequence of the viral genome may be a potential inhibitor of HIV-1 gene expression.
Collapse
Affiliation(s)
- T Mayhood
- Department of Biochemistry and Molecular Biology, UMD-New Jersey Medical School, 185 South Orange Avenue, Newark, New Jersey 07103, USA
| | | | | | | | | | | |
Collapse
|
25
|
Todd S, Anderson C, Jolly DJ, Craik CS. HIV protease as a target for retrovirus vector-mediated gene therapy. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1477:168-88. [PMID: 10708857 DOI: 10.1016/s0167-4838(99)00272-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The dimeric aspartyl protease of HIV has been the subject of intense research for almost a decade. Knowledge of the substrate specificity and catalytic mechanism of this enzyme initially guided the development of several potent peptidomimetic small molecule inhibitors. More recently, the solution of the HIV protease structure led to the structure-based design of improved peptidomimetic and non-peptidomimetic antiviral compounds. Despite the qualified success of these inhibitors, the high mutation rate associated with RNA viruses continues to hamper the long-term clinical efficacy of HIV protease inhibitors. The dimeric nature of the viral protease has been conducive to the investigation of dominant-negative inhibitors of the enzyme. Some of these inhibitors are defective protease monomers that interact with functional monomers to form inactive protease heterodimers. An advantage of macromolecular inhibitors as compared to small-molecule inhibitors is the increased surface area of interaction between the inhibitor and the target gene product. Point mutations that preserve enzyme activity but confer resistance to small-molecule inhibitors are less likely to have an adverse effect on macromolecular interactions. The use of efficient retrovirus vectors has facilitated the delivery of these macromolecular inhibitors to primary human lymphocytes. The vector-transduced cells were less susceptible to HIV infection in vitro, and showed similar levels of protection compared to other macromolecular inhibitors of HIV replication, such as RevM10. These preliminary results encourage the further development of dominant-negative HIV protease inhibitors as a gene therapy-based antiviral strategy.
Collapse
Affiliation(s)
- S Todd
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94143-0446, USA.
| | | | | | | |
Collapse
|
26
|
Mukhtar M, Duke H, BouHamdan M, Pomerantz RJ. Anti-human immunodeficiency virus type 1 gene therapy in human central nervous system-based cells: an initial approach against a potential viral reservoir. Hum Gene Ther 2000; 11:347-59. [PMID: 10680847 DOI: 10.1089/10430340050016076] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Studies have demonstrated that human immunodeficiency virus type 1 (HIV-1) infection of central nervous system (CNS)-based cells in vivo results in a series of devastating clinical conditions collectively termed acquired immune deficiency syndrome (AIDS) dementia complex (ADC). Gene therapy for these neurovirological disorders necessitates utilization of a vector system that can mediate in vivo delivery and long-term expression of an antiretroviral transgene in nondividing/postmitotic CNS cellular elements. The present studies focus on the transfer of an anti-HIV-1 gene to primary isolated CNS microvascular endothelial cells (MVECs) and neuronal-based cells, for its effects in protecting these cells from HIV-1 infection. By using an HIV-1-based vector system, it was possible to efficiently transduce and maintain expression of a marker transgene, beta-galactosidase (beta-Gal), in human CNS MVECs, human fetal astrocytes, plus immature and mature (differentiated) NT2 cells. Significant transduction of the marker gene, beta-Gal, in CNS-based cells prompted the utilization of this system with an anti-HIV-1 gene therapeutic construct, RevM10, a trans-dominant negative mutant Rev protein. Initially, it was not possible to generate any HIV-1 vector particles with the RevM10 gene in the transducing construct, because of inhibitory effects on the HIV-1 vector by this gene product. However, the vector could be partially rescued by adding an additional construct that supplied wild-type rev, in trans, during a multiple construct transfection in the packaging 293T cells. Thus, it was possible to significantly improve the titer of RevM10-expressing viral particles generated from these cells. Moreover, this RevM10 vector transduced the neuronal precursor cell line NT2, retinoic acid-differentiated human neurons (hNT) from the precursor cells, and primary isolated human brain MVECs with high efficiency. RevM10 generated from the HIV-1-based vector system potently inhibited replication of diverse HIV-1 strains in human CNS MVECs and neuronal cells. The data generated from these studies represent an initial approach for future development of anti-HIV-1 gene therapy in the CNS.
Collapse
Affiliation(s)
- M Mukhtar
- Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
27
|
Zhi Y, Sciabica KS, Sandri-Goldin RM. Self-interaction of the herpes simplex virus type 1 regulatory protein ICP27. Virology 1999; 257:341-51. [PMID: 10329545 DOI: 10.1006/viro.1999.9698] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The herpes simplex virus type 1 (HSV-1) regulatory protein ICP27 is a nuclear phosphoprotein required for viral lytic infection, which acts partly at the posttranscriptional level to affect RNA processing and export. In the present study, we show that ICP27 can interact with itself in vivo. Immunofluorescent staining of cells expressing both an ICP27 mutant with a deletion of the major nuclear localization signal and wild-type ICP27 showed that the mutant protein was efficiently imported into the nucleus in the majority of the cotransfected cells, suggesting heterodimer formation between the wild-type and mutant proteins. Coimmunoprecipitation experiments using epitope-tagged wild-type ICP27 and a series of ICP27 mutants with deletions and insertions in important functional regions of the protein revealed that the C-terminal cysteine-histidine-rich zinc-finger-like region of ICP27 was required for the self-association. Furthermore the self-association was also shown in yeast using two-hybrid assays, and again, an intact C-terminal zinc-finger-like region was required for the interaction. This study provides biochemical evidence that ICP27 may function as a multimer in infected cells.
Collapse
Affiliation(s)
- Y Zhi
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California 92697-4025, USA
| | | | | |
Collapse
|
28
|
Simon JH, Sheehy AM, Carpenter EA, Fouchier RA, Malim MH. Mutational analysis of the human immunodeficiency virus type 1 Vif protein. J Virol 1999; 73:2675-81. [PMID: 10074113 PMCID: PMC104023 DOI: 10.1128/jvi.73.4.2675-2681.1999] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lentivirus Vif proteins are potent regulators of virus infectivity. However, relatively little is known about the functional domains, peptide motifs, or residues of any Vif protein. In this report, we present the first extensive mutagenesis analysis of the 192-amino-acid human immunodeficiency virus type 1 (HIV-1) Vif protein. A large number of scanning missense (mostly alanine substitution) and deletion mutations were introduced into the HIV-1HXB3 vif gene, and the resulting proteins were evaluated for the induction of virus infectivity as well as subcellular localization. The results show that amino acids dispersed throughout Vif's linear sequence are important for function. However, because many of the inactive proteins also appear to be mislocalized, we suggest that many of them may actually be misfolded rather lacking an intracellular targeting signal. Interestingly, disruptions within an internal region spanning residues 114 to 146 give rise to mutant proteins that either retain function or are inactive but are not substantially mislocalized. We therefore speculate that this region, which harbors two essential cysteine residues and one essential serine residue, may contain aspects of a putative Vif effector domain.
Collapse
Affiliation(s)
- J H Simon
- Departments of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6148, USA
| | | | | | | | | |
Collapse
|
29
|
Daelemans D, Vandamme AM, De Clercq E. Human immunodeficiency virus gene regulation as a target for antiviral chemotherapy. Antivir Chem Chemother 1999; 10:1-14. [PMID: 10079874 DOI: 10.1177/095632029901000101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Inhibitors interfering with human immunodeficiency virus (HIV) gene regulation may have great potential in anti-HIV drug (combination) therapy. They act against different targets to currently used anti-HIV drugs, reduce virus production from acute and chronically infected cells and are anticipated to elicit less virus drug resistance. Several agents have already proven to inhibit HIV gene regulation in vitro. A first class of compounds interacts with cellular factors that bind to the long terminal repeat (LTR) promoter and that are needed for basal level transcription, such as NF-kappa B and Sp1 inhibitors. A second class of compounds specifically inhibits the transactivation of the HIV LTR promoter by the viral Tat protein, such as the peptoid CGP64222. A third class of compounds prevents the accumulation of single and unspliced mRNAs through inhibition of the viral regulator protein Rev, such as the aminoglycosidic antibiotics. Most of these compounds have been tested in specific transactivation assays. Whether they are active at the postulated target in virus replication assays has, for many of them, not been ascertained. Toxicity data are often lacking or insufficient. Yet these data are crucial in view of the toxicity that may be expected for compounds that primarily interact with cellular factors. Although a promising lead, considerable research is still required before gene regulation inhibitors may come of age as clinically useful agents.
Collapse
Affiliation(s)
- D Daelemans
- Rega Institute for Medical Research, Katholieke Universiteit Leuven, Belgium.
| | | | | |
Collapse
|
30
|
Dunn SJ, Park SW, Sharma V, Raghu G, Simone JM, Tavassoli R, Young LM, Ortega MA, Pan CH, Alegre GJ, Roninson IB, Lipkina G, Dayn A, Holzmayer TA. Isolation of efficient antivirals: genetic suppressor elements against HIV-1. Gene Ther 1999; 6:130-7. [PMID: 10341885 DOI: 10.1038/sj.gt.3300791] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The development of general approaches for the isolation of efficient antivirals and the identification and validation of targets for drug screening are becoming increasingly important, due to the emergence of previously unrecognized viral diseases. The genetic suppressor element (GSE) technology is an approach based on the functional expression selection of efficient genetic inhibitors from random fragment libraries derived from a gene or genome of interest. We have applied this technology to isolate potent genetic inhibitors against HIV-1. Two strategies were used to select for GSEs that interfere with latent virus induction and productive HIV-1 infection based on the expression of intracellular and surface antigens. The selected GSEs clustered in seven narrowly defined regions of the HIV-1 genome and were found to be functionally active. These elements are potential candidates for the gene therapy of AIDS. The developed approaches can be applied to other viral pathogens, as well as for the identification of cellular genes supporting the HIV-1 life cycle.
Collapse
Affiliation(s)
- S J Dunn
- Ingenex Inc, Menlo Park, CA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Fusions of the human immunodeficiency virus type 1 (HIV-1) transactivator protein Tat to the green fluorescent protein (GFP) were used to study the intracellular localization, trafficking, and interactions of Tat in human cells. Tagging Tat with GFP did not change its nuclear localization or ability to act as a transactivator. Tat-GFP expressed at low levels was found in the nucleus, whereas overexpression resulted in nucleolar accumulation. A Tat-GFP hybrid protein containing in addition the HIV-1 Rev nuclear export signal (NES) localized predominantly to the cytoplasm. This shuttle protein, Tat-GFP-NES, transactivated the HIV-1 long terminal repeat. Thus a Tat molecule being only transiently present in the nucleus is active and nucleolar accumulation of Tat is not prerequisite for function. A coexpression assay previously used to define protein interaction domains in the HIV-1 Rev protein [R. H. Stauber, E. Afonina, S. Gulnik, J. Erickson, and G. N. Pavlakis (1998a). Virology 251, 38-48.] indicated that Tat exists predominantly as a monomer and does not form stable multimers with B23 in living cells. Using a heterokaryon fusion assay, we found that Tat-GFP was able to shuttle between the nucleus and the cytoplasm. Tat therefore has the potential to perform functions in the nucleus as well as in the cytoplasm.
Collapse
Affiliation(s)
- R H Stauber
- Human Retrovirus Section, NCI-FCRDC, Frederick, Maryland 21702-1201, USA
| | | |
Collapse
|
32
|
Smith C, Sullenger BA. AIDS and HIV infection. MOLECULAR AND CELL BIOLOGY OF HUMAN DISEASES SERIES 1998; 5:195-236. [PMID: 9532568 DOI: 10.1007/978-94-011-0547-7_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- C Smith
- Genzyme Corporation, Framingham, Massachusetts 01701-9322, USA
| | | |
Collapse
|
33
|
Savarino A, Pescarmona GP, Turco E, Gupta P. The biochemistry of gene therapy for AIDS. Clin Chem Lab Med 1998; 36:205-10. [PMID: 9638344 DOI: 10.1515/cclm.1998.035] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Gene therapy has enormous potential and could in the near future involve the clinical biochemist in monitoring its efficacy. The involvement of clinical biochemists in this field could be not only in evaluating the impact of a gene-based strategy on disease progression, but also in measuring the expression of the products of therapeutic genes in treated individuals. Indeed, gene therapy presents new possibilities for the treatment of many diseases and, in particular, merits consideration in the treatment of a fatal disease like AIDS. The aim of this paper is to review the biochemical basis and clinical relevance of the gene therapy approaches directed towards the inhibition of human immunodeficiency virus type-1. We discuss the goals which have been achieved, the problems which have occurred and the efforts that are being made to solve them. In this regard, particular attention is paid to new strategies targeting 'therapeutic' enzymes to human immunodeficiency virus type-1 nucleic acids.
Collapse
Affiliation(s)
- A Savarino
- Dipartimento di Scienze Medico-Chirurgiche, Sezione di Malattie Infettive, Torino, Italy
| | | | | | | |
Collapse
|
34
|
Ranga U, Woffendin C, Verma S, Xu L, June CH, Bishop DK, Nabel GJ. Enhanced T cell engraftment after retroviral delivery of an antiviral gene in HIV-infected individuals. Proc Natl Acad Sci U S A 1998; 95:1201-6. [PMID: 9448309 PMCID: PMC18718 DOI: 10.1073/pnas.95.3.1201] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/1997] [Accepted: 11/26/1997] [Indexed: 02/05/2023] Open
Abstract
Intracellular expression of gene products that inhibit viral replication have the potential to complement current antiviral approaches to the treatment of AIDS. We previously have shown that a mutant inhibitory form of an essential viral protein, Rev M10, prolongs the survival of T cells transduced with a nonviral vector in HIV-infected individuals. Because these gene-modified cells were not observed in patients beyond 8 weeks, efforts were made to improve the duration of engraftment. In this study, we used retroviral vector delivery of Rev M10 to CD4(+) cells and analyzed relevant immune responses in a pilot study of three HIV-seropositive patients. DNA and RNA PCR analyses revealed that cells transduced with Rev M10 retroviral vectors survived and expressed the recombinant gene for significantly longer time periods than those transduced with a negative control vector in all three patients. Immune responses were not detected either to Rev M10 or to Moloney murine leukemia virus gp70 envelope protein. Rev M10-transduced cells were detected for an average of 6 months after retroviral gene transfer compared with approximately 3 weeks for the previously reported nonviral vector delivery. These findings suggest that retroviral delivery of an antiviral gene may potentially contribute to immune reconstitution in AIDS and could provide a more effective vector to prolong survival of CD4(+) cells in HIV infection.
Collapse
Affiliation(s)
- U Ranga
- Department of Internal Medicine, University of Michigan Medical Center, 1150 W. Medical Center Drive, 4520 MSRB I, Ann Arbor, MI 48109-0650, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
HIV Gene Therapy: Current Status and Its Role in Therapy. Gene Ther 1998. [DOI: 10.1007/978-3-642-72160-1_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
36
|
Verhoef K, Koper M, Berkhout B. Determination of the minimal amount of Tat activity required for human immunodeficiency virus type 1 replication. Virology 1997; 237:228-36. [PMID: 9356335 DOI: 10.1006/viro.1997.8786] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Tat protein of human immunodeficiency virus type 1 (HIV-1) is a potent trans-activator of transcription from the viral LTR promoter. Previous mutagenesis studies have identified domains within Tat responsible for binding to its TAR RNA target and for transcriptional activation. The minimal Tat activation domain is composed of the N-terminal 48 residues, and mutational analyses identified a cluster of critical cysteines. The importance of four highly conserved aromatic amino acids within the activation domain has not been thoroughly investigated. We have systematically substituted these aromatic residues (Y26, F32, F38, Y47) of the HIV-1 LAI Tat protein with other aromatic residues (conservative mutation) or alanine (nonconservative mutation). The activity of the mutant Tat constructs was measured in different cell lines by transfection with a LTR-CAT reporter plasmid. The range of transcriptional activities measured for this set of Tat mutants allowed careful assessment of the level of Tat activity required for optimal viral replication. To test this, the mutant Tat genes were introduced into the pLAI infectious molecular clone and tested for their effect on virus replication in a T-cell line. We found that a twofold reduction in Tat activity already affects viral replication, and no virus replication was measured for Tat mutants with less than 15% activity. This strict correlation between Tat activity and viral replication demonstrates the importance of the Tat function to viral fitness. Interestingly, a less pronounced replication defect was observed in primary cell types. This finding may correlate with the frequent detection of proviruses with Tat-inactivating mutations in clinical samples.
Collapse
Affiliation(s)
- K Verhoef
- Department of Human Retrovirology, University of Amsterdam, Academic Medical Center, Amsterdam, 1100 DE, The Netherlands
| | | | | |
Collapse
|
37
|
Ranga U, Woffendin C, Yang ZY, Xu L, Verma S, Littman DR, Nabel GJ. Cell and viral regulatory elements enhance the expression and function of a human immunodeficiency virus inhibitory gene. J Virol 1997; 71:7020-9. [PMID: 9261432 PMCID: PMC191988 DOI: 10.1128/jvi.71.9.7020-7029.1997] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Regulated expression of recombinant genes in CD4+ cells is an important objective for gene therapy of AIDS, as these cells represent the principal target for viral replication of human immunodeficiency virus (HIV). We report here that specific combinations of CD4 cell-specific and viral regulatory elements can enhance expression of an antiviral gene product. Different viral regulatory elements were incorporated into a previously reported CD4 locus control region to increase the expression of reporter genes in T and monocytic cell lines. The CD4-specific regulatory elements were included to enhance expression in CD4 cells, and viral regulatory regions, including the cytomegalovirus immediate-early (CMV IE) upstream enhancer, which contains the kappa B and Ap1 regulatory elements and a Tat-responsive element of the HIV type 1 long terminal repeat, were used to increase gene expression and modulate its activity in response to viral infection. In transient transfection assays, this vector was 100- to 1,000-fold more active than the original CD4 regulatory elements alone. Expression of an inhibitory form of the Rev protein, Rev M10, was more effective than previously described vectors and protected against productive viral replication in CD4+ peripheral blood mononuclear cells. The combination of CD4 lineage-specific and viral regulatory elements will facilitate the development of more effective antiviral genetic strategies for AIDS.
Collapse
Affiliation(s)
- U Ranga
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor 48109-0650, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Serio D, Rizvi TA, Cartas M, Kalyanaraman VS, Weber IT, Koprowski H, Srinivasan A. Development of a novel anti-HIV-1 agent from within: effect of chimeric Vpr-containing protease cleavage site residues on virus replication. Proc Natl Acad Sci U S A 1997; 94:3346-51. [PMID: 9096396 PMCID: PMC20372 DOI: 10.1073/pnas.94.7.3346] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Effective antiviral agents will be of great value in controlling virus replication and delaying the onset of HIV-1-related disease symptoms. Current therapy involves the use of antiviral agents that target the enzymatic functions of the virus, resulting in the emergence of resistant viruses to these agents, thus lowering their effectiveness. To overcome this problem, we have considered the idea of developing novel agents from within HIV-1 as inhibitors of virus replication. The specificity of the Vpr protein for the HIV-1 virus particle makes it an attractive molecule for the development of antiviral agents targeting the events associated with virus maturation. We have generated chimeric Vpr proteins containing HIV-1-specific sequences added to the C terminus of Vpr. These sequences correspond to nine cleavage sites of the Gag and Gag-Pol precursors of HIV-1. The chimeric Vpr constructs were introduced into HIV-1 proviral DNA to assess their effect on virus infectivity using single- and multiple-round replication assays. The virus particles generated exhibited a variable replication pattern depending on the protease cleavage site used as a fusion partner. Interestingly, the chimeric Vpr containing the cleavage sequences from the junction of p24 and p2, 24/2, completely abolished virus infectivity. These results show that chimeric proteins generated from within HIV-1 have the ability to suppress HIV-1 replication and make ideal agents for gene therapy or intracellular immunization to treat HIV-1 infection.
Collapse
Affiliation(s)
- D Serio
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Nakaya T, Iwai S, Fujinaga K, Sato Y, Otsuka E, Ikuta K. Decoy approach using RNA-DNA chimera oligonucleotides to inhibit the regulatory function of human immunodeficiency virus type 1 Rev protein. Antimicrob Agents Chemother 1997; 41:319-25. [PMID: 9021186 PMCID: PMC163708 DOI: 10.1128/aac.41.2.319] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) encodes two regulatory proteins, Tat and Rev, that bind to target RNA sequences. These are the trans-activation responsive (TAR) RNA and the Rev-responsive element (RRE), respectively. The Rev protein shifts RNA synthesis to viral transcripts by binding to the RRE within the env gene. In the present study we prepared a RNA-DNA chimera consisting of 29 or 31 nucleotides to inhibit the Rev regulatory function by means of the decoy approach. The chimera oligonucleotides (anti-Rev oligonucleotides [AROs]) contained an RNA "bubble" structure (13 oligonucleotides; the Rev-binding element in RRE) that bound Rev with a high affinity in an in vitro assay. The controls were RNA-DNA chimera oligonucleotides (negative control oligonucleotides [NCOs]) similar to ARO, but without the bubble structure, that bound with considerably less affinity to Rev. When the inhibitory effects of these decoys on HIV-1 replication were examined, we found that AROs, but no NCOs, reduced more than 90% of the HIV-1 production generated by productively infected human T-cell lines. The production of primary HIV-1 isolates in healthy donor-derived peripheral blood mononuclear cells was also similarly inhibited by AROs. In addition, the induction of viral mRNAs and antigens in latently HIV-1-infected ACH-2 cells by tumor necrosis factor alpha was specifically inhibited by AROs, but not by NCOs. No apparent cytotoxicity was caused by either decoy. Thus, the use of a Rev-binding element-based decoy, the RNA-DNA chimera oligonucleotide, may represent a safer approach to gene therapy for reducing the virus load in HIV-1-infected individuals.
Collapse
Affiliation(s)
- T Nakaya
- Section of Serology, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Orsini MJ, Debouck CM. Inhibition of human immunodeficiency virus type 1 and type 2 Tat function by transdominant Tat protein localized to both the nucleus and cytoplasm. J Virol 1996; 70:8055-63. [PMID: 8892930 PMCID: PMC190879 DOI: 10.1128/jvi.70.11.8055-8063.1996] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We introduced various mutations into the activation and RNA binding domains of human immunodeficiency virus type 1 (HIV-1) Tat in order to develop a novel and potent transdominant Tat protein and to characterize its mechanism of action. The different mutant Tat proteins were characterized for their abilities to activate the HIV LTR and inhibit the function of wild-type Tat in trans. A Tat protein containing a deletion of the basic domain (Tat(delta)49-57) localized exclusively to the cytoplasm of transfected human cells was nonfunctional and inhibited both HIV-1 and HIV-2 Tat function in a transdominant manner. Tat proteins containing mutations in the cysteine-rich and core domains were nonfunctional but failed to inhibit Tat function in trans. When Tat nuclear or nucleolar localization signals were fused to the carboxy terminus of Tat(delta)49-57, the chimeric proteins localized to the nucleus or nucleolus, respectively, and remained capable of acting in a transdominant manner. Introduction of secondary mutations in the cysteine-rich and core domains of the various transdominant Tat proteins completely eliminated their abilities to act in a transdominant fashion. Our data best support a mechanism in which these transdominant Tat proteins squelch a cellular factor or factors that interact with the Tat activation domain and are required for Tat to function.
Collapse
Affiliation(s)
- M J Orsini
- Department of Molecular Genetics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406, USA
| | | |
Collapse
|
41
|
Dropulić B, Hĕrmánková M, Pitha PM. A conditionally replicating HIV-1 vector interferes with wild-type HIV-1 replication and spread. Proc Natl Acad Sci U S A 1996; 93:11103-8. [PMID: 8855316 PMCID: PMC38291 DOI: 10.1073/pnas.93.20.11103] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Defective-interfering viruses are known to modulate virus pathogenicity. We describe conditionally replicating HIV-1 (crHIV) vectors that interfere with wild-type HIV-1 (wt-HIV) replication and spread. crHIV vectors are defective-interfering HIV genomes that do not encode viral proteins and replicate only in the presence of wt-HIV helper virus. In cells that contain both wt-HIV and crHIV genomes, the latter are shown to have a selective advantage for packaging into progeny virions because they contain ribozymes that cleave wt-HIV RNA but not crHIV RNA. A crHIV vector containing a triple anti-U5 ribozyme significantly interferes with wt-HIV replication and spread. crHIV vectors are also shown to undergo the full viral replicative cycle after complementation with wt-HIV helper-virus. The application of defective interfering crHIV vectors may result in competition with wt-HIVs and decrease pathogenic viral loads in vivo.
Collapse
Affiliation(s)
- B Dropulić
- Oncology Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | | | | |
Collapse
|
42
|
Bahner I, Kearns K, Hao QL, Smogorzewska EM, Kohn DB. Transduction of human CD34+ hematopoietic progenitor cells by a retroviral vector expressing an RRE decoy inhibits human immunodeficiency virus type 1 replication in myelomonocytic cells produced in long-term culture. J Virol 1996; 70:4352-60. [PMID: 8676458 PMCID: PMC190368 DOI: 10.1128/jvi.70.7.4352-4360.1996] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Genetic modification of hematopoietic stem cells with a synthetic "anti-human immunodeficiency virus type 1 (HIV-1) gene" which inhibits replication of HIV-1 may allow production of mature lymphoid and monocytic cells resistant to HIV-1 growth after autologous transplantation. Because productive HIV-1 replication requires binding of the Rev protein to the Rev-responsive element (RRE) within the viral transcripts for the HIV-1 structural proteins, anti-HIV-1 gene products which interfere with Rev-RRE interactions may inhibit HIV-1 replication. One such strategy involves overexpression of the RRE sequences in transcripts derived from retroviral vectors to act as decoys to sequester Rev protein and prevent its binding to the RRE element in HIV-1 transcripts. We developed an in vitro model to test the efficacy of this gene therapy approach in primary human hematopoietic cells. Human CD34+ hematopoietic progenitor cells from normal bone marrow or umbilical cord blood were transduced with retroviral vectors carrying RRE decoy sequences as part of a long terminal repeat-directed transcript expressing the neo gene (L-RRE-neo) or with a control vector expressing only the neo gene (LN). The transduced progenitors were allowed to differentiate into mature myelomonocytic cells which were able to support vigorous growth of the monocytotropic isolate of HIV-1, JR-FL. HIV-1 replication was measured in unselected cell populations and following G418 selection to obtain uniformly transduced cell populations. Inhibition of HIV-1 replication in the unselected cell cultures was between 50.2 and 76.7% and was highly effective (99.4 to 99.9%) in the G418-selected cultures. Progenitors transduced by either the L-RRE-neo vector or the control LN vector were identical with respect to hematopoietic growth and differentiation. These findings demonstrate the ability of an RRE decoy strategy to inhibit HIV-1 replication in primary human myelomonocytic cells after transduction of CD34+ progenitor cells, without adverse effects on hematopoietic cell function.
Collapse
Affiliation(s)
- I Bahner
- Department of Pediatrics, University of Southern California School of Medicine, California 90027, USA
| | | | | | | | | |
Collapse
|
43
|
Ulich C, Harrich D, Estes P, Gaynor RB. Inhibition of human immunodeficiency virus type 1 replication is enhanced by a combination of transdominant Tat and Rev proteins. J Virol 1996; 70:4871-6. [PMID: 8676525 PMCID: PMC190435 DOI: 10.1128/jvi.70.7.4871-4876.1996] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mutation of either of two critical human immunodeficiency virus type 1 (HIV-1) regulatory proteins, Tat and Rev, results in marked defects in viral replication. Thus, inhibition of the function of one or both of these proteins can significantly inhibit viral growth. In the present study, we constructed a novel transdominant Tat mutant protein and compared its efficiency in inhibiting HIV-1 replication with that of transdominant mutant Rev M10 when these proteins were stably expressed either alone or in combination in T-lymphocyte cell lines. The transdominant Tat mutant protein alone resulted in a modest inhibition of HIV replication, but it was able to enhance the ability of the M10 Rev mutant protein to inhibit HIV-1 replication. These results suggest a possible synergistic effect of these transdominant mutant proteins in inhibiting HIV-1 replication.
Collapse
Affiliation(s)
- C Ulich
- Division of Molecular Virology, Department of Medicine, University of Texas Southwestern Medical Center at Dallas, Texas 75235-8594, USA
| | | | | | | |
Collapse
|
44
|
Emiliani S, Van Lint C, Fischle W, Paras P, Ott M, Brady J, Verdin E. A point mutation in the HIV-1 Tat responsive element is associated with postintegration latency. Proc Natl Acad Sci U S A 1996; 93:6377-81. [PMID: 8692823 PMCID: PMC39030 DOI: 10.1073/pnas.93.13.6377] [Citation(s) in RCA: 136] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Study of the mechanism of HIV-1 postintegration latency in the ACH2 cell line demonstrates that these cells failed to increase HIV-1 production following treatment with exogenous Tat. Reasoning that the defect in ACH2 cells involves the Tat response, we analyzed the sequence of tat cDNA and Tat responsive element (TAR) from the virus integrated in ACH2. Tat cDNA sequence is closely related to that of HIV LAI, and the encoded protein is fully functional in terms of long terminal repeat (LTR) transactivation. Cloning of a region corresponding to the 5'-LTR from ACH2, however, identified a point mutation (C37 -> T) in TAR. This mutation impaired Tat responsiveness of the LTR in transient transfection assays, and the measured defect was complemented in cells that had been treated with tetradecanoyl phorbol acetate or tumor necrosis factor type alpha (TNF-alpha). A compensatory mutation in TAR (G28 -> A), designed to reestablish base pairing in the TAR hairpin, restored wild-type Tat responsiveness. When the (C37 -> T) mutation was introduced in an infectious clone of HIV-1, no viral production was measured in the absence of TNF-alpha, whereas full complementation was observed when the infection was conducted in the presence of TNF-alpha or when a compensatory mutation (G28 -> A) was introduced into TAR. These experiments identify a novel mutation associated with HIV-1 latency and suggest that alterations in the Tat-TAR axis can be a crucial determinant of the latent phenotype in infected individuals.
Collapse
Affiliation(s)
- S Emiliani
- The Picower Institute for Medical Research, Manhasset, NY 11030, USA
| | | | | | | | | | | | | |
Collapse
|
45
|
Woffendin C, Ranga U, Yang Z, Xu L, Nabel GJ. Expression of a protective gene-prolongs survival of T cells in human immunodeficiency virus-infected patients. Proc Natl Acad Sci U S A 1996; 93:2889-94. [PMID: 8610137 PMCID: PMC39729 DOI: 10.1073/pnas.93.7.2889] [Citation(s) in RCA: 134] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The resistance of acquired immunodeficiency syndrome (AIDS) to traditional drug therapy has prompted a search for alternative treatments for this disease. One potential approach is to provide genetic resistance to viral replication to prolong latency. This strategy requires the definition of effective antiviral genes that extend the survival of T cells in human immunodeficiency virus (HIV)-infected individuals. We report the results of a human study designed to determine whether a genetic intervention can prolong the survival of T cells in HIV-infected individuals. Gene transfer was performed in enriched CD4+ cells with plasmid expression vectors encoding an inhibitory Rev protein, Rev M10, or a deletion mutant control, deltaRev M10, delivered by gold microparticles. Autologous cells separately transfected with each of the vectors were returned to each patient, and toxicity, gene expression, and survival of genetically modified cells were assessed. Cells that expressed Rev M10 were more resistant to HIV infection than those with deltaRev M10 in vitro. In HIV-infected subjects, Rev M10-transduced cells showed preferential survival compared to deltaRev M10 controls. Rev M10 can therefore act as a specific intracellular inhibitor that can prolong T-cell survival in HIV-1-infected individuals and potentially serve as a molecular genetic intervention which can contribute to the treatment of AIDS.
Collapse
Affiliation(s)
- C Woffendin
- Howard Hughes Medical Institute, University of Michigan Medical Center, Ann Arbor 48109-0650, USA
| | | | | | | | | |
Collapse
|
46
|
Kraus GA, Zhang W, Fehr MJ, Petrich JW, Wannemuehler Y, Carpenter S. Research at the Interface between Chemistry and Virology: Development of a Molecular Flashlight. Chem Rev 1996; 96:523-536. [PMID: 11848763 DOI: 10.1021/cr9500139] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- George A. Kraus
- Department of Chemistry, and Department of Microbiology, Immunology, and Preventive Medicine, Iowa State University, Ames, Iowa 50011
| | | | | | | | | | | |
Collapse
|
47
|
Brady HJ, Abraham DJ, Pennington DJ, Miles CG, Jenkins S, Dzierzak EA. Altered cytokine expression in T lymphocytes from human immunodeficiency virus Tat transgenic mice. J Virol 1995; 69:7622-9. [PMID: 7494270 PMCID: PMC189702 DOI: 10.1128/jvi.69.12.7622-7629.1995] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Examination of the interaction between human immunodeficiency virus (HIV) regulatory gene products and the host immune system is fundamental to understanding the pathogenesis of HIV and could reveal possible targets for therapeutic intervention in the treatment of AIDS. The HIV Tat gene is a potential candidate for this type of strategy. Transgenic mice can be used to investigate the in vivo effects of Tat on the developing and dynamic immune system and on cellular gene expression. Thus, we have generated transgenic mice that harbor the HIV type 1 Tat gene under the transcriptional control of the human CD2 gene regulatory elements. This expression cassette results in high-level, tissue-specific transcription of the transgene within the T-cell compartment. In this report, we demonstrate the effects of Tat on the in vivo immune system. CD2-Tat transgenic mice show no signs of aberrant thymic development and have normal levels of T-cell subsets in the thymus and peripheral lymphoid organs. However, activated T cells from transgenic mice contain increased levels of tumor necrosis factor beta mRNA as well as biologically active tumor necrosis factor protein and express elevated levels of transforming growth factor beta and interleukin-4 receptor mRNA. These increased cytokine levels do not appear to alter mitogen- or antigen-stimulated responses or induce the formation of dermal lesions in ageing mice. Such investigations should provide insight into the combination of host immune factors mediating pathogenesis in HIV infection.
Collapse
MESH Headings
- Aging/immunology
- Animals
- Antigens, CD/biosynthesis
- Cytokines/biosynthesis
- Exons
- Flow Cytometry
- Gene Expression
- Gene Products, tat/analysis
- Gene Products, tat/biosynthesis
- Genes, tat
- HIV-1/genetics
- Humans
- Lymph Nodes/immunology
- Lymphotoxin-alpha/analysis
- Lymphotoxin-alpha/biosynthesis
- Mice
- Mice, Transgenic
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Receptors, Interleukin/biosynthesis
- Receptors, Interleukin-4
- Restriction Mapping
- Spleen/immunology
- T-Lymphocytes/microbiology
- T-Lymphocytes/virology
- Thymus Gland/immunology
- Transcription, Genetic
- Transforming Growth Factor beta/biosynthesis
- Tumor Necrosis Factor-alpha/biosynthesis
- tat Gene Products, Human Immunodeficiency Virus
Collapse
Affiliation(s)
- H J Brady
- Laboratory of Gene Structure and Expression, National Institute for Medical Research, Mill Hill, London, United Kingdom
| | | | | | | | | | | |
Collapse
|
48
|
Dinges MM, Cook DR, King J, Curiel TJ, Zhang XQ, Harrison GS. HIV-regulated diphtheria toxin A chain gene confers long-term protection against HIV type 1 infection in the human promonocytic cell line U937. Hum Gene Ther 1995; 6:1437-45. [PMID: 8573616 DOI: 10.1089/hum.1995.6.11-1437] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Gene therapy approaches have recently been investigated for the treatment of acquired immunodeficiency syndrome (AIDS), both in preclinical and clinical studies, because more traditional antiviral agents have proven to be of limited effectiveness. We have previously shown that long-term protection against both laboratory and clinical isolates of human immunodeficiency virus type 1 (HIV-1) was conferred by HIV-regulated diphtheria toxin A (DT-A) chain in a human T cell line. Because the monocyte/macrophage cell is an important reservoir for HIV-1 in infected individuals, we sought here to determine whether HIV-regulated DT-A would also be effective in the promonocytic cell line U937. We report here that long-term protection, conferred by HIV-regulated DT-A, was observed in U937 cells, but that protection was dependent on the stock of HIV IIIB used for challenge. HIV production was measured by p24 assays, polymerase chain reaction (PCR) for HIV vif, gag, and reverse transcriptase (RT) sequences, and cocultivation with peripheral blood mononuclear cells (PBMCs). Complete protection was seen in DT-A-transduced cells with a stock of IIIB propagated on H9 cells and titered on peripheral blood mononuclear cells (PBMCs), while protection in these same cells with a second stock of IIIB, propagated and titered on H9 cells, was only partial and dose dependent.
Collapse
Affiliation(s)
- M M Dinges
- Department of Pediatrics, University of Minnesota Hospital and Clinic, Minneapolis 55455, USA
| | | | | | | | | | | |
Collapse
|
49
|
Hoffman DW, White SW. NMR analysis of the trans-activation response (TAR) RNA element of equine infectious anemia virus. Nucleic Acids Res 1995; 23:4058-65. [PMID: 7479065 PMCID: PMC307343 DOI: 10.1093/nar/23.20.4058] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Transcription of lentiviral DNA in the host cell is regulated by an interaction between the viral TAR RNA stem-loop and the viral Tat protein. Here we present a model of the three-dimensional structure of the TAR RNA stem-loop of the equine infectious anemia virus (EIAV), derived from two- and three-dimensional NMR data. This 25 nucleotide RNA consists of an A-form helical stem capped by two U-G base pairs and a four-nucleotide loop. Two loop cytidines are stacked into the loop interior and likely form a non-Watson-Crick C-C base-pair. The two nucleotides at the top of the loop, U13 and G14, appear to be excluded from the interior of the loop and solvent exposed. It is significant that now for the EIAV TAR-Tat system, three-dimensional structures are now known for both the RNA and protein components.
Collapse
Affiliation(s)
- D W Hoffman
- Department of Chemistry and Biochemistry, University of Texas at Austin 78712, USA
| | | |
Collapse
|
50
|
Suñé C, García-Blanco MA. Transcriptional trans activation by human immunodeficiency virus type 1 Tat requires specific coactivators that are not basal factors. J Virol 1995; 69:3098-107. [PMID: 7707538 PMCID: PMC189011 DOI: 10.1128/jvi.69.5.3098-3107.1995] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Expression of human immunodeficiency virus type 1 (HIV-1) genes is regulated by the trans activator Tat. Tat exerts its effects by increasing the rate of transcription, but the mechanism by which it does so is still unknown. To study the cellular factors required for Tat trans activation, we have expressed functional Gst-Tat fusion protein and used it to construct affinity columns. Our findings are as follows. (i) A Gst-Tat affinity matrix depleted HeLa nuclear extracts of a factor(s) required for Tat function. A Tat mutant bearing the missense mutation lysine to alanine at position 41 was incapable of this depletion. (ii) Tat trans activation was recovered by addition of unfractionated nuclear extract, the 0.5 M KCl elution fraction from the Tat affinity column, or sedimentation gradient fractions of HeLa extracts. The activity from the gradients sedimented with an apparent molecular mass of 200 kDa. (iii) Tat trans activation could not be recovered by use of recombinant human TATA-binding protein or partially purified TFIID. (iv) trans activation by Tat was blocked by heating of the nuclear extract under conditions in which basal transcription was not decreased. Our data demonstrate for the first time the existence of unique Tat coactivators distinct from factors required for general basal transcription.
Collapse
Affiliation(s)
- C Suñé
- Department of Molecular Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|