1
|
Carlier F, Castro Ramirez S, Kilani J, Chehboub S, Loïodice I, Taddei A, Gladyshev E. Remodeling of perturbed chromatin can initiate de novo transcriptional and post-transcriptional silencing. Proc Natl Acad Sci U S A 2024; 121:e2402944121. [PMID: 39052837 PMCID: PMC11295056 DOI: 10.1073/pnas.2402944121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
In eukaryotes, repetitive DNA can become silenced de novo, either transcriptionally or post-transcriptionally, by processes independent of strong sequence-specific cues. The mechanistic nature of such processes remains poorly understood. We found that in the fungus Neurospora crassa, de novo initiation of both transcriptional and post-transcriptional silencing was linked to perturbed chromatin, which was produced experimentally by the aberrant activity of transcription factors at the tetO operator array. Transcriptional silencing was mediated by canonical constitutive heterochromatin. On the other hand, post-transcriptional silencing resembled repeat-induced quelling but occurred normally when homologous recombination was inactivated. All silencing of the tetO array was dependent on SAD-6, fungal ortholog of the SWI/SNF chromatin remodeler ATRX (Alpha Thalassemia/Mental Retardation Syndrome X-Linked), which was required to maintain nucleosome occupancy at the perturbed locus. In addition, we found that two other types of sequences (the lacO array and native AT-rich DNA) could also undergo recombination-independent quelling associated with perturbed chromatin. These results suggested a model in which the de novo initiation of transcriptional and post-transcriptional silencing is coupled to the remodeling of perturbed chromatin.
Collapse
Affiliation(s)
- Florian Carlier
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Sebastian Castro Ramirez
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Jaafar Kilani
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Sara Chehboub
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| | - Isabelle Loïodice
- Institut Curie, UMR3664 Nuclear Dynamics, CNRS, Université Paris Sciences et Lettres, Sorbonne Université, Paris75005, France
| | - Angela Taddei
- Institut Curie, UMR3664 Nuclear Dynamics, CNRS, Université Paris Sciences et Lettres, Sorbonne Université, Paris75005, France
| | - Eugene Gladyshev
- Institut Pasteur, Department of Mycology, Molecular Genetics and Epigenetics Unit, Université Paris Cité, Paris75015, France
| |
Collapse
|
2
|
Cruz-Leite VRM, Moreira ALE, Silva LOS, Inácio MM, Parente-Rocha JA, Ruiz OH, Weber SS, Soares CMDA, Borges CL. Proteomics of Paracoccidioides lutzii: Overview of Changes Triggered by Nitrogen Catabolite Repression. J Fungi (Basel) 2023; 9:1102. [PMID: 37998907 PMCID: PMC10672198 DOI: 10.3390/jof9111102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/25/2023] Open
Abstract
Members of the Paracoccidioides complex are the causative agents of Paracoccidioidomycosis (PCM), a human systemic mycosis endemic in Latin America. Upon initial contact with the host, the pathogen needs to uptake micronutrients. Nitrogen is an essential source for biosynthetic pathways. Adaptation to nutritional stress is a key feature of fungi in host tissues. Fungi utilize nitrogen sources through Nitrogen Catabolite Repression (NCR). NCR ensures the scavenging, uptake and catabolism of alternative nitrogen sources, when preferential ones, such as glutamine or ammonium, are unavailable. The NanoUPLC-MSE proteomic approach was used to investigate the NCR response of Paracoccidioides lutzii after growth on proline or glutamine as a nitrogen source. A total of 338 differentially expressed proteins were identified. P. lutzii demonstrated that gluconeogenesis, β-oxidation, glyoxylate cycle, adhesin-like proteins, stress response and cell wall remodeling were triggered in NCR-proline conditions. In addition, within macrophages, yeast cells trained under NCR-proline conditions showed an increased ability to survive. In general, this study allows a comprehensive understanding of the NCR response employed by the fungus to overcome nutritional starvation, which in the human host is represented by nutritional immunity. In turn, the pathogen requires rapid adaptation to the changing microenvironment induced by macrophages to achieve successful infection.
Collapse
Affiliation(s)
- Vanessa Rafaela Milhomem Cruz-Leite
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - André Luís Elias Moreira
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Lana O’Hara Souza Silva
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Moises Morais Inácio
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
- Estácio de Goiás University Center—FESGO, Goiânia 74063-010, GO, Brazil
| | - Juliana Alves Parente-Rocha
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Orville Hernandez Ruiz
- MICROBA Research Group, Cellular and Molecular Biology Unit, Department of Microbiology, School of Microbiology, University of Antioquia, Medellín 050010, Colombia;
| | - Simone Schneider Weber
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul, Campo Grande 79304-902, MS, Brazil;
| | - Célia Maria de Almeida Soares
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| | - Clayton Luiz Borges
- Department of Biochemistry and Molecular Biology, Institute of Biological Sciences II, Federal University of Goiás, Goiânia 74690-900, GO, Brazil; (A.L.E.M.); (L.O.S.S.); (M.M.I.); (J.A.P.-R.); (C.M.d.A.S.)
| |
Collapse
|
3
|
Kerkaert JD, Huberman LB. Regulation of nutrient utilization in filamentous fungi. Appl Microbiol Biotechnol 2023; 107:5873-5898. [PMID: 37540250 PMCID: PMC10983054 DOI: 10.1007/s00253-023-12680-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/29/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
Organisms must accurately sense and respond to nutrients to survive. In filamentous fungi, accurate nutrient sensing is important in the establishment of fungal colonies and in continued, rapid growth for the exploitation of environmental resources. To ensure efficient nutrient utilization, fungi have evolved a combination of activating and repressing genetic networks to tightly regulate metabolic pathways and distinguish between preferred nutrients, which require minimal energy and resources to utilize, and nonpreferred nutrients, which have more energy-intensive catabolic requirements. Genes necessary for the utilization of nonpreferred carbon sources are activated by transcription factors that respond to the presence of the specific nutrient and repressed by transcription factors that respond to the presence of preferred carbohydrates. Utilization of nonpreferred nitrogen sources generally requires two transcription factors. Pathway-specific transcription factors respond to the presence of a specific nonpreferred nitrogen source, while another transcription factor activates genes in the absence of preferred nitrogen sources. In this review, we discuss the roles of transcription factors and upstream regulatory genes that respond to preferred and nonpreferred carbon and nitrogen sources and their roles in regulating carbon and nitrogen catabolism. KEY POINTS: • Interplay of activating and repressing transcriptional networks regulates catabolism. • Nutrient-specific activating transcriptional pathways provide metabolic specificity. • Repressing regulatory systems differentiate nutrients in mixed nutrient environments.
Collapse
Affiliation(s)
- Joshua D Kerkaert
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Lori B Huberman
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
4
|
An NmrA-Like Protein, Lws1, Is Important for Pathogenesis in the Woody Plant Pathogen Lasiodiplodia theobromae. PLANTS 2022; 11:plants11172197. [PMID: 36079578 PMCID: PMC9460803 DOI: 10.3390/plants11172197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022]
Abstract
The NmrA-like proteins have been reported to be important nitrogen metabolism regulators and virulence factors in herbaceous plant pathogens. However, their role in the woody plant pathogen Lasiodiplodia theobromae is less clear. In the current study, we identified a putative NmrA-like protein, Lws1, in L. theobromae and investigated its pathogenic role via gene silencing and overexpression experiments. We also evaluated the effects of external carbon and nitrogen sources on Lws1 gene expression via qRT-PCR assays. Moreover, we analyzed the molecular interaction between Lws1 and its target protein via the yeast two-hybrid system. The results show that Lws1 contained a canonical glycine-rich motif shared by the short-chain dehydrogenase/reductase (SDR) superfamily proteins and functioned as a negative regulator during disease development. Transcription profiling revealed that the transcription of Lws1 was affected by external nitrogen and carbon sources. Interaction analyses demonstrated that Lws1 interacted with a putative GATA family transcription factor, LtAreA. In conclusion, these results suggest that Lws1 serves as a critical regulator in nutrition metabolism and disease development during infection.
Collapse
|
5
|
Huberman LB, Wu VW, Kowbel DJ, Lee J, Daum C, Grigoriev IV, O'Malley RC, Glass NL. DNA affinity purification sequencing and transcriptional profiling reveal new aspects of nitrogen regulation in a filamentous fungus. Proc Natl Acad Sci U S A 2021; 118:e2009501118. [PMID: 33753477 PMCID: PMC8020665 DOI: 10.1073/pnas.2009501118] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sensing available nutrients and efficiently utilizing them is a challenge common to all organisms. The model filamentous fungus Neurospora crassa is capable of utilizing a variety of inorganic and organic nitrogen sources. Nitrogen utilization in N. crassa is regulated by a network of pathway-specific transcription factors that activate genes necessary to utilize specific nitrogen sources in combination with nitrogen catabolite repression regulatory proteins. We identified an uncharacterized pathway-specific transcription factor, amn-1, that is required for utilization of the nonpreferred nitrogen sources proline, branched-chain amino acids, and aromatic amino acids. AMN-1 also plays a role in regulating genes involved in responding to the simple sugar mannose, suggesting an integration of nitrogen and carbon metabolism. The utilization of nonpreferred nitrogen sources, which require metabolic processing before being used as a nitrogen source, is also regulated by the nitrogen catabolite regulator NIT-2. Using RNA sequencing combined with DNA affinity purification sequencing, we performed a survey of the role of NIT-2 and the pathway-specific transcription factors NIT-4 and AMN-1 in directly regulating genes involved in nitrogen utilization. Although previous studies suggested promoter binding by both a pathway-specific transcription factor and NIT-2 may be necessary for activation of nitrogen-responsive genes, our data show that pathway-specific transcription factors regulate genes involved in the catabolism of specific nitrogen sources, while NIT-2 regulates genes involved in utilization of all nonpreferred nitrogen sources, such as nitrogen transporters. Together, these transcription factors form a nutrient sensing network that allows N. crassa cells to regulate nitrogen utilization.
Collapse
Affiliation(s)
- Lori B Huberman
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720;
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
| | - Vincent W Wu
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
| | - David J Kowbel
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720
| | - Juna Lee
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Chris Daum
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Igor V Grigoriev
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Ronan C O'Malley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - N Louise Glass
- Plant and Microbial Biology Department, University of California, Berkeley, CA 94720;
- Energy Biosciences Institute, University of California, Berkeley, CA 94720
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
6
|
Milhomem Cruz-Leite VR, Salem-Izacc SM, Novaes E, Neves BJ, de Almeida Brito W, O'Hara Souza Silva L, Paccez JD, Parente-Rocha JA, Pereira M, Maria de Almeida Soares C, Borges CL. Nitrogen Catabolite Repression in members of Paracoccidioides complex. Microb Pathog 2020; 149:104281. [PMID: 32585293 DOI: 10.1016/j.micpath.2020.104281] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 01/15/2023]
Abstract
Paracoccidioides complex is a genus that comprises pathogenic fungi which are responsible by systemic disease Paracoccidioidomycosis. In host tissues, pathogenic fungi need to acquire nutrients in order to survive, making the uptake of nitrogen essential for their establishment and dissemination. Nitrogen utilization is employed by the alleviation of Nitrogen Catabolite Repression (NCR) which ensures the use of non-preferential or alternative nitrogen sources when preferential sources are not available. NCR is controlled by GATA transcription factors which act through GATA binding sites on promoter regions in NCR-sensitive genes. This process is responsible for encoding proteins involved with the scavenge, uptake and catabolism of a wide variety of non-preferential nitrogen sources. In this work, we predict the existence of AreA GATA transcription factor and feature the zinc finger domain by three-dimensional structure in Paracoccidioides. Furthermore, we demonstrate the putative genes involved with NCR response by means of in silico analysis. The gene expression profile under NCR conditions was evaluated. Demonstrating that P. lutzii supported transcriptional regulation and alleviated NCR in non-preferential nitrogen-dependent medium. The elucidation of NCR in members of Paracoccidioides complex will provide new knowledge about survival, dissemination and virulence for these pathogens with regard to nitrogen-scavenging strategies in the interactions of host-pathogens.
Collapse
Affiliation(s)
| | - Silvia Maria Salem-Izacc
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Evandro Novaes
- Escola de Agronomia, Setor de Melhoramento de Plantas, Universidade Federal de Goiás, Campus II Samambaia, Rodovia Goiânia a Nova Veneza, Goiás, Brazil.
| | - Bruno Junior Neves
- Centro Universitário de Anápolis - UniEVANGÉLICA, Anápolis, Goiás, Brazil.
| | - Wesley de Almeida Brito
- Centro Universitário de Anápolis - UniEVANGÉLICA, Anápolis, Goiás, Brazil; Universidade Estadual de Goiás - UEG - CCET, Anápolis, Goiás, Brazil.
| | - Lana O'Hara Souza Silva
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Juliano Domiraci Paccez
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Juliana Alves Parente-Rocha
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Maristela Pereira
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Célia Maria de Almeida Soares
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| | - Clayton Luiz Borges
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Goiás, Brazil.
| |
Collapse
|
7
|
Exploiting the potential of metal and solvent tolerant laccase from Tricholoma giganteum AGDR1 for the removal of pesticides. Int J Biol Macromol 2019; 144:586-595. [PMID: 31830449 DOI: 10.1016/j.ijbiomac.2019.12.068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/21/2019] [Accepted: 12/09/2019] [Indexed: 11/22/2022]
Abstract
Laccase from previously reported hardwood degrading fungus, Tricholoma giganteum AGDR1, was isolated, identified at molecular level, biochemically characterized and also utilized for pesticide degradation. Laccase gene is comprised of 3752 bp, which encompassed 742-bp of 5' flanking upstream sequence with 12 introns and 12 exons. Mature enzyme possesses 391 amino acids and signal peptide, which is determined to be monomeric protein with an apparent molecular weight of 41 kDa and 6.45 pI. Higher optimal activities were observed at 45 °C and pH 3.0 and surprisingly, it exhibited more than 20% of relative activity at pH 1.5. Purified laccase was tolerant to 100 mM of metals (i.e. Se, Pb, Cu, Cr and Cd), organic solvents (ethyl acetate, methanol, ethanol and acetone) and potent inhibitors (hydroxylamine, thiourea, NaF and Na-azide) as compared to reported laccases. It was able to degrade 29%, 7% and 72% of chlorpyrifos, profenofos and thiophanate methyl within 15 h, respectively. Molecular docking analysis revealed that higher binding efficacy of these pesticides is observed with H83, H320, A95, V384, and P366 which are presented near to the catalytic site. Based on the results, T. giganteum AGDR1 laccase can be applied for the potential remediation and industrial applications under harsh conditions.
Collapse
|
8
|
Nuclear transport of the Neurospora crassa NIT-2 transcription factor is mediated by importin-α. Biochem J 2017; 474:4091-4104. [DOI: 10.1042/bcj20170654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Neurospora crassa NIT-2 transcription factor belongs to the GATA transcription factor family and plays a fundamental role in the regulation of nitrogen metabolism. Because NIT-2 acts by accessing DNA inside the nucleus, understanding the nuclear import process of NIT-2 is necessary to characterize its function. Thus, in the present study, NIT-2 nuclear transport was investigated using a combination of biochemical, cellular, and biophysical methods. A complemented strain that produced an sfGFP–NIT-2 fusion protein was constructed, and nuclear localization assessments were made under conditions that favored protein translocation to the nucleus. Nuclear translocation was also investigated using HeLa cells, which showed that the putative NIT-2 nuclear localization sequence (NLS; 915TISSKRQRRHSKS927) was recognized by importin-α and that subsequent transport occurred via the classical import pathway. The interaction between the N. crassa importin-α (NcImpα) and the NIT-2 NLS was quantified with calorimetric assays, leading to the observation that the peptide bound to two sites with different affinities, which is typical of a monopartite NLS sequence. The crystal structure of the NcImpα/NIT-2 NLS complex was solved and revealed that the NIT-2 peptide binds to NcImpα with the major NLS-binding site playing a primary role. This result contrasts other recent studies that suggested a major role for the minor NLS-binding site in importin-α from the α2 family, indicating that both sites can be used for different cargo proteins according to specific metabolic requirements.
Collapse
|
9
|
Gomez-Gil L, Camara Almiron J, Rodriguez Carrillo PL, Olivares Medina CN, Bravo Ruiz G, Romo Rodriguez P, Corrales Escobosa AR, Gutierrez Corona F, Roncero MI. Nitrate assimilation pathway (NAP): role of structural (nit) and transporter (ntr1) genes in Fusarium oxysporum f.sp. lycopersici growth and pathogenicity. Curr Genet 2017; 64:493-507. [DOI: 10.1007/s00294-017-0766-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 01/12/2023]
|
10
|
Resjö S, Brus M, Ali A, Meijer HJG, Sandin M, Govers F, Levander F, Grenville-Briggs L, Andreasson E. Proteomic Analysis of Phytophthora infestans Reveals the Importance of Cell Wall Proteins in Pathogenicity. Mol Cell Proteomics 2017; 16:1958-1971. [PMID: 28935716 DOI: 10.1074/mcp.m116.065656] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 09/19/2017] [Indexed: 11/06/2022] Open
Abstract
The oomycete Phytophthora infestans is the most harmful pathogen of potato. It causes the disease late blight, which generates increased yearly costs of up to one billion euro in the EU alone and is difficult to control. We have performed a large-scale quantitative proteomics study of six P. infestans life stages with the aim to identify proteins that change in abundance during development, with a focus on preinfectious life stages. Over 10 000 peptides from 2061 proteins were analyzed. We identified several abundance profiles of proteins that were up- or downregulated in different combinations of life stages. One of these profiles contained 59 proteins that were more abundant in germinated cysts and appressoria. A large majority of these proteins were not previously recognized as being appressorial proteins or involved in the infection process. Among those are proteins with putative roles in transport, amino acid metabolism, pathogenicity (including one RXLR effector) and cell wall structure modification. We analyzed the expression of the genes encoding nine of these proteins using RT-qPCR and found an increase in transcript levels during disease progression, in agreement with the hypothesis that these proteins are important in early infection. Among the nine proteins was a group involved in cell wall structure modification and adhesion, including three closely related, uncharacterized proteins encoded by PITG_01131, PITG_01132, and PITG_16135, here denoted Piacwp1-3 Transient silencing of these genes resulted in reduced severity of infection, indicating that these proteins are important for pathogenicity. Our results contribute to further insight into P. infestans biology, and indicate processes that might be relevant for the pathogen while preparing for host cell penetration and during infection. The mass spectrometry data have been deposited to ProteomeXchange via the PRIDE partner repository with the data set identifier PXD002446.
Collapse
Affiliation(s)
- Svante Resjö
- From the ‡Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, SE-230 53 Alnarp, Sweden;
| | - Maja Brus
- From the ‡Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, SE-230 53 Alnarp, Sweden
| | - Ashfaq Ali
- From the ‡Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, SE-230 53 Alnarp, Sweden
| | - Harold J G Meijer
- §Laboratory of Phytopathology, Wageningen University and Research, The Netherlands
| | | | - Francine Govers
- §Laboratory of Phytopathology, Wageningen University and Research, The Netherlands
| | - Fredrik Levander
- ¶Department of Immunotechnology, Lund University, Sweden.,‖National Bioinformatics Infrastructure Sweden (NBIS), Lund University, Sweden
| | - Laura Grenville-Briggs
- From the ‡Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, SE-230 53 Alnarp, Sweden
| | - Erik Andreasson
- From the ‡Department of Plant Protection Biology, Swedish University of Agricultural Sciences, PO Box 102, SE-230 53 Alnarp, Sweden
| |
Collapse
|
11
|
Yang J, Wang G, Ng TB, Lin J, Ye X. Laccase Production and Differential Transcription of Laccase Genes in Cerrena sp. in Response to Metal Ions, Aromatic Compounds, and Nutrients. Front Microbiol 2016; 6:1558. [PMID: 26793186 PMCID: PMC4710055 DOI: 10.3389/fmicb.2015.01558] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022] Open
Abstract
Laccases can oxidize a wide range of aromatic compounds and are industrially valuable. Laccases often exist in gene families and may differ from each other in expression and function. Quantitative real-time polymerase chain reaction (qPCR) was used for transcription profiling of eight laccase genes in Cerrena sp. strain HYB07 with validated reference genes. A high laccase activity of 280.0 U/mL was obtained after submerged fermentation for 5 days. Laccase production and laccase gene transcription at different fermentation stages and in response to various environmental cues were revealed. HYB07 laccase activity correlated with transcription levels of its predominantly expressed laccase gene, Lac7. Cu2+ ions were indispensable for efficient laccase production by HYB07, mainly through Lac7 transcription induction, and no aromatic compounds were needed. HYB07 laccase synthesis and biomass accumulation were highest with non-limiting carbon and nitrogen. Glycerol and inorganic nitrogen sources adversely impacted Lac7 transcription, laccase yields, and fungal growth. The present study would further our understanding of transcription regulation of laccase genes, which may in turn facilitate laccase production as well as elucidation of their physiological roles.
Collapse
Affiliation(s)
- Jie Yang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Guozeng Wang
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Tzi Bun Ng
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong Hong Kong, China
| | - Juan Lin
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| | - Xiuyun Ye
- Fujian Key Laboratory of Marine Enzyme Engineering, Fuzhou University Fuzhou, China
| |
Collapse
|
12
|
Metabolic Impacts of Using Nitrogen and Copper-Regulated Promoters to Regulate Gene Expression in Neurospora crassa. G3-GENES GENOMES GENETICS 2015; 5:1899-908. [PMID: 26194204 PMCID: PMC4555226 DOI: 10.1534/g3.115.020073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The filamentous fungus Neurospora crassa is a long-studied eukaryotic microbial system amenable to heterologous expression of native and foreign proteins. However, relatively few highly tunable promoters have been developed for this species. In this study, we compare the tcu-1 and nit-6 promoters for controlled expression of a GFP reporter gene in N. crassa. Although the copper-regulated tcu-1 has been previously characterized, this is the first investigation exploring nitrogen-controlled nit-6 for expression of heterologous genes in N. crassa. We determined that fragments corresponding to 1.5-kb fragments upstream of the tcu-1 and nit-6 open reading frames are needed for optimal repression and expression of GFP mRNA and protein. nit-6 was repressed using concentrations of glutamine from 2 to 20 mM and induced in medium containing 0.5–20 mM nitrate as the nitrogen source. Highest levels of expression were achieved within 3 hr of induction for each promoter and GFP mRNA could not be detected within 1 hr after transfer to repressing conditions using the nit-6 promoter. We also performed metabolic profiling experiments using proton NMR to identify changes in metabolite levels under inducing and repressing conditions for each promoter. The results demonstrate that conditions used to regulate tcu-1 do not significantly change the primary metabolome and that the differences between inducing and repressing conditions for nit-6 can be accounted for by growth under nitrate or glutamine as a nitrogen source. Our findings demonstrate that nit-6 is a tunable promoter that joins tcu-1 as a choice for regulation of gene expression in N. crassa.
Collapse
|
13
|
Zhang J, Chen H, Chen M, Ren A, Huang J, Wang H, Zhao M, Feng Z. Cloning and functional analysis of a laccase gene during fruiting body formation in Hypsizygus marmoreus. Microbiol Res 2015; 179:54-63. [PMID: 26411895 DOI: 10.1016/j.micres.2015.06.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 05/27/2015] [Accepted: 06/19/2015] [Indexed: 10/23/2022]
Abstract
The Hypsizygus marmoreus laccase gene (lcc1) sequence was cloned and analyzed. The genomic DNA of lcc1 is 2336 bp, comprising 13 introns and 14 exons. The 1626-bp full-length cDNA encodes a mature laccase protein containing 542 amino acids, with a 21-amino acid signal peptide. Phylogenetic analysis showed that the lcc1 amino acid sequence is homologous to basidiomycete laccases and shares the highest similarity with Flammulina velutipes laccase. A 2021-bp promoter sequence containing a TATA box, CAAT box, and several putative cis-acting elements was also identified. To study the function of lcc1, we first overexpressed lcc1 in H. marmoreus and found that the transgenic fungus producing recombinant laccase displayed faster mycelial growth than the wild-type (wt) strain. Additionally, primordium initiation was induced 3-5 days earlier in the transgenic fungus, and fruiting body maturation was also promoted approximately five days earlier than in the wt strain. Furthermore, we detected that lcc1 was sustainably overexpressed and that laccase activity was also higher in the transgenic strains compared with the wt strain during development in H. marmoreus. These results indicate that the H. marmoreus lcc1 gene is involved in mycelial growth and fruiting body initiation by increasing laccase activity.
Collapse
Affiliation(s)
- Jinjing Zhang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People's Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, FengXian District, Shanghai 201403, China
| | - Hui Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People's Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, FengXian District, Shanghai 201403, China
| | - Mingjie Chen
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People's Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, FengXian District, Shanghai 201403, China
| | - Ang Ren
- College of Life Science, Nanjing Agricultural University, No. 1, Weigang road, XuanWu District, Nanjing 210095, China
| | - Jianchun Huang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People's Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, FengXian District, Shanghai 201403, China
| | - Hong Wang
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People's Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, FengXian District, Shanghai 201403, China
| | - Mingwen Zhao
- College of Life Science, Nanjing Agricultural University, No. 1, Weigang road, XuanWu District, Nanjing 210095, China
| | - Zhiyong Feng
- National Research Center for Edible Fungi Biotechnology and Engineering, Key Laboratory of Applied Mycological Resources and Utilization, Ministry of Agriculture, the People's Republic of China, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, No. 1000, Jinqi Road, FengXian District, Shanghai 201403, China; College of Life Science, Nanjing Agricultural University, No. 1, Weigang road, XuanWu District, Nanjing 210095, China.
| |
Collapse
|
14
|
Mesarich CH, Griffiths SA, van der Burgt A, Okmen B, Beenen HG, Etalo DW, Joosten MHAJ, de Wit PJGM. Transcriptome sequencing uncovers the Avr5 avirulence gene of the tomato leaf mold pathogen Cladosporium fulvum. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2014; 27:846-57. [PMID: 24678832 DOI: 10.1094/mpmi-02-14-0050-r] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The Cf-5 gene of tomato confers resistance to strains of the fungal pathogen Cladosporium fulvum carrying the avirulence gene Avr5. Although Cf-5 has been cloned, Avr5 has remained elusive. We report the cloning of Avr5 using a combined bioinformatic and transcriptome sequencing approach. RNA-Seq was performed on the sequenced race 0 strain (0WU; carrying Avr5), as well as a race 5 strain (IPO 1979; lacking a functional Avr5 gene) during infection of susceptible tomato. Forty-four in planta-induced C. fulvum candidate effector (CfCE) genes of 0WU were identified that putatively encode a secreted, small cysteine-rich protein. An expressed transcript sequence comparison between strains revealed two polymorphic CfCE genes in IPO 1979. One of these conferred avirulence to IPO 1979 on Cf-5 tomato following complementation with the corresponding 0WU allele, confirming identification of Avr5. Complementation also led to increased fungal biomass during infection of susceptible tomato, signifying a role for Avr5 in virulence. Seven of eight race 5 strains investigated escape Cf-5-mediated resistance through deletion of the Avr5 gene. Avr5 is heavily flanked by repetitive elements, suggesting that repeat instability, in combination with Cf-5-mediated selection pressure, has led to the emergence of race 5 strains deleted for the Avr5 gene.
Collapse
|
15
|
A new variant of self-excising β-recombinase/six cassette for repetitive gene deletion and homokaryon purification in Neurospora crassa. J Microbiol Methods 2014; 100:17-23. [DOI: 10.1016/j.mimet.2014.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Revised: 02/12/2014] [Accepted: 02/12/2014] [Indexed: 11/16/2022]
|
16
|
Janusz G, Kucharzyk KH, Pawlik A, Staszczak M, Paszczynski AJ. Fungal laccase, manganese peroxidase and lignin peroxidase: gene expression and regulation. Enzyme Microb Technol 2012. [PMID: 23199732 DOI: 10.1016/j.enzmictec.2012.10.003] [Citation(s) in RCA: 194] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Extensive research efforts have been dedicated to characterizing expression of laccases and peroxidases and their regulation in numerous fungal species. Much attention has been brought to these enzymes broad substrate specificity resulting in oxidation of a variety of organic compounds which brings about possibilities of their utilization in biotechnological and environmental applications. Research attempts have resulted in increased production of both laccases and peroxidases by the aid of heterologous and homologous expression. Through analysis of promoter regions, protein expression patterns and culture conditions manipulations it was possible to compare and identify common pathways of these enzymes' production and secretion. Although laccase and peroxidase proteins have been crystallized and thoroughly analyzed, there are still a lot of questions remaining about their evolutionary origin and the physiological functions. This review describes the present understanding of promoter sequences and correlation between the observed regulatory effects on laccase, manganese peroxidase and lignin peroxidase genes transcript levels and the presence of specific response elements.
Collapse
Affiliation(s)
- Grzegorz Janusz
- Department of Biochemistry, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland.
| | | | | | | | | |
Collapse
|
17
|
Lee IR, Lim JWC, Ormerod KL, Morrow CA, Fraser JA. Characterization of an Nmr homolog that modulates GATA factor-mediated nitrogen metabolite repression in Cryptococcus neoformans. PLoS One 2012; 7:e32585. [PMID: 22470421 PMCID: PMC3314646 DOI: 10.1371/journal.pone.0032585] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 02/01/2012] [Indexed: 11/18/2022] Open
Abstract
Nitrogen source utilization plays a critical role in fungal development, secondary metabolite production and pathogenesis. In both the Ascomycota and Basidiomycota, GATA transcription factors globally activate the expression of catabolic enzyme-encoding genes required to degrade complex nitrogenous compounds. However, in the presence of preferred nitrogen sources such as ammonium, GATA factor activity is inhibited in some species through interaction with co-repressor Nmr proteins. This regulatory phenomenon, nitrogen metabolite repression, enables preferential utilization of readily assimilated nitrogen sources. In the basidiomycete pathogen Cryptococcus neoformans, the GATA factor Gat1/Are1 has been co-opted into regulating multiple key virulence traits in addition to nitrogen catabolism. Here, we further characterize Gat1/Are1 function and investigate the regulatory role of the predicted Nmr homolog Tar1. While GAT1/ARE1 expression is induced during nitrogen limitation, TAR1 transcription is unaffected by nitrogen availability. Deletion of TAR1 leads to inappropriate derepression of non-preferred nitrogen catabolic pathways in the simultaneous presence of favoured sources. In addition to exhibiting its evolutionary conserved role of inhibiting GATA factor activity under repressing conditions, Tar1 also positively regulates GAT1/ARE1 transcription under non-repressing conditions. The molecular mechanism by which Tar1 modulates nitrogen metabolite repression, however, remains open to speculation. Interaction between Tar1 and Gat1/Are1 was undetectable in a yeast two-hybrid assay, consistent with Tar1 and Gat1/Are1 each lacking the conserved C-terminus regions present in ascomycete Nmr proteins and GATA factors that are known to interact with each other. Importantly, both Tar1 and Gat1/Are1 are suppressors of C. neoformans virulence, reiterating and highlighting the paradigm of nitrogen regulation of pathogenesis.
Collapse
Affiliation(s)
- I. Russel Lee
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Jonathan W. C. Lim
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Kate L. Ormerod
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - Carl A. Morrow
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
| | - James A. Fraser
- Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland, Australia
- * E-mail:
| |
Collapse
|
18
|
Zhuo R, Ma L, Fan F, Gong Y, Wan X, Jiang M, Zhang X, Yang Y. Decolorization of different dyes by a newly isolated white-rot fungi strain Ganoderma sp.En3 and cloning and functional analysis of its laccase gene. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:855-73. [PMID: 21733624 DOI: 10.1016/j.jhazmat.2011.05.106] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 05/31/2011] [Accepted: 05/31/2011] [Indexed: 05/16/2023]
Abstract
A laccase-producing white-rot fungi strain Ganoderma sp.En3 was newly isolated from the forest of Tzu-chin Mountain in China. Ganoderma sp.En3 had a strong ability of decolorizing four synthetic dyes, two simulated dye bath effluents and the real textile dye effluent. Induction in the activity of laccase during the decolorization process indicated that laccase played an important role in the efficient decolorization of different dyes by this fungus. Phytotoxicity study with respect to Triticum aestivum and Oryza sativa demonstrated that Ganoderma sp.En3 was able to detoxify four synthetic dyes, two simulated dye effluents and the real textile dye effluent. The laccase gene lac-En3-1 and its corresponding full-length cDNA were then cloned and characterized from Ganoderma sp.En3. The deduced protein sequence of LAC-En3-1 contained four copper-binding conserved domains of typical laccase protein. The functionality of lac-En3-1 gene encoding active laccase was verified by expressing this gene in the yeast Pichia pastoris successfully. The recombinant laccase produced by the yeast transformant could decolorize the synthetic dyes, simulated dye effluents and the real textile dye effluent. The ability of decolorizing different dyes was positively related to the laccase activity. In addition, the 5'-flanking sequence upstream of the start codon ATG in lac-En3-1 gene was obtained. Many putative cis-acting responsive elements were predicted in the promoter region of lac-En3-1.
Collapse
Affiliation(s)
- Rui Zhuo
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Lee IR, Chow EWL, Morrow CA, Djordjevic JT, Fraser JA. Nitrogen metabolite repression of metabolism and virulence in the human fungal pathogen Cryptococcus neoformans. Genetics 2011; 188:309-23. [PMID: 21441208 PMCID: PMC3122321 DOI: 10.1534/genetics.111.128538] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 03/22/2011] [Indexed: 12/28/2022] Open
Abstract
Proper regulation of metabolism is essential to maximizing fitness of organisms in their chosen environmental niche. Nitrogen metabolite repression is an example of a regulatory mechanism in fungi that enables preferential utilization of easily assimilated nitrogen sources, such as ammonium, to conserve resources. Here we provide genetic, transcriptional, and phenotypic evidence of nitrogen metabolite repression in the human pathogen Cryptococcus neoformans. In addition to loss of transcriptional activation of catabolic enzyme-encoding genes of the uric acid and proline assimilation pathways in the presence of ammonium, nitrogen metabolite repression also regulates the production of the virulence determinants capsule and melanin. Since GATA transcription factors are known to play a key role in nitrogen metabolite repression, bioinformatic analyses of the C. neoformans genome were undertaken and seven predicted GATA-type genes were identified. A screen of these deletion mutants revealed GAT1, encoding the only global transcription factor essential for utilization of a wide range of nitrogen sources, including uric acid, urea, and creatinine-three predominant nitrogen constituents found in the C. neoformans ecological niche. In addition to its evolutionarily conserved role in mediating nitrogen metabolite repression and controlling the expression of catabolic enzyme and permease-encoding genes, Gat1 also negatively regulates virulence traits, including infectious basidiospore production, melanin formation, and growth at high body temperature (39°-40°). Conversely, Gat1 positively regulates capsule production. A murine inhalation model of cryptococcosis revealed that the gat1Δ mutant is slightly more virulent than wild type, indicating that Gat1 plays a complex regulatory role during infection.
Collapse
Affiliation(s)
- I. Russel Lee
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072 Australia and
| | - Eve W. L. Chow
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072 Australia and
| | - Carl A. Morrow
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072 Australia and
| | - Julianne T. Djordjevic
- Centre for Infectious Diseases and Microbiology, Westmead Millennium Institute, University of Sydney at Westmead Hospital, NSW 2145 Australia*
| | - James A. Fraser
- Australian Infectious Disease Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072 Australia and
| |
Collapse
|
20
|
Yu F, Kang M, Meng F, Guo X, Xu B. Molecular cloning and characterization of a thioredoxin peroxidase gene from Apis cerana cerana. INSECT MOLECULAR BIOLOGY 2011; 20:367-378. [PMID: 21382109 DOI: 10.1111/j.1365-2583.2011.01071.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Thioredoxin peroxidases (Tpxs) play important roles in protecting organisms against the toxicity of reactive oxygen species (ROS) and regulating intracellular signal transduction. In the present study, we cloned the full cDNA of Tpx1 encoding a 195-amino acid protein from Apis cerana cerana (Acc). Based on the genomic DNA sequence, a 1442-bp 5'-flanking region was obtained, and the putative transcription factor binding sites were predicted. Quantitative PCR analysis showed that AccTpx1 was highly expressed in thorax and that the AccTpx1 transcript reached its highest level in two-week-old adult worker honeybees. Moreover, expression of the AccTpx1 transcript was increased by various abiotic stresses, such as ultraviolet light, HgCl(2) , and insecticide treatments. In addition, the recombinant AccTpx1 protein exhibited antioxidant activity; it removed hydrogen peroxide and protected DNA. These results suggest that AccTpx1 plays an important role in protecting honeybees from oxidative injury and may act in extending the lifespan of them.
Collapse
Affiliation(s)
- F Yu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, China
| | | | | | | | | |
Collapse
|
21
|
Fan F, Zhuo R, Sun S, Wan X, Jiang M, Zhang X, Yang Y. Cloning and functional analysis of a new laccase gene from Trametes sp. 48424 which had the high yield of laccase and strong ability for decolorizing different dyes. BIORESOURCE TECHNOLOGY 2011; 102:3126-3137. [PMID: 21094600 DOI: 10.1016/j.biortech.2010.10.079] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 05/30/2023]
Abstract
The laccase gene lac48424-1 and its corresponding full-length cDNA were cloned and characterized from a novel white-rot fungi Trametes sp. 48424 which had the high yield of laccase and strong ability for decolorizing different dyes. The 1563 bp full-length cDNA of lac48424-1 encoded a mature laccase protein containing 499 amino acids preceded by a signal peptide of 21 amino acids. The deduced protein sequence of LAC48424-1 showed high similarity with other known fungal laccases and contained four copper-binding conserved domains of typical laccase protein. The functionality of lac48424-1 gene encoding active laccase was verified by expressing the gene in the yeast Pichia pastoris successfully. It was found that the recombinant laccase produced by the yeast transformant could decolorize different dyes. The 5'-flanking sequence upstream of start codon was obtained by Self-Formed Adaptor PCR. Many putative cis-acting responsive elements involved in the transcriptional regulation were identified in the promoter region of lac48424-1.
Collapse
Affiliation(s)
- Fangfang Fan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
22
|
López-Berges MS, Rispail N, Prados-Rosales RC, Di Pietro A. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. THE PLANT CELL 2010; 22:2459-75. [PMID: 20639450 PMCID: PMC2929112 DOI: 10.1105/tpc.110.075937] [Citation(s) in RCA: 166] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/03/2010] [Accepted: 06/22/2010] [Indexed: 05/19/2023]
Abstract
During infection, fungal pathogens activate virulence mechanisms, such as host adhesion, penetration and invasive growth. In the vascular wilt fungus Fusarium oxysporum, the mitogen-activated protein kinase Fmk1 is required for plant infection and controls processes such as cellophane penetration, vegetative hyphal fusion, or root adhesion. Here, we show that these virulence-related functions are repressed by the preferred nitrogen source ammonium and restored by treatment with l-methionine sulfoximine or rapamycin, two specific inhibitors of Gln synthetase and the protein kinase TOR, respectively. Deletion of the bZIP protein MeaB also resulted in nitrogen source-independent activation of virulence mechanisms. Activation of these functions did not require the global nitrogen regulator AreA, suggesting that MeaB-mediated repression of virulence functions does not act through inhibition of AreA. Tomato plants (Solanum lycopersicum) supplied with ammonium rather than nitrate showed a significant reduction in vascular wilt symptoms when infected with the wild type but not with the DeltameaB strain. Nitrogen source also affected invasive growth in the rice blast fungus Magnaporthe oryzae and the wheat head blight pathogen Fusarium graminearum. We propose that a conserved nitrogen-responsive pathway might operate via TOR and MeaB to control virulence in plant pathogenic fungi.
Collapse
Affiliation(s)
| | | | | | - Antonio Di Pietro
- Departamento de Genética, Universidad de Córdoba, Campus de Rabanales, Edificio Gregor Mendel, 14071 Córdoba, Spain
| |
Collapse
|
23
|
Scully LR, Bidochka MJ. An alternative insect pathogenic strategy in an Aspergillus flavus auxotroph. ACTA ACUST UNITED AC 2008; 113:230-9. [PMID: 19028580 DOI: 10.1016/j.mycres.2008.10.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Revised: 09/10/2008] [Accepted: 10/10/2008] [Indexed: 01/21/2023]
Abstract
In order to study fungal pathogen evolution, we used a model system whereby the opportunistic fungus Aspergillus flavus was serially propagated through the insect (Galleria mellonella) larvae, yielding a cysteine/methionine auxotroph of A. flavus with properties of an obligate insect pathogen. The auxotroph exhibited insect host restriction but did not show any difference in virulence when compared with the wild-type (Scully LR, Bidochka MJ, 2006. Microbiology 152, 223-232). Here, we report that on 1% insect cuticle medium and synthetic Galleria medium, the auxotroph displayed increased extracellular protease production, a virulence factor necessary for insect pathogenesis. In the wild-type strain, protease production was deregulated during carbon (glucose), nitrogen (nitrate), or sulphate deprivation. If all three were present, protease production was vastly reduced. However, in the cysteine/methionine auxotroph, protease production was deregulated in complete medium. We suggest that the deficiency in sulphate assimilation in the auxotroph resulted in deregulation of protease production. The auxotroph exhibited delayed germination and slower hyphal growth when compared to the wild-type but there were no differences in virulence or cuticle penetration, suggesting a shift in pathogenic strategy that compensated decreased growth with increased virulence factor (extracellular protease) production. We concluded that the biosynthetic deficiency that mediated insect host restriction also increased protease production in the slow-growing auxotroph, resulting in an alternate, more host-specific pathogenic strategy. However, we argue that transmission is not necessarily correlated with virulence as competition bioassays in insect larvae showed that the wild-type generally out-competed the auxotroph by producing the majority of the conidia on the sporulating cadavers. This is one of the few examples that highlight the effect of genome decay on nutrition acquisition, virulence, and transmission in fungal pathogen evolution.
Collapse
Affiliation(s)
- Lisa R Scully
- Department of Biological Sciences, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
| | | |
Collapse
|
24
|
Lukács G, Papp T, Somogyvári F, Csernetics A, Nyilasi I, Vágvölgyi C. Cloning of the Rhizomucor miehei 3-hydroxy-3-methylglutaryl-coenzyme A reductase gene and its heterologous expression in Mucor circinelloides. Antonie van Leeuwenhoek 2008; 95:55-64. [PMID: 18853273 DOI: 10.1007/s10482-008-9287-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2008] [Accepted: 09/26/2008] [Indexed: 11/28/2022]
Abstract
In this study, the gene hmgR encoding the 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMG-CoA reductase) was cloned and characterized in the zygomycete fungus Rhizomucor miehei. The hmgR gene comprises a total of 3,585 bp including the coding sequence of a 1,058 amino acids length putative protein and five introns (137, 83, 59, 60 and 69 bp in length) dispersed in the whole coding region. Southern hybridization analysis revealed that the gene is present only in one copy in the R. miehei genome. The isolated Rhizomucor gene was expressed in the related fungus, Mucor circinelloides. Transformants harbouring the Rhizomucor hmgR gene in an autoreplicative plasmid proved to be more tolerant to statins (e.g. lovastatin, simvastatin, and fluvastatin), the competitive inhibitors of the HMG-CoA reductase, than the original M. circinelloides strain. At the same time, heterologous expression of the Rhizomucor hmgR did not affect the carotenoid production of M. circinelloides.
Collapse
Affiliation(s)
- Gyöngyi Lukács
- Department of Microbiology, Faculty of Sciences and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
| | | | | | | | | | | |
Collapse
|
25
|
Cross-species hybridization with Fusarium verticillioides microarrays reveals new insights into Fusarium fujikuroi nitrogen regulation and the role of AreA and NMR. EUKARYOTIC CELL 2008; 7:1831-46. [PMID: 18689524 DOI: 10.1128/ec.00130-08] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In filamentous fungi, the GATA-type transcription factor AreA plays a major role in the transcriptional activation of genes needed to utilize poor nitrogen sources. In Fusarium fujikuroi, AreA also controls genes involved in the biosynthesis of gibberellins, a family of diterpenoid plant hormones. To identify more genes responding to nitrogen limitation or sufficiency in an AreA-dependent or -independent manner, we examined changes in gene expression of F. fujikuroi wild-type and DeltaareA strains by use of a Fusarium verticillioides microarray representing approximately 9,300 genes. Analysis of the array data revealed sets of genes significantly down- and upregulated in the areA mutant under both N starvation and N-sufficient conditions. Among the downregulated genes are those involved in nitrogen metabolism, e.g., those encoding glutamine synthetase and nitrogen permeases, but also those involved in secondary metabolism. Besides AreA-dependent genes, we found an even larger set of genes responding to N starvation and N-sufficient conditions in an AreA-independent manner. To study the impact of NMR on AreA activity, we examined the expression of several AreA target genes in the wild type and in areA and nmr deletion and overexpression mutants. We show that NMR interacts with AreA as expected but affects gene expression only in early growth stages. This is the first report on genome-wide expression studies examining the influence of AreA on nitrogen-responsive gene expression in a genome-wide manner in filamentous fungi.
Collapse
|
26
|
Núñez-Corcuera B, Serafimidis I, Arias-Palomo E, Rivera-Calzada A, Suarez T. A new protein carrying an NmrA-like domain is required for cell differentiation and development in Dictyostelium discoideum. Dev Biol 2008; 321:331-42. [PMID: 18638468 DOI: 10.1016/j.ydbio.2008.06.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2008] [Revised: 06/09/2008] [Accepted: 06/10/2008] [Indexed: 11/15/2022]
Abstract
We have isolated a Dictyostelium mutant unable to induce expression of the prestalk-specific marker ecmB in monolayer assays. The disrupted gene, padA, leads to a range of phenotypic defects in growth and development. We show that padA is essential for growth, and we have generated a thermosensitive mutant allele, padA(-). At the permissive temperature, mutant cells grow poorly; they remain longer at the slug stage during development and are defective in terminal differentiation. At the restrictive temperature, growth is completely blocked, while development is permanently arrested prior to culmination. padA(-) slugs are deficient in prestalk A cell differentiation and present an abnormal ecmB expression pattern. Sequence comparisons and predicted three-dimensional structure analyses show that PadA carries an NmrA-like domain. NmrA is a negative transcriptional regulator involved in nitrogen metabolite repression in Aspergillus nidulans. PadA predicted structure shows a NAD(P)(+)-binding domain, which we demonstrate that is essential for function. We show that padA(-) development is more sensitive to ammonia than wild-type cells and two ammonium transporters, amtA and amtC, appear derepressed during padA(-) development. Our data suggest that PadA belongs to a new family of NAD(P)(+)-binding proteins that link metabolic changes to gene expression and is required for growth and normal development.
Collapse
Affiliation(s)
- Beatriz Núñez-Corcuera
- Department of Cellular and Molecular Physiopathology, Centro de Investigaciones Biologicas (CSIC), 9, 28040 Madrid, Spain
| | | | | | | | | |
Collapse
|
27
|
Kotaka M, Johnson C, Lamb HK, Hawkins AR, Ren J, Stammers DK. Structural analysis of the recognition of the negative regulator NmrA and DNA by the zinc finger from the GATA-type transcription factor AreA. J Mol Biol 2008; 381:373-82. [PMID: 18602114 DOI: 10.1016/j.jmb.2008.05.077] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2008] [Revised: 05/28/2008] [Accepted: 05/29/2008] [Indexed: 11/26/2022]
Abstract
Amongst the most common protein motifs in eukaryotes are zinc fingers (ZFs), which, although largely known as DNA binding modules, also can have additional important regulatory roles in forming protein:protein interactions. AreA is a transcriptional activator central to nitrogen metabolism in Aspergillus nidulans. AreA contains a GATA-type ZF that has a competing dual recognition function, binding either DNA or the negative regulator NmrA. We report the crystal structures of three AreA ZF-NmrA complexes including two with bound NAD(+) or NADP(+). The molecular recognition of AreA ZF-NmrA involves binding of the ZF to NmrA via hydrophobic and hydrogen bonding interactions through helices alpha1, alpha6 and alpha11. Comparison with an earlier NMR solution structure of AreA ZF-DNA complex by overlap of the AreA ZFs shows that parts of helices alpha6 and alpha11 of NmrA are positioned close to the GATA motif of the DNA, mimicking the major groove of DNA. The extensive overlap of DNA with NmrA explains their mutually exclusive binding to the AreA ZF. The presence of bound NAD(+)/NADP(+) in the NmrA-AreaA ZF complex, however, causes minimal structural changes. Thus, any regulatory effects on AreA function mediated by the binding of oxidised nicotinamide dinucleotides to NmrA in the NmrA-AreA ZF complex appear not to be modulated via protein conformational rearrangements.
Collapse
Affiliation(s)
- Masayo Kotaka
- Division of Structural Biology, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK
| | | | | | | | | | | |
Collapse
|
28
|
Impact of ammonium permeases mepA, mepB, and mepC on nitrogen-regulated secondary metabolism in Fusarium fujikuroi. EUKARYOTIC CELL 2007; 7:187-201. [PMID: 18083831 DOI: 10.1128/ec.00351-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Fusarium fujikuroi, the production of gibberellins and bikaverin is repressed by nitrogen sources such as glutamine or ammonium. Sensing and uptake of ammonium by specific permeases play key roles in nitrogen metabolism. Here, we describe the cloning of three ammonium permease genes, mepA, mepB, and mepC, and their participation in ammonium uptake and signal transduction in F. fujikuroi. The expression of all three genes is strictly regulated by the nitrogen regulator AreA. Severe growth defects of DeltamepB mutants on low-ammonium medium and methylamine uptake studies suggest that MepB functions as the main ammonium permease in F. fujikuroi. In DeltamepB mutants, nitrogen-regulated genes such as the gibberellin and bikaverin biosynthetic genes are derepressed in spite of high extracellular ammonium concentrations. mepA mepB and mepC mepB double mutants show a similar phenotype as DeltamepB mutants. All three F. fujikuroi mep genes fully complemented the Saccharomyces cerevisiae mep1 mep2 mep3 triple mutant to restore growth on low-ammonium medium, whereas only MepA and MepC restored pseudohyphal growth in the mep2/mep2 mutant. Overexpression of mepC in the DeltamepB mutants partially suppressed the growth defect but did not prevent derepression of AreA-regulated genes. These studies provide evidence that MepB functions as a regulatory element in a nitrogen sensing system in F. fujikuroi yet does not provide the sensor activity of Mep2 in yeast, indicating differences in the mechanisms by which nitrogen is sensed in S. cerevisiae and F. fujikuroi.
Collapse
|
29
|
Kutil BL, Greenwald C, Liu G, Spiering MJ, Schardl CL, Wilkinson HH. Comparison of loline alkaloid gene clusters across fungal endophytes: predicting the co-regulatory sequence motifs and the evolutionary history. Fungal Genet Biol 2007; 44:1002-10. [PMID: 17509914 DOI: 10.1016/j.fgb.2007.04.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2006] [Revised: 04/02/2007] [Accepted: 04/04/2007] [Indexed: 11/19/2022]
Abstract
LOL, a fungal secondary metabolite gene cluster found in Epichloë and Neotyphodium species, is responsible for production of insecticidal loline alkaloids. To analyze the genetic architecture and to predict the evolutionary history of LOL, we compared five clusters from four fungal species (single clusters from Epichloë festucae, Neotyphodium sp. PauTG-1, Neotyphodium coenophialum, and two clusters we previously characterized in Neotyphodium uncinatum). Using PhyloCon to compare putative lol gene promoter regions, we have identified four motifs conserved across the lol genes in all five clusters. Each motif has significant similarity to known fungal transcription factor binding sites in the TRANSFAC database. Conservation of these motifs is further support for the hypothesis that the lol genes are co-regulated. Interestingly, the history of asexual Neotyphodium spp. includes multiple interspecific hybridization events. Comparing clusters from three Neotyphodium species and E. festucae allowed us to determine which Epichloë ancestors are the most likely contributors of LOL in these asexual species. For example, while no present day Epichloë typhina isolates are known to produce lolines, our data support the hypothesis that the E. typhina ancestor(s) of three asexual endophyte species contained a LOL gene cluster. Thus, these data support a model of evolution in which the polymorphism in loline alkaloid production phenotypes among endophyte species is likely due to the loss of the trait over time.
Collapse
Affiliation(s)
- Brandi L Kutil
- Department of Plant Pathology and Microbiology, Texas A&M University (2132), College Station, TX 77843-2132, USA
| | | | | | | | | | | |
Collapse
|
30
|
Teichert S, Wottawa M, Schönig B, Tudzynski B. Role of the Fusarium fujikuroi TOR kinase in nitrogen regulation and secondary metabolism. EUKARYOTIC CELL 2006; 5:1807-19. [PMID: 17031002 PMCID: PMC1595341 DOI: 10.1128/ec.00039-06] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In Fusarium fujikuroi, the biosynthesis of gibberellins (GAs) and bikaverin is under control of AreA-mediated nitrogen metabolite repression. Thus far, the signaling components acting upstream of AreA and regulating its nuclear translocation are unknown. In Saccharomyces cerevisiae, the target of rapamycin (TOR) proteins, Tor1p and Tor2p, are key players of nutrient-mediated signal transduction to control cell growth. In filamentous fungi, probably only one TOR kinase-encoding gene exists. However, nothing is known about its function. Therefore, we investigated the role of TOR in the GA-producing fungus F. fujikuroi in order to determine whether TOR plays a role in nitrogen regulation, especially in the regulation of GA and bikaverin biosynthesis. We cloned and characterized the F. fujikuroi tor gene. However, we were not able to create knockout mutants, suggesting that TOR is essential for viability. Inhibition of TOR by rapamycin affected the expression of AreA-controlled secondary metabolite genes for GA and bikaverin biosynthesis, as well as genes involved in transcriptional and translational regulation, ribosome biogenesis, and autophagy. Deletion of fpr1 encoding the FKBP12-homologue confirmed that the effects of rapamycin are due to the specific inhibition of TOR. Interestingly, the expression of most of the TOR target genes has been previously shown to be also affected in the glutamine synthetase mutant, although in the opposite way. We demonstrate here for the first time in a filamentous fungus that the TOR kinase is involved in nitrogen regulation of secondary metabolism and that rapamycin affects also the expression of genes involved in translation control, ribosome biogenesis, carbon metabolism, and autophagy.
Collapse
Affiliation(s)
- Sabine Teichert
- Westfälische Wilhelms-Universität Münster, Institut für Botanik, Schlossgarten 3, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
31
|
Guo P, Bai G, Carver B, Li R, Bernardo A, Baum M. Transcriptional analysis between two wheat near-isogenic lines contrasting in aluminum tolerance under aluminum stress. Mol Genet Genomics 2006; 277:1-12. [PMID: 17039377 DOI: 10.1007/s00438-006-0169-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 08/23/2006] [Accepted: 09/07/2006] [Indexed: 10/24/2022]
Abstract
To understand the mechanisms of aluminum (Al) tolerance in wheat (Triticum aestivum L.), suppression subtractive hybridization (SSH) libraries were constructed from Al-stressed roots of two near-isogenic lines (NILs). A total of 1,065 putative genes from the SSH libraries was printed in a cDNA array. Relative expression levels of those genes were compared between two NILs at seven time points of Al stress from 15 min to 7 days. Fifty-seven genes were differentially expressed for at least one time point of Al treatment. Among them, 28 genes including genes for aluminum-activated malate transporter-1, ent-kaurenoic acid oxidase-1, beta-glucosidase, lectin, histidine kinase, and phospoenolpyruvate carboxylase showed more abundant transcripts in Chisholm-T and therefore may facilitate Al tolerance. In addition, a set of genes related to senescence and starvation of nitrogen, iron, and sulfur, such as copper chaperone homolog, nitrogen regulatory gene-2, yellow stripe-1, and methylthioribose kinase, was highly expressed in Chisholm-S under Al stress. The results suggest that Al tolerance may be co-regulated by multiple genes with diverse functions, and those genes abundantly expressed in Chisholm-T may play important roles in enhancing Al tolerance. The down-regulated genes in Chisholm-S may repress root growth and restrict uptake of essential nutrient elements, and lead to root senescence.
Collapse
Affiliation(s)
- Peiguo Guo
- College of Life Science, Guangzhou University, Guangzhou, 510006, China
| | | | | | | | | | | |
Collapse
|
32
|
Nolting N, Pöggeler S. A STE12 homologue of the homothallic ascomyceteSordaria macrosporainteracts with the MADS box protein MCM1 and is required for ascosporogenesis. Mol Microbiol 2006; 62:853-68. [PMID: 16999832 DOI: 10.1111/j.1365-2958.2006.05415.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The MADS box protein MCM1 controls diverse developmental processes and is essential for fruiting body formation in the homothallic ascomycete Sordaria macrospora. MADS box proteins derive their regulatory specificity from a wide range of different protein interactions. We have recently shown that the S. macrospora MCM1 is able to interact with the alpha-domain mating-type protein SMTA-1. To further evaluate the functional roles of MCM1, we used the yeast two-hybrid approach to identify MCM1-interacting proteins. From this screen, we isolated a protein with a putative N-terminal homeodomain and C-terminal C2/H2-Zn2+ finger domains. The protein is a member of the highly conserved fungal STE12 transcription factor family of proteins and was therefore termed STE12. Furthermore, we demonstrate by means of two-hybrid and far western analysis that in addition to MCM1, the S. macrospora STE12 protein is able to interact with the mating-type protein SMTA-1. Unlike the situation in the closely related heterothallic ascomycete Neurospora crassa, deletion (Delta) of the ste12 gene in S. macrospora neither affects vegetative growth nor fruiting body formation. However, ascus and ascospore development are highly impaired by the Deltaste12 mutation. Our data provide another example of the functional divergence within the fungal STE12 transcription factor family.
Collapse
Affiliation(s)
- Nicole Nolting
- Department of General and Molecular Botany, Ruhr University of Bochum, 44780 Bochum, Germany
| | | |
Collapse
|
33
|
Uhde-Stone C, Liu J, Zinn KE, Allan DL, Vance CP. Transgenic proteoid roots of white lupin: a vehicle for characterizing and silencing root genes involved in adaptation to P stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 44:840-53. [PMID: 16297074 DOI: 10.1111/j.1365-313x.2005.02573.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
White lupin (Lupinus albus L.) has become an illuminating model for the study of plant adaptation to phosphorus (P) deficiency. It adapts to -P stress with a highly coordinated modification of root development and biochemistry resulting in short, densely clustered secondary roots called proteoid (or cluster) roots. In order to characterize genes involved in proteoid root formation and function in a homologous system, we have developed an Agrobacterium rhizogenes-based transformation system for white lupin roots that allows rapid analysis of reporter genes as well as RNA interference (RNA(i))-based gene silencing. We used this system to characterize a lupin multidrug and toxin efflux (Lupinus albus MULTIDRUG AND TOXIN EFFLUX, LaMATE) gene previously shown to have enhanced expression under -P stress. Here, we show that LaMATE had high expression in proteoid roots not only under -P, but also under -Fe, -N, -Mn and +Al stress. A portion containing the putative LaMATE promoter was fused to GUS and enhanced green fluorescence protein (EGFP) reporter genes, and a translational LaMATE::EGFP fusion was constructed under control of the LaMATE promoter. The LaMATE promoter directed P-dependent GUS and EGFP expression to proteoid roots. Confocal microscopy in white lupin and Arabidopsis point to the plasma membrane as the likely location of the LaMATE protein. LaMATE displayed homology to FRD3 in Arabidopsis, but did not complement an Arabidopsis ferric reductase defective 3 (FRD3) mutant. RNA(i)-based gene silencing was shown to effectively reduce LaMATE expression in transformed white lupin roots. LaMATE RNAi-silenced plants displayed an about 20% reduction in dry weight.
Collapse
Affiliation(s)
- Claudia Uhde-Stone
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, 55108, USA.
| | | | | | | | | |
Collapse
|
34
|
Bautista-Muñoz C, Hernández-Rodríguez C, Villa-Tanaca L. Analysis and expression of STE13ca gene encoding a putative X-prolyl dipeptidyl aminopeptidase from Candida albicans. ACTA ACUST UNITED AC 2005; 45:459-69. [PMID: 16055315 DOI: 10.1016/j.femsim.2005.05.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Accepted: 05/27/2005] [Indexed: 11/23/2022]
Abstract
Candida albicans STE13ca gene was identified by its homology to the Saccharomyces cerevisiae STE13 gene that encodes for the dipeptidyl aminopeptidase A (DAP A) involved in the maturation of alpha-factor mating pheromone. Our study revealed that C. albicans ATCC 10231 depicts dipeptidyl aminopeptidase activity. We also analyzed the expression of the STE13ca gene homologue from this pathogenic yeast. This gene of 2793 pb is homozygotic and encodes for a predicted protein of 930 amino acids with a molecular weight of 107,035 Da. The predicted protein displays significant sequence similarity to S. cerevisiae Ste13p. This C. albicans gene is located in chromosome R. STE13ca gene increases its levels of expression in conditions of nutritional stress (proline as nitrogen source) and during formation of the germinal tube, suggesting a basic biological function for the STE13ca in this yeast.
Collapse
Affiliation(s)
- Consuelo Bautista-Muñoz
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional (IPN), Centro Operativo Naranjo, México DF
| | | | | |
Collapse
|
35
|
Rossi B, Manasse S, Serrani F, Berardi E. Hansenula polymorpha NMR2 and NMR4, two new loci involved in nitrogen metabolite repression. FEMS Yeast Res 2005; 5:1009-17. [PMID: 16214423 DOI: 10.1016/j.femsyr.2005.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2005] [Revised: 08/02/2005] [Accepted: 08/24/2005] [Indexed: 11/18/2022] Open
Abstract
In the yeast Hansenula polymorpha (Pichia angusta) nitrate assimilation is tightly regulated and subject to a dual control: nitrogen metabolite repression (NMR), triggered by reduced nitrogen compounds, and induction, elicited by nitrate itself. In a previous paper [Serrani, F., Rossi, B. and Berardi, E (2001) Nitrogen metabolite repression in Hansenula polymorpha: the nmrl-l mutation. Curr. Genet. 40, 243-250], we identified five loci (NMR1-NMR5) involved in NMR, and characterised one of them (NMR1), which likely identifies a regulatory factor. Here, we describe two more mutants, namely nmr2-1 and nmr4-1. The first one possibly identifies a regulatory factor involved in nitrogen metabolite repression by various nitrogen sources alternative to ammonium. The second one, apparently involved in ammonium assimilation, probably has sensor functions.
Collapse
Affiliation(s)
- Beatrice Rossi
- Laboratorio di Genetica Microbica, DiSA, Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | | | |
Collapse
|
36
|
Teichert S, Schönig B, Richter S, Tudzynski B. Deletion of the Gibberella fujikuroi glutamine synthetase gene has significant impact on transcriptional control of primary and secondary metabolism. Mol Microbiol 2004; 53:1661-75. [PMID: 15341646 DOI: 10.1111/j.1365-2958.2004.04243.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Gibberella fujikuroi, the gibberellin (GA) and bikaverin biosynthesis are under control of nitrogen metabolite repression. However, the signalling components acting upstream of AREA are still unknown. We investigated the role of glutamine synthetase (GS) both as an enzyme and as a possible regulator in the nitrogen regulation system. We cloned and replaced the GS-encoding gene, glnA-Gf. The mutants grow with a phenotype different from the wild type in the presence of glutamine. They were unable to express nitrogen-repressed GA and bikaverin biosynthetic genes even under nitrogen starvation conditions. Complementation with the glnA-Gf wild-type copy fully restored GS activity, the expression of secondary metabolism genes, and the production of GAs and the red pigment, bikaverin. In order to find more target genes of GS, differential cDNA-screening and differential hybridization of macroarrays were performed using cDNA from the wild type and DeltaglnA mutant as probes. Several genes were dramatically up- or downregulated in the mutant. Among them are genes involved in N- and C-catabolism, and in transcriptional and translation control. Some of these genes are also under AREA control. Treatment with the GS inhibitor l-methionine sulphoximine resulted in similar expression patterns as in the glnA mutant with ammonium as nitrogen source, whereas glutamine can overcome the up- or downregulation of most but not all of the target genes. These findings suggest that not only glutamine, but also GS itself might play an important role in nitrogen metabolite repression.
Collapse
Affiliation(s)
- S Teichert
- Institut für Botanik der Westfälischen Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, Germany
| | | | | | | |
Collapse
|
37
|
Hammond JP, Broadley MR, White PJ. Genetic responses to phosphorus deficiency. ANNALS OF BOTANY 2004; 94:323-32. [PMID: 15292042 PMCID: PMC4242181 DOI: 10.1093/aob/mch156] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2004] [Revised: 04/21/2004] [Accepted: 05/15/2004] [Indexed: 05/17/2023]
Abstract
BACKGROUND Phosphorus (P) is an essential macronutrient for plants. Plants take up P as phosphate (Pi) from the soil solution. Since little Pi is available in most soils, P fertilizers are applied to crops. However, the use of P fertilizers is unsustainable and may cause pollution. Consequently, there is a need to develop more P-use-efficient (PUE) crops and precise methods to monitor crop P-status. SCOPE Manipulating the expression of genes to improve the PUE of crops could reduce their P fertilizer requirement. This has stimulated research towards the identification of genes and signalling cascades involved in plant responses to P deficiency. Genes that respond to P deficiency can be grouped into 'early' genes that respond rapidly and often non-specifically to P deficiency, or 'late' genes that impact on the morphology, physiology or metabolism of plants upon prolonged P deficiency. SUMMARY The use of micro-array technology has allowed researchers to catalogue the genetic responses of plants to P deficiency. Genes whose expression is altered by P deficiency include various transcription factors, which are thought to coordinate plant responses to P deficiency, and other genes involved in P acquisition and tissue P economy. Several common cis-regulatory elements have been identified in the promoters of these genes, suggesting that their expression might be coordinated. It is suggested that knowledge of the genes whose expression changes in response to P deficiency might allow the development of crops with improved PUE, and could be used in diagnostic techniques to monitor P deficiency in crops either directly using 'smart' indicator plants or indirectly through transcript profiling. The development of crops with improved PUE and the adoption of diagnostic technology could reduce production costs, minimize the use of a non-renewable resource, reduce pollution and enhance biodiversity.
Collapse
|
38
|
Kumar V, Mills DJ, Anderson JD, Mattoo AK. An alternative agriculture system is defined by a distinct expression profile of select gene transcripts and proteins. Proc Natl Acad Sci U S A 2004; 101:10535-40. [PMID: 15249656 PMCID: PMC489972 DOI: 10.1073/pnas.0403496101] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Indexed: 11/18/2022] Open
Abstract
Conventional agriculture has relied heavily on chemical inputs that have negatively impacted the environment and increased production costs. Transition to agricultural sustainability is a major challenge and requires that alternative agricultural practices are scientifically analyzed to provide a sufficiently informative knowledge base in favor of alternative farming practices. We show a molecular basis for delayed leaf senescence and tolerance to diseases in tomato plants cultivated in a legume (hairy vetch) mulch-based alternative agricultural system. In the hairy vetch-cultivated plants, expression of specific and select classes of genes is up-regulated compared to those grown on black polyethylene mulch. These include N-responsive genes such as NiR, GS1, rbcL, rbcS, and G6PD; chaperone genes such as hsp70 and BiP; defense genes such as chitinase and osmotin; a cytokinin-responsive gene CKR; and gibberellic acid 20 oxidase. We present a model of how their protein products likely complement one another in a field scenario to effect efficient utilization and mobilization of C and N, promote defense against disease, and enhance longevity.
Collapse
Affiliation(s)
- Vinod Kumar
- Vegetable Laboratory, Henry A. Wallace Beltsville Agricultural Research Center, United States Department of Agriculture, Agricultural Research Service, Building 010A, Beltsville, MD 20705-2350, USA
| | | | | | | |
Collapse
|
39
|
Guillemette T, Sellam A, Simoneau P. Analysis of a nonribosomal peptide synthetase gene from Alternaria brassicae and flanking genomic sequences. Curr Genet 2004; 45:214-24. [PMID: 14727058 DOI: 10.1007/s00294-003-0479-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 11/21/2003] [Accepted: 11/26/2003] [Indexed: 10/26/2022]
Abstract
Very little information is currently available concerning the pathogenic determinants produced by Alternaria brassicae, the causal agent of the blackspot disease of crucifers. We screened a genomic library of this fungus and identified a nonribosomal peptide synthetase (NRPS) gene named AbrePsy1. The complete coding sequence is 22 kbp long and encodes a large protein (792 kDa) showing typical NRPS modular organization. Structural analysis of AbrePsy1 revealed four complete elongation modules, two of which have epimerization domains. In the vicinity of AbrePsy1, a second gene (named AbreAtr1), which encodes an ATP-binding cassette transporter was identified. Increased expression of AbrePsy1 and AbreAtr1 was observed during host-plant infection. However, while physically linked, these two genes are probably not functionally clustered, as their expression patterns differed.
Collapse
Affiliation(s)
- Thomas Guillemette
- Faculté des Sciences, UMR PAVE 77, 2 Bd Lavoisier, 49045, Angers, France
| | | | | |
Collapse
|
40
|
Frébort I, Sebela M, Hirota S, Yamada M, Tamaki H, Kumagai H, Adachi O, Pec P. Gene organization and molecular modeling of copper amine oxidase from Aspergillus niger: re-evaluation of the cofactor structure. Biol Chem 2003; 384:1451-61. [PMID: 14669988 DOI: 10.1515/bc.2003.161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Amine oxidase AO-I from Aspergillus niger AKU 3302 has been reported to contain topa quinone (TPQ) as a cofactor; however, analysis of the p-nitrophenylhydrazine-derivatized enzyme and purified active site peptides showed the presence of a carboxylate ester linkage of TPQ to a glutamate. The catalytic functionality of such a cross-linked cofactor has recently been shown unlikely by spectroscopic and voltammetric studies on synthesized model compounds. We have obtained resonance Raman spectra of native and substrate-reduced AO-I demonstrating that the catalytically active cofactor is unmodified TPQ. The primary structure of the enzyme (GenBank acc. no. U31869) has been reviewed and updated by repeated isolation and sequencing of AO-I cDNA. This allowed rectification of several errors that account for previously reported low homology to other amine oxidases in the regions around copper binding histididyl residues. The results were confirmed by cloning the ao-1 structural gene (GenBank acc. no. AF362473). Analysis of the gene 5'-upstream region of the gene revealed potential binding sites for an analog of NIT2, the nitrogen metabolism regulatory protein found in Neurospora crassa and other fungi. The molecular structure of AO-I was modeled by a comparative method using published crystal structures of amine oxidases as templates.
Collapse
Affiliation(s)
- Ivo Frébort
- Department of Biochemistry, Faculty of Science, Palacký University, Slechtitelů 11, CZ-783 71 Olomouc, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Vlieghe K, Vuylsteke M, Florquin K, Rombauts S, Maes S, Ormenese S, Van Hummelen P, Van de Peer Y, Inze D, De Veylder L. Microarray analysis of E2Fa-DPa-overexpressing plants uncovers a cross-talking genetic network between DNA replication and nitrogen assimilation. J Cell Sci 2003; 116:4249-59. [PMID: 12953064 DOI: 10.1242/jcs.00715] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Previously we have shown that overexpression of the heterodimeric E2Fa-DPa transcription factor in Arabidopsis thaliana results in ectopic cell division, increased endoreduplication, and an early arrest in development. To gain a better insight into the phenotypic behavior of E2Fa-DPa transgenic plants and to identify E2Fa-DPa target genes, a transcriptomic microarray analysis was performed. Out of 4,390 unique genes, a total of 188 had a twofold or more up- (84) or down-regulated (104) expression level in E2Fa-DPa transgenic plants compared to wild-type lines. Detailed promoter analysis allowed the identification of novel E2Fa-DPa target genes, mainly involved in DNA replication. Secondarily induced genes encoded proteins involved in cell wall biosynthesis, transcription and signal transduction or had an unknown function. A large number of metabolic genes were modified as well, among which, surprisingly, many genes were involved in nitrate assimilation. Our data suggest that the growth arrest observed upon E2Fa-DPa overexpression results at least partly from a nitrogen drain to the nucleotide synthesis pathway, causing decreased synthesis of other nitrogen compounds, such as amino acids and storage proteins.
Collapse
Affiliation(s)
- Kobe Vlieghe
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent University, B-9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
de Carvalho MJA, Amorim Jesuino RS, Daher BS, Silva-Pereira I, de Freitas SM, Soares CMA, Felipe MSS. Functional and genetic characterization of calmodulin from the dimorphic and pathogenic fungus Paracoccidioides brasiliensis. Fungal Genet Biol 2003; 39:204-10. [PMID: 12892633 DOI: 10.1016/s1087-1845(03)00044-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Calmodulin (CaM) modulates intracellular calcium signalling and acts on several metabolic pathways and gene expression regulation in many eukaryotic organisms including human fungal pathogens, such as Candida albicans and Histoplasma capsulatum. The temperature-dependent dimorphic fungus Paracoccidioides brasiliensis is the aetiological agent of paracoccidioidomycosis (PCM). The mycelium (M) to yeast (Y) transition has been shown to be essential for establishment of the infection, although the precise molecular mechanisms of dimorphism in P. brasiliensis are still unknown. In this work, several inhibitory drugs of the Ca(2+)/calmodulin signalling pathway were tested to verify the role of this pathway in the cellular differentiation process of P. brasiliensis. EGTA and the drugs calmidazolium (R24571), trifluoperazine (TFP), and W7 were able to inhibit the M-Y transition. We have cloned and characterized the calmodulin gene from P. brasiliensis, which comprises 924 nucleotides and five introns that are in a conserved position among calmodulin genes.
Collapse
Affiliation(s)
- Maria José A de Carvalho
- Lab. de Biologia Molecular, IB, Campus Universitá rio Darcy Ribeiro, Universidade de Brasília, 70910-900 Brasília-DF, Brazil
| | | | | | | | | | | | | |
Collapse
|
43
|
Snoeijers SS, Pérez-García A, Goosen T, De Wit PJGM. Promoter analysis of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum in the model filamentous fungus Aspergillus nidulans. Curr Genet 2003; 43:96-102. [PMID: 12695849 DOI: 10.1007/s00294-003-0374-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 12/19/2002] [Accepted: 01/06/2003] [Indexed: 10/25/2022]
Abstract
The promoter of avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum contains 12 sequences within a region of 0.6 kb that are reminiscent of the binding sequences of the GATA-type regulator involved in nitrogen utilisation of the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mutational analysis of this 0.6-kb promoter region, fused to the beta-glucuronidase reporter gene, revealed that two regions, each containing two TAGATA boxes in inverted orientation and overlapping by two base pairs, are important for induction of Avr9 promoter activity in A. nidulans. Each overlapping TAGATA box differentially affected Avr9 promoter activity when shifted apart by nucleotide insertions. The other regions, which do not contain two overlapping TAGATA boxes have no, or only a limited, contribution to the inducibility of promoter activity.
Collapse
Affiliation(s)
- Sandor S Snoeijers
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
44
|
Nicolson GL, Nawa A, Toh Y, Taniguchi S, Nishimori K, Moustafa A. Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation. Clin Exp Metastasis 2003. [PMID: 12650603 DOI: 10.1023/a: 1022534217769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using differential cDNA library screening techniques based on metastatic and nonmetastatic rat mammary adenocarcinoma cell lines, we previously cloned and sequenced the metastasis-associated gene mta1. Using homology to the rat mta1 gene, we cloned the human MTA1 gene and found it to be over-expressed in a variety of human cell lines (breast, ovarian, lung, gastric and colorectal cancer but not melanoma or sarcoma) and cancerous tissues (breast, esophageal, colorectal, gastric and pancreatic cancer). We found a close similarity between the human MTA1 and rat mta1 genes (88% and 96% identities of the nucleotide and predicted amino acid sequences, respectively). Both genes encode novel proteins that contain a proline rich region (SH3-binding motif), a putative zinc finger motif, a leucine zipper motif and 5 copies of the SPXX motif found in gene regulatory proteins. Using Southern blot analysis the MTA1 gene was highly conserved, and using Northern blot analysis MTA1 transcripts were found in virtually all human cell lines (melanoma, breast, cervix and ovarian carcinoma cells and normal breast epithelial cells). However, the expression level of the MTA1 gene in normal breast epithelial cells was approximately 50% of that found in rapidly growing adenocarcinoma and atypical epithelial cell lines. Experimental inhibition of MTA1 protein expression using antisense phosphorothioate oligonucleotides resulted in inhibition of growth and invasion of human MDA-MB-231 breast cancer cells with relatively high MTA1 expression. Furthermore, the MTA1 protein was localized in the nuclei of cells transfected with a mammalian expression vector containing a full-length MTA1 gene. Although some MTA1 protein was found in the cytoplasm, the vast majority of MTA1 protein was localized in the nucleus. Examination of recombinate MTA1 and related MTA2 proteins suggests that MTA1 protein is a histone deacetylase. It also appears to behave like a GATA-element transcription factor, since transfection of a GATA-element reporter into MTA1-expressing cells resulted in 10-20-fold increase in reporter expression over poorly MTA1-expressing cells. Since it was reported that nucleosome remodeling histone deacetylase complex (NuRD complex) involved in chromatin remodeling contains MTA1 protein and a MTA1-related protein (MTA2), we examined NuRD complexes for the presence of MTA1 protein and found an association of this protein with histone deacetylase. The results suggest that the MTA1 protein may serve multiple functions in cellular signaling, chromosome remodeling and transcription processes that are important in the progression, invasion and growth of metastatic epithelial cells.
Collapse
Affiliation(s)
- Garth L Nicolson
- The Institute for Molecular Medicine, Huntington Beach, California 92649, USA.
| | | | | | | | | | | |
Collapse
|
45
|
Mihlan M, Homann V, Liu TWD, Tudzynski B. AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol Microbiol 2003; 47:975-91. [PMID: 12581353 DOI: 10.1046/j.1365-2958.2003.03326.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AREA (NIT2) is a general transcription factor involved in derepression of numerous genes responsible for nitrogen utilization in Gibberella fujikuroi and many other fungi. We have previously shown that the deletion of areA-GF resulted in mutants with significantly reduced gibberellin (GA) production. Here we demonstrate that the expression level of six of the seven GA biosynthesis genes is drastically reduced in mutants lacking areA. Furthermore, we show that, despite the fact that GAs are nitrogen-free diterpenoid compounds, which are not obviously involved in nitrogen metabolism, AREA binds directly to the promoters of the six N-regulated genes. The binding of AREA was analysed in more detail using the promoter of one of the GA-biosynthesis genes encoding the ent-kaurene oxidase (P450-4). Deletion/mutation analysis of the P450-4 promoter fused to the Escherichia coli uidA gene, which encodes beta-glucuronidase, allowed the in vivo identification of functional GATA motifs. We have also analysed the nmr gene of G. fujikuroi (nmr-GF) which has high similarity to the Neurospora crassa nmr-1 and Aspergillus nidulans nmrA genes, both involved in nitrogen metabolite repression. In contrast to our expectation, deletion of nmr-GF did not result in significant derepression of the GA biosynthesis genes in the presence of ammonium, glutamine or glutamate. Overexpression of the nmr-GF gene fused to the strong promoter of the G. fujikuroi glutamine synthetase (gs) gene revealed only a very slight repression of the nitrate reductase (niaD) gene, resulting in weak resistance to chlorate. Surprisingly, this effect was only observed in the presence of high amounts of glutamate; cultivation on ammonium failed to induce any resistance to chlorate. Despite the limited effect of gene replacement and overexpression of nmr-GF on the nitrogen metabolism of G. fujikuroi itself, the gene fully restored nitrogen metabolite repression in A. nidulans and N. crassa nmr mutants. Therefore, we postulate that, in contrast to A. nidulans and N. crassa, NMR does not function independently as the main modulator of AREA in G. fujikuroi.
Collapse
Affiliation(s)
- Martina Mihlan
- Westfälische Wilhelms-Universität Münster, Institut für Botanik, Schlossgarten 3, D-48149, Münster, Germany
| | | | | | | |
Collapse
|
46
|
Brunner K, Montero M, Mach RL, Peterbauer CK, Kubicek CP. Expression of the ech42 (endochitinase) gene of Trichoderma atroviride under carbon starvation is antagonized via a BrlA-like cis-acting element. FEMS Microbiol Lett 2003; 218:259-64. [PMID: 12586401 DOI: 10.1111/j.1574-6968.2003.tb11526.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Expression of the endochitinase encoding ech42 gene of the mycoparasite Trichoderma atroviride is subject to control by several environmental signals, including derepression by carbon starvation. In order to identify promoter areas involved in control by this condition, we prepared fusions of several mutant forms of the ech42 promoter to the Aspergillus niger goxA gene as a reporter. Removal of a 130-bp fragment comprising a binding site for the carbon catabolite repressor Cre1, an AGGGG element and three separate binding sites identical and highly similar, respectively, to those for the Aspergillus nidulans regulator of conidiation BrlA resulted in a three-fold increase in derepression under carbon starvation. A truncation of the promoter to 196 bp, which removed all of the observed DNA binding motifs, resulted in five-fold derepression. In vitro protein-DNA binding analyses showed that only the BrlA-like sites, but neither the AGGGG element nor the Cre1 binding site, bound proteins from cell-free extracts from carbon-starved mycelia of T. atroviride. Thus this study identifies a new regulator of chitinase gene expression in Trichoderma, a BrlA-like binding motif.
Collapse
Affiliation(s)
- Kurt Brunner
- Abteilung für Gentechnik und Angewandte Biochemie, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, TU Wien, Getreidemarkt 9, A-1060, Vienna, Austria
| | | | | | | | | |
Collapse
|
47
|
Nicolson GL, Nawa A, Toh Y, Taniguchi S, Nishimori K, Moustafa A. Tumor metastasis-associated human MTA1 gene and its MTA1 protein product: role in epithelial cancer cell invasion, proliferation and nuclear regulation. Clin Exp Metastasis 2003; 20:19-24. [PMID: 12650603 DOI: 10.1023/a:1022534217769] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Using differential cDNA library screening techniques based on metastatic and nonmetastatic rat mammary adenocarcinoma cell lines, we previously cloned and sequenced the metastasis-associated gene mta1. Using homology to the rat mta1 gene, we cloned the human MTA1 gene and found it to be over-expressed in a variety of human cell lines (breast, ovarian, lung, gastric and colorectal cancer but not melanoma or sarcoma) and cancerous tissues (breast, esophageal, colorectal, gastric and pancreatic cancer). We found a close similarity between the human MTA1 and rat mta1 genes (88% and 96% identities of the nucleotide and predicted amino acid sequences, respectively). Both genes encode novel proteins that contain a proline rich region (SH3-binding motif), a putative zinc finger motif, a leucine zipper motif and 5 copies of the SPXX motif found in gene regulatory proteins. Using Southern blot analysis the MTA1 gene was highly conserved, and using Northern blot analysis MTA1 transcripts were found in virtually all human cell lines (melanoma, breast, cervix and ovarian carcinoma cells and normal breast epithelial cells). However, the expression level of the MTA1 gene in normal breast epithelial cells was approximately 50% of that found in rapidly growing adenocarcinoma and atypical epithelial cell lines. Experimental inhibition of MTA1 protein expression using antisense phosphorothioate oligonucleotides resulted in inhibition of growth and invasion of human MDA-MB-231 breast cancer cells with relatively high MTA1 expression. Furthermore, the MTA1 protein was localized in the nuclei of cells transfected with a mammalian expression vector containing a full-length MTA1 gene. Although some MTA1 protein was found in the cytoplasm, the vast majority of MTA1 protein was localized in the nucleus. Examination of recombinate MTA1 and related MTA2 proteins suggests that MTA1 protein is a histone deacetylase. It also appears to behave like a GATA-element transcription factor, since transfection of a GATA-element reporter into MTA1-expressing cells resulted in 10-20-fold increase in reporter expression over poorly MTA1-expressing cells. Since it was reported that nucleosome remodeling histone deacetylase complex (NuRD complex) involved in chromatin remodeling contains MTA1 protein and a MTA1-related protein (MTA2), we examined NuRD complexes for the presence of MTA1 protein and found an association of this protein with histone deacetylase. The results suggest that the MTA1 protein may serve multiple functions in cellular signaling, chromosome remodeling and transcription processes that are important in the progression, invasion and growth of metastatic epithelial cells.
Collapse
Affiliation(s)
- Garth L Nicolson
- The Institute for Molecular Medicine, Huntington Beach, California 92649, USA.
| | | | | | | | | | | |
Collapse
|
48
|
Soanes DM, Kershaw MJ, Cooley RN, Talbot NJ. Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2002; 15:1253-1267. [PMID: 12481998 DOI: 10.1094/mpmi.2002.15.12.1253] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The hydrophobin-encoding gene MPG1 of the rice blast fungus Magnaporthe grisea is highly expressed during the initial stages of host plant infection and targeted deletion of the gene results in a mutant strain that is reduced in virulence, conidiation, and appressorium formation. The green fluorescent protein-encoding allele sGFP was used as a reporter to investigate regulatory genes that control MPG1 expression. The MAP kinase-encoding gene PMK1 and the wide domain regulators of nitrogen source utilization, NPR1 and NUT1, were required for full expression of MPG1 in response to starvation stress. The CPKA gene, encoding the catalytic subunit of protein kinase A, was required for repression of MPG1 during growth in rich nutrient conditions. During appressorium morphogenesis, high-level MPG1 expression was found to require the CPKA and NPR1 genes. Expression of a destabilized GFP allele indicated that de novo MPG1 expression occurs during appressorium formation. Three regions of the MPG1 promoter were identified which are required for high-level expression of MPG1 during appressorium formation and are necessary for the biological activity of the MPG1 hydrophobin during spore formation and plant infection.
Collapse
Affiliation(s)
- Darren M Soanes
- School of Biological Sciences, University of Exeter, Washington Singer Laboratories, Perry Road, Exeter, EX4 4QG, UK
| | | | | | | |
Collapse
|
49
|
de Jesús-Berríos M, Rodríguez-del Valle N. Expression of a Pho85 cyclin-dependent kinase is repressed during the dimorphic transition in Sporothrix schenckii. Fungal Genet Biol 2002; 37:39-48. [PMID: 12223188 DOI: 10.1016/s1087-1845(02)00031-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Sporothrix schenckii is a pathogenic fungus that undergoes a dimorphic transition from yeast to mycelium in response to environmental conditions such as cell density, temperature, and calcium. We identified a homolog of the Pho85 cyclin-dependent kinase (Cdk) that mediates cellular responses to environmental conditions in other organisms. By Western blot, three proteins containing the PSTAIRE motif, which characterize the cyclin-dependent protein kinases, were identified in S. schenckii. The gene encoding a Pho85 homolog, PhoSs, was identified and sequenced. The phoSs gene consists of 990bp, contains one intron, and encodes a protein of 306 amino acids. The S. schenckii Pho85 homolog shares features with Cdks, including the PSTAIRE motif, an ATP binding domain, and a serine-threonine kinase domain. By quantitative competitive RT-PCR, expression of the phoSs gene was found to decrease 30-fold during the yeast to mycelium transition. The addition of extracellular calcium accelerated the dimorphic transition and restored phoSs expression. These findings suggest PhoSs may participate in the control of the yeast to mycelium transition in S. schenckii.
Collapse
Affiliation(s)
- Marisol de Jesús-Berríos
- Department of Microbiology and Medical Zoology, Medical Sciences Campus, University of Puerto Rico, San Juan 00936, USA.
| | | |
Collapse
|
50
|
Stammers D, Ren J, Leslie K, Nichols C, Lamb H, Cocklin S, Dodds A, Hawkins A. The structure of the negative transcriptional regulator NmrA reveals a structural superfamily which includes the short-chain dehydrogenase/reductases. EMBO J 2001; 20:6619-26. [PMID: 11726498 PMCID: PMC125752 DOI: 10.1093/emboj/20.23.6619] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
NmrA is a negative transcriptional regulator involved in the post-translational modulation of the GATA-type transcription factor AreA, forming part of a system controlling nitrogen metabolite repression in various fungi. X-ray structures of two NmrA crystal forms, both to 1.8 A resolution, show NmrA consists of two domains, including a Rossmann fold. NmrA shows an unexpected similarity to the short-chain dehydrogenase/reductase (SDR) family, with the closest relationship to UDP-galactose 4-epimerase. We show that NAD binds to NmrA, a previously unreported nucleotide binding property for this protein. NmrA is unlikely to be an active dehydrogenase, however, as the conserved catalytic tyrosine in SDRs is absent in NmrA, and thus the nucleotide binding to NmrA could have a regulatory function. Our results suggest that other transcription factors possess the SDR fold with functions including RNA binding. The SDR fold appears to have been adapted for other roles including non-enzymatic control functions such as transcriptional regulation and is likely to be more widespread than previously recognized.
Collapse
Affiliation(s)
- D.K. Stammers
- Structural Biology Division, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford OX1 3QT and School of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle NE2 4HH, UK Corresponding author e-mail:
| | - J. Ren
- Structural Biology Division, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford OX1 3QT and School of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle NE2 4HH, UK Corresponding author e-mail:
| | - K. Leslie
- Structural Biology Division, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford OX1 3QT and School of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle NE2 4HH, UK Corresponding author e-mail:
| | - C.E. Nichols
- Structural Biology Division, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford OX1 3QT and School of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle NE2 4HH, UK Corresponding author e-mail:
| | - H.K. Lamb
- Structural Biology Division, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford OX1 3QT and School of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle NE2 4HH, UK Corresponding author e-mail:
| | - S. Cocklin
- Structural Biology Division, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford OX1 3QT and School of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle NE2 4HH, UK Corresponding author e-mail:
| | - A. Dodds
- Structural Biology Division, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford OX1 3QT and School of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle NE2 4HH, UK Corresponding author e-mail:
| | - A.R. Hawkins
- Structural Biology Division, The Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, Oxford Centre for Molecular Sciences, New Chemistry Building, South Parks Road, Oxford OX1 3QT and School of Biochemistry and Genetics, Medical School, University of Newcastle upon Tyne, Framlington Place, Newcastle NE2 4HH, UK Corresponding author e-mail:
| |
Collapse
|