1
|
Bone Turnover in Relation to Thyroid-Stimulating Hormone in Hypothyroid Patients on Thyroid Hormone Substitution Therapy. J Thyroid Res 2022; 2022:8950546. [PMID: 36248357 PMCID: PMC9553712 DOI: 10.1155/2022/8950546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/02/2022] [Indexed: 11/18/2022] Open
Abstract
Background. Bone turnover markers (BTMs) have emerged as a useful tool for monitoring bone remodeling activity in the skeleton, and their serum levels correlate with bone loss rates in osteoporotic and normal individuals. Whether the same holds for other metabolic bone diseases is still subject to discussion. Methods. We analyzed the relation between levels of BTMs and TSH in 79 females on thyroid hormone substitution therapy for hypothyroidism. Based on the reference range for TSH (0.2–4.0 mU/L) in our lab, we assessed BTMs in five different groups of patients based on the following criteria: (1) hypothyroidism (TSH >4.0); (2) TSH in the high normal range (1.0–4.0); (3) TSH in the low normal range (0.2–1.0); (4) TSH below the normal range (0.01–0.2); (5) TSH undetectable (<0.01). We studied the relationship between TSH and four different bone markers: procollagen type 1 N-terminal propeptide (PINP), C-terminal cross-linking telopeptide of type 1 collagen (CTX), osteocalcin (OC), and bone specific alkaline phosphatase (BSAP). In a subgroup of patients, bone mineral density was assessed by a DXA scan. Results. PINP emerged as the most sensitive and dynamic BTM for assessment of bone turnover in this patient group, achieving significant rho values on nonparametric correlation analysis for both TSH (rho −0.47;
) and FT4 (rho 0.27;
). CTX and OC also revealed significant correlations to TSH, albeit with lower rho values (−0.37 and −0.24, respectively). Categorical analysis showed that bone turnover increased significantly, albeit with pronounced interindividual variability for TSH values below the lower limit of normal (0.2 mU/l), with the most severe affected being women exhibiting suppression of TSH. Further analysis of loss rates by DXA in a limited subgroup of patients showed that this was accompanied by accelerated bone loss. Conclusion. PINP is the most sensitive marker of bone turnover in thyroid disorders. TSH values below the lower limit of normal are associated with increased bone turnover and accelerated bone loss, however, with pronounced interindividual variations. Assessment of PINP may be a valuable tool in cases where there is concern about possible adverse effects of thyroid hormone substitution therapy on bone.
Collapse
|
2
|
Barrett KG, Fang H, Kocarek TA, Runge-Morris M. Transcriptional Regulation of Cytosolic Sulfotransferase 1C2 by Vitamin D Receptor in LS180 Human Colorectal Adenocarcinoma Cells. Drug Metab Dispos 2016; 44:1431-4. [PMID: 27130351 PMCID: PMC4986619 DOI: 10.1124/dmd.116.070300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 04/28/2016] [Indexed: 11/22/2022] Open
Abstract
The factors that regulate expression of genes in the 1C family of human cytosolic sulfotransferases (SULT1C) are not well understood. In a recent study evaluating the effects of a panel of transcription factor activators on SULT1C family member expression in LS180 human colorectal adenocarcinoma cells, we found that SULT1C2 expression was significantly increased by 1α,25-dihydroxyvitamin D3 (VitD3) treatment. The objective of our current study was to identify the mechanism responsible for VitD3-mediated activation of SULT1C2 transcription. VitD3 treatment of LS180 cells activated transcription of a transfected luciferase reporter plasmid that contained ∼5 kilobase pairs (kbp) of the SULT1C2 gene, which included 402 nucleotides (nt) of the noncoding exon 1, all of intron 1, and 21 nt of exon 2. Although computational analysis of the VitD3-responsive region of the SULT1C2 gene identified a pregnane X receptor (PXR)-binding site within exon 1, the transfected 5 kbp SULT1C2 reporter was not activated by treatment with rifampicin, a prototypical PXR agonist. However, deletion or mutation of the predicted PXR-binding site abolished VitD3-mediated SULT1C2 transcriptional activation, identifying the site as a functional vitamin D response element (VDRE). We further demonstrated that vitamin D receptor (VDR) can interact directly with the SULT1C2 VDRE sequence using an enzyme-linked immunosorbent assay-based transcription factor binding assay. In conclusion, VitD3-inducible SULT1C2 transcription is mediated through a VDRE in exon 1. These results suggest a role for SULT1C2 in VitD3-regulated physiologic processes in human intestine.
Collapse
Affiliation(s)
- Kathleen G Barrett
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Hailin Fang
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| | - Melissa Runge-Morris
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan
| |
Collapse
|
3
|
García Cruz DM, Gomes M, Reis RL, Moratal D, Salmerón-Sánchez M, Gómez Ribelles JL, Mano JF. Differentiation of mesenchymal stem cells in chitosan scaffolds with double micro and macroporosity. J Biomed Mater Res A 2010; 95:1182-93. [DOI: 10.1002/jbm.a.32906] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/22/2010] [Accepted: 05/25/2010] [Indexed: 11/12/2022]
|
4
|
Haussler MR, Haussler CA, Whitfield GK, Hsieh JC, Thompson PD, Barthel TK, Bartik L, Egan JB, Wu Y, Kubicek JL, Lowmiller CL, Moffet EW, Forster RE, Jurutka PW. The nuclear vitamin D receptor controls the expression of genes encoding factors which feed the "Fountain of Youth" to mediate healthful aging. J Steroid Biochem Mol Biol 2010; 121:88-97. [PMID: 20227497 PMCID: PMC2906618 DOI: 10.1016/j.jsbmb.2010.03.019] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Accepted: 03/08/2010] [Indexed: 12/13/2022]
Abstract
The nuclear vitamin D receptor (VDR) binds 1,25-dihydroxyvitamin D3 (1,25D), its high affinity renal endocrine ligand, to signal intestinal calcium and phosphate absorption plus bone remodeling, generating a mineralized skeleton free of rickets/osteomalacia with a reduced risk of osteoporotic fractures. 1,25D/VDR signaling regulates the expression of TRPV6, BGP, SPP1, LRP5, RANKL and OPG, while achieving feedback control of mineral ions to prevent age-related ectopic calcification by governing CYP24A1, PTH, FGF23, PHEX, and klotho transcription. Vitamin D also elicits numerous intracrine actions when circulating 25-hydroxyvitamin D3, the metabolite reflecting vitamin D status, is converted to 1,25D locally by extrarenal CYP27B1, and binds VDR to promote immunoregulation, antimicrobial defense, xenobiotic detoxification, anti-inflammatory/anticancer actions and cardiovascular benefits. VDR also affects Wnt signaling through direct interaction with beta-catenin, ligand-dependently blunting beta-catenin mediated transcription in colon cancer cells to attenuate growth, while potentiating beta-catenin signaling via VDR ligand-independent mechanisms in osteoblasts and keratinocytes to function osteogenically and as a pro-hair cycling receptor, respectively. Finally, VDR also drives the mammalian hair cycle in conjunction with the hairless corepressor by repressing SOSTDC1, S100A8/S100A9, and PTHrP. Hair provides a shield against UV-induced skin damage and cancer in terrestrial mammals, illuminating another function of VDR that facilitates healthful aging.
Collapse
Affiliation(s)
- Mark R Haussler
- Department of Basic Medical Sciences, The University of Arizona, College of Medicine-Phoenix in partnership with Arizona State University, Phoenix, AZ 85004-2157, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Wang X, Wang TT, White JH, Studzinski GP. Expression of human kinase suppressor of Ras 2 (hKSR-2) gene in HL60 leukemia cells is directly upregulated by 1,25-dihydroxyvitamin D(3) and is required for optimal cell differentiation. Exp Cell Res 2007; 313:3034-45. [PMID: 17599832 PMCID: PMC3351793 DOI: 10.1016/j.yexcr.2007.05.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Revised: 05/15/2007] [Accepted: 05/22/2007] [Indexed: 11/24/2022]
Abstract
Induction of terminal differentiation of neoplastic cells offers potential for a novel approach to cancer therapy. One of the agents being investigated for this purpose in preclinical studies is 1,25-dihydroxyvitamin D(3) (1,25D), which can convert myeloid leukemia cells into normal monocyte-like cells, but the molecular mechanisms underlying this process are not fully understood. Here, we report that 1,25D upregulates the expression of hKSR-2, a new member of a small family of proteins that exhibit evolutionarily conserved function of potentiating ras signaling. The upregulation of hKSR-2 is direct, as it occurs in the presence of cycloheximide, and occurs primarily at the transcriptional level, via activation of vitamin D receptor, which acts as a ligand-activated transcription factor. Two VDRE-type motifs identified in the hKSR-2 gene bind VDR-RXR alpha heterodimers present in nuclear extracts of 1,25D-treated HL60 cells, and chromatin immunoprecipitation assays show that these VDRE motifs bind VDR in 1,25D-dependent manner in intact cells, coincident with the recruitment of RNA polymerase II to these motifs. Treatment of the cells with siRNA to hKSR-2 reduced the proportion of the most highly differentiated cells in 1,25D-treated cultures. These results demonstrate that hKSR-2 is a direct target of 1,25D in HL60 cells, and is required for optimal monocytic differentiation.
Collapse
Affiliation(s)
- Xuening Wang
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
| | - Tian-Tian Wang
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - John H. White
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | - George P. Studzinski
- Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, Newark, New Jersey 07103, USA
- Correspondence to: George P. Studzinski, M.D., Ph.D., Department of Pathology and Laboratory Medicine, UMDNJ-New Jersey Medical School, 185 South Orange Avenue, C-543, Newark, NJ 07103, USA, Tel: (973) 972-5869, Fax: (973) 973-972-7293,
| |
Collapse
|
6
|
Schwartz Z, Bell BF, Wang L, Zhao G, Olivares-Navarrete R, Boyan BD. Beta-1 integrins mediate substrate dependent effects of 1alpha,25(OH)2D3 on osteoblasts. J Steroid Biochem Mol Biol 2007; 103:606-9. [PMID: 17317155 PMCID: PMC2689367 DOI: 10.1016/j.jsbmb.2006.12.083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Surface micron-scale and submicron scale features increase osteoblast differentiation and enhance responses of osteoblasts to 1,25-dihydroxyvitamin D(3) [1alpha,25(OH)(2)D(3)]. beta(1) integrin expression is increased in osteoblasts grown on Ti substrates with rough microarchitecture, and it is regulated by 1alpha,25(OH)(2)D(3) in a surface-dependent manner. To determine if beta(1) has a role in mediating osteoblast response, we silenced beta(1) expression in MG63 human osteoblast-like cells using small interfering RNA (siRNA). In addition, MG63 cells were treated with two different monoclonal antibodies to human beta(1) to block ligand binding. beta(1)-silenced MG63 cells grown on a tissue culture plastic had reduced alkaline phosphatase activity and levels of osteocalcin, transforming growth factor beta(1), prostaglandin E(2), and osteoprotegerin in comparison with control cells. Moreover, beta(1)-silencing inhibited the effects of surface roughness on these parameters and partially inhibited effects of 1alpha,25(OH)(2)D(3). Anti beta(1) antibodies decreased alkaline phosphatase but increase osteocalcin; effects of 1alpha,25(OH)(2)D(3) on cell number and alkaline phosphatase were reduced and effects on osteocalcin were increased. These findings indicate that beta(1) plays a major and complex role in osteoblastic differentiation modulated by either surface microarchitecture or 1alpha,25(OH)(2)D(3). The results also show that beta(1) mediates, in part, the synergistic effects of surface roughness and 1alpha,25(OH)(2)D(3).
Collapse
Affiliation(s)
- Zvi Schwartz
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
- Department of Periodontics, Hebrew University Hadassah, Jerusalem, Israel
| | - Bryan F. Bell
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Liping Wang
- Department of Orthopaedics, Stanford University Medical School, Palo Alto, California
| | - Ge Zhao
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | - Barbara D. Boyan
- Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| |
Collapse
|
7
|
Abstract
Vitamin D is a secosteroid with an endocrine mechanism of action which is sequentially synthesized in humans in the skin, liver and kidneys. The active hormone, 1alpha,25-dihydrocholecalciferol [1,25(OH)2D3], is often considered only in terms of its role in controlling calcium and phosphorus homeostasis. However, cumulative evidence points to the presence of vitamin D receptors in many tissues. The present article summarizes key points regarding the participation of vitamin D in pregnancy and breastfeeding. During pregnancy, sufficient vitamin D concentrations are needed not only to address the growing demand for calcium on the part of the fetus, but also to participate in fetal growth, development of the nervous system, lung maturation and fetal immune system function. Hypovitaminosis D has been related to the development of diabetes, pre-eclampsia and fetal neurological disorders. During pregnancy and lactation, calcium from the maternal skeleton is mobilized, with a rise in bone turnover and a reduction in bone mass. It is advisable for pregnant and nursing women to maintain adequate levels of vitamin D, through small doses of solar exposure to facilitate natural formation of the hormone or by ingesting appropriate vitamin supplements. Further studies are needed to clarify the many gaps in knowledge and elucidate the role of vitamin D in the context of reproduction. Confirmation of experimental observations relating to the risks of hypovitaminosis D would have important public health implications.
Collapse
Affiliation(s)
- Faustino R Pérez-López
- Department of Obstetrics and Gynecology, Zaragoza Gynecological Institute, Zaragoza, Spain.
| |
Collapse
|
8
|
Mark BL, Carson JAS. Vitamin D and autoimmune disease--implications for practice from the multiple sclerosis literature. ACTA ACUST UNITED AC 2006; 106:418-24. [PMID: 16503232 DOI: 10.1016/j.jada.2005.12.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Indexed: 02/04/2023]
Abstract
Recent studies and commentaries link vitamin D with several autoimmune diseases, including multiple sclerosis (MS). Adequate vitamin D intake reduces inflammatory cytokines through control of gene expression, thus inadequate vitamin D intake is suggested as a mechanism that could contribute to inflammation and, consequently, development of MS. Poor vitamin D status has been associated with increased risk for development of MS, and patients with MS may suffer consequences of vitamin D deficiency, such as bone loss. Animal studies and very limited human data suggest possible benefit from vitamin D supplementation in patients with MS. Based on the current state of research, a key principle for practicing dietetics professionals is to include vitamin D status in nutritional assessment. For those at risk for poor vitamin D status, intake can be enhanced by food-based advice and, when indicated, vitamin D supplementation.
Collapse
Affiliation(s)
- Barbara L Mark
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center at Dallas 75390-8877, USA.
| | | |
Collapse
|
9
|
Plum LA, Fitzpatrick LA, Ma X, Binkley NC, Zella JB, Clagett-Dame M, DeLuca HF. 2MD, a new anabolic agent for osteoporosis treatment. Osteoporos Int 2006; 17:704-15. [PMID: 16491322 DOI: 10.1007/s00198-005-0036-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 09/26/2005] [Indexed: 10/25/2022]
Abstract
INTRODUCTION 2-Methylene-19-nor-(20S)-1alpha,25-dihydroxyvitamin D3 (2MD) is a new analog of 1alpha,25-dihydroxyvitamin D3 (1,25-(OH)2D3) that has unique properties (distinct from 1alpha,25-dihydroxyvitamin D3) in stimulating osteoblasts to form bone in culture. This analog has now been extensively tested in aged ovariectomized female rats maintained on a diet adequate in calcium and phosphorus. METHODS Retired female rats obtained from Sprague-Dawley were ovariectomized, and were either dosed with vehicle or 2MD at 5-7 ng/kg body weight each day. RESULTS A marked increase in total bone mass resulted during the 28-week study. This increase in bone mass resulted from an increase in both cortical and trabecular bone, with increases to the order of 25% in the cancellous bone. Histomorphometry revealed that 2MD increased bone mass primarily by increasing bone formation. It also revealed little or no effect on bone resorption. The resulting bone is of high quality revealed by histology and biomechanical testing. CONCLUSION Throughout the study, serum calcium remained within the normal range and thus 2MD shows great promise for the treatment of bone diseases characterized by bone loss, including osteoporosis.
Collapse
Affiliation(s)
- L A Plum
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, 433 Babcock Drive, Madison, WI, 53706-1544, USA,
| | | | | | | | | | | | | |
Collapse
|
10
|
Jurutka PW, Thompson PD, Whitfield GK, Eichhorst KR, Hall N, Dominguez CE, Hsieh JC, Haussler CA, Haussler MR. Molecular and functional comparison of 1,25-dihydroxyvitamin D(3) and the novel vitamin D receptor ligand, lithocholic acid, in activating transcription of cytochrome P450 3A4. J Cell Biochem 2005; 94:917-43. [PMID: 15578590 DOI: 10.1002/jcb.20359] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The vitamin D receptor (VDR) binds to and mediates the effects of the 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) hormone to alter gene transcription. A newly recognized VDR ligand is the carcinogenic bile acid, lithocholic acid (LCA). We demonstrate that, in HT-29 colon cancer cells, both LCA and 1,25(OH)(2)D(3) induce expression of cytochrome P450 3A4 (CYP3A4), an enzyme involved in cellular detoxification. We also show that LCA-VDR stimulates transcription of gene reporter constructs containing DR3 and ER6 vitamin D responsive elements (VDREs) from the human CYP3A4 gene. Utilizing gel mobility shift, pulldown, and mammalian two-hybrid assays, we observe that: (i) 1,25(OH)(2)D(3) enhances retinoid X receptor (RXR) heterodimerization with VDR more effectively than LCA, (ii) the 1,25(OH)(2)D(3)-liganded VDR-RXR heterodimer recruits full-length SRC-1 coactivator, whereas this interaction is minimal with LCA unless LXXLL-containing fragments of SRC-1 are employed, and (iii) both 1,25(OH)(2)D(3) and LCA enhance the binding of VDR to DRIP205/mediator, but unlike 1,25(OH)(2)D(3)-VDR, LCA-VDR does not interact detectably with NCoA-62 or TRIP1/SUG1, suggesting a different pattern of LCA-VDR comodulator association. Finally, residues in the human VDR (hVDR) ligand binding domain (LBD) were altered to create mutants unresponsive to 1,25(OH)(2)D(3)- and/or LCA-stimulated transactivation, identifying S237 and S225/S278 as critical for 1,25(OH)(2)D(3) and LCA action, respectively. Therefore, these two VDR ligands contact distinct residues in the binding pocket, perhaps generating unique receptor conformations that determine the degree of RXR and comodulator binding. We propose that VDR is a bifunctional regulator, with the 1,25(OH)(2)D(3)-liganded conformation facilitating high affinity endocrine actions, and the LCA-liganded configuration mediating local, lower affinity cellular detoxification by upregulation of CYP3A4 in the colon.
Collapse
Affiliation(s)
- Peter W Jurutka
- Department of Biochemistry and Molecular Biophysics, University of Arizona College of Medicine, Tucson, AZ 85724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Gutierrez S, Liu J, Javed A, Montecino M, Stein GS, Lian JB, Stein JL. The Vitamin D Response Element in the Distal Osteocalcin Promoter Contributes to Chromatin Organization of the Proximal Regulatory Domain. J Biol Chem 2004; 279:43581-8. [PMID: 15299011 DOI: 10.1074/jbc.m408335200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitamin D receptor (VDR) and Runx2 are key regulators of tissue-specific gene transcription. Using the bone-related osteocalcin (OC) gene, we have previously shown that Runx2 is required for the extensive chromatin remodeling that accompanies gene activation. Here, we have addressed the direct contribution of the VDR to chromatin remodeling events necessary for regulation of OC transcription using mutational analysis. Our studies demonstrate that both the distal and proximal DNase I-hypersensitive sites characteristic of the transcriptionally active OC promoter are not enhanced in the absence of a functional vitamin D response element (VDRE). Furthermore, restriction enzyme accessibility studies reveal that nucleosomal reorganization of the proximal promoter occurs in response to vitamin D and this reorganization is abrogated by mutation of the VDRE. These findings indicate that binding of liganded VDR in the distal promoter directly impacts the chromatin structure of the proximal promoter. We find that, in the absence of functional Runx sites, the VDR cannot be recruited to the OC promoter and, therefore, the VDRE is not competent to mediate vitamin D responsiveness. On the other hand, chromatin immunoprecipitation assays show that Runx2 association with the OC promoter is not significantly impaired when the VDRE is mutated. Chromatin immunoprecipitation assays also demonstrate that basal levels of histone acetylation occur in the absence of Runx2 binding but that the VDRE and vitamin D are required for enhanced acetylation of histones H3 and H4 downstream of the VDRE. Together our results support a stepwise model for chromatin remodeling of the OC promoter and show that binding of the liganded VDR.retinoid X receptor directly impacts both the distal and proximal regulatory domains.
Collapse
Affiliation(s)
- Soraya Gutierrez
- Department of Cell Biology, University of Massachusetts Medical School, Worcester 01655, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Stein GS, Lian JB, van Wijnen AJ, Stein JL, Montecino M, Javed A, Zaidi SK, Young DW, Choi JY, Pockwinse SM. Runx2 control of organization, assembly and activity of the regulatory machinery for skeletal gene expression. Oncogene 2004; 23:4315-29. [PMID: 15156188 DOI: 10.1038/sj.onc.1207676] [Citation(s) in RCA: 415] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We present an overview of Runx involvement in regulatory mechanisms that are requisite for fidelity of bone cell growth and differentiation, as well as for skeletal homeostasis and the structural and functional integrity of skeletal tissue. Runx-mediated control is addressed from the perspective of support for biological parameters of skeletal gene expression. We review recent findings that are consistent with an active role for Runx proteins as scaffolds for integration, organization and combinatorial assembly of nucleic acids and regulatory factors within the three-dimensional context of nuclear architecture.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center University of Massachusetts Medical School, Worcester, M 01655, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Peng L, Malloy PJ, Feldman D. Identification of a Functional Vitamin D Response Element in the Human Insulin-Like Growth Factor Binding Protein-3 Promoter. Mol Endocrinol 2004; 18:1109-19. [PMID: 14963110 DOI: 10.1210/me.2003-0344] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
1,25-Dihydroxyvitamin D3 [1,25-(OH)2D3] plays a critical role in maintaining calcium and phosphate homeostasis and bone formation but also exhibits antiproliferative activity on many cancer cells, including prostate cancer. We have shown that the antiproliferative actions of 1,25-(OH)2D3 in the LNCaP human prostate cancer cell line are mediated in part by induction of IGF binding protein-3 (IGFBP-3). The purpose of this study was to determine the molecular mechanism involved in 1,25-(OH)2D3 regulation of IGFBP-3 expression and to identify the putative vitamin D response element (VDRE) in the IGFBP-3 promoter. We cloned approximately 6 kb of the IGFBP-3 promoter sequence and demonstrated its responsiveness to 1,25-(OH)2D3 in transactivation assays. Computer analysis identified a putative VDRE between -3296/-3282 containing the direct repeat motif GGTTCA ccg GGTGCA that is 92% identical with the rat 24-hydroxylase distal VDRE. In EMSAs, the vitamin D receptor (VDR) showed strong binding to the putative IGFBP-3 VDRE in the presence of 1,25-(OH)2D3. Supershift assays confirmed the presence of VDR in the IGFBP-3 VDRE complex. Chromatin immunoprecipitation assay demonstrated that 1,25-(OH)2D3 recruited the VDR/retinoid X receptor heterodimer to the VDRE site in the natural IGFBP-3 promoter in intact cells. In transactivation assays, the putative VDRE coupled to a heterologous simian virus 40 promoter construct was induced 2-fold by 1,25-(OH)2D3. Mutations in the VDRE resulted in a loss of inducibility confirming the critical hexameric sequence. In conclusion, we have identified a functional VDRE in the distal region of the human IGFBP-3 promoter. The induction of IGFBP-3 by 1,25-(OH)2D3 appears to be directly mediated via VDR interaction with this VDRE.
Collapse
Affiliation(s)
- Lihong Peng
- Division of Endocrinology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305-5103.
| | | | | |
Collapse
|
14
|
Stein GS, Lian JB, Montecino M, Stein JL, van Wijnen AJ, Javed A, Pratap J, Choi J, Zaidi SK, Gutierrez S, Harrington K, Shen J, Young D, Pockwinse S. Nuclear microenvironments support physiological control of gene expression. Chromosome Res 2004; 11:527-36. [PMID: 12971727 DOI: 10.1023/a:1024943214431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
There is growing recognition that the organization of nucleic acids and regulatory proteins is functionally linked to the assembly, localization and activity of gene regulatory machinery. Cellular, molecular, biochemical and in-vivo genetic evidence support an obligatory relationship between nuclear microenvironments where regulatory complexes reside and fidelity of transcriptional control. Perturbations in mechanisms governing the intranuclear trafficking of transcription factors and the temporal/spatial organization of regulatory proteins within the nucleus occur with compromised gene expression that abrogates skeletal development and mediates leukemogenesis.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, MA 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Hakim I, Bar-Shavit Z. Modulation of TNF-alpha expression in bone marrow macrophages: involvement of vitamin D response element. J Cell Biochem 2003; 88:986-98. [PMID: 12616536 DOI: 10.1002/jcb.10453] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The calcium-regulating hormone, 1,25(OH)(2)D(3), induces tumor necrosis factor-alpha (TNF-alpha) synthesis and release from bone marrow macrophages (BMMs). To investigate the mechanism of this regulation, we have examined the effects of 1,25(OH)(2)D(3) on the cytokine message. 1,25(OH)(2)D(3) increased TNF-alpha mRNA abundance in a dose- and time-dependent manner. The combined treatment of BMMs with LPS and 1,25(OH)(2)D(3) resulted in a synergistic increase of TNF-alpha. The steroid also increased the expression of CD14 (LPS receptor). Vitamin D receptors (VDRs) mediate 1,25(OH)(2)D(3) genomic effects by forming homodimers or heterodimers with retinoic acid receptors (RARs) or retinoic X receptors (RXRs). The RXR ligand, 9-cis retinoic acid (9cRA), reduced TNF-alpha mRNA abundance in BMMs, but increased CD14 mRNA levels. 1,25(OH)(2)D(3) or LPS did not affect TNF-alpha transcript stability. 9cRA, however, caused TNF-alpha mRNA destabilization. Next, we searched for potential vitamin D response elements (VDREs) in the promoter region (1.2 kb) of the TNF-alpha gene, and identified six such sequences. Using electrophoresis mobility shift assay (EMSA) we identified one of those sequences (-1008 to -994) as a likely candidate to be a VDRE (tnfVDRE). The binding of tnfVDRE to BMM-derived nuclear extract was increased following cell treatment with 1,25(OH)(2)D(3). No induction was observed with 9cRA treatment, but the retinoid enhanced the activity of 1,25(OH)(2)D(3) when added together. Previously characterized VDREs (mouse osteopontin and rat osteocalcin) competed effectively with tnfVDRE, demonstrating the nature of the TNF-alpha-derived sequence as a VDRE. We observed super-shift and block-shift of the complex in the presence of either anti-VDR or anti-RXR antibodies. Our data suggest that 1,25(OH)(2)D(3) increases TNF-alpha transcript abundance in BMMs via a transcriptional mechanism; 9cRA decreases TNF-alpha mRNA by destabilizing the transcript, and possibly also by forming transcriptionally inactive complex with 1,25(OH)(2)D(3) on the tnfVDRE. The receptor complex interacting with tnfVDRE found in the promoter of the cytokine gene is probably composed of VDR-RXR heterodimer.
Collapse
Affiliation(s)
- Imad Hakim
- The H Hubert Humphrey Center for Experimental Medicine and Cancer Research, The Hebrew University Faculty of Medicine, P.O. Box 12272, Jerusalem 91120, Israel
| | | |
Collapse
|
16
|
Stein GS, Lian JB, Stein JL, Wijnen AJV, Montecino M, Javed A, Pratap J, Choi J, Zaidi SK, Gutierrez S, Harrington K, Shen J, Young D. Intranuclear trafficking of transcription factors: Requirements for vitamin D-mediated biological control of gene expression. J Cell Biochem 2003; 88:340-55. [PMID: 12520536 DOI: 10.1002/jcb.10364] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The architecturally associated subnuclear organization of nucleic acids and cognate regulatory factors suggest functional interrelationships between nuclear structure and gene expression. Mechanisms that contribute to the spatial distribution of transcription factors within the three-dimensional context of nuclear architecture control the sorting of regulatory information as well as the assembly and activities of sites within the nucleus that support gene expression. Vitamin D control of gene expression serves as a paradigm for experimentally addressing mechanisms that govern the intranuclear targeting of regulatory factors to nuclear domains where transcription of developmental and tissue-specific genes occur. We will present an overview of molecular, cellular, genetic, and biochemical approaches that provide insight into the trafficking of regulatory factors that mediate vitamin D control of gene expression to transcriptionally active subnuclear sites. Examples will be presented that suggest modifications in the intranuclear targeting of transcription factors abrogate competency for vitamin D control of skeletal gene expression during development and fidelity of gene expression in tumor cells.
Collapse
Affiliation(s)
- Gary S Stein
- Department of Cell Biology, University of Massachusetts Medical School, 55 Lake Ave. North, Worcester, Massachusetts 01655, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wu HC, Lin CC, Chen WC, Chen HY, Tsai FJ. Osteocalcin gene HindIII C/T polymorphism is a biomarker for prostate cancer and responsiveness to hormone therapy. Eur Urol 2003; 43:197-200. [PMID: 12565780 DOI: 10.1016/s0302-2838(02)00541-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES Osteocalcin is a vitamin-K dependent protein which is related to the metabolism of bone and calcium. The formation or progression of prostate cancer is presumed to be associated with the osteocalcin gene. The most frequently seen polymorphism is HindIII which is located at the promoter region. HindIII is therefore a possible genetic marker in the search for the association between prostate cancer and normal control subjects. METHODS In our study, a normal control group of 132 healthy people and 96 patients with prostate cancer were examined. The polymorphism was seen following polymerase chain reaction (PCR) based restriction analysis. RESULTS The result revealed significant differences between normal individuals and cancer patients (p=0.034) and the distribution of the "CC" homozygote in the control group was higher than that in the patient group. No statistical differences were found in clinical staging and grading. The 54 patients who received hormone therapy were further categorized into response and non-response groups, statistical differences between these two groups were revealed (p=0.007, Fisher's exact test). CONCLUSIONS Based on our results, we conclude that the HindIII polymorphism of the osteocalcin gene is a suitable genetic marker of prostate cancer which can be used in the prediction of the outcome of patients who receive hormone therapy.
Collapse
Affiliation(s)
- Hsi-Chin Wu
- Department of Urology, China Medical College Hospital, Taichung, Taiwan.
| | | | | | | | | |
Collapse
|
18
|
Jurutka PW, MacDonald PN, Nakajima S, Hsieh JC, Thompson PD, Whitfield GK, Galligan MA, Haussler CA, Haussler MR. Isolation of baculovirus-expressed human vitamin D receptor: DNA responsive element interactions and phosphorylation of the purified receptor. J Cell Biochem 2002; 85:435-57. [PMID: 11948698 DOI: 10.1002/jcb.10134] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Two controversial aspects in the mechanism of human vitamin D receptor (hVDR) action are the possible significance of VDR homodimers and the functional role of receptor phosphorylation. To address these issues, milligram quantities of baculovirus-expressed hVDR were purified to 97% homogeneity, and then tested for binding to the rat osteocalcin vitamin D responsive element (VDRE) via electrophoretic mobility shift and half-site competition assays in the presence or absence of a CV-1 nuclear extract containing retinoid X receptor (RXR). Methylation interference analysis revealed that both the hVDR homodimer and the VDR-RXR heterodimer display similar patterns of VDRE G-base protection. However, in competition studies, the relative dissociation of the homodimeric hVDR complex from the VDRE was extremely rapid (t1/2 < 30 s) compared to the dissociation of the heteromeric complex (t1/2 > 5 min), thus illustrating the relative instability and low affinity of homodimeric VDR binding to DNA. These results indicate that VDR-RXR heterodimers are the preferred VDRE binding species. Further, two dimensional gel electrophoresis of hVDR demonstrated several isoelectric forms of the receptor, suggesting that it is subject to multiple phosphorylation events. In vitro kinase assays confirmed that purified hVDR is an efficient substrate for protein kinases A and Cbeta, as well as casein kinase II. In vivo studies of the expressed receptor in intact cells, namely baculovirus vector infected Sf9 insect cells and transfected mammalian COS-7 cells, demonstrated that hVDR was phosphorylated in a hormone-enhanced fashion. Functional consequences of hVDR phosphorylation were suggested by the observations that: (i) potato acid phosphatase (PAP)-treated hVDR no longer interacted with the VDRE as either a homodimer or a heteromeric complex with RXR, and (ii) treatment of transfected COS-7 cells with a phosphatase inhibitor (okadaic acid) along with 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) resulted in a synergistic enhancement of both hVDR phosphorylation and transactivation of a VDRE-linked reporter gene, compared to the effect of treatment with either agent alone. These studies point to a significant role for phosphorylation of VDR in regulating high-affinity VDR-RXR interactions with VDREs, and also in modulating 1,25(OH)2D3-elicited transcriptional activation in target cells.
Collapse
Affiliation(s)
- Peter W Jurutka
- Department of Biochemistry and Molecular Biophysics, College of Medicine, University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Shen J, Montecino M, Lian JB, Stein GS, Van Wijnen AJ, Stein JL. Histone acetylation in vivo at the osteocalcin locus is functionally linked to vitamin D-dependent, bone tissue-specific transcription. J Biol Chem 2002; 277:20284-92. [PMID: 11893738 DOI: 10.1074/jbc.m112440200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The accessibility of regulatory elements in chromatin represents a principal rate-limiting parameter of gene transcription and is modulated by enzymatic transcriptional co-factors that alter the topology of chromatin or covalently modify histones (e.g. by acetylation). The bone-specific activation and 1,25-dihydroxyvitamin D(3) enhancement of osteocalcin (OC) gene transcription are both functionally linked to modifications in nucleosomal organization. The initiation of tissue-specific basal transcription is accompanied by the induction of two DNase I hypersensitive sites, and this chromatin remodeling event requires binding of the key osteogenic factor RUNX2/CBFA1 to the OC promoter. Here, we analyzed the acetylation status of histones H3 and H4 when the OC gene is active (in osteoblastic ROS17/2.8 cells) or inactive (in fibroblastic ROS24/1 cells) using chromatin immunoprecipitation assays. We find that acetylated histone H3 and H4 proteins are associated with the OC promoter only when the gene is transcriptionally active and that the acetylation status is relatively uniform across the OC locus under basal conditions. Acetylation of H4 at the OC gene is selectively increased following vitamin D(3) enhancement of OC transcription, with the most prominent changes occurring in the region between the vitamin D(3) enhancer and basal promoter. Thus, our results suggest functional linkage of H3 and H4 acetylation in specific regions of the OC promoter to chromatin remodeling that accompanies tissue-specific transcriptional activation and vitamin D enhancement of OC gene expression. These findings provide mechanistic insights into bone-specific gene activation within a native genomic context in response to steroid hormone-related regulatory cues.
Collapse
Affiliation(s)
- Jiali Shen
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | | | | | | | | | | |
Collapse
|
20
|
Franceschi RT. The developmental control of osteoblast-specific gene expression: role of specific transcription factors and the extracellular matrix environment. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:40-57. [PMID: 10759426 DOI: 10.1177/10454411990100010201] [Citation(s) in RCA: 212] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Bone formation is a carefully controlled developmental process involving morphogen-mediated patterning signals that define areas of initial mesenchyme condensation followed by induction of cell-specific differentiation programs to produce chondrocytes and osteoblasts. Positional information is conveyed via gradients of molecules, such as Sonic Hedgehog that are released from cells within a particular morphogenic field together with region-specific patterns of hox gene expression. These, in turn, regulate the localized production of bone morphogenetic proteins and related molecules which initiate chondrocyte- and osteoblast-specific differentiation programs. Differentiation requires the initial commitment of mesenchymal stem cells to a given lineage, followed by induction of tissue-specific patterns of gene expression. Considerable information about the control of osteoblast-specific gene expression has come from analysis of the promoter regions of genes encoding proteins like osteocalcin that are selectively expressed in bone. Both general and tissue-specific transcription factors control this promoter. Osf2/Cbfa1, the first osteoblast-specific transcription factor to be identified, is expressed early in the osteoblast lineage and interacts with specific DNA sequences in the osteocalcin promoter essential for its selective expression in osteoblasts. The OSF2/CBFA1 gene is necessary for the development of mineralized tissues, and its mutation causes the human disease, cleidocranial dysplasia. Committed osteoprogenitor cells already expressing Osf2/Cbfa1 must synthesize a collagenous ECM before they will differentiate. A cell:ECM interaction mediated by integrin-type cell-surface receptors is essential for the induction of osteocalcin and other osteoblast-related proteins. This interaction stimulates the binding of Osf2/Cbfa1 to the osteocalcin promoter through an as-yet-undefined mechanism.
Collapse
Affiliation(s)
- R T Franceschi
- Department of Periodontics/Prevention/Geriatrics, School of Dentistry, University of Michigan, Ann Arbor 48109-1078, USA
| |
Collapse
|
21
|
Koszewski NJ, Malluche HH, Russell J. Vitamin D receptor interactions with positive and negative DNA response elements: an interference footprint comparison. J Steroid Biochem Mol Biol 2000; 72:125-32. [PMID: 10775803 DOI: 10.1016/s0960-0760(00)00022-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Interference footprinting protocols were utilized to examine the interactions of the vitamin D receptor (VDR) with either a positive or a negative vitamin D response element (VDRE). A sequence from the human osteocalcin (hOC) gene was chosen for the prototypical positive DR+3 VDRE, while an analogous sequence linked to the avian parathyroid hormone gene (aPTH) was used as the negative VDRE. Both types of response elements were examined for phosphate backbone contacts, as well as base-specific interactions with guanine and thymine residues. Sources of VDR included partially purified canine intestinal preparations, as well as extracts of recombinant human VDR and retinoid X receptor alpha prepared from baculovirus-infected Sf9 insect cells. Cold competition experiments using variable amounts of these oligonucleotides in the mobility shift assay revealed that the hOC element was a five-fold better competitor for heterodimer complex binding than the negative VDRE. Interference footprints revealed extensive strong contacts to the phosphate backbone and individual guanine and thymine nucleotides of the hOC element. The composite hOC footprint was asymmetric for the number and strength of interactions observed over each of the respective direct repeat half-sites. In contrast, the aPTH VDRE footprints revealed fewer points of DNA contact that were limited to the hexanucleotide repeat regions and were strikingly weaker in nature. The alignment of DNA contact points for both elements produced a 5' stagger that was indicative of successive major groove interactions, and consistent with dimer binding. DNA helical representations indicate that the heterodimer contacts to these response elements are substantially different and provide insight into functional aspects of each complex.
Collapse
Affiliation(s)
- N J Koszewski
- Division of Nephrology, Bone and Mineral Metabolism, Department of Internal Medicine, University of Kentucky Medical Center, Lexington, KY 40536, USA.
| | | | | |
Collapse
|
22
|
Thompson PD, Hsieh JC, Whitfield GK, Haussler CA, Jurutka PW, Galligan MA, Tillman JB, Spindler SR, Haussler MR. Vitamin D receptor displays DNA binding and transactivation as a heterodimer with the retinoid X receptor, but not with the thyroid hormone receptor. J Cell Biochem 1999. [DOI: 10.1002/(sici)1097-4644(19991201)75:3<462::aid-jcb11>3.0.co;2-d] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
24
|
Montecino M, van Wijnen AJ, Lian JB, Stein JL, Stein GS. Phosphorylation-mediated control of chromatin organization and transcriptional activity of the tissue-specific osteocalcin gene. J Cell Biochem 1999; 72:586-94. [PMID: 10022617 DOI: 10.1002/(sici)1097-4644(19990315)72:4<586::aid-jcb13>3.0.co;2-k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have analyzed the linkage of protein phosphorylation to the remodeling of chromatin structure that accompanies transcriptional activity of the rat osteocalcin (OC) gene in bone-derived cells. Short incubations with okadaic acid, an inhibitor of protein phosphatases 1 and 2A, induced marked changes in the chromatin organization of the OC gene promoter. These changes were reflected by loss of the two DNase I hypersensitive sites normally present in bone-derived cells expressing this gene. These hypersensitive sites include the elements that control basal tissue-specific expression, as well as steroid hormone regulation. Indeed, the absence of hypersensitivity was accompanied by inhibition of basal and vitamin D-dependent enhancement of OC gene transcription. The effects of okadaic acid on OC chromatin structure and gene activity were specific and reversible. Staurosporine, a protein kinase C inhibitor, did not significantly affect transcriptional activity or DNase I hypersensitivity of the OC gene. We conclude that cellular phosphorylation-dephosphorylation events distinct from protein kinase C-dependent reactions are required for both chromatin remodeling and transcriptional activity of the OC gene in osseous cells.
Collapse
Affiliation(s)
- M Montecino
- Department of Cell Biology & Cancer Center, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | |
Collapse
|
25
|
Lian JB, Stein GS, Stein JL, van Wijnen AJ. Regulated expression of the bone-specific osteocalcin gene by vitamins and hormones. VITAMINS AND HORMONES 1999; 55:443-509. [PMID: 9949687 DOI: 10.1016/s0083-6729(08)60941-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- J B Lian
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | |
Collapse
|
26
|
Aslam F, McCabe L, Frenkel B, van Wijnen AJ, Stein GS, Lian JB, Stein JL. AP-1 and vitamin D receptor (VDR) signaling pathways converge at the rat osteocalcin VDR element: requirement for the internal activating protein-1 site for vitamin D-mediated trans-activation. Endocrinology 1999; 140:63-70. [PMID: 9886808 DOI: 10.1210/endo.140.1.6429] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Responsiveness of genes to steroid hormones is a complex process involving synergistic and/or antagonistic interactions between specific receptors and other nonreceptor transcription factors. Thus, DNA recognition elements for steroid hormone receptors are often located among binding sites for other trans-acting factors. The hormonal form of vitamin D, 1,25-dihydroxyvitamin D3, stimulates transcription of the tissue-specific osteocalcin (OC) gene in osteoblastic cells. The rat OC vitamin D response element contains an internal acitvating protein-1 (AP-1) site. Here, we report for the first time that this AP-1 site is critical for the transcriptional enhancement of rat osteocalcin gene expression mediated by vitamin D. Precise mutations were introduced either in the steroid half-elements or in the internal AP-1 sequences. One mutation within the internal AP-1 site retained vitamin D receptor/retinoid X receptor binding equivalent to that of the wild-type sequence, but resulted in complete loss of vitamin D inducibility of the OC promoter. These results suggest a functional interaction between the hormone receptor and nuclear oncoproteins at the rat OC vitamin D response element. This cooperation of activities may have important consequences in physiological regulation of osteocalcin transcription during osteoblast differentiation and bone tissue development in vivo.
Collapse
Affiliation(s)
- F Aslam
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Montecino M, Frenkel B, Lian J, Stein J, Stein G. Requirement of distal and proximal promoter sequences for chromatin organization of the osteocalcin gene in bone‐derived cells. J Cell Biochem 1998. [DOI: 10.1002/(sici)1097-4644(19961101)63:2<221::aid-jcb9>3.0.co;2-#] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Martin Montecino
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, Massachusetts 01655‐0106
| | - Baruch Frenkel
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, Massachusetts 01655‐0106
| | - Jane Lian
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, Massachusetts 01655‐0106
| | - Janet Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, Massachusetts 01655‐0106
| | - Gary Stein
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, Massachusetts 01655‐0106
| |
Collapse
|
28
|
Haussler MR, Whitfield GK, Haussler CA, Hsieh JC, Thompson PD, Selznick SH, Dominguez CE, Jurutka PW. The nuclear vitamin D receptor: biological and molecular regulatory properties revealed. J Bone Miner Res 1998; 13:325-49. [PMID: 9525333 DOI: 10.1359/jbmr.1998.13.3.325] [Citation(s) in RCA: 996] [Impact Index Per Article: 36.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- M R Haussler
- Department of Biochemistry, College of Medicine, The University of Arizona, Tucson 85724, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gill RK, Atkins LM, Hollis BW, Bell NH. Mapping the domains of the interaction of the vitamin D receptor and steroid receptor coactivator-1. Mol Endocrinol 1998; 12:57-65. [PMID: 9440810 DOI: 10.1210/mend.12.1.0048] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The vitamin D receptor (VDR) binds to the vitamin D response element (VDRE) and mediates the effects of the biologically active form of vitamin D, 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3], on gene expression. The VDR binds to the VDRE as a heterodimeric complex with retinoid X receptor. In the present study, we have used a yeast two-hybrid system to clone complementary DNA that codes for VDR-interacting protein(s). We found that the human steroid receptor coactivator-1 (SRC-1) interacts with the VDR in a ligand-dependent manner, as demonstrated by beta-galactosidase production. The interaction of the VDR and the SRC-1 takes place at physiological concentrations of 1,25(OH)2D3. A 48.2-fold stimulation of beta-galactosidase activity was observed in the presence of 10(-10) M 1,25-(OH)2D3. In addition, a direct interaction between the ligand-activated glutathione-S-transferase-VDR and 35S-labeled SRC-1 was observed in vitro. Deletion-mutation analysis of the VDR established that the ligand-dependent activation domain (AF-2) of the VDR is required for the interaction with SRC-1. One deletion mutant, pGVDR-(1-418), bound the ligand but failed to interact with the SRC-1, whereas another deletion mutant, pGVDR-(1-423), bound the ligand and interacted with the SRC-1. We demonstrated that all the deletion mutants were expressed as analyzed by a Gal4 DNA-binding domain antibody. Deletion mutation analysis of the SRC-1 demonstrated that 27 amino acids (DPCNTNPTPMTKATPEEIKLEAQSQFT) of the SRC-1 are essential for interaction with the AF-2 motif of the VDR.
Collapse
Affiliation(s)
- R K Gill
- Department of Medicine, Medical University of South Carolina, Department of Veterans Affairs Medical Center, Charleston 29401-5799, USA
| | | | | | | |
Collapse
|
30
|
White C, Gardiner E, Eisman J. Tissue specific and vitamin D responsive gene expression in bone. Mol Biol Rep 1998; 25:45-61. [PMID: 9540066 DOI: 10.1023/a:1006820710966] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Studies of gene expression in bone have adopted a number of molecular approaches that seek to determine those cis and trans-acting factors responsible for the development and physiological regulation of this unique tissue. The majority of studies have been performed in vitro, focussing on the expression of genes such as osteocalcin, bone sialoprotein and type I collagen which demonstrate restricted or altered expression patterns in osteoblasts. These studies have demonstrated a large number of cis and trans acting factors that modulate the tissue specific and vitamin D responsive expression of these genes. These include the response elements and regions mediating basal and vitamin D dependent transcription of these genes as well as some of the transcription factors that bind to these regions and the nucleosomal organisation of these genes within a nuclear framework. In vivo studies, including the introduction of transgenes into transgenic mice, extend these in vitro observations within a physiological context. However, in part due to limitations in each approach, these in vitro and in vivo studies are yet to accurately define all the necessary cis and trans-acting factors required for tissue specific and vitamin D responsive gene expression. Advances have been made in identifying many cis-acting regions within the flanking regions of these genes that are responsible for their restricted expression patterns, but a vector incorporating all the necessary cis-acting regions capable of directing gene expression independent of integration site has not yet been described. Similarly, trans-acting factors that determine the developmental destiny of osteoblast progenitors and the restricted expression of these genes remain elusive and, despite advances in the understanding of protein-DNA interactions at vitamin D response elements contained within these genes, further intermediary factors that interact with the transcriptional machinery to modulate vitamin D responsiveness need to be identified.
Collapse
Affiliation(s)
- C White
- Bone & Mineral Research Program, Garvan Institute of Medical Research, St Vincent's Hospital, Darlinghurst, Sydney, Australia
| | | | | |
Collapse
|
31
|
Staal A, Geertsma-Kleinekoort WM, Van Den Bemd GJ, Buurman CJ, Birkenhäger JC, Pols HA, Van Leeuwen JP. Regulation of osteocalcin production and bone resorption by 1,25-dihydroxyvitamin D3 in mouse long bones: interaction with the bone-derived growth factors TGF-beta and IGF-I. J Bone Miner Res 1998; 13:36-43. [PMID: 9443788 DOI: 10.1359/jbmr.1998.13.1.36] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Bone cells produce multiple growth factors that have effects on bone metabolism and can be incorporated into the bone matrix. Interplay between these bone-derived growth factors and calciotropic hormones has been demonstrated in cultured bone cells. The present study was designed to extend these observations by examining the interactions between either transforming growth factor-beta (TGF-beta) or insulin-like growth factor-I (IGF-I) and 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) in a mouse long bone culture model with respect to osteocalcin production and bone resorption. In contrast to the stimulation in rat and human, in the fetal mouse long bone cultures, 1,25(OH)2D3 caused a dose-dependent inhibition of osteocalcin production. Both the osteocalcin content in the culture medium and in the extracts of the long bones was reduced by 1,25(OH)2D3. This effect was not specific for fetal bone because 1,25(OH)2D3 also reduced osteocalcin production by the neonatal mouse osteoblast cell line MC3T3. TGF-beta inhibited whereas IGF-I dose-dependently increased osteocalcin production in mouse long bones. The combination of TGF-beta and 1,25(OH)2D3 did not result in a significantly different effect compared with each of these compounds alone. The IGF-I effect was completely blocked by 1,25(OH)2D3. In the same long bones as used for the osteocalcin measurements, we performed bone resorption analyses. Opposite to its effect on osteocalcin, 1,25(OH)2D3 dose-dependently stimulated bone resorption. TGF-beta reduced and IGF-I did not change basal (i.e., in the absence of hormones) bone resorption. Our results show that 1,25(OH)2D3-enhanced bone resorption is dose-dependently inhibited by TGF-beta and IGF-I. Regression analysis demonstrated a significant negative correlation between 1,25(OH)2D3-induced bone resorption and osteocalcin production. The specificity for their effect on 1,25(OH)2D3-stimulated bone resorption was assessed by testing the effects of TGF-beta and IGF-I in combination with parathyroid hormone (PTH). Like 1,25(OH)2D3, PTH dose-dependently stimulates bone resorption. However, PTH-stimulated bone resorption was not affected by TGF-beta. Like 1,25(OH)2D3-stimulated bone resorption, IGF-I inhibited the PTH effect but at a 10-fold higher concentration compared with 1,25(OH)2D3. In conclusion, the present study demonstrates growth factor-specific interactions with 1,25(OH)2D3 in the control of osteocalcin production and bone. With respect to bone resorption, these interactions are also hormone specific. The present data thereby support and extend the previous observations that interactions between 1,25(OH)2D3 and bone-derived growth factors play an important role in the control of bone metabolism. These data together with the fact that TGF-beta and IGF-I are present in the bone matrix and potentially can be released during bone resorption support the concept that growth factors may control the effects of calciotropic hormones in bone in a localized and possibly temporal manner. Finally, in contrast to human and rat, in mice 1,25(OH)2D3 reduces osteocalcin production and this reduction is paralleled by stimulation of bone resorption by 1,25(OH)2D3. These data thereby show a dissociation between osteocalcin production and bone resorption.
Collapse
Affiliation(s)
- A Staal
- Department of Internal Medicine III, Erasmus University Medical School, Rotterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Sims NA, White CP, Sunn KL, Thomas GP, Drummond ML, Morrison NA, Eisman JA, Gardiner EM. Human and murine osteocalcin gene expression: conserved tissue restricted expression and divergent responses to 1,25-dihydroxyvitamin D3 in vivo. Mol Endocrinol 1997; 11:1695-708. [PMID: 9328351 DOI: 10.1210/mend.11.11.0008] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human and murine osteocalcin genes demonstrate similar cell-specific expression patterns despite significant differences in gene locus organization and sequence variations in cis-acting regulatory elements. To investigate whether differences in these regulatory regions result in an altered response to 1,25-dihydroxyvitamin D3 [1,25-(OH)2D3] in vivo, we compared the response of the endogenous mouse osteocalcin gene to a bacterial reporter gene directed by flanking regions of the human osteocalcin gene in transgenic mice. Transgene expression colocalized with endogenous osteocalcin expression in serial sections, being detected in osteoblasts, osteocytes and hypertrophic chondrocytes. In calvarial cell culture lysates from transgenic and nontransgenic mice, the endogenous mouse osteocalcin gene did not respond to 1,25-(OH)2D3 treatment. Despite this, transgene activity was significantly increased in the same cells. Similarly, Northern blots of total cellular RNA and in situ hybridization studies of transgenic animals demonstrated a maximal increase in transgene expression at 6 h after 1,25-(OH)2D3 injection (23.6+/-3.6-fold) with a return to levels equivalent to uninjected animals by 24 h (1.2+/-0.1-fold). This increase in transgene expression was also observed at 6 h after 1,25-(OH)2D3 treatment in animals on a low calcium diet (25.2+/-7.7-fold) as well as in transgenic mice fed a vitamin D-deficient diet containing strontium chloride to block endogenous 1,25-(OH)2D3 production (7.5+/-0.9-fold). In contrast to the increased transgene expression levels, neither endogenous mouse osteocalcin mRNA levels nor serum osteocalcin levels were significantly altered after 1,25-(OH)2D3 injection in transgenic or nontransgenic mice, regardless of dietary manipulations, supporting evidence for different mechanisms regulating the response of human and mouse osteocalcin genes to 1,25-(OH)2D3. Although the cis- and trans-acting mechanisms directing cell-specific gene expression appear to be conserved in the mouse and human osteocalcin genes, responsiveness to 1,25-(OH)2D3 is not. The mouse osteocalcin genes do not respond to 1,25-(OH)2D3 treatment, but the human osteocalcin-directed transgene is markedly upregulated under the same conditions and in the same cells. The divergent responses of these homologous genes to 1,25-(OH)2D3 are therefore likely to be due to differences in mouse and human osteocalcin-regulatory sequences rather than to variation in the complement of trans-acting factors present in mouse osteoblastic cells. Increased understanding of these murine-human differences in osteocalcin regulation may shed light on the function of osteocalcin and its regulation by vitamin D in bone physiology.
Collapse
Affiliation(s)
- N A Sims
- Bone and Mineral Research Program, Garvan Institute of Medical Research, St. Vincent's Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Stein GS, Lian JB, van Wijnen AJ, Stein JL. The osteocalcin gene: a model for multiple parameters of skeletal-specific transcriptional control. Mol Biol Rep 1997; 24:185-96. [PMID: 9291092 DOI: 10.1023/a:1006803615430] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Influences of promoter regulatory elements that are responsive to basal and tissue-restricted transactivation factors, steroid hormones, growth factors and other physiologic mediators has provided the basis for understanding regulatory mechanisms contributing to developmental expression of osteocalcin, tissue specificity and biological activity (reviewed in [1-3]). These regulatory elements and cognate transcription factors support postproliferative transcriptional activation and steroid hormone (e.g. vitamin D) enhancement at the onset of extracellular matrix mineralization during osteoblast differentiation. Three parameters of nuclear structure contribute to osteocalcin gene transcriptional control. The linear representation of promoter elements provides competency for physiological responsiveness within the contexts of developmental as well as phenotype-dependent regulation. Chromatin structure and nucleosome organization reduce distances between independent regulatory elements providing a basis for integrating components of transcriptional control. The nuclear matrix supports gene expression by imposing physical constraints on chromatin related to three dimensional genomic organization. In addition, the nuclear matrix facilitates gene localization as well as the concentration and targeting of transcription factors. Several lines of evidence are presented which are consistent with involvement of multiple levels of nuclear architecture in tissue-specific gene expression during differentiation. Growth factor and steroid hormone responsive modifications in chromatin structure, nucleosome organization and the nuclear matrix are considered which influence transcription of the bone tissue-specific osteocalcin gene during progressive expression of the osteoblast phenotype.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | |
Collapse
|
34
|
Jurutka PW, Hsieh JC, Remus LS, Whitfield GK, Thompson PD, Haussler CA, Blanco JC, Ozato K, Haussler MR. Mutations in the 1,25-dihydroxyvitamin D3 receptor identifying C-terminal amino acids required for transcriptional activation that are functionally dissociated from hormone binding, heterodimeric DNA binding, and interaction with basal transcription factor IIB, in vitro. J Biol Chem 1997; 272:14592-9. [PMID: 9169418 DOI: 10.1074/jbc.272.23.14592] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To investigate a potential ligand-dependent transcriptional activation domain (AF-2) in the C-terminal region of the human vitamin D receptor (hVDR), two conserved residues, Leu-417 and Glu-420, were replaced with alanines by site-directed mutagenesis (L417A and E420A). Transcriptional activation in response to 1, 25-dihydroxyvitamin D3 (1,25-(OH)2D3) was virtually eliminated when either point mutant was transfected into several mammalian cell lines. Furthermore, both mutants exhibited a dominant negative phenotype when expressed in COS-7 cells. Scatchard analysis at 4 degrees C and a ligand-dependent DNA binding assay at 25 degrees C revealed essentially normal 1,25-(OH)2D3 binding for the mutant hVDRs, which were also equivalent to native receptor in associating with the rat osteocalcin vitamin D responsive element as a presumed heterodimer with retinoid X receptor. Glutathione S-transferase-human transcription factor IIB (TFIIB) fusion protein linked to Sepharose equally coprecipitated the wild-type hVDR and the AF-2 mutants. These data implicate amino acids Leu-417 and Glu-420, residing in a putative alpha-helical region at the extreme C terminus of hVDR, as critical in the mechanism of 1, 25-(OH)2D3-stimulated transcription, likely mediating an interaction with a coactivator(s) or a component of the basal transcriptional machinery distinct from TFIIB.
Collapse
Affiliation(s)
- P W Jurutka
- Department of Biochemistry, College of Medicine, The University of Arizona, Tucson, Arizona 85724, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Guo B, Aslam F, van Wijnen AJ, Roberts SG, Frenkel B, Green MR, DeLuca H, Lian JB, Stein GS, Stein JL. YY1 regulates vitamin D receptor/retinoid X receptor mediated transactivation of the vitamin D responsive osteocalcin gene. Proc Natl Acad Sci U S A 1997; 94:121-6. [PMID: 8990171 PMCID: PMC19252 DOI: 10.1073/pnas.94.1.121] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The responsiveness of genes to steroid hormones is principally mediated by functional interactions between DNA-bound hormone receptors and components of the transcriptional initiation machinery, including TATA-binding protein, TFIIB, or other RNA polymerase II associated factors. This interaction can be physiologically modulated by promoter context-specific transcription factors to facilitate optimal responsiveness of gene expression to hormone stimulation. One postulated regulatory mechanism involves the functional antagonism between hormone receptors and nonreceptor transcription factors interacting at the same hormone response element. Here we demonstrate that the multifunctional regulator YY1 represses 1,25-dihydroxyvitamin D3 (vitamin D)-induced transactivation of the bone tissue-specific osteocalcin gene. We identify YY1 recognition sequences within the vitamin D response element (VDRE) of the osteocalcin gene that are critical for YY1-dependent repression of vitamin D-enhanced promoter activity. We show that YY1 and vitamin D receptor (VDR)/retinoid X receptor heterodimers compete for binding at the osteocalcin VDRE. In addition, we find that YY1 interacts directly with TFIIB, and that one of the two tandemly repeated polypeptide regions of TFIIB spanning the basic domain is responsible for this interaction. TFIIB and VDR can also interact directly, and these factors synergize to mediate transactivation. Our results suggest that YY1 regulates vitamin D enhancement of osteocalcin gene transcription in vivo by interfering with the interactions of the VDR with both the VDRE and TFIIB.
Collapse
Affiliation(s)
- B Guo
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yang R, Gerstenfeld LC. Structural analysis and characterization of tissue and hormonal responsive expression of the avian bone sialoprotein (BSP) gene. J Cell Biochem 1997; 64:77-93. [PMID: 9015757 DOI: 10.1002/(sici)1097-4644(199701)64:1<77::aid-jcb11>3.0.co;2-h] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Bone sialoprotein (BSP) is an extracellular matrix protein that has a highly restricted expression to mineralized skeletal tissues. The chicken bone sialoprotein-encoding gene (bsp) was isolated and shown to contain two less exons than similar mammalian genes, with the absence of an untranslated 5' exon and the fusion of the first two exons that encode the signal peptide and amino terminal end of the mature BSP peptide. Primer extension analysis showed one strong transcriptional start point (tsp) in mRNA prepared from embryonic bone. Comparison of the avian bsp promoter sequence to those of other genes expressed in vertebrate skeletal tissues, identified the presence of homeobox protein binding sequence motifs for engrailed (en-1) and Msx 2 (Hox 8.1), and two collagen type II gene silencer elements. Two TATA sequences one at -21 bp and the second at -172 bp to the tsp were identified. For the first TATA element no CCAAT sequence was observed at an appropriate cis position however two Sp1 sequences (GGGCGG) were identified at -66 and -85 bp. A CCAAT element was seen in an appropriate cis position in relationship to the second upstream TATA, but transient expression analysis in embryonic chicken calvaria osteoblasts using two separate promoter/reporter constructs (+24 to -1244 bp or -121 to -1244 bp), confirmed that only the proximal TATA and Sp1 elements were functional. The +24 to -1244 bp promoter sequence demonstrated 33.6, 13.2, and 3.2 fold activity above base line respectively, within cells prepared from embryonic chicken calvaria bone, cephalic sterna, a cartilage that undergoes mineralization and caudal sterna, a cartilage that does not mineralize during embryogenesis. Only base line activity was observed within cells prepared from embryonic dermal fibroblasts a non-skeletal tissue, which does not express BSP. These same cells demonstrated comparable steady state mRNA levels, corroborating that this segment of promoter DNA had tissue specific activity. A series of nested deletions from the 5' end of the -1244 construct demonstrated that a portion of the tissue specific regulation was controlled by the presence of a silencer element(s) between -1244 and -620 bp since deletion of this segment of DNA resulted in a 6 fold increase in the promoter activity in dermal skin fibroblasts. The -1244-(+)24 nt promoter construct was shown to be stimulated by dexamethasome approximately 1.5 fold over control, inhibited by 1,25(OH)2D3 approximately 60% of control and was strongly stimulated approximately 5.0 fold by parathyroid hormone (PTH) in embryonic calvaria osteoblasts. These data define the proximal promoter of the avian bsp gene and identify several potential regulatory elements that have been observed in the promoters of other genes expressed in skeletal tissues. These elements imparted both tissue and hormone specific promoter activity to bsp expression within skeletal cells.
Collapse
Affiliation(s)
- R Yang
- Laboratory for the Study of Skeletal Disorders and Rehabilitation, Children's Hospital, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
37
|
Ohyama Y, Ozono K, Uchida M, Yoshimura M, Shinki T, Suda T, Yamamoto O. Functional assessment of two vitamin D-responsive elements in the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem 1996; 271:30381-5. [PMID: 8940000 DOI: 10.1074/jbc.271.48.30381] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Two vitamin D-responsive elements (VDRE-1 and VDRE-2) were recently identified in the 5'-upstream region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene at -151/-137 and -259/-245, respectively. We studied the transcriptional regulation of this gene by vitamin D by means of mutational analysis. Introducing mutations into VDRE-1 and VDRE-2 in the native promoter -291/+9 reduced vitamin D-dependent chloramphenicol acetyltransferase activity by 86 and 41%, respectively. Mutation of the direct repeat -169/-155 located at 3 base pairs upstream of VDRE-1 also caused 50% decrease of chloramphenicol acetyltransferase activity. Connection of the element -169/-155 to VDRE-1 enhanced the vitamin D responsiveness of VDRE-1 5-fold through the heterologous beta-globin promoter. The fragment -291/-102 containing the two VDREs showed two shifted bands in the presence of the vitamin D receptor and retinoid X receptor in gel retardation analysis, and the appearance of the slower migrating band indicates that two sets of receptor complexes bind to this fragment simultaneously. These results demonstrate that VDRE-1 is a stronger mediator of vitamin D function than VDRE-2 due to the presence of the accessory element -169/-155 located adjacent to VDRE-1, although VDRE-2 exhibits a smaller dissociation constant for the vitamin D receptor-retinoid X receptor complex than VDRE-1.
Collapse
Affiliation(s)
- Y Ohyama
- Graduate Department of Gene Science, Faculty of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Quarles LD, Siddhanti SR. Guanine nucleotide binding-protein coupled signaling pathway regulation of osteoblast-mediated bone formation. J Bone Miner Res 1996; 11:1375-83. [PMID: 8889835 DOI: 10.1002/jbmr.5650111002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
39
|
Christakos S, Raval-Pandya M, Wernyj RP, Yang W. Genomic mechanisms involved in the pleiotropic actions of 1,25-dihydroxyvitamin D3. Biochem J 1996; 316 ( Pt 2):361-71. [PMID: 8687373 PMCID: PMC1217357 DOI: 10.1042/bj3160361] [Citation(s) in RCA: 163] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The biologically active metabolite of vitamin D (cholecalciferol), i.e. 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a secosteroid hormone whose mode of action involves stereospecific interaction with an intracellular receptor protein (vitamin D receptor; VDR). 1,25(OH)2D3 is known to be a principal regulator of calcium homeostasis, and it has numerous other physiological functions including inhibition of proliferation of cancer cells, effects on hormone secretion and suppression of T-cell proliferation and cytokine production. Although the exact mechanisms involved in mediating many of the different effects of 1,25(OH)2D3 are not completely defined, genomic actions involving the VDR are clearly of major importance. Similar to other steroid receptors, the VDR is phosphorylated; however, the exact functional role of the phosphorylation of the VDR remains to be determined. The VDR has been reported to be regulated by 1,25(OH)2D3 and also by activation of protein kinases A and C, suggesting co-operativity between signal transduction pathways and 1,25(OH)2D3 action. The VDR binds to vitamin D-responsive elements (VDREs) in the 5' flanking region of target genes. It has been suggested that VDR homodimerization can occur upon binding to certain VDREs but that the VDR/retinoid X receptor (RXR) heterodimer is the functional transactivating species. Other factors reported to be involved in VDR-mediated transcription include chicken ovalbumin upstream promoter (COUP) transcription factor, which is involved in active silencing of transcription, and transcription factor IIB, which has been suggested to play a major role following VDR/RXR heterodimerization. Newly identified vitamin D-dependent target genes include those for Ca2+/Mg(2+)-ATPase in the intestine and p21 in the myelomonocytic U937 cell line. Elucidation of the mechanisms involved in the multiple actions of 1,25(OH)2D3 will be an active area of future research.
Collapse
Affiliation(s)
- S Christakos
- Department of Biochemistry and Molecular Biology, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, Newark 07103-2714, USA
| | | | | | | |
Collapse
|
40
|
Banerjee C, Hiebert SW, Stein JL, Lian JB, Stein GS. An AML-1 consensus sequence binds an osteoblast-specific complex and transcriptionally activates the osteocalcin gene. Proc Natl Acad Sci U S A 1996; 93:4968-73. [PMID: 8643513 PMCID: PMC39389 DOI: 10.1073/pnas.93.10.4968] [Citation(s) in RCA: 139] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Tissue and cell-type specific expression of the rat osteocalcin (rOC) gene involves the interplay of multiple transcriptional regulatory factors. In this report we demonstrate that AML-1 (acute myeloid leukemia-1), a DNA-binding protein whose genes are disrupted by chromosomal translocations in several human leukemias, interacts with a sequence essential for enhancing tissue-restricted expression of the rOC gene. Deletion analysis of rOC promoter-chloramphenicol acetyltransferase constructs demonstrates that an AML-1-binding sequence within the proximal promoter (-138 to -130 nt) contributes to 75% of the level of osteocalcin gene expression. The activation potential of the AML-1-binding sequence has been established by overexpressing AML-1 in osteoblastic as well as in nonosseous cell lines. Overexpression not only enhances rOC promoter activity in osteoblasts but also mediates OC promoter activity in a nonosseous human fibroblastic cell line. A probe containing this site forms a sequence specific protein-DNA complex with nuclear extracts from osteoblastic cells but not from nonosseous cells. Antisera supershift experiments indicate the presence of AML-1 and its partner protein core-binding factor beta in this osteoblast-restricted complex. Mutations of the critical AML-1-binding nucleotides abrogate formation of the complex and strongly diminish promoter activity. These results indicate that an AML-1 related protein is functional in cells of the osteoblastic lineage and that the AML-1-binding site is a regulatory element important for osteoblast-specific transcriptional activation of the rOC gene.
Collapse
Affiliation(s)
- C Banerjee
- Department of Cell Biology and Cancer Center, University of Massachusetts Medical Center, Worcester, 01655, USA
| | | | | | | | | |
Collapse
|
41
|
Hoffmann HM, Beumer TL, Rahman S, McCabe LR, Banerjee C, Aslam F, Tiro JA, van Wijnen AJ, Stein JL, Stein GS, Lian JB. Bone tissue-specific transcription of the osteocalcin gene: role of an activator osteoblast-specific complex and suppressor hox proteins that bind the OC box. J Cell Biochem 1996; 61:310-24. [PMID: 9173094 DOI: 10.1002/(sici)1097-4644(19960501)61:2<310::aid-jcb14>3.0.co;2-p] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Bone-specific expression of the osteocalcin gene is transcriptionally controlled. Deletion analysis of osteocalcin promoter sequences by transient transfection of osseous (ROS 17/2.8) and nonosseous (R2 fibroblast) cells revealed that the most proximal 108 nucleotides are sufficient to confer tissue-specific expression. By gel mobility shift assays with wild-type and mutated oligonucleotides and nuclear extracts from several different cell lines we identified a novel transcription factor complex which exhibits sequence-specific interactions with the primary transcriptional element, the OC box (nt -99 to -76). This OC box binding protein (OCBP) is present only in osteoblast-like cells. Methylation interference demonstrated association of the factor with OC box sequences overlapping the Msx homeodomain consensus binding site. By assaying several mutations of the OC box, both in gel shift and transient transfection studies using ROS 17/2.8, we show the following. First, binding of OCBP correlates with osteocalcin promoter activity in ROS 17/2.8 cells. Increased binding leads to a 2-3-fold increase in transcription, while decreased binding results in transcription 30-40% of control. Second, homeodomain protein binding suppresses transcription. However, Msx expression is critical for full development of the bone phenotype as determined by antisense studies. Last, we show that one of the mutations of the OC box permits expression of osteocalcin in non-osseous cell lines. In summary, we demonstrate association of at least two classes of tissue-restricted transcription factors with the OC box element, the OCBP and Msx proteins, supporting the concept that these sequences contribute to defining tissue specificity.
Collapse
Affiliation(s)
- H M Hoffmann
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Stein GS, van Wijnen AJ, Stein J, Lian JB, Montecino M. Contributions of nuclear architecture to transcriptional control. INTERNATIONAL REVIEW OF CYTOLOGY 1996; 162A:251-78. [PMID: 8575882 DOI: 10.1016/s0074-7696(08)61233-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Three parameters of nuclear structure contribute to transcriptional control. The linear representation of promoter elements provides competency for physiological responsiveness within the contexts of development as well as cycle- and phenotype-dependent regulation. Chromatin structure and nucleosome organization reduce distances between independent regulatory elements providing a basis for integrating components of transcriptional control. The nuclear matrix supports gene expression by imposing physical constraints on chromatin related to three-dimensional genomic organization. In addition, the nuclear matrix facilitates gene localization as well as the concentration and targeting of transcription factors. Several lines of evidence are presented that are consistent with involvement of multiple levels of nuclear architecture in cell growth and tissue-specific gene expression during differentiation. Growth factor and steroid hormone responsive modifications in chromatin structure, nucleosome organization, and the nuclear matrix that influence transcription of the cell cycle-regulated histone gene and the bone tissue-specific osteocalcin gene during progressive expression of the osteoblast phenotype are considered.
Collapse
Affiliation(s)
- G S Stein
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | | | | | | | |
Collapse
|
43
|
Kawa-Uchi T, Nose K, Noda M. Fibroblast growth factor enhances expression of TGFβ-stimulated-clone-22 gene in osteoblast-like cells. Endocrine 1995; 3:833-7. [PMID: 21153129 DOI: 10.1007/bf02935689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/1995] [Accepted: 08/31/1995] [Indexed: 11/26/2022]
Abstract
Transforming growth factor-β1 (TGFβ1)-stimulated clone 22 (TSC-22) is a primary response gene isolated by subtractive screening of genes expressed in murine osteoblastic cells treated with TGFβ1, which is one of the cytokines abundantly stored in bone. Fibroblast growth factor (FGF) is also stored in bone matrix and acts as a potent autocrine/paracrine modulator of osteoblastic function. In this report, we investigated FGF effects on the expression of TSC-22 gene in a murine osteoblast-like cell line, MC3T3E-1. Treatment with recombinant basic FGF enhanced TSC-22 mRNA level in these cells within 1 h. This effect peaked at 2 h with several fold enhancement, after which the mRNA abundance returned to the basal level by 24 h. The FGF effect was dose-dependent, starting at 0.2 ng/ml, peaking at 2 ng/ml, and then declining at 20 ng/ml. The FGF effect on TSC-22 mRNA was blocked by actinomycin D, indicating the involvement of transcriptional events. The FGF enhancement of TSC-22 mRNA expression was partially blocked by genistein. Additive effect was observed upon contreatment with saturating concentrations of FGF and TGFβ, suggesting the presence of at least two independent pathways for the two cytokines in the regulation of TSC-22 gene expression. These results indicate that the TSC-22 gene is one of the targets of FGF action in osteoblasts.
Collapse
Affiliation(s)
- T Kawa-Uchi
- Department of Molecular Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | |
Collapse
|
44
|
Moens U, Johansen T, Johnsen JI, Seternes OM, Traavik T. Noncoding control region of naturally occurring BK virus variants: sequence comparison and functional analysis. Virus Genes 1995; 10:261-75. [PMID: 8560788 DOI: 10.1007/bf01701816] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The human polyomavirus BK (BKV) has a proven oncogenic potential, but its contribution to tumorigenesis under natural conditions remains undetermined. As for other primate polyomaviruses, the approximately 5.2 kbp double-stranded circular genome of BKV has three functional regions: the coding regions for the two early (T, t antigens) and four late (agno, capsid proteins; VP1-3) genes separated by a noncoding control region (NCCR). The NCCR contains the origin of replication as well as a promoter/enhancer with a mosaic of cis-acting elements involved in the regulation of both early and late transcription. Since the original isolation of BKV in 1971, a number of other strains have been identified. Most strains reveal a strong sequence conservation in the protein coding regions of the genome, while the NCCR exhibits considerable variation between different BKV isolates. This variation is due to deletions, duplications, and rearrangements of a basic set of sequence blocks. Comparative studies have proven that the anatomy of the NCCR may determine the transcriptional activities governed by the promoter/enhancer, the host cell tropism and permissivity, as well as the oncogenic potential of a given BKV strain. In most cases, however, the NCCR sequence of new isolates was determined after the virus had been passaged several times in more or less arbitrarily chosen cell cultures, a process known to predispose for NCCR rearrangements. Following the development of the polymerase chain reaction (PCR), it has become feasible to obtain naturally occurring BKV NCCRs, and their sequences, in samples taken directly from infected human individuals. Hence, the biological significance of BKV NCCR variation may be studied without prior propagation of the virus in cell culture. Such variation has general interest, because the BKV NCCRs represent typical mammalian promoter/enhancers, with a large number of binding motifs for cellular transacting factors, which can be conveniently handled for experimental purposes. This communication reviews the naturally occurring BKV NCCR variants, isolated and sequenced directly from human samples, that have been reported so far. The sequences of the different NCCRs are compared and analyzed for the presence of proven and putative cellular transcription factor binding sites. Differences in biological properties between BKV variants are discussed in light of their aberrant NCCR anatomies and the potentially modifying influence of transacting factors.
Collapse
Affiliation(s)
- U Moens
- Department of Virology, University of Tromsø, Norway
| | | | | | | | | |
Collapse
|
45
|
Kuroki Y, Shiozawa S, Kano J, Chihara K. Competition between c-fos and 1,25(OH)2 vitamin D3 in the transcriptional control of type I collagen synthesis in MC3T3-E1 osteoblastic cells. J Cell Physiol 1995; 164:459-64. [PMID: 7650055 DOI: 10.1002/jcp.1041640303] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Interaction between c-fos and 1,25(OH)2 vitamin D3 (VD) on the type I collagen synthesis was studied. VD inhibited collagen synthesis and type I collagen mRNA expression in MC3T3-E1 osteoblastic cells. In contrast, VD reversed the inhibition of collagen synthesis and mRNA expression of the c-fos transfectants that overexpressed c-fos gene to a comparable level as those of the control transfectants. The gel shift assay showed the vitamin D receptor (VDR) complex binding to vitamin D responsive element (VDRE) was inhibited under constitutively expressed c-fos gene, suggesting that c-fos gene product, c-Fos, may inhibit the binding of VDR complex to VDRE by making a c-Fos-VDR complex. The result suggests the existence of a fine tuning between c-fos and VD in the bone metabolism which may be relevant to the pathogenesis of rheumatoid bone lesion.
Collapse
Affiliation(s)
- Y Kuroki
- Department of Medicine, Kobe University School of Medicine, Japan
| | | | | | | |
Collapse
|
46
|
Heinrichs AA, Bortell R, Bourke M, Lian JB, Stein GS, Stein JL. Proximal promoter binding protein contributes to developmental, tissue-restricted expression of the rat osteocalcin gene. J Cell Biochem 1995; 57:90-100. [PMID: 7721961 DOI: 10.1002/jcb.240570110] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Osteocalcin is a 6 kD tissue-specific calcium binding protein associated with the bone extracellular matrix. The osteocalcin gene is developmentally expressed in postoproliferative rat osteoblasts with regulation at least in part at the transcriptional level. Multiple, basal promoter and enhancer elements which control transcriptional activity in response to physiological mediators, including steroid hormones, have been identified in the modularly organized osteocalcin gene promoter. The osteocalcin box (OC box) is a highly conserved basal regulatory element residing between nucleotides -99 and -76 of the proximal promoter. We recently established by in vivo competition analysis that protein interactions at the CCAAT motif, which is the central core of the rat OC box, are required for support of basal transcription [Heinrichs et al. J Cell Biochem 53:240-250, 1993]. In this study, by the combined utilization of electrophoretic mobility shift analysis, UV cross linking, and DNA affinity chromatography, we have identified a protein that binds to the rat OC box. Results are presented that support involvement of the OC box-binding protein in regulating selective expression of the osteocalcin gene during differentiation of the rat osteoblast phenotype and suggest that this protein is tissue restricted.
Collapse
Affiliation(s)
- A A Heinrichs
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655-0106
| | | | | | | | | | | |
Collapse
|
47
|
Lian JB, Stein GS. Development of the osteoblast phenotype: molecular mechanisms mediating osteoblast growth and differentiation. THE IOWA ORTHOPAEDIC JOURNAL 1995; 15:118-40. [PMID: 7634023 PMCID: PMC2329080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The formation of bone tissue involves multiple activities of the osteoblast. The combined application of molecular, biochemical, histochemical and ultrastructural approaches has defined stages in the development of the osteoblast phenotype with each subpopulation of cells exhibiting unique morphologic and functional properties in relation to the ordered deposition of the mineralized bone extracellular matrix (ECM). Peak levels of expressed genes reflect a maturational sequence of osteoblast growth and differentiation characterized by three principal periods: proliferation, ECM maturation and mineralization. A plethora of new information in the past several years provides the basis for insight into molecular mechanisms regulating the development and activities of differentiating osteoblasts. These new concepts will be discussed within the context of understanding cellular responses of bone tissue. To be considered are the following: 1) maturational stages of the osteoblast reflected by the selective expression of transcription factors (e.g., oncogenes, cyclins, homeodomain proteins) and phenotypic genes that provide signals for differentiation through the osteoblast lineage; 2) role of the extracellular matrix in mediating osteoblast growth and differentiation; 3) osteoblast stage specific responses to physiologic mediators (e.g., growth factors and hormones); 4) the developmentally regulated expression and selective responses of osteoblast phenotypic genes are supported by cooperative, synergistic and/or antagonistic activities at multiple basal and enhancer or suppressor sequences in gene promoters; and 5) deregulation of these control mechanisms in transformed osteoblasts and osteosarcoma cells.
Collapse
Affiliation(s)
- J B Lian
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655, USA
| | | |
Collapse
|
48
|
Breen EC, van Wijnen AJ, Lian JB, Stein GS, Stein JL. In vivo occupancy of the vitamin D responsive element in the osteocalcin gene supports vitamin D-dependent transcriptional upregulation in intact cells. Proc Natl Acad Sci U S A 1994; 91:12902-6. [PMID: 7809144 PMCID: PMC45548 DOI: 10.1073/pnas.91.26.12902] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The steroid hormone vitamin D is a principal mediator of skeletal homeostasis. 1,25-Dihydroxyvitamin D3 treatment of ROS 17/2.8 osteoblast-like cells results in a ligand-dependent increase in transcription of the bone-specific osteocalcin gene. This transcriptional upregulation requires the positive cis-acting vitamin D responsive element (VDRE). We have used the ligation-mediated polymerase chain reaction to demonstrate that protein occupancy of the VDRE within the intact cell correlates with increased synthesis of osteocalcin transcripts. These protein-DNA contacts were not present in the absence of vitamin D or in osteosarcoma cells (ROS 24.1) lacking the vitamin D receptor. Our results establish in intact cells the requirement for both ligand- and receptor-dependent occupancy of the VDRE for vitamin D responsive enhancement of osteocalcin gene transcription.
Collapse
Affiliation(s)
- E C Breen
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | |
Collapse
|
49
|
Pavlin D, Bedalov A, Kronenberg MS, Kream BE, Rowe DW, Smith CL, Pike JW, Lichtler AC. Analysis of regulatory regions in the COL1A1 gene responsible for 1,25-dihydroxyvitamin D3-mediated transcriptional repression in osteoblastic cells. J Cell Biochem 1994; 56:490-501. [PMID: 7890807 DOI: 10.1002/jcb.240560409] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The synthesis of type I collagen in bone cells is inhibited by the calcium-regulating hormone 1,25-dihydroxyvitamin D3. Earlier work from our laboratories has indicated that vitamin D regulation is at the level of transcription, based on results from both nuclear run-off assays and functional promoter analysis of a hybrid gene consisting of a 3.6 kb COL1A1 promoter fragment fused to the chloramphenicol acetyltransferase reporter gene. In the present study, we investigated the molecular basis for vitamin D-mediated transcriptional repression of the COL1A1 gene and report the identification of a region within the COL1A1 upstream promoter (the HindIII-Pstl restriction fragment between nucleotides -2295 and -1670) which is necessary for 1,25-dihydroxyvitamin D3 responsiveness in osteoblastic cells. This hormone-mediated inhibitory effect on the marker gene parallels the inhibition of the endogenous collagen gene. A 41 bp fragment from this region (between nucleotides -2256 and -2216) contains a sequence which is very similar to vitamin D-responsive elements identified in the osteocalcin gene. Extracts from cultured cells which express a high level of vitamin D receptor contain a hormone:receptor complex that binds specifically to this 41 bp fragment, as demonstrated by bandshift analysis. However, deletion of this vitamin D receptor binding region from either a -3.5 kb or a -2.3 kb promoter fragment did not abolish vitamin D responsiveness. These results indicate that a vitamin D response element similar to that described for other vitamin D responsive genes (osteocalcin and osteopontin) does not alone mediate the repression of COL1A1 by 1,25-dihydroxyvitamin D3.
Collapse
Affiliation(s)
- D Pavlin
- Department of Orthodontics, University of Texas Health Science Center, San Antonio 78284
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Frenkel B, Montecino M, Stein JL, Lian JB, Stein GS. A composite intragenic silencer domain exhibits negative and positive transcriptional control of the bone-specific osteocalcin gene: promoter and cell type requirements. Proc Natl Acad Sci U S A 1994; 91:10923-7. [PMID: 7971985 PMCID: PMC45138 DOI: 10.1073/pnas.91.23.10923] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The osteocalcin (OC) silencer is a unique example of exonic sequences contributing to negative transcriptional control of mammalian gene expression. In this paper we demonstrate, using a reporter transfection assay, that multiple elements reside within the OC +24/+151 domain. Thirty-fold repression is mediated by the +49/+104 fragment, experimentally relocated 3' of the poly(A) signal. Deletion of either the +49/+54 protein-coding sequence or the +98/+104 intronic part of this fragment results in loss of repression activity, suggesting a bipartite organization of the +49/+104 silencer. Of particular interest, we have mapped an antisilencer activity to the ACCCTCTCT motif (+40/+48), found in silencers associated with several other genes. Extension of the +49/+104 silencer to include the +24/+48 and/or the +105/+151 sequences results in increased silencer activity up to 170-fold, suggesting the presence of additional silencer elements within these sequences. The activity of the silencer contained within the +24/+151 OC sequence is directed to the basal promoter and is not dependent on 5' distal enhancer elements, including those that mediate responsiveness of OC transcription to vitamin D. The OC silencer represses the heterologous thymidine kinase promoter and is operative in osseous (normal diploid osteoblasts, ROS 17/2.8 osteosarcoma) as well as HeLa cells. Our results, which suggest the presence of at least five regulatory elements downstream of the OC transcription start site, indicate the complexity of sequences that mediate repression of OC promoter activity.
Collapse
Affiliation(s)
- B Frenkel
- Department of Cell Biology, University of Massachusetts Medical Center, Worcester 01655
| | | | | | | | | |
Collapse
|