1
|
Ren L, Fan Y, Wu W, Qian Y, He M, Li X, Wang Y, Yang Y, Wen X, Zhang R, Li C, Chen X, Hu J. Anxiety disorders: Treatments, models, and circuitry mechanisms. Eur J Pharmacol 2024; 983:176994. [PMID: 39271040 DOI: 10.1016/j.ejphar.2024.176994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/15/2024]
Abstract
Anxiety disorders are one of the most prevalent mental health conditions worldwide, imposing a significant burden on individuals affected by them and society in general. Current research endeavors aim to enhance the effectiveness of existing anxiolytic drugs and reduce their side effects through optimization or the development of new treatments. Several anxiolytic novel drugs have been produced as a result of discovery-focused research. However, many drug candidates that show promise in preclinical rodent model studies fail to offer any substantive clinical benefits to patients. This review provides an overview of the diagnosis and classification of anxiety disorders together with a systematic review of anxiolytic drugs with a focus on their targets, therapeutic applications, and side effects. It also provides a concise overview of the constraints and disadvantages associated with frequently administered anxiolytic drugs. Additionally, the study comprehensively reviews animal models used in anxiety studies and their associated molecular mechanisms, while also summarizing the brain circuitry related to anxiety. In conclusion, this article provides a valuable foundation for future anxiolytic drug discovery efforts.
Collapse
Affiliation(s)
- Li Ren
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China.
| | - Yue Fan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Wenjian Wu
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yuanxin Qian
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Miao He
- College of Life Sciences and Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xinlong Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yizhu Wang
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Yu Yang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xuetong Wen
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Ruijia Zhang
- Acupuncture and Massage College, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Chenhang Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Xin Chen
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Sichuan Chengdu, 611137, China
| | - Jingqing Hu
- Institute of Basic Theory of Traditional Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
2
|
Structural and dynamic mechanisms of GABA A receptor modulators with opposing activities. Nat Commun 2022; 13:4582. [PMID: 35933426 PMCID: PMC9357065 DOI: 10.1038/s41467-022-32212-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/21/2022] [Indexed: 12/02/2022] Open
Abstract
γ-Aminobutyric acid type A (GABAA) receptors are pentameric ligand-gated ion channels abundant in the central nervous system and are prolific drug targets for treating anxiety, sleep disorders and epilepsy. Diverse small molecules exert a spectrum of effects on γ-aminobutyric acid type A (GABAA) receptors by acting at the classical benzodiazepine site. They can potentiate the response to GABA, attenuate channel activity, or counteract modulation by other ligands. Structural mechanisms underlying the actions of these drugs are not fully understood. Here we present two high-resolution structures of GABAA receptors in complex with zolpidem, a positive allosteric modulator and heavily prescribed hypnotic, and DMCM, a negative allosteric modulator with convulsant and anxiogenic properties. These two drugs share the extracellular benzodiazepine site at the α/γ subunit interface and two transmembrane sites at β/α interfaces. Structural analyses reveal a basis for the subtype selectivity of zolpidem that underlies its clinical success. Molecular dynamics simulations provide insight into how DMCM switches from a negative to a positive modulator as a function of binding site occupancy. Together, these findings expand our understanding of how GABAA receptor allosteric modulators acting through a common site can have diverging activities. GABAA receptors are important targets for anxiety, sedation and anesthesia. Here, the authors present structures bound by zolpidem (Ambien), the most prescribed hypnotic in the US, and DMCM, a negative modulator, providing insights into receptor modulation.
Collapse
|
3
|
Probing the molecular basis for affinity/potency- and efficacy-based subtype-selectivity exhibited by benzodiazepine-site modulators at GABAA receptors. Biochem Pharmacol 2018; 158:339-358. [DOI: 10.1016/j.bcp.2018.08.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 08/14/2018] [Indexed: 12/20/2022]
|
4
|
Amin J, Subbarayan MS. Orthosteric- versus allosteric-dependent activation of the GABA A receptor requires numerically distinct subunit level rearrangements. Sci Rep 2017; 7:7770. [PMID: 28798394 PMCID: PMC5552871 DOI: 10.1038/s41598-017-08031-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 07/07/2017] [Indexed: 12/05/2022] Open
Abstract
Anaesthetic molecules act on synaptic transmission via the allosteric modulation of ligand-gated chloride channels, such as hetero-oligomeric α1β2γ2 GABAA receptors. To elucidate the overall activation paradigm via allosteric versus orthosteric sites, we used highly homologous, but homo-oligomeric, ρ1 receptors that are contrastingly insensitive to anaesthetics and respond partially to several full GABA α1β2γ2 receptor agonists. Here, we coexpressed varying ratios of RNAs encoding the wild-type and the mutated ρ1 subunits, which are anaesthetic-sensitive and respond with full efficacy to partial GABA agonists, to generate distinct ensembles of receptors containing five, four, three, two, one, or zero mutated subunits. Using these experiments, we then demonstrate that, in the pentamer, three anaesthetic-sensitive ρ1 subunits are needed to impart full efficacy to the partial GABA agonists. By contrast, five anaesthetic-sensitive subunits are required for direct activation by anaesthetics alone, and only one anaesthetic-sensitive subunit is sufficient to confer the anaesthetic-dependent potentiation to the GABA current. In conclusion, our data indicate that GABA and anaesthetics holistically activate the GABAA ρ1 receptor through distinct subunit level rearrangements and suggest that in contrast to the global impact of GABA via orthosteric sites, the force of anaesthetics through allosteric sites may not propagate to the neighbouring subunits and, thus, may have only a local and limited effect on the ρ1 GABAA receptor model system.
Collapse
Affiliation(s)
- Jahanshah Amin
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA.
| | - Meena S Subbarayan
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Florida, 33612, USA
| |
Collapse
|
5
|
Farb DH, Ratner MH. Targeting the modulation of neural circuitry for the treatment of anxiety disorders. Pharmacol Rev 2014; 66:1002-32. [PMID: 25237115 DOI: 10.1124/pr.114.009126] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Anxiety disorders are a major public health concern. Here, we examine the familiar area of anxiolysis in the context of a systems-level understanding that will hopefully lead to revealing an underlying pharmacological connectome. The introduction of benzodiazepines nearly half a century ago markedly improved the treatment of anxiety disorders. These agents reduce anxiety rapidly by allosterically enhancing the postsynaptic actions of GABA at inhibitory type A GABA receptors but side effects limit their use in chronic anxiety disorders. Selective serotonin reuptake inhibitors and serotonin/norepinephrine reuptake inhibitors have emerged as an effective first-line alternative treatment of such anxiety disorders. However, many individuals are not responsive and side effects can be limiting. Research into a relatively new class of agents known as neurosteroids has revealed novel modulatory sites and mechanisms of action that are providing insights into the pathophysiology of certain anxiety disorders, potentially bridging the gap between the GABAergic and serotonergic circuits underlying anxiety. However, translating the pharmacological activity of compounds targeted to specific receptor subtypes in rodent models of anxiety to effective therapeutics in human anxiety has not been entirely successful. Since modulating any one of several broad classes of receptor targets can produce anxiolysis, we posit that a systems-level discovery platform combined with an individualized medicine approach based on noninvasive brain imaging would substantially advance the development of more effective therapeutics.
Collapse
Affiliation(s)
- David H Farb
- Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| | - Marcia H Ratner
- Laboratory of Molecular Neurobiology, Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
6
|
The behavioral pharmacology of zolpidem: evidence for the functional significance of α1-containing GABA(A) receptors. Psychopharmacology (Berl) 2014; 231:1865-96. [PMID: 24563183 DOI: 10.1007/s00213-014-3457-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 01/11/2014] [Indexed: 10/25/2022]
Abstract
RATIONALE Zolpidem is a positive allosteric modulator of γ-aminobutyric acid (GABA) with preferential binding affinity and efficacy for α1-subunit containing GABA(A) receptors (α1-GABA(A)Rs). Over the last three decades, a variety of animal models and experimental procedures have been used in an attempt to relate the behavioral profile of zolpidem and classic benzodiazepines (BZs) to their interaction with α1-GABA(A)Rs. OBJECTIVES This paper reviews the results of rodent and non-human primate studies that have evaluated the effects of zolpidem on motor behaviors, anxiety, memory, food and fluid intake, and electroencephalogram (EEG) sleep patterns. Also included are studies that examined zolpidem's discriminative, reinforcing, and anticonvulsant effects as well as behavioral signs of tolerance and withdrawal. RESULTS The literature reviewed indicates that α1-GABA(A)Rs play a principle role in mediating the hypothermic, ataxic-like, locomotor- and memory-impairing effects of zolpidem and BZs. Evidence also suggests that α1-GABA(A)Rs play partial roles in the hypnotic, EEG sleep, anticonvulsant effects, and anxiolytic-like of zolpidem and diazepam. These studies also indicate that α1-GABA(A)Rs play a more prominent role in mediating the discriminative stimulus, reinforcing, hyperphagic, and withdrawal effects of zolpidem and BZs in primates than in rodents. CONCLUSIONS The psychopharmacological data from both rodents and non-human primates suggest that zolpidem has a unique pharmacological profile when compared with classic BZs. The literature reviewed here provides an important framework for studying the role of different GABA(A)R subtypes in the behavioral effects of BZ-type drugs and helps guide the development of new pharmaceutical agents for disorders currently treated with BZ-type drugs.
Collapse
|
7
|
Smith SG, Sanchez R, Zhou MM. Privileged diazepine compounds and their emergence as bromodomain inhibitors. ACTA ACUST UNITED AC 2014; 21:573-83. [PMID: 24746559 DOI: 10.1016/j.chembiol.2014.03.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Revised: 03/02/2014] [Accepted: 03/15/2014] [Indexed: 12/23/2022]
Abstract
Chemical compounds built on a diazepine scaffold have recently emerged as potent inhibitors of the acetyl-lysine binding activity of bromodomain-containing proteins, which is required for gene transcriptional activation in cancer and inflammation. Not only have these chemical compounds validated bromodomains as attractive epigenetic drug targets, but they have also brought to the forefront another application of the diazepine, which had already been regarded as a versatile chemical scaffold in rational drug design. This article reviews the success of diazepine compounds as therapeutic agents and examines the unique chemical and geometric features of this privileged scaffold that make it an excellent template for developing potent and selective molecules that control bromodomain-related gene expression in human diseases.
Collapse
Affiliation(s)
- Steven G Smith
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Roberto Sanchez
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA
| | - Ming-Ming Zhou
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, New York, NY 10029, USA.
| |
Collapse
|
8
|
Licata SC, Shinday NM, Huizenga MN, Darnell SB, Sangrey GR, Rudolph U, Rowlett JK, Sadri-Vakili G. Alterations in brain-derived neurotrophic factor in the mouse hippocampus following acute but not repeated benzodiazepine treatment. PLoS One 2013; 8:e84806. [PMID: 24367698 PMCID: PMC3868703 DOI: 10.1371/journal.pone.0084806] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 11/19/2013] [Indexed: 12/24/2022] Open
Abstract
Benzodiazepines (BZs) are safe drugs for treating anxiety, sleep, and seizure disorders, but their use also results in unwanted effects including memory impairment, abuse, and dependence. The present study aimed to reveal the molecular mechanisms that may contribute to the effects of BZs in the hippocampus (HIP), an area involved in drug-related plasticity, by investigating the regulation of immediate early genes following BZ administration. Previous studies have demonstrated that both brain derived neurotrophic factor (BDNF) and c-Fos contribute to memory- and abuse-related processes that occur within the HIP, and their expression is altered in response to BZ exposure. In the current study, mice received acute or repeated administration of BZs and HIP tissue was analyzed for alterations in BDNF and c-Fos expression. Although no significant changes in BDNF or c-Fos were observed in response to twice-daily intraperitoneal (i.p.) injections of diazepam (10 mg/kg + 5 mg/kg) or zolpidem (ZP; 2.5 mg/kg + 2.5 mg/kg), acute i.p. administration of both triazolam (0.03 mg/kg) and ZP (1.0 mg/kg) decreased BDNF protein levels within the HIP relative to vehicle, without any effect on c-Fos. ZP specifically reduced exon IV-containing BDNF transcripts with a concomitant increase in the association of methyl-CpG binding protein 2 (MeCP2) with BDNF promoter IV, suggesting that MeCP2 activity at this promoter may represent a ZP-specific mechanism for reducing BDNF expression. ZP also increased the association of phosphorylated cAMP response element binding protein (pCREB) with BDNF promoter I. Future work should examine the interaction between ZP and DNA as the cause for altered gene expression in the HIP, given that BZs can enter the nucleus and intercalate into DNA directly.
Collapse
Affiliation(s)
- Stephanie C. Licata
- McLean Hospital, Belmont, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nina M. Shinday
- New England Primate Research Center, Southborough, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Megan N. Huizenga
- Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Shayna B. Darnell
- Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gavin R. Sangrey
- Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Uwe Rudolph
- McLean Hospital, Belmont, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - James K. Rowlett
- New England Primate Research Center, Southborough, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ghazaleh Sadri-Vakili
- Massachusetts General Hospital, Charlestown, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- *
| |
Collapse
|
9
|
Lemoine D, Jiang R, Taly A, Chataigneau T, Specht A, Grutter T. Ligand-gated ion channels: new insights into neurological disorders and ligand recognition. Chem Rev 2012; 112:6285-318. [PMID: 22988962 DOI: 10.1021/cr3000829] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Damien Lemoine
- Laboratoire de Biophysicochimie des Récepteurs Canaux, UMR 7199 CNRS, Conception et Application de Molécules Bioactives, Faculté de Pharmacie, Université de Strasbourg , 67400 Illkirch, France
| | | | | | | | | | | |
Collapse
|
10
|
Collins T, Young GT, Millar NS. Competitive binding at a nicotinic receptor transmembrane site of two α7-selective positive allosteric modulators with differing effects on agonist-evoked desensitization. Neuropharmacology 2011; 61:1306-13. [PMID: 21820451 PMCID: PMC3205184 DOI: 10.1016/j.neuropharm.2011.07.035] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/22/2011] [Accepted: 07/21/2011] [Indexed: 11/20/2022]
Abstract
Positive allosteric modulators (PAMs) of nicotinic acetylcholine receptors (nAChRs) have attracted considerable interest as a novel area of therapeutic drug discovery. Two types of α7-selective PAMs have been identified (type I and type II). Whilst both potentiate peak agonist-induced responses, they have different effects on the rate of agonist-induced receptor desensitization. Type I PAMs have little or no effect on the rapid rate of desensitization that is characteristic of α7 nAChRs, whereas type II PAMs cause dramatic slowing of receptor desensitization. Previously, we have obtained evidence indicating that PNU-120596, a type II PAM, causes potentiation by interacting with an allosteric transmembrane site. In contrast, other studies have demonstrated the importance of the ‘M2–M3 segment’ in modulating the effects of the type I PAM NS1738 and have led to the proposal that NS1738 may interact with the extracellular N-terminal domain. Here, our aim has been to compare the mechanism of allosteric potentiation of α7 nAChRs by NS1738 and PNU-120596. Functional characterization of a series of mutated α7 nAChRs indicates that mutation of amino acids within a proposed intrasubunit transmembrane cavity have a broadly similar effect on these two PAMs. In addition, we have employed a functional assay designed to examine the ability of ligands to act competitively at either the orthosteric or allosteric binding site of α7 nAChRs. These data, together with computer docking simulations, lead us to conclude that both the type I PAM NS1738 and the type II PAM PNU-120596 bind competitively at a mutually exclusive intrasubunit transmembrane site.
Collapse
Affiliation(s)
- Toby Collins
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | | | | |
Collapse
|
11
|
Hanson SM, Morlock EV, Satyshur KA, Czajkowski C. Structural requirements for eszopiclone and zolpidem binding to the gamma-aminobutyric acid type-A (GABAA) receptor are different. J Med Chem 2009; 51:7243-52. [PMID: 18973287 DOI: 10.1021/jm800889m] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The sleep-aids zolpidem and eszopiclone exert their effects by binding to and modulating gamma-aminobutyric acid type-A receptors (GABA(A)Rs), but little is known about the structural requirements for their actions. We made 24 cysteine mutations in the benzodiazepine (BZD) binding site of alpha(1)beta(2)gamma(2) GABA(A)Rs and measured zolpidem, eszopiclone, and BZD-site antagonist binding. Mutations in gamma(2)loop D and alpha(1)loops A and B altered the affinity of all ligands tested, indicating that these loops are important for BZD pocket structural integrity. In contrast, gamma(2)loop E and alpha(1)loop C mutations differentially affected ligand affinity, suggesting that these loops are important for ligand selectivity. In agreement with our mutagenesis data, eszopiclone docking yielded a single model stabilized by several hydrogen bonds. Zolpidem docking yielded three equally populated orientations with few polar interactions, suggesting that unlike eszopiclone, zolpidem relies more on shape recognition of the binding pocket than on specific residue interactions and may explain why zolpidem is highly alpha(1)- and gamma(2)-subunit selective.
Collapse
Affiliation(s)
- Susan M Hanson
- Department of Physiology and Program in Molecular and Cellular Pharmacology, University of Wisconsin Madison, Madison, Wisconsin 53711, USA
| | | | | | | |
Collapse
|
12
|
Chen CYC. Chemoinformatics and pharmacoinformatics approach for exploring the GABA-A agonist from Chinese herb suanzaoren. J Taiwan Inst Chem Eng 2009. [DOI: 10.1016/j.jtice.2008.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
13
|
Qian Z, Bilderback TR, Barmack NH. Acyl coenzyme A-binding protein (ACBP) is phosphorylated and secreted by retinal Müller astrocytes following protein kinase C activation. J Neurochem 2008; 105:1287-99. [DOI: 10.1111/j.1471-4159.2008.05229.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Licata SC, Rowlett JK. Abuse and dependence liability of benzodiazepine-type drugs: GABA(A) receptor modulation and beyond. Pharmacol Biochem Behav 2008; 90:74-89. [PMID: 18295321 DOI: 10.1016/j.pbb.2008.01.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Revised: 12/14/2007] [Accepted: 01/02/2008] [Indexed: 01/12/2023]
Abstract
Over the past several decades, benzodiazepines and the newer non-benzodiazepines have become the anxiolytic/hypnotics of choice over the more readily abused barbiturates. While all drugs from this class act at the GABA(A) receptor, benzodiazepine-type drugs offer the clear advantage of being safer and better tolerated. However, there is still potential for these drugs to be abused, and significant evidence exists to suggest that this is a growing problem. This review examines the behavioral determinants of the abuse and dependence liability of benzodiazepine-type drugs. Moreover, the pharmacological and putative biochemical basis of the abuse-related behavior is discussed.
Collapse
Affiliation(s)
- Stephanie C Licata
- McLean Hospital/Harvard Medical School, Behavioral Psychopharmacology Research Laboratory, 115 Mill Street, Belmont, MA 02478, United States.
| | | |
Collapse
|
15
|
Ci SQ, Ren TR, Ma CX, Su ZG. Modeling of αk/γ2 (k=1, 2, 3 and 5) interface of GABAA receptor and docking studies with zolpidem: Implications for selectivity. J Mol Graph Model 2007; 26:537-45. [PMID: 17451983 DOI: 10.1016/j.jmgm.2007.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2006] [Revised: 03/18/2007] [Accepted: 03/18/2007] [Indexed: 11/28/2022]
Abstract
The three-dimensional models of the alphak/gamma2 (k=1, 2, 3 and 5) interface of GABA(A) receptors, which included the agonist-binding site, were constructed and validated by molecular modeling technology. To investigate the mechanism of alpha subunit selectivity of zolpidem, docking calculations were used to illustrate the potential binding modes of zolpidem with different alpha subtypes. The results revealed that there were three reasons resulting in the distinct binding affinity of zolpidem to different alpha subtype. Firstly, the number of hydrogen bonds of agonist-receptor complex would determine the magnitude of binding affinity. Secondly, the His residue in loop A of alpha subunit was indicated as a key role of benzodiazepine binding. Thirdly, the side chain of Glu in loop C reduced the affinity of zolpidem to those receptors containing alpha2, alpha3 or alpha5 subunits.
Collapse
Affiliation(s)
- Su-Qin Ci
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, China
| | | | | | | |
Collapse
|
16
|
Campo-Soria C, Chang Y, Weiss DS. Mechanism of action of benzodiazepines on GABAA receptors. Br J Pharmacol 2006; 148:984-90. [PMID: 16783415 PMCID: PMC1751932 DOI: 10.1038/sj.bjp.0706796] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Wild-type and mutant alpha1beta2gamma2 GABA(A) receptors were expressed in Xenopus laevis oocytes and examined using the two-electrode voltage clamp. Dose-response relationships for GABA were compared in the absence and presence of 1 microM diazepam (DZP) or methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM). The dose-current relationships yielded EC(50)'s (concentration for half-maximal activation) of 41.0+/-3.0, 21.7+/-2.7, and 118.3+/-6.8 microM for GABA, GABA plus DZP, and GABA plus DMCM, respectively.DZP- and DMCM-mediated modulation were examined in GABA(A) receptors in which the beta-subunit carries the L259S mutation. This mutation has been shown to produce spontaneous opening and impart a leftward shift in the dose-response relationship. In this case, neither DZP nor DMCM produced a significant alteration in the GABA dose-response relationship with GABA EC(50)'s of 0.078+/-0.005, 0.12+/-0.03, and 0.14+/-0.004 microM for GABA, GABA plus 1 microM DZP, and GABA plus 1 microM DMCM.DZP- and DMCM-mediated modulations were examined in GABA(A) receptors in which the alpha-subunit carries the L263S mutation. This mutation also produced spontaneous opening and a leftward shift of the GABA dose-response relation, but to a lesser extent than that of betaL259S. In this case, the leftward and rightward shifts for DZP and DMCM were still present with EC(50)'s=0.24+/-0.03, 0.14+/-0.02, and 1.2+/-0.04 microM for GABA, GABA plus 1 microM DZP, and GABA plus 1 microM DMCM, respectively.Oocytes expressing ultrahigh levels of wild-type GABA(A) receptors exhibited currents in response to 1 muM DZP alone, whereas DMCM decreased the baseline current. The DZP-mediated activation currents were determined in wild-type receptors as well as receptors in which the GABA binding site was mutated (beta2Y205S). The EC(50)'s for DZP-mediated activation were 72.0+/-2.0 and 115+/-6.2 nM, respectively, similar to the EC(50) for DZP-mediated enhancement of the wild-type GABA-activated current (64.8+/-3.7 nM). Our results support a mechanism in which DZP increases the apparent affinity of the receptor, not by altering the affinity of the closed state, but rather by shifting the equilibrium towards the high-affinity open state.
Collapse
Affiliation(s)
- Claudia Campo-Soria
- Department of Neurobiology, UAB School of Medicine, 1719 Sixth Avenue South, CIRC410 Birmingham, AL 25394, USA
| | | | | |
Collapse
|
17
|
Szárics E, Riedl Z, Nyikos L, Hajós G, Kardos J. Interaction of novel condensed triazine derivatives with central and peripheral type benzodiazepine receptors: synthesis, in vitro pharmacology and modelling. Eur J Med Chem 2006; 41:445-56. [PMID: 16530296 DOI: 10.1016/j.ejmech.2005.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2004] [Revised: 10/18/2005] [Accepted: 10/26/2005] [Indexed: 11/28/2022]
Abstract
Structurally related sets of triazino-quinoline, triazino-isoquinoline and pyrido-triazine derivatives were synthesised and their binding interactions with central (CBR)- and peripheral-type (PBR) benzodiazepine binding sites have been characterised. Of 33 compounds tested, a new compound, 2-(4-methylphenyl)-3H- [1,2,4] triazino [2, 3-a] quinolin-3-one (1 g) showed the lowest CBR binding inhibition constant (K(i) = 42 +/- 9 nM) and the highest CBR over PBR selectivity (>1300). All but the 4-methylphenyl (1 g) structural modifications decreased the affinity and selectivity of the parent compound, 2-phenyl-3H- [1,2,4]triazino[2,3-a]quinolin-3-one (1d) (K(i) = 69 +/- 9 nM, selectivity >890). Molecular interactions between selected ligands (standards and triazine derivatives) and alpha(1)gamma(2) subunit-interface residues in a GABA(A) receptor extracellular domain homology model have been calculated. Comparing data with calculations confirmed hydrogen bonding to gamma(2)Thr142 and hydrophobic interaction with alpha(1)His101 as being essential for high-affinity CBR binding.
Collapse
Affiliation(s)
- Eva Szárics
- Department of Neurochemistry, Institute of Biomolecular Chemistry, Chemical Research Center, Hungarian Academy of Sciences, Budapest
| | | | | | | | | |
Collapse
|
18
|
Russell MGN, Carling RW, Atack JR, Bromidge FA, Cook SM, Hunt P, Isted C, Lucas M, McKernan RM, Mitchinson A, Moore KW, Narquizian R, Macaulay AJ, Thomas D, Thompson SA, Wafford KA, Castro JL. Discovery of Functionally Selective 7,8,9,10-Tetrahydro-7,10-ethano-1,2,4-triazolo[3,4-a]phthalazines as GABAA Receptor Agonists at the α3 Subunit. J Med Chem 2005; 48:1367-83. [PMID: 15743180 DOI: 10.1021/jm040883v] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have previously identified the 7,8,9,10-tetrahydro-7,10-ethano-1,2,4-triazolo[3,4-a]phthalazine (1) as a potent partial agonist for the alpha(3) receptor subtype with 5-fold selectivity in binding affinity over alpha(1). This paper describes a detailed investigation of the substituents on this core structure at both the 3- and 6-positions. Despite evaluating a wide range of groups, the maximum selectivity that could be achieved in terms of affinity for the alpha(3) subtype over the alpha(1) subtype was 12-fold (for 57). Although most analogues showed no selectivity in terms of efficacy, some did show partial agonism at alpha(1) and antagonism at alpha(3) (e.g., 25 and 75). However, two analogues tested (93 and 96), both with triazole substituents in the 6-position, showed significantly higher efficacy for the alpha(3) subtype over the alpha(1) subtype. This was the first indication that selectivity in efficacy in the required direction could be achieved in this series.
Collapse
Affiliation(s)
- Michael G N Russell
- Merck Sharp & Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR, U.K.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Milligan CJ, Buckley NJ, Garret M, Deuchars J, Deuchars SA. Evidence for inhibition mediated by coassembly of GABAA and GABAC receptor subunits in native central neurons. J Neurosci 2004; 24:7241-50. [PMID: 15317850 PMCID: PMC6729776 DOI: 10.1523/jneurosci.1979-04.2004] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2003] [Revised: 06/28/2004] [Accepted: 06/28/2004] [Indexed: 11/21/2022] Open
Abstract
Fast inhibition in the nervous system is commonly mediated by GABA(A) receptors comprised of 2alpha/2beta/1gamma subunits. In contrast, GABA(C) receptors containing only rho subunits (rho1-rho3) have been predominantly detected in the retina. However, here using reverse transcription-PCR and in situ hybridization we show that mRNA encoding the rho1 subunit is highly expressed in brainstem neurons. Immunohistochemistry localized the rho1 subunit to neurons at light and electron microscopic levels, where it was detected at synaptic junctions. Application of the GABA(C) receptor agonist cis-4-aminocrotonic acid (100-800 microM) requires the rho1 subunit to elicit responses, which surprisingly are blocked independently by antagonists to GABA(A) (bicuculline, 10 microM) and GABA(C) [(1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid (TPMPA); 40-160 microM] receptors. Responses to GABA(C) agonists were also enhanced by the GABA(A) receptor modulator pentobarbitone (300 microM). Spontaneous and evoked IPSPs were reduced in amplitude but never abolished by TPMPA, but were completely blocked by bicuculline. We therefore tested the hypothesis that GABA(A) and GABA(C) subunits formed a heteromeric receptor. Immunohistochemistry indicated that rho1 and alpha1 subunits were colocalized at light and electron microscopic levels. Electrophysiology revealed that responses to GABA(C) receptor agonists were enhanced by the GABA(A) receptor modulator zolpidem (500 nm), which acts on the alpha1 subunit when the gamma2 subunit is also present. Finally, coimmunoprecipitation indicated that the rho1 subunit formed complexes that also containedalpha1 and gamma2 subunits. Taken together these separate lines of evidence suggest that the effects of GABA in central neurons can be mediated by heteromeric complexes of GABA(A) and GABA(C) receptor subunits.
Collapse
Affiliation(s)
- Carol J Milligan
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9NQ, United Kingdom
| | | | | | | | | |
Collapse
|
20
|
Abstract
BACKGROUND A converging body of evidence implicates the gamma-aminobutyric acid (GABA) neurotransmitter system in the pathogenesis of schizophrenia. METHODS The authors review neuroscience literature and clinical studies investigating the role of the GABA system in the pathophysiology of schizophrenia. First, a background on the GABA system is provided, including GABA pharmacology and neuroanatomy of GABAergic neurons. Results from basic science schizophrenia animal models and human studies are reviewed. The role of GABA in cognitive dysfunction in schizophrenia is then presented, followed by a discussion of GABAergic compounds used in monotherapy or adjunctively in clinical schizophrenia studies. RESULTS In basic studies, reductions in GABAergic neuronal density and abnormalities in receptors and reuptake sites have been identified in several cortical and subcortical GABA systems. A model has been developed suggesting GABA's role (including GABA-dopamine interactions) in schizophrenia. In several clinical studies, the use of adjunctive GABA agonists was associated with greater improvement in core schizophrenia symptoms. CONCLUSIONS Alterations in the GABA neurotransmitter system are found in clinical and basic neuroscience schizophrenia studies as well as animal models and may be involved in the pathophysiology of schizophrenia. The interaction of GABA with other well-characterized neurotransmitter abnormalities remains to be understood. Future studies should elucidate the potential therapeutic role for GABA ligands in schizophrenia treatment.
Collapse
Affiliation(s)
- Adel Wassef
- University of Texas Health Sciences Center, Room 2C-07, Houston-Harris County Psychiatric Center, 2800 South MacGregor Way, Houston, TX 77021, USA.
| | | | | |
Collapse
|
21
|
Berezhnoy D, Nyfeler Y, Gonthier A, Schwob H, Goeldner M, Sigel E. On the benzodiazepine binding pocket in GABAA receptors. J Biol Chem 2003; 279:3160-8. [PMID: 14612433 DOI: 10.1074/jbc.m311371200] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Benzodiazepines are used for their sedative/hypnotic, anxiolytic, muscle relaxant, and anticonvulsive effects. They exert their actions through a specific high affinity binding site on the major inhibitory neurotransmitter receptor, the gamma-aminobutyric acid, type A (GABA(A)) receptor channel, where they act as positive allosteric modulators. To start to elucidate the relative positioning of benzodiazepine binding site ligands in their binding pocket, GABA(A) receptor residues thought to reside in the site were individually mutated to cysteine and combined with benzodiazepine analogs carrying substituents reactive to cysteine. Direct apposition of such reactive partners is expected to lead to an irreversible site-directed reaction. We describe here the covalent interaction of alpha(1)H101C with a reactive group attached to the C-7 position of diazepam. This interaction was studied at the level of radioactive ligand binding and at the functional level using electrophysiological methods. Covalent reaction occurs concomitantly with occupancy of the binding pocket. It stabilizes the receptor in its allosterically stimulated conformation. Covalent modification is not observed in wild type receptors or when using mutated alpha(1)H101C-containing receptors in combination with the reactive ligand pre-reacted with a sulfhydryl group, and the modification rate is reduced by the binding site ligand Ro15-1788. We present in addition evidence that gamma(2)Ala-79 is probably located in the access pathway of the ligand to its binding pocket.
Collapse
Affiliation(s)
- Dmytro Berezhnoy
- Department of Pharmacology, University of Bern, CH-3010 Bern, Switzerland
| | | | | | | | | | | |
Collapse
|
22
|
Davies DL, Alkana RL. Benzodiazepine agonist and inverse agonist coupling in GABAA receptors antagonized by increased atmospheric pressure. Eur J Pharmacol 2003; 469:37-45. [PMID: 12782183 DOI: 10.1016/s0014-2999(03)01733-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Past work found that exposure to 12 times normal atmospheric pressure (ATA) of helium-oxygen gas (heliox) selectively antagonizes (uncouples) and differentiates allosteric coupling in GABA(A) receptors initiated by benzodiazepines versus neurosteroids. The present study tested the hypothesis that pressure can differentiate coupling initiated by a spectrum of benzodiazepine receptor ligands by measuring the effects of pressure on benzodiazepine ligand modulation of GABA-activated 36Cl(-) uptake in mouse brain membranes. 12 ATA completely antagonized allosteric modulation by: benzodiazepine receptor agonists diazepam and flunitrazepam; Type-1 selective benzodiazepine receptor agonist zolpidem and the benzodiazepine receptor partial inverse agonist ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-alpha][1,4]benzodiazepine-3-carboxylate (Ro15-4513). The similar, non-competitive-like characteristics of pressure antagonism of these ligands suggest common structural/functional elements underlying their coupling. Pressure also antagonized allosteric modulation by the benzodiazepine receptor inverse agonist methyl 6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM), but the antagonism was not complete and appeared to be surmountable (competitive-like) suggesting unexpected differences in coupling for DMCM versus Ro15-4513. These studies represent the first attempt to use pressure as a tool to dissect benzodiazepine receptor coupling. The results suggest that there is a common, pressure antagonism sensitive structural/functional element underlying coupling for benzodiazepine receptor ligands and that coupling for the full inverse benzodiazepine receptor agonist DMCM differs from coupling for benzodiazepine receptor agonists and benzodiazepine receptor partial inverse agonists.
Collapse
Affiliation(s)
- Daryl L Davies
- Alcohol and Brain Research Laboratory, Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA 90033, USA.
| | | |
Collapse
|
23
|
Abstract
Neurotransmitter receptor systems have been the focus of intensive pharmacological research for more than 20 years for basic and applied scientific reasons, but only recently has there been a better understanding of their key features. One of these systems includes the type A receptor for the gamma-aminobutyric acid (GABA), which forms an integral anion channel from a pentameric subunit assembly and mediates most of the fast inhibitory neurotransmission in the adult vertebrate central nervous system. Up to now, depending on the definition, 16-19 mammalian subunits have been cloned and localized on different genes. Their assembly into proteins in a poorly defined stoichiometry forms the basis of functional and pharmacological GABA(A) receptor diversity, i.e. the receptor subtypes. The latter has been well documented in autoradiographic studies using ligands that label some of the receptors' various binding sites, corroborated by recombinant expression studies using the same tools. Significantly less heterogeneity has been found at the physiological level in native receptors, where the subunit combinations have been difficult to dissect. This review focuses on the characteristics, use and usefulness of various ligands and their binding sites to probe GABA(A) receptor properties and to gain insight into the biological function from fish to man and into evolutionary conserved GABA(A) receptor heterogeneity. We also summarize the properties of the novel mouse models created for the study of various brain functions and review the state-of-the-art imaging of brain GABA(A) receptors in various human neuropsychiatric conditions. The data indicate that the present ligands are only partly satisfactory tools and further ligands with subtype-selective properties are needed for imaging purposes and for confirming the behavioral and functional results of the studies presently carried out in gene-targeted mice with other species, including man.
Collapse
Affiliation(s)
- Esa R Korpi
- Department of Pharmacology and Clinical Pharmacology, University of Turku, Itäinen Pitkäkatu 4B, Finland.
| | | | | |
Collapse
|
24
|
Hoffman WE, Balyasnikova IV, Mahay H, Danilov SM, Baughman VL. GABA alpha6 receptors mediate midazolam-induced anxiolysis. J Clin Anesth 2002; 14:206-9. [PMID: 12031754 DOI: 10.1016/s0952-8180(02)00343-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
STUDY OBJECTIVE To compare the ability of midazolam to produce sedation and anxiolysis and attenuate memory in 100 patients aged 20 to 70 years. The effect of a point mutation (Pro385Ser) for the gamma amino-butyric acid (GABA) alpha6 receptor on the sedative, anxiolytic, and memory effects of midazolam was determined. SETTING University hospital. DESIGN Prospective, randomized, double-blind study. PATIENTS 100 ASA physical status I and II patients scheduled for surgery. INTERVENTIONS Two midazolam dose groups, 20 microg/kg and 40 microg/kg, with 40 patients per group and 20 control patients receiving saline as a sham control. Treatments were randomly assigned. Blood was collected at the beginning of each study. MEASUREMENTS Patient sedation and anxiolysis were measured using a visual analog scale and explicit and implicit memory of a word task determined before and six minutes after midazolam or saline. A 365-base pair fragment of the GABA alpha6 receptor gene was amplified by polymerase chain reaction (PCR) from patient blood DNA and digested with the restrictase Fok I. Restriction fragments were visualized by ethidium bromide staining after electrophoresis to evaluate the GABA alpha6 receptor subunit mutation. MAIN RESULTS Midazolam produced dose-related sedation and anxiolysis. Explicit (recall) memory was attenuated with high-dose midazolam but implicit (recognition) memory remained intact. The GABA alpha6 receptor mutation did not affect baseline sedation, anxiety, or memory but significantly attenuated the anxiolytic effect of low-dose midazolam. Sedation and explicit memory were not affected by the mutation. CONCLUSIONS A Pro385Ser mutation of the GABA alpha6 receptor subunit decreased the anxiolytic effect of low-dose midazolam.
Collapse
Affiliation(s)
- William E Hoffman
- Department of Anesthesiology, University of Illinois at Chicago, 60612, USA.
| | | | | | | | | |
Collapse
|
25
|
Thompson SA, Wingrove PB, Connelly L, Whiting PJ, Wafford KA. Tracazolate reveals a novel type of allosteric interaction with recombinant gamma-aminobutyric acid(A) receptors. Mol Pharmacol 2002; 61:861-9. [PMID: 11901225 DOI: 10.1124/mol.61.4.861] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Tracazolate, a pyrazolopyridine, is an anxiolytic known to interact with gamma-aminobutyric acid (GABA)(A) receptors, adenosine receptors, and phosphodiesterases. Its anxiolytic effect is thought to be via its interaction with GABA(A) receptors. We now report the first detailed pharmacological study examining the effects of tracazolate on a range of recombinant GABA(A) receptors expressed in Xenopus laevis oocytes. Replacement of the gamma2s subunit within the alpha1beta3gamma2s receptor with the epsilon subunit caused a dramatic change in the functional response to tracazolate from potentiation to inhibition. The gamma2s subunit was not critical for potentiation because alpha1beta3 receptors were also potentiated by tracazolate. gamma2/epsilon chimeras revealed a critical N-terminal domain between amino acids 206 and 230 of gamma2, governing the nature of this response. Replacement of the beta3 subunit with the beta1 subunit within alpha1beta3gamma2s and alpha1beta3epsilon receptors also revealed selectivity of tracazolate for beta3-containing receptors, determined by asparagine at position 265 within transmembrane 2. Replacement of gamma2s with gamma1 or gamma3 revealed a profile intermediate to that of alpha1beta1epsilon and alpha1beta1gamma2s. alpha1beta1delta receptors were also potentiated by tracazolate; however, the maximum potentiation of the EC(20) was much greater than on alpha1beta1gamma2. Concentration-response curves to GABA in the presence of tracazolate for alpha1beta1epsilon and alpha1beta1gamma2s revealed a concentration-related decrease in maximum current amplitude, but a leftward shift in the EC(50) only on alpha1beta1gamma2. Like alpha1beta1gamma2s, GABA concentration-response curves on alpha1beta1delta receptors were shifted to the left with increased maximum responses. Tracazolate has a unique pharmacological profile on recombinant GABA(A) receptors: its potency (EC(50)) is influenced by the nature of the beta subunit; but more importantly, its intrinsic efficacy, potentiation, or inhibition is determined by the nature of the third subunit (gamma1-3, delta, or epsilon) within the receptor complex.
Collapse
Affiliation(s)
- Sally-Anne Thompson
- Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Essex, United Kingdom.
| | | | | | | | | |
Collapse
|
26
|
Wingrove PB, Safo P, Wheat L, Thompson SA, Wafford KA, Whiting PJ. Mechanism of alpha-subunit selectivity of benzodiazepine pharmacology at gamma-aminobutyric acid type A receptors. Eur J Pharmacol 2002; 437:31-9. [PMID: 11864636 DOI: 10.1016/s0014-2999(02)01279-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Benzodiazepine pharmacology at the GABA(A) receptor is dependent on the alpha and gamma subunit isoforms present. Ligands with higher affinity for certain isoforms--selective compounds--have been classified into benzodiazepine type I and II and into diazepam-sensitive and diazepam-insensitive receptors. A single amino acid position (alpha1G201/alpha3E225) has been identified which discriminates BZI and BZII receptors. The role of this residue has been explored by mutagenesis of alpha1 position 201 and the pharmacology of recombinant receptors examined using BZI receptor agonists. Ligand affinity is reduced by increasing side chain volume at alpha1G201 suggesting that steric inhibition underlies alpha-subunit selectivity. A second amino acid (alpha1H102/alpha6R100) determines diazepam sensitivity. The nature of the amino acid at this position was also examined by mutagenesis. Flumazenil and Ro15-4513 (ethyl 8-azido-6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a]-[1,4]benzodiazepine-3-carboxylate) binding affinity correlated weakly with the amino acid hydrophobicity suggesting a weak hydrophobic interaction between the ligand and alpha1H102.
Collapse
Affiliation(s)
- Peter B Wingrove
- Merck Sharp and Dohme Research Laboratories, Neuroscience Research Centre, Terlings Park, Eastwick Road, Essex CM20 2QR, Harlow, UK.
| | | | | | | | | | | |
Collapse
|
27
|
Davies M, Newell JG, Dunn SM. Mutagenesis of the GABA(A) receptor alpha1 subunit reveals a domain that affects sensitivity to GABA and benzodiazepine-site ligands. J Neurochem 2001; 79:55-62. [PMID: 11595757 DOI: 10.1046/j.1471-4159.2001.00527.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have mutated several amino acids in the region of the GABA(A) receptor alpha1 subunit predicted to form a small extracellular loop between transmembrane domains two and three to investigate its possible role in ligand sensitivity. The mutations were S275T, L276A, P277A, V279A, A280S and Y281F. Mutant alpha1 subunits were co-expressed with beta2 and gamma2 subunits in tsA201 cells or Xenopus oocytes. Binding studies revealed that the only mutation that significantly affected [3H]Ro15-4513 binding was the V279A substitution which reduced the affinity for this ligand. Electrophysiological examination of mutant receptors revealed that L276A, P277A and V279A displayed rightward shifts of their GABA concentration-response curves, the largest occurring with the L276A mutant. The impact of these mutations on allosteric modulation by benzodiazepine-site ligands was examined. V279A reduced the potency of both flunitrazepam and Ro15-4513 but, in each case, their efficacy was enhanced. A280S resulted in a decrease in flunitrazepam efficacy without affecting its potency. Additionally, P277A and A280S resulted in Ro15-4513 losing its inverse agonist effect at these receptors. These results suggest that a domain within this small extracellular loop between TMII-TMIII plays a role in determining the sensitivity of GABA(A) receptors to both GABA and benzodiazepine-site ligands.
Collapse
Affiliation(s)
- M Davies
- Department of Pharmacology and Centre for Neuroscience, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.
| | | | | |
Collapse
|
28
|
Patat A, Paty I, Hindmarch I. Pharmacodynamic profile of Zaleplon, a new non-benzodiazepine hypnotic agent. Hum Psychopharmacol 2001; 16:369-392. [PMID: 12404558 DOI: 10.1002/hup.310] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The challenge in developing hypnotic agents for the treatment of insomnia is to balance the sedative effect needed at bedtime with the residual sedation on awakening. Zaleplon is a novel pyrazolopyrimidine hypnotic agent that acts as a selective agonist to the brain omega(1) receptor situated on the alpha(1) subunit of the GABA(A) receptor complex. Zaleplon was proven to be an effective hypnotic drug as it consistently and significantly reduced latency to persistent sleep in insomniac patients for doses of 10 mg and above in polysomnography studies. The pharmacodynamic profile of zaleplon on psychomotor performance, actual driving and cognitive function, including memory, was assessed in several randomized, double-blind, placebo-controlled studies in healthy young subjects as well as insomniac patients by using various positive controls (zolpidem, zopiclone, triazolam and flurazepam). The recommended hypnotic dose of zaleplon in young adults (10 mg) produced minimal or no impairment of psychomotor and memory performance even when administered during the night as little as 1 h before waking. No impairment of actual driving was observed when zaleplon 10 mg was administered either at bedtime or in the middle of the night as little as 4 h before waking. Zaleplon 20 mg, twice the recommended dose, generally produced significant impairment of performance and cognitive functions when these functions were measured at the time of peak plasma concentration, i.e. 1 h after dose administration, and no impairment of driving abilities was observed 4 h after a middle-of-the-night administration. In contrast, consistent detrimental residual effects on various aspects of psychomotor and cognitive functions were observed with the therapeutic doses of the various commonly prescribed hypnotic agents used as comparators, e.g. zolpidem 10 mg up to 5 h after dose administration, zopiclone 7.5 mg up to 10 h after, flurazepam 30 mg up to 14 h after and triazolam 0.25 mg up to 6 h after. Also, zolpidem 10 mg and zopiclone 7.5 mg were also shown to significantly impair driving ability the next morning when this was measured 4 h and up to 10 h after dose administration, respectively. The present review shows that zaleplon 10 mg has little or no residual effect when administered in the middle of the night, as late as 1 h before waking, and is devoid of impairment of driving abilities as assessed by actual driving 4 h after dose administration. The lack of clinically significant or minimally statistically significant residual effects of zaleplon even at its peak concentration may be explained by its unique pharmacokinetic (rapid elimination half-life) and pharmacodynamic (low affinity, and specific binding profile to various subunits of the GABA(A)receptor) profiles. These properties allow zaleplon to be used for treatment of symptoms only when they occur, either at bedtime or later in the night, without incurring significant risk of developing next-day impairment of psychomotor and cognitive functioning. Copyright 2001 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Alain Patat
- Wyeth-Ayerst Research, Clinical Pharmacology, Paris, France
| | | | | |
Collapse
|
29
|
Casula MA, Bromidge FA, Pillai GV, Wingrove PB, Martin K, Maubach K, Seabrook GR, Whiting PJ, Hadingham KL. Identification of amino acid residues responsible for the alpha5 subunit binding selectivity of L-655,708, a benzodiazepine binding site ligand at the GABA(A) receptor. J Neurochem 2001; 77:445-51. [PMID: 11299307 DOI: 10.1046/j.1471-4159.2001.00289.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
L-655,708 is a ligand for the benzodiazepine site of the gamma-aminobutyric acid type A (GABA(A)) receptor that exhibits a 100-fold higher affinity for alpha5-containing receptors compared with alpha1-containing receptors. Molecular biology approaches have been used to determine which residues in the alpha5 subunit are responsible for this selectivity. Two amino acids have been identified, alpha5Thr208 and alpha5Ile215, each of which individually confer approximately 10-fold binding selectivity for the ligand and which together account for the 100-fold higher affinity of this ligand at alpha5-containing receptors. L-655,708 is a partial inverse agonist at the GABA(A) receptor which exhibited no functional selectivity between alpha1- and alpha5-containing receptors and showed no change in efficacy at receptors containing alpha1 subunits where amino acids at both of the sites had been altered to their alpha5 counterparts (alpha1Ser205-Thr,Val212-Ile). In addition to determining the binding selectivity of L-655,708, these amino acid residues also influence the binding affinities of a number of other benzodiazepine (BZ) site ligands. They are thus important elements of the BZ site of the GABA(A) receptor, and further delineate a region just N-terminal to the first transmembrane domain of the receptor alpha subunit that contributes to this binding site.
Collapse
Affiliation(s)
- M A Casula
- Neuroscience Research Centre, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Walters RJ, Hadley SH, Morris KD, Amin J. Benzodiazepines act on GABAA receptors via two distinct and separable mechanisms. Nat Neurosci 2000; 3:1274-81. [PMID: 11100148 DOI: 10.1038/81800] [Citation(s) in RCA: 194] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Benzodiazepines (BZs) act on gamma-aminobutyric acid type A (GABAA) receptors such as alpha1beta2gamma2 through key residues within the N-terminal region of alpha subunits, to render their sedative and anxiolytic actions. However, the molecular mechanisms underlying the BZs' other clinical actions are not known. Here we show that, with low concentrations of GABA, diazepam produces a biphasic potentiation for the alpha1beta2gamma2-receptor channel, with distinct components in the nanomolar and micromolar concentration ranges. Mutations at equivalent residues within the second transmembrane domains (TM2) of alpha, beta and gamma subunits, proven important for the action of other anesthetics, abolish the micromolar, but not the nanomolar component. Converse mutation of the corresponding TM2 residue and a TM3 residue within rho1 subunits confers diazepam sensitivity on homo-oligomeric rho1-receptor channels that are otherwise insensitive to BZs. Thus, specific and distinct residues contribute to a previously unresolved component (micromolar) of diazepam action, indicating that diazepam can modulate the GABAA-receptor channel through two separable mechanisms.
Collapse
Affiliation(s)
- R J Walters
- Department of Pharmacology and Therapeutics, Physiology and Biophysics, and Institute for Biomolecular Science, University of South Florida, Tampa, Florida 33612, USA
| | | | | | | |
Collapse
|
31
|
Hang J, Shi H, Li D, Liao Y, Lian D, Xiao Y, Xue H. Ligand binding and structural properties of segments of GABAA receptor alpha 1 subunit overexpressed in Escherichia coli. J Biol Chem 2000; 275:18818-23. [PMID: 10764739 DOI: 10.1074/jbc.m000193200] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The gamma-aminobutyric acid, type A (GABA(A)), receptor is the target for numerous therapeutic compounds. In the present study, the Gln(28)-Leu(296), Gln(28)-Arg(276), Gln(28)-Arg(248), and Gln(28)-Glu(165) (numbering of bovine precursor protein) segments of its alpha(1) subunit were overexpressed in Escherichia coli, along with Cys(166)-Leu(296) produced previously, for structural analysis by circular dichroism and ligand binding studies by fluorescence spectroscopy. Results showed that the protein segments were rich in beta-sheet structures. Binding of the fluorescent benzodiazepine Bodipy-FL Ro-1986 was evident from fluorescence resonance energy transfer and fluorescence anisotropy measurements. The binding affinity was in the micromolar range. The binding was attributable more to Cys(166)-Leu(296) than to Gln(28)-Glu(165) and was inhibited by known central benzodiazepine site ligands. Three point mutations, Y187A, T234A, and Y237A, were found to perturb protein secondary structures. Studies with the single Trp mutants W198Y and W273Y indicated that Trp(273) was closer to the binding site than Trp(198).
Collapse
Affiliation(s)
- J Hang
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong
| | | | | | | | | | | | | |
Collapse
|
32
|
Scott MK, Demeter DA, Nortey SO, Dubinsky B, Shank RP, Reitz AB. New directions in anxiolytic drug research. PROGRESS IN MEDICINAL CHEMISTRY 2000; 36:169-200. [PMID: 10818673 DOI: 10.1016/s0079-6468(08)70047-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Agents to treat anxiety have gained in acceptance and importance in the fast pace of life in the second half of this century. The discovery and refinement of the benzodiazepines represented a quantum leap in therapy from early compounds which were essentially sedatives. With the advent of molecular biology, an understanding of the basic mechanism by which the benzodiazepines exert their effects was revealed through the discovery and isolation of the GABAA receptor and its benzodiazepine binding site. This, in turn, has enabled benzodiazepines to be classified into a broad spectrum of pharmacological types ranging from agonist to inverse agonist, thus allowing fine tuning with respect to side-effects. Consequently, newer, more promising agents have emerged which bind at the GABAA BZD site and have reduced side-effects. An example of this is RWJ-51204 (92), a member of a novel structural type which is superior to several marketed benzodiazepines in animals in terms of efficacy and side-effects. The cost-conscious environment of managed health care presents continuing challenges to the discovery and development of safe, highly efficacious, and cost-effective anxiolytic agents.
Collapse
Affiliation(s)
- M K Scott
- Drug Discovery Division, R. W. Johnson Pharmaceutical Research Institute, Spring House, Pennsylvania 19477, USA
| | | | | | | | | | | |
Collapse
|
33
|
Sigel E, Baur R. Electrophysiological evidence for the coexistence of alpha1 and alpha6 subunits in a single functional GABA(A) receptor. J Neurochem 2000; 74:2590-6. [PMID: 10820222 DOI: 10.1046/j.1471-4159.2000.0742590.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The subunit combinations alpha1beta2gamma2, alpha6beta2gamma2, and alpha1alpha6beta2gamma2 of the GABA(A) receptor were functionally expressed in Xenopus oocytes. The properties of the resulting ion currents were characterized by using electrophysiological techniques. The concentration-response curve of the channel agonist GABA for alpha1alpha6beta2gamma2 showed a single apparent component characterized by an EC(50) of 107 +/- 26 microM (n = 4). It was different from the one for alpha1beta2gamma2, which had an EC(50) of 41 +/- 9 microM (n = 4), that for alpha6beta2gamma2, with an EC(50) of 6.7 +/- 1.9 microM (n = 5), and those for alpha1beta2 and alpha1alpha6beta2. There was no appreciable functional expression of alpha6beta2. Allosteric responses of alpha1alpha6beta2gamma2 to diazepam were intermediate to those of alpha1beta2gamma2 and alpha6beta2gamma2, and allosteric responses to flumazenil were comparable to the ones for alpha1beta2gamma2. The inhibition by furosemide of the currents elicited by GABA in alpha1alpha6beta2gamma2 [IC(50) = 298 +/- 116 microM (n = 7), assuming only one component] was not identical with inhibition of alpha6beta2gamma2 (IC(50) = 38 +/- 2 microM, n = 4), alpha1beta2gamma2 (IC(50) = 5,610 +/- 910 microM, n = 5), or a mixture of these components (assuming two components). These findings indicate unambiguously the formation of functional GABA(A) receptors containing two different alpha subunits, alpha1 and alpha6, with properties different from those of alpha1beta2gamma2 and alpha6beta2gamma2. Furthermore, we provide evidence for the facts that in the Xenopus oocyte (a) the formation of the different receptor types depends on the relative abundance of cRNAs coding for the different receptor subunits and (b) that functional dual subunit combinations alphabeta do not form in the presence of cRNA coding for the gamma subunit.
Collapse
Affiliation(s)
- E Sigel
- Department of Pharmacology, University of Bern, Switzerland.
| | | |
Collapse
|
34
|
Carlson BX, Engblom AC, Kristiansen U, Schousboe A, Olsen RW. A single glycine residue at the entrance to the first membrane-spanning domain of the gamma-aminobutyric acid type A receptor beta(2) subunit affects allosteric sensitivity to GABA and anesthetics. Mol Pharmacol 2000; 57:474-84. [PMID: 10692487 DOI: 10.1124/mol.57.3.474] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Site-directed mutagenesis of the gamma-aminobutyric acid type A (GABA(A)) receptor beta(2) subunit has demonstrated that conversion of a conserved glycine residue located at the entrance to the first transmembrane domain into the homologous rho(1) residue phenylalanine alters the modulating effects of four different i.v. anesthetics: pentobarbital, alphaxalone, etomidate, and propofol. Using the baculovirus expression system in Spodoptera frugiperda 9 cells, anesthetic-induced enhancement of [(3)H]muscimol and [(3)H]flunitrazepam binding in receptors containing the beta(2)(G219F) point mutation displayed a significantly reduced efficacy in modulation by all four i.v. anesthetics tested. Furthermore, GABA(A) receptors containing the alpha(1)(G223F) point mutation also significantly decreased the maximal effect of etomidate- and propofol-induced enhancement of ligand binding. Conversely, the homologous point mutation in rho(1) receptors (F261G) changed the i.v. anesthetic-insensitive receptor to confer anesthetic modulation of [(3)H]muscimol binding. Consistent with the binding, functional analysis of pentobarbital-enhanced GABA currents recorded with whole-cell patch clamp demonstrated the beta(2)(G219F) subunit mutation eliminated the potentiating effect of the anesthetic. Similarly, propofol-enhanced GABA currents were potentiated less in alpha(1)beta(2)(G219F)gamma(2) receptors than in alpha(1)beta(2)gamma(2) receptors. Although ligand binding displayed comparable K(D) values for muscimol among wild-type, alpha(1)beta(2)gamma(2), and mutant receptors, patch-clamp recordings showed that alpha(1)beta(2)(G219F)gamma(2) receptors had a significantly more potent response to GABA than did alpha(1)beta(2)gamma(2) or alpha(1)(G223F)beta(2)gamma(2). The alpha(1)beta(2)(G219F)gamma(2) receptors also were more sensitive to direct channel activation by pentobarbital and propofol in the absence of GABA. These results suggest that the first transmembrane glycine residue on the beta(2) subunit may be important for conformational or allosteric interactions of channel gating by both GABA and anesthetics.
Collapse
Affiliation(s)
- B X Carlson
- Department of Pharmacology, The Royal Danish School of Pharmacy, Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
35
|
Smith GB, Olsen RW. Deduction of amino acid residues in the GABA(A) receptor alpha subunits photoaffinity labeled with the benzodiazepine flunitrazepam. Neuropharmacology 2000; 39:55-64. [PMID: 10665819 DOI: 10.1016/s0028-3908(99)00104-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Peptide mapping and microsequencing were used to infer the site of photoaffinity labeling by the gamma-aminobutyric acidA receptor modulator [3H]flunitrazepam. Peptide mapping with and without N-deglycosylation was used to restrict the domain for photoaffinity labeling to residues 74-123 of the bovine alpha1 subunit, in agreement with a previously predicted labeling domain between residues 59-148 based on cyanogen bromide fragmentation. Edman degradation of partially purified photolabeled peptides gave release of 3H counts in the ninth cycle of a tryptic peptide sequence. A second V8/chymotryptic peptide produced an impure sequence with release of 3H counts in the seventh through ninth cycle of sequence. The combined data support those previously reported, i.e., that the primary site for photoaffinity labeling by [3H]flunitrazepam is His102 of the bovine alpha1 subunit. In addition we also detected possible secondary labeling of Pro97.
Collapse
Affiliation(s)
- G B Smith
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, 90095, USA
| | | |
Collapse
|
36
|
Abstract
Between 1987 and 1989, the different protein subunits that make up the receptor for the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) were identified. These make up the alpha, beta, gamma and delta families, for each of which exist several subtypes. This receptor is the molecular target of modern hypnotic drugs (i.e. benzodiazepines, zopiclone, zolpidem and zaleplon). In the 10 years that have followed this milestone, significant progress has been made in exploring the molecular mechanisms of hypnotic drug action. Receptor subtype specificity of hypnotics has been explained in terms of differential affinity for receptors containing different alpha subunits, which are expressed in different brain regions. Zolpidem and zaleplon bind preferentially to alpha1-containing receptors, whereas benzodiazepines and zopiclone are aspecific. Different sets of subunits are encoded in contiguous 'cassettes' on the genome, and the transcription of each set appears to be regulated coherently. The predominant GABA(A) receptor composition found in the brain is alpha1beta2gamma2, which are all encoded on human chromosome 5. Targeted gene disruption has provided clues to the physiological functions served by GABA(A) receptors containing different subunits. Receptors containing gamma2 appear to have a vital role in maintaining appropriate central inhibition, beta3-containing receptors may also be important determinants of excitability in certain brain regions, whereas a clear role for alpha5-, alpha6- and gamma3-containing receptors has not yet been established by these techniques. Site-directed mutagenesis has indicated that benzodiazepines bind to a cleft on the GABA(A) receptor surface at the interface between the alpha and gamma subunits. Other drugs (flumazenil, zopiclone, zolpidem) also bind to the a subunit, but interact with amino acids in different binding domains to the benzodiazepines. The molecular mechanism of hypnotic dependence has been explored, and seems to involve downregulation of transcription of the normally prevalent alpha1, beta2 and gamma2 subunits, and the reciprocal upregulation of the expression of rarer subunits. Chronic treatment with hypnotic drugs that may have less dependence potential, such as zopiclone and zolpidem, appears to produce more limited change in GABA(A) receptor subunit expression. These ideas will be important both for designing new hypnotic drugs with a better safety/efficacy profile, and for evaluating more appropriate ways of using the drugs available today.
Collapse
Affiliation(s)
- A Doble
- Neuroscience and Endocrinology Department, Rhône-Poulenc Rorer SA, Antony, France.
| |
Collapse
|
37
|
Sigel E, Buhr A, Baur R. Role of the conserved lysine residue in the middle of the predicted extracellular loop between M2 and M3 in the GABA(A) receptor. J Neurochem 1999; 73:1758-64. [PMID: 10501225 DOI: 10.1046/j.1471-4159.1999.731758.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In alpha1, beta2, and gamma2 subunits of the gamma-aminobutyric acid A (GABA(A)) receptor, a conserved lysine residue occupies the position in the middle of the predicted extracellular loop between the transmembrane M2 and M3 regions. In all three subunits, this residue was mutated to alanine. Whereas the mutation in alpha1 and beta2 subunits resulted each in about a sixfold shift of the concentration-response curve for GABA to higher concentrations, no significant effect by mutation in the gamma subunit was detected. The affinity for the competitive inhibitor bicuculline methiodide was not affected by the mutations in either the alpha1 subunit or the beta2 subunit. Concentration-response curves for channel activation by pentobarbital were also shifted to higher concentrations by the mutation in the alpha and beta subunits. Binding of [3H]Ro 15-1788 was unaffected by the mutation in the alpha subunit, whereas the binding of [3H]muscimol was shifted to lower affinity. Mutation of the residue in the alpha1 subunit to E, Q, or R resulted in an about eight-, 10-, or fivefold shift, respectively, to higher concentrations of the concentration-response curve for GABA. From these observations, it is concluded that the corresponding residues on the alpha1 and beta2 subunits are involved more likely in the gating of the channel by GABA than in the binding of GABA or benzodiazepines.
Collapse
Affiliation(s)
- E Sigel
- Department of Pharmacology, University of Bern, Switzerland
| | | | | |
Collapse
|
38
|
Blaine K, Gasser K, Conway S. Influence of Fetal Alcohol Exposure on the GABAergic Regulation of Growth Hormone Release in Postnatal Rats. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04061.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Serretti A, Lilli R, Lorenzi C, Franchini L, Di Bella D, Catalano M, Smeraldi E. Dopamine receptor D2 and D4 genes, GABA(A) alpha-1 subunit genes and response to lithium prophylaxis in mood disorders. Psychiatry Res 1999; 87:7-19. [PMID: 10512150 DOI: 10.1016/s0165-1781(99)00056-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Lithium is an effective prophylactic agent in mood disorders, and genetic factors are likely to modulate individual susceptibility to lithium treatment. The aim of this study is to investigate the influence of dopamine receptor D2 (DRD2), D4 exon 3 (DRD4), and gamma-aminobutyric acid type A (GABA(A)) receptor alpha-1 subunit (GABRA1) gene variants on the efficacy of lithium prophylaxis in mood disorders. Patients with mood disorders (N = 125: bipolar subtype, n = 100; major depressive disorder subtype, n = 25) were followed prospectively for an average of 53 months and were typed for DRD2 (Ser311/Cys311: n = 121, VNTR: n = 63), DRD4 (n = 125) and GABRA1 (n = 61) variants using polymerase chain reaction (PCR) techniques. DRD2, DRD4 and GABRA1 variants were not associated with response to lithium. A trend was observed toward a better outcome of DRD4* 2/4 subjects, but it was due to only two subjects. Consideration of possible stratification effects like gender, polarity, family history, age at onset and duration of lithium treatment did not reveal any association either. DRD2, DRD4 and GABRA1 variants therefore do not appear to be associated with the outcome of lithium prophylaxis in mood disorders.
Collapse
Affiliation(s)
- A Serretti
- Istituto Scientifico Ospedale San Raffaele, Department of Neuropsychiatric Sciences, University of Milan School of Medicine, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Qian H, Dowling JE, Ripps H. A single amino acid in the second transmembrane domain of GABA rho subunits is a determinant of the response kinetics of GABAC receptors. JOURNAL OF NEUROBIOLOGY 1999; 40:67-76. [PMID: 10398072 DOI: 10.1002/(sici)1097-4695(199907)40:1<67::aid-neu6>3.0.co;2-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The rho subunits that constitute the gamma-aminobutyric acid (GABA)C receptors of retinal neurons form a unique subclass of ligand-gated chloride channels that give rise to sustained GABA-evoked currents that exhibit slow offset (deactivation) kinetics. We exploited this property to examine the molecular mechanisms that govern the disparate response kinetics and pharmacology of perch GABA rho1B and rho2A subunits expressed in Xenopus oocytes. Using a combination of domain swapping and site-directed mutagenesis, we identified the residues at amino acid position 320 in the second transmembrane domain as an important determinant of the receptor kinetics of GABAC receptors. When the site contains a proline residue, as in wild-type rho1 subunits, the receptor deactivates slowly; when serine occupies the site, as in wild-type rho2 subunits, the time course of deactivation is more rapid. In addition, we found that the same site also altered the pharmacology of GABA rho receptors, e.g., when the serine residue of the rho2A receptor was changed to proline, the response of the mutant receptor to imidazole-4-acetic acid (I4AA) mimicked that of the rho1B receptor. However, despite gross changes in receptor pharmacology, the apparent binding affinity for the drug was not significantly altered. These findings provide further evidence that the second transmembrane domain is involved in the gating mechanism that governs the response properties of the various rho receptor subunits. It is noteworthy that the proline residue in native rho1 subunits and the serine residue of rho2 subunits are well conserved in all species, a good indication that the presence of multiple GABA rho subunits serves to generate GABAC receptors that display the wide range of response kinetics observed on various types of retinal neurons.
Collapse
Affiliation(s)
- H Qian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 West Taylor Street, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
41
|
Renard S, Olivier A, Granger P, Avenet P, Graham D, Sevrin M, George P, Besnard F. Structural elements of the gamma-aminobutyric acid type A receptor conferring subtype selectivity for benzodiazepine site ligands. J Biol Chem 1999; 274:13370-4. [PMID: 10224099 DOI: 10.1074/jbc.274.19.13370] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
gamma-aminobutyric acid type A (GABAA) receptors comprise a subfamily of ligand-gated ion channels whose activity can be modulated by ligands acting at the benzodiazepine binding site on the receptor. The benzodiazepine binding site was characterized using a site-directed mutagenesis strategy in which amino acids of the alpha5 subunit were substituted by their corresponding alpha1 residues. Given the high affinity and selectivity of alpha1-containing compared with alpha5-containing GABAA receptors for zolpidem, mutated alpha5 subunits were co-expressed with beta2 and gamma2 subunits, and the affinity of recombinant receptors for zolpidem was measured. One alpha5 mutant (bearing P162T, E200G, and T204S) exhibited properties similar to that of the alpha1 subunit, notably high affinity zolpidem binding and potentiation by zolpidem of GABA-induced chloride current. Two of these mutations, alpha5P162T and alpha5E200G, might alter binding pocket conformation, whereas alpha5T204S probably permits formation of a hydrogen bond with a proton acceptor in zolpidem. These three amino acid substitutions also influenced receptor affinity for CL218872. Our data thus suggest that corresponding amino acids of the alpha1 subunit, particularly alpha1-Ser204, are the crucial residues influencing ligand selectivity at the binding pocket of alpha1-containing receptors, and a model of this binding pocket is presented.
Collapse
Affiliation(s)
- S Renard
- Department of Genomic Biology, Synthélabo, 10 rue des Carrières, 92500 Rueil-Malmaison, France
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Jacobsen EJ, Stelzer LS, TenBrink RE, Belonga KL, Carter DB, Im HK, Im WB, Sethy VH, Tang AH, VonVoigtlander PF, Petke JD, Zhong WZ, Mickelson JW. Piperazine imidazo[1,5-a]quinoxaline ureas as high-affinity GABAA ligands of dual functionality. J Med Chem 1999; 42:1123-44. [PMID: 10197957 DOI: 10.1021/jm9801307] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A series of imidazo[1,5-a]quinoxaline piperazine ureas appended with a tert-butyl ester side chain at the 3-position was developed. Analogues within this series have high affinity for the gamma-aminobutyric acid A (GABAA)/benzodiazepine receptor complex with efficacies ranging from inverse agonists to full agonists. Many analogues were found to be partial agonists as indicated by [35S]TBPS and Cl- current ratios. Uniquely, a number of these analogues were found to have a bell-shaped dose-response profile in the alpha1 beta2 gamma2 subtype as determined by whole cell patch-clamp technique, where in vitro efficacy was found to decrease with increasing drug concentration. Many of the compounds from this series were effective in antagonizing metrazole-induced seizures, consistent with anticonvulsant and possibly anxiolytic activity. Additionally, several analogues were also effective in lowering cGMP levels (to control values) after applied stress, also consistent with anxiolytic-like properties. The most effective compounds in these screens were also active in animal models of anxiety such as the Vogel and Geller assays. The use of the piperazine substituent allowed for excellent drug levels and a long duration of action in the central nervous system for many of the quinoxalines, as determined by ex vivo assay. Pharmacokinetic analysis of several compounds indicated excellent oral bioavailability and a reasonable half-life in rats. From this series emerged two partial agonists (55, 91) which had good activity in anxiolytic models, acceptable pharmacokinetics, and minimal benzodiazepine-type side effects.
Collapse
Affiliation(s)
- E J Jacobsen
- Departments of Structural, Analytical and Medicinal Chemistry, Central Nervous System Diseases Research, Computer Aided Drug Discovery, and Pharmacokinetics and Bioanalysis Research, Upjohn Laboratories, Kalamazoo, Michigan 49001, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
Recent advances in molecular biology and complementary information derived from neuropharmacology, biochemistry and behavior have dramatically increased our understanding of various aspects of GABAA receptors. These studies have revealed that the GABAA receptor is derived from various subunits such as alpha1-alpha6, beta1-beta3, gamma1-gamma3, delta, epsilon, pi, and rho1-3. Furthermore, two additional subunits (beta4, gamma4) of GABAA receptors in chick brain, and five isoforms of the rho-subunit in the retina of white perch (Roccus americana) have been identified. Various techniques such as mutation, gene knockout and inhibition of GABAA receptor subunits by antisense oligodeoxynucleotides have been used to establish the physiological/pharmacological significance of the GABAA receptor subunits and their native receptor assemblies in vivo. Radioligand binding to the immunoprecipitated receptors, co-localization studies using immunoaffinity chromatography and immunocytochemistry techniques have been utilized to establish the composition and pharmacology of native GABAA receptor assemblies. Partial agonists of GABAA receptors are being developed as anxiolytics which have fewer and less severe side effects as compared to conventional benzodiazepines because of their lower efficacy and better selectivity for the GABAA receptor subtypes. The subunit requirement of various drugs such as anxiolytics, anticonvulsants, general anesthetics, barbiturates, ethanol and neurosteroids, which are known to elicit at least some of their pharmacological effects via the GABAA receptors, have been investigated during the last few years so as to understand their exact mechanism of action. Furthermore, the molecular determinants of clinically important drug-targets have been investigated. These aspects of GABAA receptors have been discussed in detail in this review article.
Collapse
Affiliation(s)
- A K Mehta
- Department of Pharmacology, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78284-7764, USA
| | | |
Collapse
|
44
|
Serretti A, Macciardi F, Cusin C, Lattuada E, Lilli R, Di Bella D, Catalano M, Smeraldi E. No interaction of GABAA alpha-1 subunit and dopamine receptor D4 exon 3 genes in symptomatology of major psychoses. ACTA ACUST UNITED AC 1999. [DOI: 10.1002/(sici)1096-8628(19990205)88:1<44::aid-ajmg8>3.0.co;2-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Xue H, Hang J, Chu R, Xiao Y, Li H, Lee P, Zheng H. Delineation of a membrane-proximal beta-rich domain in the GABAA receptor by progressive deletions. J Mol Biol 1999; 285:55-61. [PMID: 9878387 DOI: 10.1006/jmbi.1998.2317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The type A gamma-aminobutyric acid (GABAA) receptor plays a major inhibitory role in the central nervous system. Structural elucidation of the GABAA receptor has been impeded by the large size of the receptor. We present here the delineation of a minimal structural domain as the first step of dissecting the receptor structure. This was achieved through prediction-assisted progressive deletions: the prediction of a candidate structural domain rich in beta-strands with no close similarity to known structures was tested by deleting putative secondary structure elements from the ends of the proposed domain, as well as mutations within the terminal secondary structures. Such progressive deletions revealed the limits of an integral domain, spanning Cys180 to Met293 (numbering of human alpha1 subunit). Below these limits the intact domain structure, as indicated by its circular dichroism, collapses. Based on its putative position, this domain is provisionally designated the membrane-proximal beta-rich domain of GABAA receptor. The inclusion of sequences from the first two out of four previously suggested transmembrane segments and one of the two conserved Cys residues in this domain defines important constraints to the receptor structure.
Collapse
Affiliation(s)
- H Xue
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong.
| | | | | | | | | | | | | |
Collapse
|
46
|
Sigel E, Schaerer MT, Buhr A, Baur R. The benzodiazepine binding pocket of recombinant alpha1beta2gamma2 gamma-aminobutyric acidA receptors: relative orientation of ligands and amino acid side chains. Mol Pharmacol 1998; 54:1097-105. [PMID: 9855639 DOI: 10.1124/mol.54.6.1097] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Wild-type alpha1beta2gamma2 gamma-aminobutyric acid (GABA)A receptors and receptors containing a point-mutated subunit gamma2F77Y were expressed by transient transfection in human embryonic kidney 293 cells. Mutant receptors bound the benzodiazepine binding site ligand [3H]flumazenil with similar, subnanomolar affinity as wild-type receptor. Displacement studies with diazepam showed that the affinity for this compound was reduced 250-fold on mutation, indicating that the tyrosine hydroxyl group interferes with diazepam binding. This differential behavior then was used to find the chemical entity presumably interacting with the phenyalanine residue in position 77 of the gamma2 subunit of wild-type receptors. Thirty-four substances were analyzed in this respect. Our results suggest that the phenyl substituent of diazepam is located close to gammaF77. Similarly, we investigated the possible location of alpha1T206 and gamma2M130. Electrophysiological data obtained with the wild-type receptor furthermore suggest a simple overlap between positive allosteric modulators acting at the benzodiazepine binding site with its antagonists.
Collapse
Affiliation(s)
- E Sigel
- Department of Pharmacology, University of Bern, CH-3010 Bern, Switzerland.
| | | | | | | |
Collapse
|
47
|
Olsen RW. The molecular mechanism of action of general anesthetics: structural aspects of interactions with GABA(A) receptors. Toxicol Lett 1998; 100-101:193-201. [PMID: 10049142 DOI: 10.1016/s0378-4274(98)00185-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
(1) Considerable evidence has accumulated that the molecular target of general anesthetics in the central nervous system is the GABA(A) receptor, the major mediator of inhibitory synaptic transmission. This receptor is actually a family of ligand-gated chloride channel proteins, each a heteropentameric membrane-spanning structure. (2) Regional variation in anesthetic actions on the central nervous system may parallel a corresponding regional variation in pharmacological subtypes of GABA(A) receptors. These result from differential regional expression of approximately 18 subunit genes. (3) Receptors of varying subunit composition show differential sensitivity to GABA, modulatory drugs, and biological regulatory mechanisms. Regional variation in allosteric modulation of GABA(A) receptor binding and function can be reconstituted in certain recombinant receptor subunit combinations expressed in heterologous cells. (5) Differential sensitivity to anesthetics for various GABA(A) receptor subunits also allows the use of the chimeric and site-directed mutagenesis approach in attempting to define domains of the protein which participate in the binding and actions of anesthetics.
Collapse
Affiliation(s)
- R W Olsen
- Department of Molecular and Medical Pharmacology, School of Medicine, Brain Research Institute, Mental Retardation Research Center, University of California, Los Angeles 90095-1735, USA
| |
Collapse
|
48
|
Schaerer MT, Buhr A, Baur R, Sigel E. Amino acid residue 200 on the alpha1 subunit of GABA(A) receptors affects the interaction with selected benzodiazepine binding site ligands. Eur J Pharmacol 1998; 354:283-7. [PMID: 9754930 DOI: 10.1016/s0014-2999(98)00456-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mutant alph1 subunits of the GABA(A) receptor were coexpressed in combination with the wild-type beta2 and gamma2 subunits in human embryonic kidney (HEK) 293 cells. The binding properties of various benzodiazepine site ligands were determined by displacement of ethyl-8-fluoro-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5a]-[1,4]benzodia zepine-3-carboxylate ([3H]Ro 15-1788). The mutation G200E led to a decrease in zolpidem and 3-methyl-6-[3-(trifluoromethyl)phenyl]-1,2,4-triazolo[4,3-b]pyridazine (CL 218872) affinity amounting to 16- and 8-fold. Receptors containing a conservative T206V substitution showed a 41- and 38-fold increase in methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate (DMCM) and CL 218872 affinity combined with a decrease in diazepam and zolpidem affinity, amounting to 7- and 10-fold. Two mutations, Q203A and Q203S showed almost no effects on the binding of benzodiazepine site ligands, indicating that this residue is not involved in the binding of benzodiazepines and related compounds.
Collapse
Affiliation(s)
- M T Schaerer
- Department of Pharmacology, University of Bern, Switzerland
| | | | | | | |
Collapse
|
49
|
Hevers W, Lüddens H. The diversity of GABAA receptors. Pharmacological and electrophysiological properties of GABAA channel subtypes. Mol Neurobiol 1998; 18:35-86. [PMID: 9824848 DOI: 10.1007/bf02741459] [Citation(s) in RCA: 355] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The amino acid gamma-aminobutyric-acid (GABA) prevails in the CNS as an inhibitory neurotransmitter that mediates most of its effects through fast GABA-gated Cl(-)-channels (GABAAR). Molecular biology uncovered the complex subunit architecture of this receptor channel, in which a pentameric assembly derived from five of at least 17 mammalian subunits, grouped in the six classes alpha, beta, gamma, delta, sigma and epsilon, permits a vast number of putative receptor isoforms. The subunit composition of a particular receptor determines the specific effects of allosterical modulators of the GABAARs like benzodiazepines (BZs), barbiturates, steroids, some convulsants, polyvalent cations, and ethanol. To understand the physiology and diversity of GABAARs, the native isoforms have to be identified by their localization in the brain and by their pharmacology. In heterologous expression systems, channels require the presence of alpha, beta, and gamma subunits in order to mimic the full repertoire of native receptor responses to drugs, with the BZ pharmacology being determined by the particular alpha and gamma subunit variants. Little is known about the functional properties of the beta, delta, and epsilon subunit classes and only a few receptor subtype-specific substances like loreclezole and furosemide are known that enable the identification of defined receptor subtypes. We will summarize the pharmacology of putative receptor isoforms and emphasize the characteristics of functional channels. Knowledge of the complex pharmacology of GABAARs might eventually enable site-directed drug design to further our understanding of GABA-related disorders and of the complex interaction of excitatory and inhibitory mechanisms in neuronal processing.
Collapse
Affiliation(s)
- W Hevers
- Department of Psychiatry, University of Mainz, Germany
| | | |
Collapse
|
50
|
McKernan RM, Farrar S, Collins I, Emms F, Asuni A, Quirk K, Broughton H. Photoaffinity labeling of the benzodiazepine binding site of alpha1beta3gamma2 gamma-aminobutyric acidA receptors with flunitrazepam identifies a subset of ligands that interact directly with His102 of the alpha subunit and predicts orientation of these within the benzodiazepine pharmacophore. Mol Pharmacol 1998; 54:33-43. [PMID: 9658187 DOI: 10.1124/mol.54.1.33] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Photoincorporation of ligands into the benzodiazepine site of native gamma-aminobutyric acidA (GABAA) receptors provides useful information about the nature of the benzodiazepine (BZ) binding site. Photoincorporation of flunitrazepam into a single population of GABAA receptors, recombinant human alpha1beta3gamma2, was investigated to probe further the mechanism and orientation of flunitrazepam and other ligands in the BZ binding site. It was concluded that the receptor is primarily derivatized with the entire, unfragmented, flunitrazepam molecule, which undergoes a conformational change during photolysis and largely vacates the benzodiazepine binding site. Investigation of the BZ site after photoincorporation of [3H]flunitrazepam confirmed that binding of other radioligands was unaffected by incorporation of flunitrazepam. This did not correlate with their efficacy but depended on the presence of particular structural features in the molecule. It was observed that affected compounds have a pendant phenyl moiety, analogous to the 5-phenyl group of flunitrazepam, which are proposed to overlap and interact with the same residue or residues in the BZ binding site. Because the major site of flunitrazepam photoincorporation has been shown to be His102, we propose that this group of compounds interacts directly with His 102, whereas compounds of other structural types have no direct interaction with this amino acid. The orientation of ligands within the BZ binding site and their specific interaction with identified amino acids are not well understood. The data in the current study indicate that His102 interacts directly with the pendant phenyl group of diazepam, and further implications for the pharmacophore of the BZ binding site are discussed.
Collapse
Affiliation(s)
- R M McKernan
- Department of Biochemistry, Merck Sharp and Dohme Research Laboratories, Harlow, Essex, UK CM2O 2QR.
| | | | | | | | | | | | | |
Collapse
|