1
|
Altieri DI, Etzion Y, Anderson HD. Cannabinoid receptor agonist attenuates angiotensin II-induced enlargement and mitochondrial dysfunction in rat atrial cardiomyocytes. Front Pharmacol 2023; 14:1142583. [PMID: 37113758 PMCID: PMC10126395 DOI: 10.3389/fphar.2023.1142583] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/13/2023] [Indexed: 04/29/2023] Open
Abstract
Pathological remodeling of atrial tissue renders the atria more prone to arrhythmia upon arrival of electrical triggers. Activation of the renin-angiotensin system is an important factor that contributes to atrial remodeling, which may result in atrial hypertrophy and prolongation of P-wave duration. In addition, atrial cardiomyocytes are electrically coupled via gap junctions, and electrical remodeling of connexins may result in dysfunction of coordinated wave propagation within the atria. Currently, there is a lack of effective therapeutic strategies that target atrial remodeling. We previously proposed that cannabinoid receptors (CBR) may have cardioprotective qualities. CB13 is a dual cannabinoid receptor agonist that activates AMPK signaling in ventricular cardiomyocytes. We reported that CB13 attenuates tachypacing-induced shortening of atrial refractoriness and inhibition of AMPK signaling in the rat atria. Here, we evaluated the effects of CB13 on neonatal atrial rat cardiomyocytes (NRAM) stimulated by angiotensin II (AngII) in terms of atrial myocyte enlargement and mitochondrial function. CB13 inhibited AngII-induced enhancement of atrial myocyte surface area in an AMPK-dependent manner. CB13 also inhibited mitochondrial membrane potential deterioration in the same context. However, AngII and CB13 did not affect mitochondrial permeability transition pore opening. We further demonstrate that CB13 increased Cx43 compared to AngII-treated neonatal rat atrial myocytes. Overall, our results support the notion that CBR activation promotes atrial AMPK activation, and prevents myocyte enlargement (an indicator that suggests pathological hypertrophy), mitochondrial depolarization and Cx43 destabilization. Therefore, peripheral CBR activation should be further tested as a novel treatment strategy in the context of atrial remodeling.
Collapse
Affiliation(s)
- Danielle I. Altieri
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, Winnipeg, MB, Canada
| | - Yoram Etzion
- Cardiac Arrhythmia Research Laboratory, Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Hope D. Anderson
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Canadian Centre for Agri-Food Research in Health and Medicine (CCARM), Albrechtsen Research Centre, St Boniface Hospital, Winnipeg, MB, Canada
- *Correspondence: Hope D. Anderson,
| |
Collapse
|
2
|
Kinney CJ, O'Neill A, Noland K, Huang W, Muriel J, Lukyanenko V, Kane MA, Ward CW, Collier AF, Roche JA, McLenithan JC, Reed PW, Bloch RJ. μ-Crystallin in Mouse Skeletal Muscle Promotes a Shift from Glycolytic toward Oxidative Metabolism. Curr Res Physiol 2021; 4:47-59. [PMID: 34746826 PMCID: PMC8562245 DOI: 10.1016/j.crphys.2021.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 01/24/2023] Open
Abstract
μ-Crystallin, encoded by the CRYM gene, binds the thyroid hormones, T3 and T4. Because T3 and T4 are potent regulators of metabolism and gene expression, and CRYM levels in human skeletal muscle can vary widely, we investigated the effects of overexpression of Crym. We generated transgenic mice, Crym tg, that expressed Crym protein specifically in skeletal muscle at levels 2.6-147.5 fold higher than in controls. Muscular functions, Ca2+ transients, contractile force, fatigue, running on treadmills or wheels, were not significantly altered, although T3 levels in tibialis anterior (TA) muscle were elevated ~190-fold and serum T4 was decreased 1.2-fold. Serum T3 and thyroid stimulating hormone (TSH) levels were unaffected. Crym transgenic mice studied in metabolic chambers showed a significant decrease in the respiratory exchange ratio (RER) corresponding to a 13.7% increase in fat utilization as an energy source compared to controls. Female but not male Crym tg mice gained weight more rapidly than controls when fed high fat or high simple carbohydrate diets. Although labeling for myosin heavy chains showed no fiber type differences in TA or soleus muscles, application of machine learning algorithms revealed small but significant morphological differences between Crym tg and control soleus fibers. RNA-seq and gene ontology enrichment analysis showed a significant shift towards genes associated with slower muscle function and its metabolic correlate, β-oxidation. Protein expression showed a similar shift, though with little overlap. Our study shows that μ-crystallin plays an important role in determining substrate utilization in mammalian muscle and that high levels of μ-crystallin are associated with a shift toward greater fat metabolism.
Collapse
Affiliation(s)
- Christian J. Kinney
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Andrea O'Neill
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Kaila Noland
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Weiliang Huang
- Department of Pharmaceutical Sciences School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Joaquin Muriel
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Valeriy Lukyanenko
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Maureen A. Kane
- Department of Pharmaceutical Sciences School of Pharmacy, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Christopher W. Ward
- Department of Orthopedics School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Alyssa F. Collier
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Joseph A. Roche
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - John C. McLenithan
- Department of Medicine School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Patrick W. Reed
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| | - Robert J. Bloch
- Department of Physiology School of Medicine, University of Maryland Baltimore, Baltimore, MD, 21201, USA
| |
Collapse
|
3
|
Zhang J, Simpson PC, Jensen BC. Cardiac α1A-adrenergic receptors: emerging protective roles in cardiovascular diseases. Am J Physiol Heart Circ Physiol 2020; 320:H725-H733. [PMID: 33275531 DOI: 10.1152/ajpheart.00621.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
α1-Adrenergic receptors (ARs) are catecholamine-activated G protein-coupled receptors (GPCRs) that are expressed in mouse and human myocardium and vasculature, and play essential roles in the regulation of cardiovascular physiology. Though α1-ARs are less abundant in the heart than β1-ARs, activation of cardiac α1-ARs results in important biologic processes such as hypertrophy, positive inotropy, ischemic preconditioning, and protection from cell death. Data from the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT) indicate that nonselectively blocking α1-ARs is associated with a twofold increase in adverse cardiac events, including heart failure and angina, suggesting that α1-AR activation might also be cardioprotective in humans. Mounting evidence implicates the α1A-AR subtype in these adaptive effects, including prevention and reversal of heart failure in animal models by α1A agonists. In this review, we summarize recent advances in our understanding of cardiac α1A-ARs.
Collapse
Affiliation(s)
- Jiandong Zhang
- McAllister Heart Institute, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| | - Paul C Simpson
- Department of Medicine and Research Service, San Francisco Veterans Affairs Medical Center and Cardiovascular Research Institute, University of California, San Francisco, California
| | - Brian C Jensen
- McAllister Heart Institute, University of North Carolina, School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
4
|
Wang Y, Cao R, Yang W, Qi B. SP1-SYNE1-AS1-miR-525-5p feedback loop regulates Ang-II-induced cardiac hypertrophy. J Cell Physiol 2019; 234:14319-14329. [PMID: 30652310 DOI: 10.1002/jcp.28131] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/20/2018] [Indexed: 12/19/2022]
Abstract
Cardiac hypertrophy (CH) has become a huge threat to human health. Recent years, long noncoding RNAs (lncRNAs) have been studied in human diseases, including CH. According to bioinformatics analysis, 10 lncRNAs possibly involved in the progression of CH were screened out. Among which, lncRNA SYNE1 antisense RNA 1 (SYNE1-AS1) could be upregulated by Angiotensin II (Ang-II) in cardiomyocytes. Thus, we chose SYNE1-AS1 to do further study. To identify the biological function of SYNE1-AS1 in CH, SYNE1-AS1 was silenced in Ang-II-induced cardiomyocytes. Results of immunofluorescence staining demonstrated that increased cell surface area in Ang-II-induced cardiomyocytes was reduced by SYNE1-AS1 knockdown. Moreover, the hypertrophic responses were attenuated by SYNE1-AS1 knockdown. Mechanically, SYNE1-AS1 positively regulated Sp1 transcription factor (SP1) by sponging microRNA-525-5p (miR-525-5p). On the basis of previous reports, SP1 can transcriptionally activate lncRNAs. Therefore, we investigated the interaction between SP1 and SYNE1-AS1 promoter. Intriguingly, SYNE1-AS1 was activated by SP1. At last, rescue assays demonstrated the function of SP1-SYNE1-AS1 axis in CH. In conclusion, SP1-induced upregulation of lncRNA SYNE1-AS1 promoted CH via miR-525-5p/SP1 axis.
Collapse
Affiliation(s)
- Ye Wang
- Internal Medicine-Cardiovascular Department, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rongyi Cao
- Blood Transfusion Department, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenwen Yang
- Nursing Training Center, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Bangruo Qi
- Geneme Biotechnology (Shanghai) Co., Ltd, Shanghai, China
| |
Collapse
|
5
|
Wei J, Joshi S, Speransky S, Crowley C, Jayathilaka N, Lei X, Wu Y, Gai D, Jain S, Hoosien M, Gao Y, Chen L, Bishopric NH. Reversal of pathological cardiac hypertrophy via the MEF2-coregulator interface. JCI Insight 2017; 2:91068. [PMID: 28878124 DOI: 10.1172/jci.insight.91068] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 07/19/2017] [Indexed: 11/17/2022] Open
Abstract
Cardiac hypertrophy, as a response to hemodynamic stress, is associated with cardiac dysfunction and death, but whether hypertrophy itself represents a pathological process remains unclear. Hypertrophy is driven by changes in myocardial gene expression that require the MEF2 family of DNA-binding transcription factors, as well as the nuclear lysine acetyltransferase p300. Here we used genetic and small-molecule probes to determine the effects of preventing MEF2 acetylation on cardiac adaptation to stress. Both nonacetylatable MEF2 mutants and 8MI, a molecule designed to interfere with MEF2-coregulator binding, prevented hypertrophy in cultured cardiac myocytes. 8MI prevented cardiac hypertrophy in 3 distinct stress models, and reversed established hypertrophy in vivo, associated with normalization of myocardial structure and function. The effects of 8MI were reversible, and did not prevent training effects of swimming. Mechanistically, 8MI blocked stress-induced MEF2 acetylation, nuclear export of class II histone deacetylases HDAC4 and -5, and p300 induction, without impeding HDAC4 phosphorylation. Correspondingly, 8MI transformed the transcriptional response to pressure overload, normalizing almost all 232 genes dysregulated by hemodynamic stress. We conclude that MEF2 acetylation is required for development and maintenance of pathological cardiac hypertrophy, and that blocking MEF2 acetylation can permit recovery from hypertrophy without impairing physiologic adaptation.
Collapse
Affiliation(s)
| | - Shaurya Joshi
- Department of Molecular and Cellular Pharmacology, and
| | | | | | - Nimanthi Jayathilaka
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Xiao Lei
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Yongqing Wu
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - David Gai
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Sumit Jain
- Department of Molecular and Cellular Pharmacology, and
| | | | | | - Lin Chen
- Departments of Biological Sciences and Chemistry, University of Southern California, Los Angeles, California, USA
| | - Nanette H Bishopric
- Department of Medicine.,Department of Molecular and Cellular Pharmacology, and.,Department of Pediatrics, University of Miami Miller School of Medicine, Miami, Florida, USA
| |
Collapse
|
6
|
Peter AK, Bjerke MA, Leinwand LA. Biology of the cardiac myocyte in heart disease. Mol Biol Cell 2017; 27:2149-60. [PMID: 27418636 PMCID: PMC4945135 DOI: 10.1091/mbc.e16-01-0038] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 05/23/2016] [Indexed: 12/21/2022] Open
Abstract
Cardiac hypertrophy is a major risk factor for heart failure, and it has been shown that this increase in size occurs at the level of the cardiac myocyte. Cardiac myocyte model systems have been developed to study this process. Here we focus on cell culture tools, including primary cells, immortalized cell lines, human stem cells, and their morphological and molecular responses to pathological stimuli. For each cell type, we discuss commonly used methods for inducing hypertrophy, markers of pathological hypertrophy, advantages for each model, and disadvantages to using a particular cell type over other in vitro model systems. Where applicable, we discuss how each system is used to model human disease and how these models may be applicable to current drug therapeutic strategies. Finally, we discuss the increasing use of biomaterials to mimic healthy and diseased hearts and how these matrices can contribute to in vitro model systems of cardiac cell biology.
Collapse
Affiliation(s)
- Angela K Peter
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Maureen A Bjerke
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Leslie A Leinwand
- Biofrontiers Institute, Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|
7
|
Manivasagam S, Velusamy T, Sowndharajan B, Chandrasekar N, Dhanusu S, Vellaichamy E. Valporic acid enhances the Atrial Natriuretic Peptide (ANP) mediated anti-hypertrophic activity by modulating the Npr1 gene transcription in H9c2 cells in vitro. Eur J Pharmacol 2017; 813:94-104. [PMID: 28743391 DOI: 10.1016/j.ejphar.2017.07.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 07/21/2017] [Accepted: 07/21/2017] [Indexed: 12/21/2022]
Abstract
The present study was aimed to determine whether stimulating Npr1 gene activity using Valporic acid (VA), a small short chain fatty acid molecule can enhance ANP mediated anti-hypertrophic activity in isoproterenol (ISO) - treated H9c2 cells in vitro. H9c2 cells were treated with ISO (10-5 M) and co-treated with VA (10-5 M) in the presence and absence of ANP (10-8M), for 48h. ATRA (10-5 M) was used as a positive inducer of Npr1 gene transcription. The mRNA expression of Npr1 and PKG-I genes, proto-oncogenes (c-fos, c-jun and c-myc) and hypertrophic markers (ANP, BNP, α-sk and β-MyHC), genes were determined by quantitative PCR (qPCR). The protein profiling of NPR-A, PKG-I and cGMP were evaluated by Western blot, immunofluorescence and ELISA respectively. A marked reduction in the level of expression of Npr1 (3- fold) and PKG-I (2.5-fold) genes and increased expression of proto-oncogenes (p< 0.001, respectively) and hypertrophic marker genes (p<0.001, respectively) were noticed in the ISO-treated H9c2 cells as compared with control cells. In contrast, the VA treated cells showed maximal Npr1 gene expression (3.5-fold) as compared with ATRA treated cells (2 fold), which is well correlated with the intracellular cGMP levels (80% vs 60%) and reduced (2.5-fold) HDAC -1&-2 mRNA expression. Furthermore, VA or ATRA treatment effectively reversed the ISO-induced altered expression of Npr1 and PKG-I genes, proto-oncogenes, and hypertrophic markers genes. Interestingly, the results of the present study suggest that ANP mediated anti-hypertrophic activity was enhanced with either VA (p<0.001) or ATRA (p<0.01) co-treatment. Together, we conclude that VA in combination with ANP can be a novel therapeutical approach for the treatment and management of left ventricular cardiac hypertrophy.
Collapse
Affiliation(s)
| | - Tamilselvi Velusamy
- Department of Biochemistry, University of Madras, Guindy Campus,Chennai 600025, India
| | - Boopathi Sowndharajan
- Department of Biochemistry, University of Madras, Guindy Campus,Chennai 600025, India
| | - Navvi Chandrasekar
- Department of Biochemistry, University of Madras, Guindy Campus,Chennai 600025, India
| | - Suresh Dhanusu
- Department of Biochemistry, University of Madras, Guindy Campus,Chennai 600025, India
| | - Elangovan Vellaichamy
- Department of Biochemistry, University of Madras, Guindy Campus,Chennai 600025, India.
| |
Collapse
|
8
|
Shekhar A, Lin X, Liu FY, Zhang J, Mo H, Bastarache L, Denny JC, Cox NJ, Delmar M, Roden DM, Fishman GI, Park DS. Transcription factor ETV1 is essential for rapid conduction in the heart. J Clin Invest 2016; 126:4444-4459. [PMID: 27775552 DOI: 10.1172/jci87968] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 09/15/2016] [Indexed: 01/12/2023] Open
Abstract
Rapid impulse propagation in the heart is a defining property of pectinated atrial myocardium (PAM) and the ventricular conduction system (VCS) and is essential for maintaining normal cardiac rhythm and optimal cardiac output. Conduction defects in these tissues produce a disproportionate burden of arrhythmic disease and are major predictors of mortality in heart failure patients. Despite the clinical importance, little is known about the gene regulatory network that dictates the fast conduction phenotype. Here, we have used signal transduction and transcriptional profiling screens to identify a genetic pathway that converges on the NRG1-responsive transcription factor ETV1 as a critical regulator of fast conduction physiology for PAM and VCS cardiomyocytes. Etv1 was highly expressed in murine PAM and VCS cardiomyocytes, where it regulates expression of Nkx2-5, Gja5, and Scn5a, key cardiac genes required for rapid conduction. Mice deficient in Etv1 exhibited marked cardiac conduction defects coupled with developmental abnormalities of the VCS. Loss of Etv1 resulted in a complete disruption of the normal sodium current heterogeneity that exists between atrial, VCS, and ventricular myocytes. Lastly, a phenome-wide association study identified a link between ETV1 and bundle branch block and heart block in humans. Together, these results identify ETV1 as a critical factor in determining fast conduction physiology in the heart.
Collapse
|
9
|
Jiang F, Zhou X, Huang J. Long Non-Coding RNA-ROR Mediates the Reprogramming in Cardiac Hypertrophy. PLoS One 2016; 11:e0152767. [PMID: 27082978 PMCID: PMC4833345 DOI: 10.1371/journal.pone.0152767] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 03/18/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cardiac hypertrophy associated with various cardiovascular diseases results in heart failure and sudden death. A clear understanding of the mechanisms of hypertrophy will benefit the development of novel therapies. Long non-coding RNAs (lncRNAs) have been shown to play essential roles in many biological process, however, whether lncRNA-ROR plays functional roles in the reprogramming of cardiomyocyte remains unclear. METHODOLOGY/PRINCIPAL FINDINGS Here we show that lncRNA-ROR plays important roles in the pathogenesis of cardiac hypertrophy. In hypertrophic heart and cardiomyocytes, the expression of lncRNA-ROR is dramatically increased, downregulation of which attenuates the hypertrophic responses. Furthermore, the expression of lncRNA-ROR negatively correlates with miR-133, whose expression is increased when lncRNA-ROR is knocked down. In line with this, overexpression of miR-133 prevents the elevation of lncRNA-ROR and re-expression of ANP and BNP in cardiomyocytes subject to phenylephrine treatment. CONCLUSIONS/SIGNIFICANCE Taken together, our study demonstrates that lncRNA-ROR promotes cardiac hypertrophy via interacting with miR-133, indicating that lncRNA-ROR could be targeted for developing novel antihypertrophic therapeutics.
Collapse
Affiliation(s)
- Feng Jiang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Zhou
- Department of Vascular and Thyroid Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jing Huang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
- * E-mail:
| |
Collapse
|
10
|
Joshi S, Wei J, Bishopric NH. A cardiac myocyte-restricted Lin28/let-7 regulatory axis promotes hypoxia-mediated apoptosis by inducing the AKT signaling suppressor PIK3IP1. Biochim Biophys Acta Mol Basis Dis 2015; 1862:240-51. [PMID: 26655604 DOI: 10.1016/j.bbadis.2015.12.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/02/2015] [Accepted: 12/01/2015] [Indexed: 12/14/2022]
Abstract
RATIONALE The let-7 family of microRNAs (miRs) regulates critical cell functions, including survival signaling, differentiation, metabolic control and glucose utilization. These functions may be important during myocardial ischemia. MiR-let-7 expression is under tight temporal and spatial control through multiple redundant mechanisms that may be stage-, isoform- and tissue-specific. OBJECTIVE To determine the mechanisms and functional consequences of miR-let-7 regulation by hypoxia in the heart. METHODS AND RESULTS MiR-let-7a, -7c and -7g were downregulated in the adult mouse heart early after coronary occlusion, and in neonatal rat ventricular myocytes subjected to hypoxia. Let-7 repression did not require glucose depletion, and occurred at a post-transcriptional level. Hypoxia also induced the RNA binding protein Lin28, a negative regulator of let-7. Hypoxia ineither induced Lin28 nor repressed miR-let-7 in cardiac fibroblasts. Both changes were abrogated by treatment with the histone deacetylase inhibitor trichostatin A. Restoration of let-7g to hypoxic myocytes and to ischemia-reperfused mouse hearts in vivo via lentiviral transduction potentiated the hypoxia-induced phosphorylation and activation of Akt, and prevented hypoxia-dependent caspase activation and death. Mechanistically, phosphatidyl inositol 3-kinase interacting protein 1 (Pik3ip1), a negative regulator of PI3K, was identified as a novel target of miR-let-7 by a crosslinking technique showing that miR-let-7g specifically targets Pik3ip1 to the cardiac myocyte Argonaute complex RISC. Finally, in non-failing and failing human myocardium, we found specific inverse relationships between Lin28 and miR-let-7g, and between miR-let-7g and PIK3IP1. CONCLUSION A conserved hypoxia-responsive Lin28-miR-let-7-Pik3ip1 regulatory axis is specific to cardiac myocytes and promotes apoptosis during myocardial ischemic injury.
Collapse
Affiliation(s)
- Shaurya Joshi
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jianqin Wei
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Nanette H Bishopric
- Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, United States; Department of Pediatrics, University of Miami Miller School of Medicine, Miami, FL, United States.
| |
Collapse
|
11
|
MicroRNA-20a constrains p300-driven myocardial angiogenic transcription by direct targeting of p300. PLoS One 2013; 8:e79133. [PMID: 24236097 PMCID: PMC3827282 DOI: 10.1371/journal.pone.0079133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/17/2013] [Indexed: 01/23/2023] Open
Abstract
Objective To characterize downstream effectors of p300 acetyltransferase in the myocardium. Background Acetyltransferase p300 is a central driver of the hypertrophic response to increased workload, but its biological targets and downstream effectors are incompletely known. Methods and Results Mice expressing a myocyte-restricted transgene encoding acetyltransferase p300, previously shown to develop spontaneous hypertrophy, were observed to undergo robust compensatory blood vessel growth together with increased angiogenic gene expression. Chromatin immunoprecipitation demonstrated binding of p300 to the enhancers of the angiogenic regulators Angpt1 and Egln3. Interestingly, p300 overexpression in vivo was also associated with relative upregulation of several members of the anti-angiogenic miR-17∼92 cluster in vivo. Confirming this finding, both miR-17-3p and miR-20a were upregulated in neonatal rat ventricular myocytes following adenoviral transduction of p300. Relative expression of most members of the 17∼92 cluster was similar in all 4 cardiac chambers and in other organs, however, significant downregulation of miR-17-3p and miR-20a occurred between 1 and 8 months of age in both wt and tg mice. The decline in expression of these microRNAs was associated with increased expression of VEGFA, a validated miR-20a target. In addition, miR-20a was demonstrated to directly repress p300 expression through a consensus binding site in the p300 3′UTR. In vivo transduction of p300 resulted in repression both of p300 and of p300-induced angiogenic transcripts. Conclusion p300 drives an angiogenic transcription program during hypertrophy that is fine-tuned in part through direct repression of p300 by miR-20a.
Collapse
|
12
|
Jain S, Wei J, Mitrani LR, Bishopric NH. Auto-acetylation stabilizes p300 in cardiac myocytes during acute oxidative stress, promoting STAT3 accumulation and cell survival. Breast Cancer Res Treat 2012; 135:103-14. [PMID: 22562121 DOI: 10.1007/s10549-012-2069-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 04/14/2012] [Indexed: 12/15/2022]
Abstract
The nuclear acetyltransferase p300 is rapidly and stably induced in the heart during hemodynamic stress, but the mechanism of this induction is unknown. To determine the role of oxidative stress in p300 induction, we exposed neonatal rat cardiac myocytes to doxorubicin (DOX, 1 μM) or its vehicle, and monitored p300 protein content and stability for 24 h. Levels of p300 rose substantially within 1 h and remained elevated for at least 24 h, while p300 transcript levels declined. In the presence of cycloheximide, the estimated half-life of p300 in control cells was approximately 4.5 h, typical of an immediate-early response protein. DOX treatment prolonged p300 t(1/2) to >24 h, indicating that the sharp rise in p300 levels was attributable to rapid protein stabilization. p300 stabilization was entirely due to an increase in acetylated p300 species with greatly enhanced resistance to proteasomal degradation. The half-life of p300 was dependent on its acetyltransferase activity, falling in the presence of p300 inhibitors curcumin and anacardic acid, and increasing with histone deacetylase (HDAC) inhibition. At the same time, acetyl-STAT3, phospho-STAT3-(Tyr 705) and -(Ser 727) increased, together with a prolongation of STAT3 half-life. SiRNA-mediated p300 knockdown abrogated all of these effects, and strongly enhanced DOX-mediated myocyte apoptosis. We conclude that DOX induces an acute amplification of p300 levels through auto-acetylation and stabilization. In turn, elevated p300 provides a key defense against acute oxidative stress in cardiac myocytes by acetylation, activation, and stabilization of STAT3. Our results suggest that HDAC inhibitors could potentially reduce acute anthracycline-mediated cardiotoxicity by promoting p300 auto-acetylation.
Collapse
Affiliation(s)
- Sumit Jain
- Departments of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33101, USA
| | | | | | | |
Collapse
|
13
|
Sharma S, Liu J, Wei J, Yuan H, Zhang T, Bishopric NH. Repression of miR-142 by p300 and MAPK is required for survival signalling via gp130 during adaptive hypertrophy. EMBO Mol Med 2012; 4:617-32. [PMID: 22367739 PMCID: PMC3407949 DOI: 10.1002/emmm.201200234] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 02/16/2012] [Accepted: 02/20/2012] [Indexed: 11/22/2022] Open
Abstract
An increase in cardiac workload, ultimately resulting in hypertrophy, generates oxidative stress and therefore requires the activation of both survival and growth signal pathways. Here, we wanted to characterize the regulators, targets and mechanistic roles of miR-142, a microRNA (miRNA) negatively regulated during hypertrophy. We show that both miRNA-142-3p and -5p are repressed by serum-derived growth factors in cultured cardiac myocytes, in models of cardiac hypertrophy in vivo and in human cardiomyopathic hearts. Levels of miR-142 are inversely related to levels of acetyltransferase p300 and MAPK activity. When present, miR-142 inhibits both survival and growth pathways by directly targeting nodal regulators p300 and gp130. MiR-142 also potently represses multiple components of the NF-κB pathway, preventing cytokine-mediated NO production and blocks translation of α-actinin. Forced expression of miR-142 during hypertrophic growth induced extensive apoptosis and cardiac dysfunction; conversely, loss of miR-142 fully rescued cardiac function in a murine heart failure model. Downregulation of miR-142 is required to enable cytokine-mediated survival signalling during cardiac growth in response to haemodynamic stress and is a critical element of adaptive hypertrophy.
Collapse
Affiliation(s)
- Salil Sharma
- Department of Molecular and Cellular Pharmacology, University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | | | | | | | | | | |
Collapse
|
14
|
Bass GT, Ryall KA, Katikapalli A, Taylor BE, Dang ST, Acton ST, Saucerman JJ. Automated image analysis identifies signaling pathways regulating distinct signatures of cardiac myocyte hypertrophy. J Mol Cell Cardiol 2011; 52:923-30. [PMID: 22142594 DOI: 10.1016/j.yjmcc.2011.11.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/08/2011] [Accepted: 11/13/2011] [Indexed: 11/24/2022]
Abstract
Cardiac hypertrophy is controlled by a complex signal transduction and gene regulatory network, containing multiple layers of crosstalk and feedback. While numerous individual components of this network have been identified, understanding how these elements are coordinated to regulate heart growth remains a challenge. Past approaches to measure cardiac myocyte hypertrophy have been manual and often qualitative, hindering the ability to systematically characterize the network's higher-order control structure and identify therapeutic targets. Here, we develop and validate an automated image analysis approach for objectively quantifying multiple hypertrophic phenotypes from immunofluorescence images. This approach incorporates cardiac myocyte-specific optimizations and provides quantitative measures of myocyte size, elongation, circularity, sarcomeric organization, and cell-cell contact. As a proof-of-concept, we examined the hypertrophic response to α-adrenergic, β-adrenergic, tumor necrosis factor (TNFα), insulin-like growth factor-1 (IGF-1), and fetal bovine serum pathways. While all five hypertrophic pathways increased myocyte size, other hypertrophic metrics were differentially regulated, forming a distinct phenotype signature for each pathway. Sarcomeric organization was uniquely enhanced by α-adrenergic signaling. TNFα and α-adrenergic pathways markedly decreased cell circularity due to increased myocyte protrusion. Surprisingly, adrenergic and IGF-1 pathways differentially regulated myocyte-myocyte contact, potentially forming a feed-forward loop that regulates hypertrophy. Automated image analysis unlocks a range of new quantitative phenotypic data, aiding dissection of the complex hypertrophic signaling network and enabling myocyte-based high-content drug screening.
Collapse
Affiliation(s)
- Gregory T Bass
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22908-0759, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Xie MJ, Chang H, Wang YY, Zhang L, Song Z, Guo WG, Wang T, Che HL, Yu ZB. Evidence that apoptotic signalling in hypertrophic cardiomyocytes is determined by mitochondrial pathways involving protein kinase Cδ. Clin Exp Pharmacol Physiol 2011; 37:1120-8. [PMID: 20880184 DOI: 10.1111/j.1440-1681.2010.05447.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. Cardiomyocyte apoptosis plays an important role in the transition from cardiac hypertrophy to heart failure. Hyper-trophic cardiomyocytes show an increased susceptibility to apoptotic stimuli, but the mechanisms remain unclear. 2. We hypothesized that activated protein kinase Cδ (PKCδ) associated with cardiomyocyte hypertrophy could move from the cytoplasm to mitochondria, and subsequently trigger the apoptotic signalling pathway. 3. Hypertrophy was induced in cultured neonatal rat cardiomyocytes using endothelin-1 (ET-1), insulin-like growth factor-1 (IGF-1), thyroid hormone (T(3) ) or angiotensin-II (AngII). AngII at high concentrations (1 and 10 nmol/L) also induced apoptosis. Hypertrophic cells were then treated with AngII with or without specific inhibitors of the angiotensin receptors AT(1) and AT(2) (losartan and PD123319, respectively), endothelin receptor A (BQ-123) and PKCδ (rottlerin). ET-1 plus AngII had a threefold and significant increase in apoptosis in the hypertrophic cultures compared with AngII alone. In association with the increase in apoptosis, this treatment also promoted mitochondrial translocation of PKCδ, and increased expression of cleaved caspase 9 and activity of caspase 3. All of these increases were modulated by concurrent use of the PKCδ inhibitor, rottlerin. 4. The results suggest that apoptotic signalling in hypertrophic cardiomyocytes is determined by mitochondrial pathways involving PKCδ.
Collapse
Affiliation(s)
- Man-Jiang Xie
- Department of Aerospace Physiology, Fourth Military Medical University, Xi'an, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Koshman YE, Piano MR, Russell B, Schwertz DW. Signaling responses after exposure to 5 alpha-dihydrotestosterone or 17 beta-estradiol in norepinephrine-induced hypertrophy of neonatal rat ventricular myocytes. J Appl Physiol (1985) 2009; 108:686-96. [PMID: 20044473 DOI: 10.1152/japplphysiol.00994.2009] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Androgens appear to enhance, whereas estrogens mitigate, cardiac hypertrophy. However, signaling pathways in cells for short (3 min) and longer term (48 h) treatment with 17beta-estradiol (E2) or 5 alpha-dihydrotestosterone (DHT) are understudied. We compared the effect of adrenergic stimulation by norepinephrine (NE; 1 microM) alone or in combination with DHT (10 nM) or E2 (10 nM) treatment in neonatal rat ventricular myocytes (NRVMs) by cell area, protein synthesis, sarcomeric structure, gene expression, phosphorylation of extracellular signal-regulated (ERK), and focal adhesion kinases (FAK), and phospho-FAK nuclear localization. NE alone elicited the expected hypertrophy and strong sarcomeric organization, and DHT alone gave a similar but more modest response, whereas E2 did not alter cell size. Effects of NE dominated when used with either E2 or DHT with all combinations. Both sex hormones alone rapidly activated FAK but not ERK. Long-term or brief exposure to E2 attenuated NE-induced FAK phosphorylation, whereas DHT had no effect. Neither hormone altered NE-elicited ERK activation. Longer term exposure to E2 alone reduced FAK phosphorylation and reduced nuclear phospho-FAK, whereas its elevation was seen in the presence of NE with both sex hormones. The mitigating effects of E2 on the NE-elicited increase in cell size and the hypertrophic effect of DHT in NRVMs are in accordance with results observed in whole animal models. This is the first report of rapid, nongenomic sex hormone signaling via FAK activation and altered FAK trafficking to the nucleus in heart cells.
Collapse
Affiliation(s)
- Yevgeniya E Koshman
- Department of Physiology and Biophysics, University of Illinois at Chicago, MC 901, 835 South Wolcott Ave., Chicago, IL 60612-7342, USA
| | | | | | | |
Collapse
|
17
|
Patrizio M, Vago V, Musumeci M, Fecchi K, Sposi NM, Mattei E, Catalano L, Stati T, Marano G. cAMP-mediated beta-adrenergic signaling negatively regulates Gq-coupled receptor-mediated fetal gene response in cardiomyocytes. J Mol Cell Cardiol 2008; 45:761-9. [PMID: 18851973 DOI: 10.1016/j.yjmcc.2008.09.120] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2008] [Revised: 09/10/2008] [Accepted: 09/12/2008] [Indexed: 11/25/2022]
Abstract
The treatment with beta-blockers causes an enhancement of the norepinephrine-induced fetal gene response in cultured cardiomyocytes. Here, we tested whether the activation of cAMP-mediated beta-adrenergic signaling antagonizes alpha(1)-adrenergic receptor (AR)-mediated fetal gene response. To address this question, the fetal gene program, of which atrial natriuretic peptide (ANP) and the beta-isoform of myosin heavy chain are classical members, was induced by phenylephrine (PE), an alpha(1)-AR agonist. In cultured neonatal rat cardiomyocytes, we found that stimulation of beta-ARs with isoproterenol, a beta-AR agonist, inhibited the fetal gene expression induced by PE. Similar results were also observed when cardiomyocytes were treated with forskolin (FSK), a direct activator of adenylyl cyclase, or 8-CPT-6-Phe-cAMP, a selective activator of protein kinase A (PKA). Conversely, the PE-induced fetal gene expression was further upregulated by H89, a selective PKA inhibitor. To evaluate whether these results could be generalized to Gq-mediated signaling and not specifically to alpha(1)-ARs, cardiomyocytes were treated with prostaglandin F(2)alpha, another Gq-coupled receptor agonist, which is able to promote fetal gene expression. This treatment caused an increase of both ANP mRNA and protein levels, which was almost completely abolished by FSK treatment. The capability of beta-adrenergic signaling to regulate the fetal gene expression was also evaluated in vivo conditions by using beta1- and beta2-AR double knockout mice, in which the predominant cardiac beta-AR subtypes are lacking, or by administering isoproterenol (ISO), a beta-AR agonist, at a subpressor dose. A significant increase of the fetal gene expression was found in beta(1)- and beta(2)-AR gene deficient mice. Conversely, we found that ANP, beta-MHC and skACT mRNA levels were significantly decreased in ISO-treated hearts. Collectively, these data indicate that cAMP-mediated beta-adrenergic signaling negatively regulates Gq cascade activation-induced fetal gene expression in cultured cardiomyocytes and that this inhibitory regulation is already operative in the mouse heart under physiological conditions.
Collapse
Affiliation(s)
- Mario Patrizio
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Wei JQ, Shehadeh L, Mitrani J, Pessanha M, Slepak TI, Webster KA, Bishopric NH. Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 2008; 118:934-46. [PMID: 18697823 PMCID: PMC2726266 DOI: 10.1161/circulationaha.107.760488] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Acetyltransferase p300 is essential for cardiac development and is thought to be involved in cardiac myocyte growth through MEF2- and GATA4-dependent transcription. However, the importance of p300 in the modulation of cardiac growth in vivo is unknown. METHODS AND RESULTS Pressure overload induced by transverse aortic coarctation, postnatal physiological growth, and human heart failure were associated with large increases in p300. Minimal transgenic overexpression of p300 (1.5- to 3.5-fold) induced striking myocyte and cardiac hypertrophy. Both mortality and cardiac mass were directly related to p300 protein dosage. Heterozygous loss of a single p300 allele reduced pressure overload-induced hypertrophy by approximately 50% and rescued the hypertrophic phenotype of p300 overexpressers. Increased p300 expression had no effect on total histone deacetylase activity but was associated with proportional increases in p300 acetyltransferase activity and acetylation of the p300 substrates histone 3 and GATA-4. Remarkably, a doubling of p300 levels was associated with the de novo acetylation of MEF2. Consistent with this, genes specifically upregulated in p300 transgenic hearts were highly enriched for MEF2 binding sites. CONCLUSIONS Small increments in p300 are necessary and sufficient to drive myocardial hypertrophy, possibly through acetylation of MEF2 and upstream of signals promoting phosphorylation or nuclear export of histone deacetylases. We propose that induction of myocardial p300 content is a primary rate-limiting event in the response to hemodynamic loading in vivo and that p300 availability drives and constrains adaptive myocardial growth. Specific reduction of p300 content or activity may diminish stress-induced hypertrophy and forestall the development of heart failure.
Collapse
Affiliation(s)
- Jian Qin Wei
- University of Miami School of Medicine, Departments of Molecular and Cellular Pharmacology, Medicine and Pediatrics
| | - Lina Shehadeh
- University of Miami School of Medicine, Departments of Molecular and Cellular Pharmacology, Medicine and Pediatrics
| | - James Mitrani
- University of Miami School of Medicine, Departments of Molecular and Cellular Pharmacology, Medicine and Pediatrics
| | - Monica Pessanha
- University of Miami School of Medicine, Departments of Molecular and Cellular Pharmacology, Medicine and Pediatrics
| | - Tatiana I. Slepak
- University of Miami School of Medicine, Departments of Molecular and Cellular Pharmacology, Medicine and Pediatrics
| | - Keith A. Webster
- University of Miami School of Medicine, Departments of Molecular and Cellular Pharmacology, Medicine and Pediatrics
| | - Nanette H. Bishopric
- University of Miami School of Medicine, Departments of Molecular and Cellular Pharmacology, Medicine and Pediatrics
| |
Collapse
|
19
|
Tran TH, Andreka P, Rodrigues CO, Webster KA, Bishopric NH. Jun kinase delays caspase-9 activation by interaction with the apoptosome. J Biol Chem 2007; 282:20340-50. [PMID: 17483091 DOI: 10.1074/jbc.m702210200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of c-Jun N-terminal kinase 1/2 (JNK) can delay oxidant-induced cell death, but the mechanism is unknown. We found that oxidant stress of cardiac myocytes activated both JNK and mitochondria-dependent apoptosis and that expression of JNK inhibitory mutants accelerated multiple steps in this pathway, including the cleavage and activation of caspases-3 and -9 and DNA internucleosomal cleavage, without affecting the rate of cytochrome c release; JNK inhibition also increased caspase-3 and -9 cleavage in a cell-free system. On activation by GSNO or H(2)O(2), JNK formed a stable association with oligomeric Apaf-1 in a approximately 1.4-2.0 mDa pre-apoptosome complex. Formation of this complex could be triggered by addition of cytochrome c and ATP to the cell-free cytosol. JNK inhibition abrogated JNK-Apaf-1 association and accelerated the association of procaspase-9 and Apaf-1 in both intact cells and cell-free extracts. We conclude that oxidant-activated JNK associates with Apaf-1 and cytochrome c in a catalytically inactive complex. We propose that this interaction delays formation of the active apoptosome, promoting cell survival during short bursts of oxidative stress.
Collapse
Affiliation(s)
- Thanh H Tran
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | | | | | | | | |
Collapse
|
20
|
Osadchii OE. Cardiac hypertrophy induced by sustained β-adrenoreceptor activation: pathophysiological aspects. Heart Fail Rev 2007; 12:66-86. [PMID: 17387610 DOI: 10.1007/s10741-007-9007-4] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
Cardiac hypertrophy is promoted by adrenergic over-activation and represents an independent risk factor for cardiovascular morbidity and mortality. The basic knowledge about mechanisms by which sustained adrenergic activation promotes myocardial growth, as well as understanding how structural changes in hypertrophied myocardium could affect myocardial function has been acquired from studies using an animal model of chronic systemic beta-adrenoreceptor agonist administration. Sustained beta-adrenoreceptor activation was shown to enhance the synthesis of myocardial proteins, an effect mediated via stimulation of myocardial growth factors, up-regulation of nuclear proto-oncogenes, induction of cardiac oxidative stress, as well as activation of mitogen-activated protein kinases and phosphatidylinositol 3-kinase. Sustained beta-adrenoreceptor activation contributes to impaired cardiac autonomic regulation as evidenced by blunted parasympathetically-mediated cardiovascular reflexes as well as abnormal storage of myocardial catecholamines. Catecholamine-induced cardiac hypertrophy is associated with reduced contractile responses to adrenergic agonists, an effect attributed to downregulation of myocardial beta-adrenoreceptors, uncoupling of beta-adrenoreceptors and adenylate cyclase, as well as modifications of downstream cAMP-mediated signaling. In compensated cardiac hypertrophy, these changes are associated with preserved or even enhanced basal ventricular systolic function due to increased sarcoplasmic reticulum Ca(2+) content and Ca(2+)-induced sarcoplasmic reticulum Ca(2+) release. The increased availability of Ca(2+) to maintain cardiomyocyte contraction is attributed to prolongation of the action potential due to inhibition of the transient outward potassium current as well as stimulation of the reverse mode of the Na(+)-Ca(2+) exchange. Further progression of cardiac hypertrophy towards heart failure is due to abnormalities in Ca(2+) handling, necrotic myocardial injury, and increased myocardial stiffness due to interstitial fibrosis.
Collapse
Affiliation(s)
- Oleg E Osadchii
- Cardiology Group, School of Clinical Sciences, University Clinical Departments, University of Liverpool, The Duncan Building, Daulby Street, Liverpool, L69 3GA, UK.
| |
Collapse
|
21
|
Kong KY, Kedes L. Leucine 135 of Tropomodulin-1 Regulates Its Association with Tropomyosin, Its Cellular Localization, and the Integrity of Sarcomeres. J Biol Chem 2006; 281:9589-99. [PMID: 16434395 DOI: 10.1074/jbc.m512064200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tropomodulin-1 (Tmod-1) is a well defined actin-capping protein that interacts with tropomyosin (TM) at the pointed end of actin filaments. Previous studies by others have mapped its TM-binding domain to the amino terminus from amino acid 39 to 138. In this study, we have identified several amino acid residues on Tmod-1 that are important for its interaction with TM5 (a nonmuscle TM isoform). Glutathione S-transferase affinity chromatography and immunoprecipitation assays reveal that Tmod sense mutations of either amino acid 134, 135, or 136 causes various degrees of loss of function of Tmod TM-binding ability. The reduction of TM-binding ability was relatively mild (reduced approximately 20-40%) from the G136A Tmod mutant but more substantially (reduced approximately 50-100%) from the I134D, L135E, and L135V Tmod mutants. In addition, mutation at any of these three sites dramatically alters the subcellular location of Tmod-1 when introduced into mammalian cells. Further analysis of these three mutants uncovered a previously unknown nuclear trafficking function of Tmod-1, and residues 134, 135, and 136 are located within a nuclear export signal motif. As a result, mutation on either residue 134 or residue 135 not only will cause a significant reduction of the Tmod-1 ability to bind to TM5 but also lead to predominant nuclear localization of Tmod-1 by crippling its nuclear export mechanism. The failure of the Tmod mutations to fully associate with TM5 when introduced into neonatal rat cardiomyocytes was also associated with an accelerated and severe fragmentation of sarcomeric structures compared with overexpression of wild type Tmod-1. The multiple losses of function of Tmod engendered by these missense mutations are most severe with the single substitution of residue 135.
Collapse
Affiliation(s)
- Kimi Y Kong
- Institute for Genetic Medicine and Department of Biochemistry and Molecular Biology, Keck School of Medicine of the University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
22
|
Abstract
This review provides an overview of the evolutionary path to the mammalian heart from the beginnings of life (about four billion years ago ) to the present. Essential tools for cellular homeostasis and for extracting and burning energy are still in use and essentially unchanged since the appearance of the eukaryotes. The primitive coelom, characteristic of early multicellular organisms ( approximately 800 million years ago), is lined by endoderm and is a passive receptacle for gas exchange, feeding, and sexual reproduction. The cells around this structure express genes homologous to NKX2.5/tinman, and gradual specialization of this "gastroderm" results in the appearance of mesoderm in the phylum Bilateria, which will produce the first primitive cardiac myocytes. Investment of the coelom by these mesodermal cells forms a "gastrovascular" structure. Further evolution of this structure in the bilaterian branches Ecdysoa (Drosophila) and Deuterostoma (amphioxus) culminate in a peristaltic tubular heart, without valves, without blood vessels or blood, but featuring a single layer of contracting mesoderm. The appearance of Chordata and subsequently the vertebrates is accompanied by a rapid structural diversification of this primitive linear heart: looping, unidirectional circulation, an enclosed vasculature, and the conduction system. A later innovation is the parallel circulation to the lungs, followed by the appearance of septa and the four-chambered heart in reptiles, birds, and mammals. With differentiation of the cardiac chambers, regional specialization of the proteins in the cardiac myocyte can be detected in the teleost fish and amphibians. In mammals, growth constraints are placed on the heart, presumably to accommodate the constraints of the body plan and the thoracic cavity, and adult cardiac myocytes lose the ability to re-enter the cell cycle on demand. Mammalian cardiac myocyte innervation betrays the ancient link between the heart, the gut, and reproduction: the vagus nerve controlling heart rate emanates from centers in the central nervous system regulating feeding and affective behavior.
Collapse
Affiliation(s)
- Nanette H Bishopric
- Department of Molecular and Cellular Pharmacology, University of Miami, Miami, Florida 33101, USA.
| |
Collapse
|
23
|
Zhang Y, Yan J, Chen K, Song Y, Lu Z, Chen M, Han C, Zhang Y. Different roles of alpha1-adrenoceptor subtypes in mediating cardiomyocyte protein synthesis in neonatal rats. Clin Exp Pharmacol Physiol 2005; 31:626-33. [PMID: 15479171 DOI: 10.1111/j.1440-1681.2004.04063.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
1. Three different alpha1-adrenoceptor subtypes, designated alpha1A, alpha1B and alpha1D, have been cloned and identified pharmacologically in cardiomyocytes. In vitro studies have suggested that alpha1-adrenoceptors play an important role in facilitating cardiac hypertrophy. However, it remains controversial as to which subtype of alpha1-adrenoceptors is involved in this response. In the present study, we investigated the different role of each alpha1-adrenoceptor subtype in mediating cardiomyocyte protein synthesis, which is a most important characteristic of cardiac hypertrophy in cultured neonatal rat cardiomyocytes. 2. Cardiomyocyte hypertrophy was monitored by the following characteristic phenotypic changes: (i) an increase in protein synthesis; (ii) an increase in total protein content; and (iii) an increase in cardiomyocyte size. 3. The role of each alpha1-adrenoceptor subtype in mediating cardiomyocyte protein synthesis was investigated by the effect of specific alpha1-adrenoceptor subtype-selective antagonists on noradrenaline-induced [3H]-leucine incorporation. In addition, pKB values for alpha1-adrenoceptor subtype-selective antagonists were calculated and compared with the corresponding pKi values to further identify their effects. 4. Activation of alpha1-adrenoceptors by phenylephrine or noradrenaline in the presence of propranolol significantly increased [3H]-leucine incorporation, protein content and cell size. 5. Pre-incubating cardiomyocytes with 5-methyl-urapidil, RS 17053 or WB 4101 significantly inhibited noradrenaline-induced [3H]-leucine incorporation. However, there was no effect when cardiomyocytes were pre-incubated with BMY 7378. The correlation coefficients between pKB values for alpha1-adrenoceptor subtype-selective antagonists and pKi values obtained from cloned alpha1A-, alpha1B- or alpha1D-adrenoceptors were 0.92 (P <0.01), 0.66 (P >0.05) and 0.24 (P >0.05), respectively. 6. Our results suggest that the alpha1-adrenoceptor is dominantly responsible for adrenergic hypertrophy of cultured cardiomyocytes in neonatal rats. The efficiency in mediating cardiomyocyte protein synthesis is alpha1A > alpha1B >> alpha1D.
Collapse
Affiliation(s)
- Yongzhen Zhang
- Institute of Vascular Medicine, Peking University Third Hospital and Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Turner MS, Haywood GA, Andreka P, You L, Martin PE, Evans WH, Webster KA, Bishopric NH. Reversible connexin 43 dephosphorylation during hypoxia and reoxygenation is linked to cellular ATP levels. Circ Res 2004; 95:726-33. [PMID: 15358666 DOI: 10.1161/01.res.0000144805.11519.1e] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Altered gap junction coupling of cardiac myocytes during ischemia may contribute to development of lethal arrhythmias. The phosphoprotein connexin 43 (Cx43) is the major constituent of gap junctions. Dephosphorylation of Cx43 and uncoupling of gap junctions occur during ischemia, but the significance of Cx43 phosphorylation in this setting is unknown. Here we show that Cx43 dephosphorylation in synchronously contracting myocytes during ischemia is reversible, independent of hypoxia, and closely associated with cellular ATP levels. Cx43 became profoundly dephosphorylated during hypoxia only when glucose supplies were limited and was completely rephosphorylated within 30 minutes of reoxygenation. Similarly, direct reduction of ATP by various combinations of metabolic inhibitors and by ouabain was closely paralleled by loss of phosphoCx43 and recovery of phosphoCx43 accompanied restoration of ATP. Dephosphorylation of Cx43 could not be attributed to hypoxia, acid pH or secreted metabolites, or to AMP-activated protein kinase; moreover, the process was selective for Cx43 because levels of phospho-extracellular signal regulated kinase (ERK)1/2 were increased throughout. Rephosphorylation of Cx43 was not dependent on new protein synthesis, or on activation of protein kinases A or G, ERK1/2, p38 mitogen-activated protein kinase, or Jun kinase; however, broad-spectrum protein kinase C inhibitors prevented Cx43 rephosphorylation while also sensitizing myocytes to reoxygenation-mediated cell death. We conclude that Cx43 is reversibly dephosphorylated and rephosphorylated during hypoxia and reoxygenation by a novel mechanism that is sensitive to nonlethal fluctuations in cellular ATP. The role of this regulated phosphorylation in the adaptation to ischemia remains to be determined.
Collapse
Affiliation(s)
- Mark S Turner
- Department of Molecular and Cellular Pharmacology, University of Miami, Fla, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Kong KY, Kedes L. Cytoplasmic Nuclear Transfer of the Actin-capping Protein Tropomodulin. J Biol Chem 2004; 279:30856-64. [PMID: 15123707 DOI: 10.1074/jbc.m302845200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tropomodulin (Tmod) is a cytoskeletal actin-capping protein that interacts with tropomyosin at the pointed end of actin filaments. E-Tmod is an isoform that expresses predominantly in cardiac cells and slow skeletal muscle fibers. We unexpectedly discovered significant levels of Tmod in nuclei and then defined peptide domains in Tmod responsible for nuclear import and export. These domains resemble, and function as, a nuclear export signal (NES) and a pattern 4 nuclear localization signal (NLS). Both motifs are conserved in other Tmod isoforms and across species. Comparisons of wild-type Tmod and Tmod carrying mutations in these peptide domains revealed that Tmod normally traffics through the nucleus. These observations logically presuppose that Tmod functions may include a nuclear role. Indeed, increasing Tmod in the nucleus severely hampered myogenic differentiation and selectively suppressed muscle-specific gene expression (endogenous p21, myosin heavy chain, myogenin, and Tmod) but did not affect endogenous glyceraldehyde-3-phosphate dehydrogenase or expression from a transfected E-GFP vector. These results suggest that, at least in myogenic cells, nuclear Tmod may be involved in the differentiation process.
Collapse
MESH Headings
- Actins/chemistry
- Active Transport, Cell Nucleus
- Amino Acid Motifs
- Animals
- Blotting, Northern
- Blotting, Western
- Carrier Proteins/chemistry
- Carrier Proteins/metabolism
- Cell Differentiation
- Cell Line
- Cell Nucleus/metabolism
- Cells, Cultured
- Cytoplasm/metabolism
- Cytoskeleton/metabolism
- Electrophoresis, Polyacrylamide Gel
- Green Fluorescent Proteins
- Lentivirus/genetics
- Luminescent Proteins/metabolism
- Mice
- Mice, Inbred C3H
- Microfilament Proteins/chemistry
- Microfilament Proteins/metabolism
- Microscopy, Fluorescence
- Microscopy, Phase-Contrast
- Models, Genetic
- Mutagenesis, Site-Directed
- Mutation
- Myocytes, Cardiac/cytology
- Nuclear Localization Signals
- Plasmids/metabolism
- Protein Isoforms
- Protein Structure, Tertiary
- RNA/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Recombinant Fusion Proteins/metabolism
- Transfection
- Tropomodulin
Collapse
Affiliation(s)
- Kimi Y Kong
- Institute for Genetic Medicine and Department of Biochemistry & Molecular Biology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | |
Collapse
|
26
|
Motlagh D, Hartman TJ, Desai TA, Russell B. Microfabricated grooves recapitulate neonatal myocyte connexin43 and N-cadherin expression and localization. ACTA ACUST UNITED AC 2003; 67:148-57. [PMID: 14517872 DOI: 10.1002/jbm.a.10083] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Our objective is to alter the surface topography on which cardiac myocytes are grown in culture so that they more closely resemble their in vivo counterparts. Microtextured silicone substrata were made using photolithography and microfabrication techniques and then coated with laminin. Primary cardiac myocytes from newborn rats were plated on microgrooved and nontextured substrata. Myocytes were highly oriented on 5 microm grooves (69.8 +/- 2.0%) and significantly different, p < 0.0001, compared with randomly oriented cells grown on nontextured surfaces (2.9 +/- 0.95%; n = 19). Cells on shallower, 2 microm, grooves were slightly less well oriented (46.9 +/- 4.3%, n = 5, p < 0.001). The lateral spacings of the grooves were altered to examine changes in cell-to-cell contact by confocal immunocytochemistry and quantitative protein analysis. Connexin43 and N-cadherin were distributed around the perimeter of the myocytes plated on 10 x 5 x 5 microgrooved surfaces, similar to the localization found in the neonate. Connexin43 expression in cultures on 5 microm deep grooved substrata was equal to the neonatal heart, whereas it differed in nontextured surfaces. We conclude that it is necessary to combine groove depth (5 microm) and lateral ridge dimensions between grooves (5 microm) in order to recapitulate connexin43 and N-cadherin expression levels and subcellular localization to that of the neonate.
Collapse
Affiliation(s)
- Delara Motlagh
- Department of Physiology and Biophysics (M/C 901), University of Illinois at Chicago, 835 S. Wolcott Avenue, Chicago Illinois 60612-7342, USA
| | | | | | | |
Collapse
|
27
|
Hong Y, Hui SSC, Chan BTY, Hou J. Effect of berberine on catecholamine levels in rats with experimental cardiac hypertrophy. Life Sci 2003; 72:2499-507. [PMID: 12650858 DOI: 10.1016/s0024-3205(03)00144-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The aim of this study is to investigate the effect of berberine on catecholamine level (adrenaline and noradrenaline) in rats with experimental cardiac hypertrophy. Cardiac hypertrophy(CH) was induced by suprarenal abdominal aorta constriction, and the drugs were administered for 8 weeks starting from 4 weeks after surgery. The degree of cardiac hypertrophy was determined by heart and left ventricular weight. The level of adrenaline(AD) and noradrenaline(NA) was detected by HPLC. The data showed that in the CH model rats, the level of plasma and left ventricular tissue AD, and the level of NA in plasma were higher than that of the age-matched controls(indicating increased "total" sympathetic activity). The level of NA in left ventricular tissue of CH model rats was however lower than the age-matched controls. Berberine and captopril showed significant effect on inhibiting the development of cardiac hypertrophy. Berberine decreased plasma NA level and the AD level both in plasma and left ventricular tissue, but had no effect on improving the cardiac NA depletion. Captopril showed significant effect on increasing the depleted cardiac NA and in reducing the elevated plasma NA level. These findings show the efficacy of berberine on modulating the sympathetic nervous activity of rats with experimental cardiac hypertrophy, and reflect the therapeutic potentials of berberine in patients with cardiac hypertrophy and chronic heart failure.
Collapse
Affiliation(s)
- Ying Hong
- Division of Chinese Medicine, School of Professional and Continuing Education, The University of Hong Kong, 1/F Austin Tower, 22-26A Austin Avenue, Tsim Sha Tsui, Kowloon, Hong Kong, China.
| | | | | | | |
Collapse
|
28
|
Yeh T, Wechsler AS, Graham L, Loesser KE, Sica DA, Wolfe L, Jakoi ER. Central sympathetic blockade ameliorates brain death-induced cardiotoxicity and associated changes in myocardial gene expression. J Thorac Cardiovasc Surg 2002; 124:1087-98. [PMID: 12447173 DOI: 10.1067/mtc.2002.124887] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE Brain death results in cardiac injury and hemodynamic instability. After brain death, catecholamine levels surge in concert with increased expression of select myocardial gene products. Sympathetic blockade was used to investigate the effects of the adrenergic nervous system on myocardial gene expression in a rabbit model of brain death. METHODS A balloon expansion model of brain death in rabbits (n = 42) was used with and without sympathetic blockade (xylazine, acetylpromazine, and ketamine). Sham-operated and naive rabbits served as control animals. Over 4 hours, mean arterial pressure, heart rate, electrocardiographic results, catecholamine levels, myocardial histology, and messenger RNA levels were assessed. RESULTS Sympathetic blockade decreased basal catecholamine levels and blocked the catecholamine surge accompanying brain death. The typical hemodynamic instability, adverse electrocardiographic changes, and myocellular injury associated with brain death were all significantly decreased. Sympathetic blockade not only suppressed the previously reported increases in myocardial gene expression (cardiac and skeletal alpha-actin, egr-1, and heat shock protein 70) but also suppressed the expression of multiple other genes (alpha and beta myosin heavy chain, calcium ATPase [sarcoplasmic reticulum Ca(2+)-adenosine triphosphatase pump, SERCA-2a], phospholamban [ryanodine receptor], and c-jun). CONCLUSION Central sympathetic blockade minimizes the hemodynamic instability associated with brain death and neutralizes the increased expression of multiple myocardial gene products associated with brain death.
Collapse
Affiliation(s)
- Thomas Yeh
- Jewish Hospital Cardiovascular Research Center at University of Louisville, Department of Surgery, Division of Cardiothoracic Surgery, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Briest W. Do we have a new early marker of chronic transplant dysfunction now? Cardiovasc Res 2002; 54:492-4. [PMID: 12031693 DOI: 10.1016/s0008-6363(02)00396-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
30
|
Slepak TI, Webster KA, Zang J, Prentice H, O'Dowd A, Hicks MN, Bishopric NH. Control of cardiac-specific transcription by p300 through myocyte enhancer factor-2D. J Biol Chem 2001; 276:7575-85. [PMID: 11096067 DOI: 10.1074/jbc.m004625200] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcriptional integrator p300 regulates gene expression by interaction with sequence-specific DNA-binding proteins and local remodeling of chromatin. p300 is required for cardiac-specific gene transcription, but the molecular basis of this requirement is unknown. Here we report that the MADS (MCM-1, agamous, deficiens, serum response factor) box transcription factor myocyte enhancer factor-2D (MEF-2D) acts as the principal conduit for cardiac transcriptional activation by p300. p300 activation of the native 2130-base pair human skeletal alpha-actin promoter required a single hybrid MEF-2/GATA-4 DNA motif centered at -1256 base pairs. Maximal expression of the promoter in cultured myocytes and in vivo correlated with binding of both MEF-2 and p300, but not GATA-4, to this AT-rich motif. p300 and MEF-2 were coprecipitated from cardiac nuclear extracts by an oligomer containing this element. p300 was found exclusively in a complex with MEF-2D at this and related sites in other cardiac-restricted promoters. MEF-2D, but not other MEFs, significantly potentiated cardiac-specific transcription by p300. No physical or functional interaction was observed between p300 and other factors implicated in skeletal actin transcription, including GATA-4, TEF-1, or SRF. These results show that, in the intact cell, p300 interactions with its protein targets are highly selective and that MEF-2D is the preferred channel for p300-mediated transcriptional control in the heart.
Collapse
Affiliation(s)
- T I Slepak
- Department of Molecular and Cellular Pharmacology, University of Miami, Florida 33101, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
BACKGROUND Smooth muscle cells in vascular tissue, like tissue within the urogenital sinus, undergo growth and proliferation. METHODS This review attempts to compare and contrast the mechanisms and controlling factors involved in prostatic and vascular tissue. There is a particular focus on the role of catecholamines and alpha-adrenoceptors (alpha-ARs), and on the effects of alpha(1)-AR antagonists (blockers) on cellular dynamics. RESULTS AND CONCLUSIONS The situation in vascular tissue appears analagous to that in prostatic tissue. Certain AR-antagonists, in addition to altering smooth muscle contraction, may have other actions on cellular dynamics.
Collapse
Affiliation(s)
- B B Hoffman
- Department of Medicine, Stanford University School of Medicine, and Veterans Affairs Palo Alto Health Care System, Palo Alto, California 94304, USA.
| | | |
Collapse
|
32
|
Andreka P, Zang J, Dougherty C, Slepak TI, Webster KA, Bishopric NH. Cytoprotection by Jun kinase during nitric oxide-induced cardiac myocyte apoptosis. Circ Res 2001; 88:305-12. [PMID: 11179198 DOI: 10.1161/01.res.88.3.305] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nitric oxide (NO) induces apoptosis in cardiac myocytes through an oxidant-sensitive mechanism. However, additional factors appear to modulate the exact timing and rate of NO-dependent apoptosis. In this study, we investigated the role of mitogen-activated protein kinases (MAPKs) (extracellular signal-regulated kinase [ERK] 1/2, c-Jun N-terminal kinase [JNK] 1/2, and p38MAPK) in NO-mediated apoptotic signaling. The NO donor S:-nitrosoglutathione (GSNO) induced caspase-dependent apoptosis in neonatal rat cardiac myocytes, preceded by a rapid (<10-minute) and significant (approximately 50-fold) activation of JNK1/2. Activation of JNK was cGMP dependent and was inversely related to NO concentration; it was maximal at the lowest dose of GSNO (10 micromol/L) and negligible at 1 mmol/L. NO slightly increased ERK1/2 beginning at 2 hours but did not affect p38MAPK activity. Inhibitors of ERK and p38MAPK activation did not affect cell death rates. In contrast, expression of dominant-negative JNK1 or MKK4 mutants significantly increased NO-induced apoptosis at 5 hours (56.77% and 57.37%, respectively, versus control, 40.5%), whereas MEKK1, an upstream activator of JNK, sharply reduced apoptosis in a JNK-dependent manner. Adenovirus-mediated expression of dominant-negative JNK1 both eliminated the rapid activation of JNK by NO and accelerated NO-mediated apoptosis by approximately 2 hours. These data indicate that NO activates JNK as part of a cytoprotective response, concurrent with initiation of apoptotic signaling. Early, transient activation of JNK serves both to delay and to reduce the total extent of apoptosis in cardiac myocytes.
Collapse
Affiliation(s)
- P Andreka
- Department of Molecular and Cellular Pharmacology, University of Miami, FL, USA
| | | | | | | | | | | |
Collapse
|
33
|
Poizat C, Sartorelli V, Chung G, Kloner RA, Kedes L. Proteasome-mediated degradation of the coactivator p300 impairs cardiac transcription. Mol Cell Biol 2000; 20:8643-54. [PMID: 11073966 PMCID: PMC86467 DOI: 10.1128/mcb.20.23.8643-8654.2000] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcription of tissue-specific genes is controlled by regulatory factors and cofactors and is suppressed in cardiac cells by the antineoplastic agent doxorubicin. Here we show that exposure of cultured cardiomyocytes to doxorubicin resulted in the rapid depletion of transcripts for MEF2C, dHAND, and NKX2.5, three pivotal regulators of cardiac gene expression. Delivery of exogenous p300, a coactivator of MEF2C and NKX2.5 in cardiomyocytes, restored cardiac transcription despite the presence of doxorubicin. Furthermore, p300 also restored the accumulation of transcripts for MEF2C itself. Importantly, cardiocytes exposed to doxorubicin displayed reduced levels of p300 proteins. This was not due to alterations in the level of p300 transcripts; rather, and surprisingly, doxorubicin promoted selective degradation of p300 mediated by the 26S-proteasome machinery. Doxorubicin had no effect on the general level of ubiquitinated proteins or on the levels of beta-catenin, a protein known to be degraded by proteasome-mediated degradation. These results provide evidence for a new mechanism of transcriptional repression caused by doxorubicin in which the selective degradation of p300 results in reduced p300-dependent transcription, including production of MEF2C mRNA.
Collapse
Affiliation(s)
- C Poizat
- Institute for Genetic Medicine and Department of Biochemistry & Molecular Biology, Keck School of Medicine of the University of Southern California, USA
| | | | | | | | | |
Collapse
|
34
|
Schäfer M, Frischkopf K, Taimor G, Piper HM, Schlüter KD. Hypertrophic effect of selective beta(1)-adrenoceptor stimulation on ventricular cardiomyocytes from adult rat. Am J Physiol Cell Physiol 2000; 279:C495-503. [PMID: 10913016 DOI: 10.1152/ajpcell.2000.279.2.c495] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether selective beta(1)-adrenoceptor stimulation causes hypertrophic growth on isolated ventricular cardiomyocytes from adult rat. As parameters for the induction of hypertrophic growth, the increases of [(14)C]phenylalanine incorporation, protein and RNA mass, and cell size were determined. Isoproterenol (Iso, 10 microM) alone had no growth effect. In the presence of the beta(2)-adrenoceptor antagonist ICI-118551 (ICI, 10 microM), Iso caused an increase in [(14)C]phenylalanine incorporation, protein and RNA mass, cell volume, and cross-sectional area. We showed for phenylalanine incorporation that the growth effect of Iso+ICI could be antagonized by beta(1)-adrenoceptor blockade with atenolol (10 microM) or metoprolol (10 microM), indicating that it was caused by selective beta(1)-adrenoceptor stimulation. The growth response to Iso+ICI was accompanied by an increase in ornithine decarboxylase (ODC) activity and expression. Inhibition of ODC by the ODC antagonist difluoromethylornithine (1 mM) attenuated this hypertrophic response, indicating that ODC induction is causally involved. The growth response to Iso+ICI was found to be cAMP independent but was sensitive to genistein (100 microM) or rapamycin (0.1 microM). The reaction was enhanced in the presence of pertussis toxin (10 microM). We conclude that selective beta(1)-adrenoceptor stimulation causes hypertrophic growth of ventricular cardiomyocytes by a mechanism that is independent of cAMP but dependent on a tyrosine kinase and ODC.
Collapse
Affiliation(s)
- M Schäfer
- Physiologisches Institut, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | | | |
Collapse
|
35
|
Abstract
Several lines of evidence show that neurohumoral systems, especially those involving catecholamines, play a crucial role in cardiac diseases. Changes in the beta-adrenergic receptor (beta-AR) system such as receptor down-regulation, uncoupling from G-proteins, receptor internalization and receptor degradation may account for some of the abnormalities of contractile function in this disease. Increases in the level of inhibitory G-protein subunits also appears to be involved in attenuating the beta-AR signal. Finally beta-AR signalling is strongly regulated by members of the G-protein-coupled receptor kinase family (GRKs), the best known of which is beta-adrenergic receptor kinase 1 (beta-ARK1). beta-ARK1 mRNA, protein level and enzymatic activity is increased in heart disease, further contributing to an attenuation in beta-AR signalling. The combination of these negative alterations are presumably related to the contractile dysfunction seen in human heart disease. The combination of biochemical, physiological and molecular biological studies bearing on the normal function and regulation of these various molecules should provide strategies for elucidating the pharmacological basis of the regulation of myocardial contractility in the normal and failing heart.
Collapse
MESH Headings
- Adenylyl Cyclases/metabolism
- Aging
- Animals
- Calcium/metabolism
- Cyclic AMP-Dependent Protein Kinases/chemistry
- Cytoskeleton/metabolism
- Ethanol/pharmacology
- Heart/drug effects
- Heart/physiology
- Heart Diseases/enzymology
- Heart Diseases/metabolism
- Heart Diseases/therapy
- Humans
- Mice
- Mice, Transgenic
- Models, Biological
- Myocardium/enzymology
- Myocardium/metabolism
- Oxidants/physiology
- Receptors, Adrenergic, beta/drug effects
- Receptors, Adrenergic, beta/genetics
- Receptors, Adrenergic, beta/metabolism
- Receptors, Adrenergic, beta/physiology
- Signal Transduction
- beta-Adrenergic Receptor Kinases
Collapse
Affiliation(s)
- S Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | | | | |
Collapse
|
36
|
He Q, Wu G, Lapointe MC. Isoproterenol and cAMP regulation of the human brain natriuretic peptide gene involves Src and Rac. Am J Physiol Endocrinol Metab 2000; 278:E1115-23. [PMID: 10827015 DOI: 10.1152/ajpendo.2000.278.6.e1115] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Brain natriuretic peptide (BNP) gene expression and chronic activation of the sympathetic nervous system are characteristics of the development of heart failure. We studied the role of the beta-adrenergic signaling pathway in regulation of the human BNP (hBNP) promoter. An hBNP promoter (-1818 to +100) coupled to a luciferase reporter gene was transferred into neonatal cardiac myocytes, and luciferase activity was measured as an index of promoter activity. Isoproterenol (ISO), forskolin, and cAMP stimulated the promoter, and the beta(2)-antagonist ICI 118,551 abrogated the effect of ISO. In contrast, the protein kinase A (PKA) inhibitor H-89 failed to block the action of cAMP and ISO. Pertussis toxin (PT), which inactivates Galpha(i), inhibited ISO- and cAMP-stimulated hBNP promoter activity. The Src tyrosine kinase inhibitor PP1 and a dominant-negative mutant of the small G protein Rac also abolished the effect of ISO and cAMP. Finally, we studied the involvement of M-CAT-like binding sites in basal and inducible regulation of the hBNP promoter. Mutation of these elements decreased basal and cAMP-induced activity. These data suggest that beta-adrenergic regulation of hBNP is PKA independent, involves a Galpha(i)-activated pathway, and targets regulatory elements in the proximal BNP promoter.
Collapse
Affiliation(s)
- Q He
- Hypertension and Vascular Research Division, Henry Ford Hospital, Detroit, Michigan 48202, USA
| | | | | |
Collapse
|
37
|
Shneyvays V, Jacobson KA, Li AH, Nawrath H, Zinman T, Isaac A, Shainberg A. Induction of apoptosis in rat cardiocytes by A3 adenosine receptor activation and its suppression by isoproterenol. Exp Cell Res 2000; 257:111-26. [PMID: 10854059 PMCID: PMC10792615 DOI: 10.1006/excr.2000.4882] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of the present study was to investigate the mechanisms involved in the induction of apoptosis in newborn cultured cardiomyocytes by activation of adenosine (ADO) A3 receptors and to examine the protective effects of beta-adrenoceptors. The selective agonist for A3 ADO receptors Cl-IB-MECA (2-chloro-N6-iodobenzyl-5-N-methylcarboxamidoadenosine) and the antagonist MRS1523 (5-propyl-2-ethyl-4-propyl-3-(ethylsulfanylcarbonyl)-6-phenylpy rid ine-5-carboxylate) were used. High concentrations of the Cl-IB-MECA (> or = 10 microM) agonist induced morphological modifications of myogenic cells, such as rounding and retraction of cell body and dissolution of contractile filaments, followed by apoptotic death. In addition, Cl-IB-MECA caused a sustained and reversible increase in [Ca2+]i, which was prevented by the selective antagonist MRS1523. Furthermore, MRS1523 protected the cardiocytes if briefly exposed to Cl-IB-MECA and partially protected from prolonged (48 h) agonist exposure. Apoptosis induced by Cl-IB-MECA was not redox-dependent, since the mitochondrial membrane potential remained constant until the terminal stage of cell death. Cl-IB-MECA activated caspase-3 protease in a concentration-dependent manner after 7 h of treatment and more effectively after 18 h of exposure. Bcl-2 protein was readily detected in control cells, and its expression was significantly decreased after 24 and 48 h of treatment with Cl-IB-MECA. Beta-adrenergic stimulation antagonized the pro-apoptotic effects of Cl-IB-MECA, probably through a cAMP/protein kinase A-independent mechanism, since addition of dibutyryl-cAMP did not abolish the apoptosis induced by Cl-IB-MECA. Incubation of cultured myocytes with isoproterenol (5 microM) for 3 or 24 h almost completely abolished the increase in [Ca2+]i. Prolonged incubation of cardiomyocytes with isoproterenol and Cl-IB-MECA did not induce apoptosis. Our data suggest that the apoptosis-inducing signal from activation of adenosine A3 receptors (or counteracting beta-adrenergic signal) leads to the activation of the G-protein-coupled enzymes and downstream pathways to a self-amplifying cascade. Expression of different genes within this cascade is responsible for orchestrating either cardiomyocyte apoptosis or its protection.
Collapse
Affiliation(s)
- V. Shneyvays
- Gonda (Goldschmied) Medical Diagnostic Research Center, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - K. A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIH, Bethesda, Maryland 20892
| | - A-H. Li
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIH, Bethesda, Maryland 20892
| | - H. Nawrath
- Institute for Pharmacology, University of Mainz, Mainz, Germany
| | - T. Zinman
- Gonda (Goldschmied) Medical Diagnostic Research Center, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - A. Isaac
- Gonda (Goldschmied) Medical Diagnostic Research Center, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - A. Shainberg
- Gonda (Goldschmied) Medical Diagnostic Research Center, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
38
|
Zimmermann WH, Fink C, Kralisch D, Remmers U, Weil J, Eschenhagen T. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 2000. [DOI: 10.1002/(sici)1097-0290(20000405)68:1%3c106::aid-bit13%3e3.0.co;2-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
39
|
Zimmermann WH, Fink C, Kralisch D, Remmers U, Weil J, Eschenhagen T. Three-dimensional engineered heart tissue from neonatal rat cardiac myocytes. Biotechnol Bioeng 2000. [DOI: 10.1002/(sici)1097-0290(20000405)68:1<106::aid-bit13>3.0.co;2-3] [Citation(s) in RCA: 308] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
Varma DR, Deng XF. Cardiovascular α1-adrenoceptor subtypes: functions and signaling. Can J Physiol Pharmacol 2000. [DOI: 10.1139/y99-142] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
α1-Adrenoceptors (α1AR) are G protein-coupled receptors and include α1A, α1B, and α1D subtypes corresponding to cloned α1a, α1b, and α1d, respectively. α1AR mediate several cardiovascular actions of sympathomimetic amines such as vasoconstriction and cardiac inotropy, hypertrophy, metabolism, and remodeling. α1AR subtypes are products of separate genes and differ in structure, G protein-coupling, tissue distribution, signaling, regulation, and functions. Both α1AAR and α1BAR mediate positive inotropic responses. On the other hand, cardiac hypertrophy is primarily mediated by α1AAR. The only demonstrated major function of α1DAR is vasoconstriction. α1AR are coupled to phospholipase C, phospholipase D, and phospholipase A2; they increase intracellular Ca2+ and myofibrillar sensitivity to Ca2+ and cause translocation of specific phosphokinase C isoforms to the particulate fraction. Cardiac hypertrophic responses to α1AR agonists might involve activation of phosphokinase C and mitogen-activated protein kinase via Gq. α1AR subtypes might interact with each other and with other receptors and signaling mechanisms.Key words: cardiac hypertrophy, inotropic responses, central α1-adrenoreceptors, arrythmias.
Collapse
|
41
|
Eizema K, van Heugten HA, Bezstarosti K, van Setten MC, Lamers JM. Endothelin-1 responsiveness of a 1.4 kb phospholamban promoter fragment in rat cardiomyocytes transfected by the gene gun. J Mol Cell Cardiol 2000; 32:311-21. [PMID: 10722806 DOI: 10.1006/jmcc.1999.1076] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The transcriptional regulation of an isolated rat phospholamban (PL) promoter fragment in rat cardiomyocytes was analyzed by applying a new method to reach substantially higher transfection efficiencies: gene gun biolistics. The gene gun transfection method was optimized for application to primary cultures of rat neonatal cardiomyocytes. Cells, cultured at different densities (0.75-1.50x10(5)cells/cm(2)) in serum-free medium, were transfected with DNA coated gold particles. A transfection efficiency of up to 10% could be achieved (compared to <1% with other methods) by the gene gun as checked using a RSV- beta-Gal construct. Cardiomyocytes were stimulated by endothelin-1 (ET-1) (10(-8)M) to induce hypertrophy, thereby yielding the characteristic changes in gene expression (upregulation of Atrial Natriuretic Factor (ANF) and downregulation of PL). The basal activity of an ANF promoter fragment (increasing from the lowest to highest density 2.6-fold) and its ET-1 inducibility (only significant upregulation of 2.6-fold, at lowest density) appeared to be dependent on the plating density of the cardiomyocytes. A PL promoter fragment was isolated, sequenced and 1.4 kb was subcloned in a luciferase reporter vector. The basal activity of the PL promoter fragment was not dependent on the plating density. ET-1 did not downregulate the PL promoter, rather a significant upregulation (1.4-fold) was found at the highest plating density. In conclusion, plating density of the cardiomyocytes can influence promoter activity as shown with an ANF promoter fragment. A newly isolated and sequenced rat PL promoter fragment did not direct gene expression as expected on basis of downregulation of the PL gene by ET-1 observed in this model.
Collapse
Affiliation(s)
- K Eizema
- Department of Biochemistry, Erasmus University Rotterdam, Rotterdam, 3000 DR, Netherlands
| | | | | | | | | |
Collapse
|
42
|
Xia Y, McMillin JB, Lewis A, Moore M, Zhu WG, Williams RS, Kellems RE. Electrical stimulation of neonatal cardiac myocytes activates the NFAT3 and GATA4 pathways and up-regulates the adenylosuccinate synthetase 1 gene. J Biol Chem 2000; 275:1855-63. [PMID: 10636885 DOI: 10.1074/jbc.275.3.1855] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Electrically stimulated pacing of cultured cardiomyocytes serves as an experimentally convenient and physiologically relevant in vitro model of cardiac hypertrophy. Electrical pacing triggers a signaling cascade that results in the activation of the muscle-specific Adss1 gene and the repression of the nonmuscle Adss2 isoform. Activation of the Adss1 gene involves the calcineurin-mediated dephosphorylation of NFAT3, allowing its translocation to the nucleus, where it can directly participate in Adss1 gene activation. Mutational studies show that an NFAT binding site located in the Adss1 5'-flanking region is essential for this activation. Electrical pacing also results in the increased synthesis of GATA4, another critical cardiac transcription factor required for Adss1 gene expression. MEF2C also produces transactivation of the Adss1 gene reporter in control and paced cardiac myocytes. Using the Adss1 gene as a model, these studies are the first to demonstrate that electrical pacing activates the calcineurin/NFAT3 and GATA4 pathways as a means of regulating cardiac gene expression.
Collapse
Affiliation(s)
- Y Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Shneyvays V, Safran N, Halili-Rutman I, Shainberg A. Insights into adenosine A1 and A3 receptors function: Cardiotoxicity and cardioprotection. Drug Dev Res 2000. [DOI: 10.1002/1098-2299(200007/08)50:3/4<324::aid-ddr16>3.0.co;2-b] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
44
|
Girard B, Ouafik L, Delfino C, Fraboulet S, Oliver C, Boudouresque F. Alpha1-adrenergic regulation of peptidylglycine alpha-amidating monooxygenase gene expression in cultured rat cardiac myocytes: transcriptional studies and messenger ribonucleic acid stability. Mol Cell Endocrinol 1999; 154:89-100. [PMID: 10509804 DOI: 10.1016/s0303-7207(99)00084-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Peptidylglycine alpha-amidating monooxygenase (PAM; EC 1.14.17.3) is a bifunctional protein containing two enzymes that act sequentially to catalyse the alpha-amidation of neuroendocrine peptides. Previous studies have demonstrated that alpha-adrenergic stimulation results in an increase in intracellular volume and protein content of cultured neonatal rat myocardial cells. The present study examined the regulated expression of PAM during alpha-adrenergic stimulation. Alpha1-adrenergic stimulation activates the expression and release of PAM from myocytes. Following phenylephrine treatment, myocardial cells displayed a several fold increase in PAM activity, and a 2-4-fold increase in the steady state levels of PAM mRNA. This effect of alpha-adrenergic stimulation was dependent on the concentration and duration of exposure to the agonist, and displayed alpha1-adrenergic receptor specificity. The transcription rate experiments indicated that these alpha-adrenergic effects were not due to increased PAM gene activity, suggesting that a post-transcriptional mechanism was involved. The most common mechanism of post-transcriptional regulation affects cytoplasmic mRNA stability. Cardiomyocytes cultures from atria and ventricles in the presence of 5,6 dichloro-1-beta ribofuranosyl benzamidazole (DRB) showed that phenylephrine treatment increased the half-life of PAM mRNA from 13 +/- 1 to 21 +/- 1 h in atrial cells and from 8 +/- 1 to 12 +/- 1 h in ventricle cells. Analysis of nuclear RNA with probes specific for PAM intron sequences shows that increased PAM expression after phenylephrine treatment was not due to intranuclear stabilisation of the primary transcript. Protein kinase C inhibitors H7 and GF109203x, completely blocked the phenylephrine stimulated PAM expression. These results suggest that alpha-adrenergic agonist induces PAM mRNA levels by increasing its stability in the cytoplasm. They indicate that PAM gene expression augments through a H7 and GF109203x sensitive pathway, involving the activation of protein kinase C.
Collapse
Affiliation(s)
- B Girard
- Laboratoire de Cancérologie Expérimentale, EA 2671, IFR Jean Roche, Faculté de médecine Nord, Marseille, France
| | | | | | | | | | | |
Collapse
|
45
|
Ogino K, Cai B, Gu A, Kohmoto T, Yamamoto N, Burkhoff D. Factors contributing to pressure overload-induced immediate early gene expression in adult rat hearts in vivo. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:H380-7. [PMID: 10409218 DOI: 10.1152/ajpheart.1999.277.1.h380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We determined the contributions of angiotensin II type 1 receptor (AT(1)) stimulation, adrenergic stimulation, and autonomic activation to pressure overload-induced c-fos expression in the adult rat heart in vivo. c-fos expression was increased in pressure-overloaded hearts created by aortic banding compared with sham-operated rats (458 +/- 100% vs. sham, P < 0.05). GR-138950, a selective AT(1) antagonist, did not blunt this expression (banding vs. banding + GR-138950: 458 +/- 100% vs. 500 +/- 125%, not significant). Atropine and hexamethonium partially decreased c-fos expression (banding vs. banding + atropine/hexamethonium: 700 +/- 67% vs. 400 +/- 67%, P < 0.05). Phentolamine had no significant effect on c-fos expression; however, propranolol inhibited the expression (banding vs. banding + propranolol: 492 +/- 108% vs. 154 +/- 15%, P < 0.05). The inhibition by propranolol was independent of the decreases in heart rate. Thus factors contributing to pressure overload-induced c-fos expression in adult rat hearts in vivo are different from those in neonatal myocytes in vitro undergoing stretch.
Collapse
MESH Headings
- Animals
- Gene Expression
- Genes, Immediate-Early/genetics
- Genes, fos/genetics
- Myocardium/cytology
- Pressure
- Rats
- Rats, Wistar
- Receptor, Angiotensin, Type 1
- Receptor, Angiotensin, Type 2
- Receptors, Adrenergic/drug effects
- Receptors, Adrenergic/physiology
- Receptors, Angiotensin/physiology
Collapse
Affiliation(s)
- K Ogino
- Department of Medicine, College of Physicians & Surgeons, Columbia University, New York, New York 10032, USA.
| | | | | | | | | | | |
Collapse
|
46
|
Ing DJ, Zang J, Dzau VJ, Webster KA, Bishopric NH. Modulation of cytokine-induced cardiac myocyte apoptosis by nitric oxide, Bak, and Bcl-x. Circ Res 1999; 84:21-33. [PMID: 9915771 DOI: 10.1161/01.res.84.1.21] [Citation(s) in RCA: 167] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
-Cytokine-induced NO production depresses myocardial contractility and has been shown to be cytotoxic to cardiac myocytes. However, the mechanisms of cytokine-induced cardiac myocyte cell death are unclear. To analyze these mechanisms in detail, we treated neonatal cardiac myocytes in serum-free culture with a combination of the macrophage-derived cytokines interleukin-1beta, tumor necrosis factor-alpha, and interferon-gamma. These cytokines caused a time-dependent induction of cardiac myocyte apoptosis, but not necrosis, beginning 72 hours after treatment, as determined by nuclear morphology, DNA internucleosomal cleavage, and cleavage of poly(ADP-ribose) polymerase, reflecting caspase activation. Apoptosis was preceded by a >50-fold induction of inducible NO synthase mRNA and the release of large amounts (5 to 8 nmol/ microgram protein) of NO metabolites (NOx) into the medium. Cell death was completely blocked by an NO synthase inhibitor and attenuated by antioxidants (N-acetylcysteine and DTT) and the caspase inhibitor ZVAD-fmk. Cytokines also mediated an NO-dependent, sustained increase in myocyte expression of the Bcl-2 homologs Bak and Bcl-x(L). The NO donor S-nitrosoglutathione also induced apoptosis and cell levels of Bak, but not of Bcl-x(L). All effects of cytokines, including poly(ADP-ribose) polymerase cleavage, could be attributed to interleukin-1beta; interferon-gamma and tumor necrosis factor-alpha had no independent effects on apoptosis or on NOx production. We conclude that cytokine toxicity to neonatal cardiac myocytes results from the induction of NO and subsequent activation of apoptosis, at least in part through the generation of oxygen free radicals. The rate and extent of this apoptosis is modulated by alterations in the cellular balance of Bak and Bcl-x(L), which respond differentially to cytokine-induced and exogenous NO and by the availability of oxidant species.
Collapse
Affiliation(s)
- D J Ing
- Departments of Molecular and Cellular Pharmacology and Medicine, University of Miami School of Medicine, Miami, Florida, USA. Medicine
| | | | | | | | | |
Collapse
|
47
|
Gupta M, Zak R, Libermann TA, Gupta MP. Tissue-restricted expression of the cardiac alpha-myosin heavy chain gene is controlled by a downstream repressor element containing a palindrome of two ets-binding sites. Mol Cell Biol 1998; 18:7243-58. [PMID: 9819411 PMCID: PMC109306 DOI: 10.1128/mcb.18.12.7243] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The expression of the alpha-myosin heavy chain (MHC) gene is restricted primarily to cardiac myocytes. To date, several positive regulatory elements and their binding factors involved in alpha-MHC gene regulation have been identified; however, the mechanism restricting the expression of this gene to cardiac myocytes has yet to be elucidated. In this study, we have identified by using sequential deletion mutants of the rat cardiac alpha-MHC gene a 30-bp purine-rich negative regulatory (PNR) element located in the first intronic region that appeared to be essential for the tissue-specific expression of the alpha-MHC gene. Removal of this element alone elevated (20- to 30-fold) the expression of the alpha-MHC gene in cardiac myocyte cultures and in heart muscle directly injected with plasmid DNA. Surprisingly, this deletion also allowed a significant expression of the alpha-MHC gene in HeLa and other nonmuscle cells, where it is normally inactive. The PNR element required upstream sequences of the alpha-MHC gene for negative gene regulation. By DNase I footprint analysis of the PNR element, a palindrome of two high-affinity Ets-binding sites (CTTCCCTGGAAG) was identified. Furthermore, by analyses of site-specific base-pair mutation, mobility gel shift competition, and UV cross-linking, two different Ets-like proteins from cardiac and HeLa cell nuclear extracts were found to bind to the PNR motif. Moreover, the activity of the PNR-binding factor was found to be increased two- to threefold in adult rat hearts subjected to pressure overload hypertrophy, where the alpha-MHC gene is usually suppressed. These data demonstrate that the PNR element plays a dual role, both downregulating the expression of the alpha-MHC gene in cardiac myocytes and silencing the muscle gene activity in nonmuscle cells. Similar palindromic Ets-binding motifs are found conserved in the alpha-MHC genes from different species and in other cardiac myocyte-restricted genes. These results are the first to reveal a role of the Ets class of proteins in controlling the tissue-specific expression of a cardiac muscle gene.
Collapse
Affiliation(s)
- M Gupta
- The Heart Institute for Children, Hope Children's Hospital, Oak Lawn, Illinois 60453, USA.
| | | | | | | |
Collapse
|
48
|
Gao B, Kunos G. Cell type-specific transcriptional activation and suppression of the alpha1B adrenergic receptor gene middle promoter by nuclear factor 1. J Biol Chem 1998; 273:31784-7. [PMID: 9822643 DOI: 10.1074/jbc.273.48.31784] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nuclear factor 1 (NF1) has been reported to be a transcriptional activator for some genes and a transcriptional silencer for others. Here we report that in Hep3B cells, cotransfection of NF1/L, NF1/Red1, or NF1/X with the alpha1B adrenergic receptor (alpha1BAR) gene middle (P2) promoter increases P2 activity to more or less the same degree, whereas in DDT1 MF-2 cells cotransfection of NF1/L or NF1/Red1 causes a small but statistically significant decrease in the P2 promoter activity, and NF1/X causes a greater, 70% inhibition. Further experiments using truncated NF1/X mutants indicate that NF1/X contains both positive and negative regulatory domains. The positive domain, located between amino acids 416 and 505, is active in Hep3B cells, whereas the negative domain, located between amino acids 243 and 416, is active in DDT1 MF-2 cells. These functional domains are also capable of regulating transcription when isolated from their natural context and fused into the GAL4 binding domain. Furthermore, NF1 affinity purified from rat liver nuclear extracts copurified with a non-DNA binding protein, which can bind to the P2 promoter of the alpha1BAR gene via interacting with NF1. Taken together, these findings indicate that NF1/X contains both activation and suppression domains that may be recognized and modulated by cell type-specific cofactors. This may be one of the mechanisms whereby NF1 can activate or suppress the expression of different genes, and it may also underlie the tissue-specific regulation of the alpha1B AR gene.
Collapse
MESH Headings
- Animals
- Carcinoma, Hepatocellular
- Chromatography, Affinity
- Cricetinae
- DNA-Binding Proteins/isolation & purification
- DNA-Binding Proteins/metabolism
- Humans
- Kinetics
- Liver/metabolism
- Liver Neoplasms
- Muscle, Smooth
- NFI Transcription Factors
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic
- Rats
- Receptors, Adrenergic, alpha-1/biosynthesis
- Receptors, Adrenergic, alpha-1/genetics
- Regulatory Sequences, Nucleic Acid
- Suppression, Genetic
- Transcription Factors/isolation & purification
- Transcription Factors/metabolism
- Transcriptional Activation
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- B Gao
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, Virginia 23298, USA.
| | | |
Collapse
|
49
|
Abstract
Mechanical stretch is an initial factor for cardiac hypertrophy in response to haemodynamic overload (high blood pressure). Stretch of cardiomyocytes activates second messengers such as phosphatidylinositol, protein kinase C, Raf-1 kinase and extracellular signal-regulated protein kinases (ERKs), which are involved in increased protein synthesis. The cardiac renin-angiotensin system is linked to the formation of pressure-overload hypertrophy. Angiotensin II increases the growth of cardiomyocytes by an autocrine mechanism. Angiotensin II-evoked signal transduction pathways differ among cell types. In cardiac fibroblasts, angiotensin II activates ERKs through a pathway including the Gbetagamma subunit of Gi protein, Src family tyrosine kinases, Shc, Grb2 and Ras, whereas Gq and protein kinase C are important in cardiac myocytes. In addition, mechanical stretch enhances the endothelin-1 release from the cardiomyocytes. Further, the Na+ -H+ exchanger mediates mechanical stretch-induced Raf-1 kinase and ERK activation followed by increased protein synthesis in cardiomyocytes. Not only mechanical stress, but also neurohumoral factors induce cardiac hypertrophy. The activation of protein kinase cascades by norepinephrine is induced by protein kinase A through beta-adrenoceptors as well as by protein kinase C through alpha-adrenoceptors.
Collapse
Affiliation(s)
- T Yamazaki
- Third Department of Internal Medicine, Faculty of Medicine, Health Service Center, University of Tokyo, Japan
| | | | | |
Collapse
|
50
|
Calderone A, Thaik CM, Takahashi N, Chang DL, Colucci WS. Nitric oxide, atrial natriuretic peptide, and cyclic GMP inhibit the growth-promoting effects of norepinephrine in cardiac myocytes and fibroblasts. J Clin Invest 1998; 101:812-8. [PMID: 9466976 PMCID: PMC508629 DOI: 10.1172/jci119883] [Citation(s) in RCA: 358] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study tested the hypothesis that nitric oxide (NO) and atrial natriuretic peptide (ANP) can attenuate the effects of adrenergic agonists on the growth of cardiac myocytes and fibroblasts. In ventricular cells cultured from neonatal rat heart, ANP and the NO donor S-nitroso-N-acetyl-D,L-penicillamine (SNAP) caused concentration-dependent decreases in the norepinephrine (NE)-stimulated incorporation of [3H]leucine in myocytes and [3H]thymidine in fibroblasts. In myocytes, the NO synthase inhibitor NG-monomethyl-L-arginine potentiated NE-stimulated [3H]leucine incorporation. In both cell types, ANP and SNAP increased intracellular cGMP levels, and their growth-suppressing effects were mimicked by the cGMP analogue 8-bromo-cGMP. Furthermore, in myocytes, 8-bromo-cGMP attenuated the alpha1-adrenergic receptor-stimulated increases in c-fos. Likewise, ANP and 8-bromo-cGMP attenuated the alpha1-adrenergic receptor- stimulated increase in prepro-ANP mRNA and the alpha1-adrenergic receptor-stimulated decrease in sarcoplasmic reticulum calcium ATPase mRNA. The L-type Ca2+ channel blockers verapamil and nifedipine inhibited NE-stimulated incorporation of [3H]leucine in myocytes and [3H]thymidine in fibroblasts, and these effects were not additive with those of ANP, SNAP, or 8-bromo-cGMP. In myocytes, the Ca2+ channel agonist BAY K8644 caused an increase in [3H]leucine incorporation which was inhibited by ANP. These findings indicate that NO and ANP can attenuate the effects of NE on the growth of cardiac myocytes and fibroblasts, most likely by a cGMP-mediated inhibition of NE-stimulated Ca2+ influx.
Collapse
Affiliation(s)
- A Calderone
- Department of Medicine, Boston Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | |
Collapse
|