1
|
Pazmiño FA, Parra-Muñoz M, Saavedra CH, Muvdi-Arenas S, Ovalle-Bracho C, Echeverry MC. Mucosal leishmaniasis is associated with the Leishmania RNA virus and inappropriate cutaneous leishmaniasis treatment. PLoS One 2025; 20:e0317221. [PMID: 39854299 PMCID: PMC11759362 DOI: 10.1371/journal.pone.0317221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Mucosal leishmaniasis (ML) is a severe clinical form of leishmaniasis that is characterized by the destruction of the nasal and/or the oral mucosae and appears as a late complication in 5% to 10% of cutaneous leishmaniasis (CL) cases produced by species belonging to Leishmania (Viannia) subgenus. Some strains of Leishmania spp. carry an RNA virus known as Leishmania RNA virus (LRV) that may contribute to the appearance of ML. METHODS To examine the role of LRV type 1 (LRV1) as a risk factor associated with ML, a retrospective case-control study involving 103 patients was conducted. Cases were defined as patients with ML (n = 33), and controls corresponded to patients with CL and without mucosal lesions (n = 70). Clinical data were recorded from the patient's medical records. Cryopreserved biopsies were used to detect LRV1 and identify Leishmania species. RESULTS The frequency of LRV1 in the 103 patients was 16.5% (95% CI,10.4-25.12) being higher in samples from cases [33.33% (95% CI,18.89-51.76) than from controls [8.57% (95% CI, 3.82-18.10)]. L. (V.) braziliensis was identified in 63.6% of cases and 55.7% of the controls. Multivariate logistic regression indicated that infection with Leishmania spp. carrying LRV1 (OR = 6.30; 95% CI,1.52-26.10, p = 0.011) acts as risk factors for ML occurrence, while the completed treatment for the cutaneous event decreases the risk of ML (OR = 0.039; 95% CI, 0.01-0.12, p < 0.0001). CONCLUSIONS Our data support the association between LRV1 and ML occurrence and emphasize the effect of completed treatment for CL in preventing ML.
Collapse
Affiliation(s)
- Fredy A. Pazmiño
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Marcela Parra-Muñoz
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos H. Saavedra
- Departamento de Medicina, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sandra Muvdi-Arenas
- Hospital Universitario Centro Dermatológico Federico Lleras Acosta, Bogotá, Colombia
| | | | - María C. Echeverry
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
2
|
Mazaherifar S, Erfanian S, Solhjoo K, Roustazadeh A, Darayesh M, Taghipour A, Falahi S, Kenarkoohi A, Badri M, Heidarnejadi SM, Rasti S, Abdoli A. Detection of Leishmania RNA Virus 2 (LRV2) among Clinical Isolates of Leishmania Major in Four Endemic Regions of Iran. Acta Parasitol 2024; 69:2046-2050. [PMID: 39190281 DOI: 10.1007/s11686-024-00915-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
PURPOSE Leishmania RNA viruses (LRV) are double-stranded RNA viruses (dsRNA viruses) that play a role in the pathogenesis of Leishmania parasites. Cutaneous leishmaniasis (CL) is endemic in various parts of Iran. Our aimed was to investigate presence of LRV among the Leishmania major isolates in four endemic regions of Iran. METHODS In a cross-sectional study, we assessed the presence of LRV1 and LRV2 in 181 clinical isolates of L. major from four endemic cities in Iran using reverse transcription polymerase chain reaction (RT-PCR). After RNA extraction and cDNA synthesis, RT-PCR tests were conducted with LRV1 and LRV2 specific primers. Human beta-actin and kmp genes served as internal and external controls, respectively, and the Allele ID software was used to optimize melting curves. RESULTS LRV2 was detected in 27.6% (50 out of 181) of L. major isolates, while no LRV1 was found. We did not observe a statistically significant difference in the presence of LRV2 based on age group, number, or location of lesions. CONCLUSION This study confirms the presence of LRV2 in clinical isolates of L. major from endemic regions of Iran. Further researches with larger sample sizes is recommended to explore the association between LRV and clinical symptoms as well as treatment response.
Collapse
Affiliation(s)
- Samaneh Mazaherifar
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Saiedeh Erfanian
- Research Center for NonCommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Advanced Medical Sciences and Technologies, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Kavous Solhjoo
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Abazar Roustazadeh
- Research Center for NonCommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Advanced Medical Sciences and Technologies, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Biochemistry and Nutrition, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Mohammad Darayesh
- Research Center for NonCommunicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Dermatology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Ali Taghipour
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
- Department of Parasitology and Mycology, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Azra Kenarkoohi
- Department of Microbiology, Ilam University of Medical Sciences, Ilam, Iran
| | - Milad Badri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Sima Rasti
- Department of Parasitology and Mycology and Infectious Diseases Research Center, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, IR, Iran
| | - Amir Abdoli
- Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran.
- Department of Parasitology and Mycology, Jahrom University of Medical Sciences, Jahrom, Iran.
| |
Collapse
|
3
|
Ibañez-Escribano A, Gomez-Muñoz MT, Mateo M, Fonseca-Berzal C, Gomez-Lucia E, Perez RG, Alunda JM, Carrion J. Microbial Matryoshka: Addressing the Relationship between Pathogenic Flagellated Protozoans and Their RNA Viral Endosymbionts (Family Totiviridae). Vet Sci 2024; 11:321. [PMID: 39058005 PMCID: PMC11281412 DOI: 10.3390/vetsci11070321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/12/2024] [Accepted: 07/14/2024] [Indexed: 07/28/2024] Open
Abstract
Three genera of viruses of the family Totiviridae establish endosymbiotic associations with flagellated protozoa responsible for parasitic diseases of great impact in the context of One Health. Giardiavirus, Trichomonasvirus, and Leishmaniavirus infect the protozoa Giardia sp., Trichomonas vaginalis, and Leishmania sp., respectively. In the present work, we review the characteristics of the endosymbiotic relationships established, the advantages, and the consequences caused in mammalian hosts. Among the common characteristics of these double-stranded RNA viruses are that they do not integrate into the host genome, do not follow a lytic cycle, and do not cause cytopathic effects. However, in cases of endosymbiosis between Leishmaniavirus and Leishmania species from the Americas, and between Trichomonasvirus and Trichomonas vaginalis, it seems that it can alter their virulence (degree of pathogenicity). In a mammalian host, due to TLR3 activation of immune cells upon the recognition of viral RNA, uncontrolled inflammatory signaling responses are triggered, increasing pathological damage and the risk of failure of conventional standard treatment. Endosymbiosis with Giardiavirus can cause the loss of intestinal adherence of the protozoan, resulting in a benign disease. The current knowledge about viruses infecting flagellated protozoans is still fragmentary, and more research is required to unravel the intricacies of this three-way relationship. We need to develop early and effective diagnostic methods for further development in the field of translational medicine. Taking advantage of promising biotechnological advances, the aim is to develop ad hoc therapeutic strategies that focus not only on the disease-causing protozoan but also on the virus.
Collapse
Affiliation(s)
- Alexandra Ibañez-Escribano
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.I.-E.); (M.M.); (C.F.-B.)
| | - Maria Teresa Gomez-Muñoz
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Marta Mateo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.I.-E.); (M.M.); (C.F.-B.)
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Cristina Fonseca-Berzal
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.I.-E.); (M.M.); (C.F.-B.)
| | - Esperanza Gomez-Lucia
- Animal Viruses Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Raquel Garcia Perez
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
| | - Jose M. Alunda
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| | - Javier Carrion
- ICPVet Research Group, Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain; (M.T.G.-M.); (R.G.P.); (J.M.A.)
- Research Institute Hospital 12 de Octubre, 28041 Madrid, Spain
| |
Collapse
|
4
|
Bonilla AA, Pineda V, Calzada JE, Saldaña A, Laurenti MD, Goya S, Abrego L, González K. Epidemiology and Genetic Characterization of Leishmania RNA Virus in Leishmania ( Viannia) spp. Isolates from Cutaneous Leishmaniasis Endemic Areas in Panama. Microorganisms 2024; 12:1317. [PMID: 39065086 PMCID: PMC11279101 DOI: 10.3390/microorganisms12071317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Leishmania (Viannia) spp. can harbor a double-stranded RNA virus known as Leishmania RNA virus 1 (LRV-1), whose presence has been reported in nine countries across the Americas and seven Leishmania species. Here, we studied 100 Leishmania (Viannia) isolates from patients with cutaneous leishmaniasis collected from different endemic areas in Panama from 2016 to 2022. We identified L. (V.) panamensis, L. (V.) guyanensis, L. (V.) braziliensis/guyanensis hybrid, and L. (V.) panamensis sp.1. (genetic variant). LRV-1 was detected by RT-PCR in 9% of L. (Viannia) isolates (eight cases in L. (V.) panamensis, and one in L. (V.) guyanensis). Phylogenetic analysis based on sequencing data classified all LRV-1 isolates within genotype A, suggesting that LRV phylogenetic proximity is closely aligned with geographical distribution or to the phylogenetic proximity of the Leishmania host in the case of the L. (V.) panamensis and L. (V.) guyanensis in Panama.
Collapse
Affiliation(s)
- Armando Assair Bonilla
- Programa de Maestría en Ciencias Parasitológicas, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama 3366, Panama;
| | - Vanessa Pineda
- Departamento de Investigación en Parasitología, Instituto de Conmemorativo Gorgas de Estudios de la Salud, Panama 0816-02593, Panama; (V.P.); (J.E.C.)
| | - José Eduardo Calzada
- Departamento de Investigación en Parasitología, Instituto de Conmemorativo Gorgas de Estudios de la Salud, Panama 0816-02593, Panama; (V.P.); (J.E.C.)
- Facultad de Medicina Veterinaria, Universidad de Panamá, Panama 3366, Panama
| | - Azael Saldaña
- Centro de Investigación y Diagnóstico de Enfermedades Parasitarias (CIDEP), Facultad de Medicina, Universidad de Panamá, Panama 3366, Panama;
| | - Marcia Dalastra Laurenti
- Laboratório de Patologia de Moléstias Infecciosas, Faculdade de Medicina, Universidade de São Paulo, São Paulo 05508-270, SP, Brazil;
| | - Stephanie Goya
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA;
| | - Leyda Abrego
- Departamento de Investigación en Virología y Biotecnología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panama 0816-02593, Panama
- Departamento de Microbiología y Parasitología, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama 3366, Panama
| | - Kadir González
- Departamento de Investigación en Parasitología, Instituto de Conmemorativo Gorgas de Estudios de la Salud, Panama 0816-02593, Panama; (V.P.); (J.E.C.)
- Departamento de Microbiología Humana, Facultad de Medicina, Universidad de Panamá, Panama 3366, Panama
| |
Collapse
|
5
|
Alonaizan R. Molecular regulation of NLRP3 inflammasome activation during parasitic infection. Biosci Rep 2024; 44:BSR20231918. [PMID: 38623843 PMCID: PMC11096646 DOI: 10.1042/bsr20231918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/26/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024] Open
Abstract
Parasitic diseases are a serious global health concern, causing many common and severe infections, including Chagas disease, leishmaniasis, and schistosomiasis. The NLRP3 inflammasome belongs to the NLR (nucleotide-binding domain leucine-rich-repeat-containing proteins) family, which are cytosolic proteins playing key roles in the detection of pathogens. NLRP3 inflammasomes are activated in immune responses to Plasmodium, Leishmania, Toxoplasma gondii, Entamoeba histolytica, Trypanosoma cruzi, and other parasites. The role of NLRP3 is not fully understood, but it is a crucial component of the innate immune response to parasitic infections and its functions as a sensor triggering the inflammatory response to the invasive parasites. However, while this response can limit the parasites' growth, it can also result in potentially catastrophic host pathology. This makes it essential to understand how NLRP3 interacts with parasites to initiate the inflammatory response. Plasmodium hemozoin, Leishmania glycoconjugate lipophosphoglycan (LPG) and E. histolytica Gal/GalNAc lectin can stimulate NLRP3 activation, while the dense granule protein 9 (GRA9) of T. gondii has been shown to suppress it. Several other parasitic products also have diverse effects on NLRP3 activation. Understanding the mechanism of NLRP3 interaction with these products will help to develop advanced therapeutic approaches to treat parasitic diseases. This review summarizes current knowledge of the NLRP3 inflammasome's action on the immune response to parasitic infections and aims to determine the mechanisms through which parasitic molecules either activate or inhibit its action.
Collapse
Affiliation(s)
- Rasha Alonaizan
- Faculty of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Grybchuk D, Galan A, Klocek D, Macedo DH, Wolf YI, Votýpka J, Butenko A, Lukeš J, Neri U, Záhonová K, Kostygov AY, Koonin EV, Yurchenko V. Identification of diverse RNA viruses in Obscuromonas flagellates (Euglenozoa: Trypanosomatidae: Blastocrithidiinae). Virus Evol 2024; 10:veae037. [PMID: 38774311 PMCID: PMC11108086 DOI: 10.1093/ve/veae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/03/2024] [Accepted: 04/29/2024] [Indexed: 05/24/2024] Open
Abstract
Trypanosomatids (Euglenozoa) are a diverse group of unicellular flagellates predominately infecting insects (monoxenous species) or circulating between insects and vertebrates or plants (dixenous species). Monoxenous trypanosomatids harbor a wide range of RNA viruses belonging to the families Narnaviridae, Totiviridae, Qinviridae, Leishbuviridae, and a putative group of tombus-like viruses. Here, we focus on the subfamily Blastocrithidiinae, a previously unexplored divergent group of monoxenous trypanosomatids comprising two related genera: Obscuromonas and Blastocrithidia. Members of the genus Blastocrithidia employ a unique genetic code, in which all three stop codons are repurposed to encode amino acids, with TAA also used to terminate translation. Obscuromonas isolates studied here bear viruses of three families: Narnaviridae, Qinviridae, and Mitoviridae. The latter viral group is documented in trypanosomatid flagellates for the first time. While other known mitoviruses replicate in the mitochondria, those of trypanosomatids appear to reside in the cytoplasm. Although no RNA viruses were detected in Blastocrithidia spp., we identified an endogenous viral element in the genome of B. triatomae indicating its past encounter(s) with tombus-like viruses.
Collapse
Affiliation(s)
- Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Central European Institute of Technology, Masaryk University, Brno 625 00, Czechia
| | - Arnau Galan
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Donnamae Klocek
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| | - Yuri I Wolf
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda 20894, USA
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Department of Parasitology, Faculty of Science, Charles University, Prague 128 00, Czechia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czechia
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Faculty of Science, University of South Bohemia, České Budějovice 370 05, Czechia
| | - Uri Neri
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv 39040, Israel
| | - Kristína Záhonová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czechia
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec 252 50, Czechia
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
- Zoological Institute of the Ruian Academy of Sciences, St. Petersburg 199034, Russia
| | - Eugene V Koonin
- National Center for Biotechnology Information, NLM, National Institutes of Health, Bethesda 20894, USA
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava 710 00, Czechia
| |
Collapse
|
7
|
Klocek D, Grybchuk D, Tichá L, Votýpka J, Volf P, Kostygov AY, Yurchenko V. Evolution of RNA viruses in trypanosomatids: new insights from the analysis of Sauroleishmania. Parasitol Res 2023; 122:2279-2286. [PMID: 37490143 PMCID: PMC10495512 DOI: 10.1007/s00436-023-07928-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/19/2023] [Indexed: 07/26/2023]
Abstract
RNA viruses play an important role in Leishmania biology and virulence. Their presence was documented in three (out of four) Leishmania subgenera. Sauroleishmania of reptiles remained the only underinvestigated group. In this work, we analyzed the viral occurrence in Sauroleishmania spp. and detected RNA viruses in three out of seven isolates under study. These viruses were of two families-Narnaviridae and Totiviridae. Phylogenetic inferences demonstrated that totiviruses from L. adleri and L. tarentolae group together within a larger cluster of LRV2s, while a narnavirus of L. gymnodactyli appeared as a phylogenetic relative of narnaviruses of Blechomonas spp. Taken together, our work not only expanded the range of trypanosomatids that can host RNA viruses but also shed new light on the evolution and potential routes of viral transmission in these flagellates.
Collapse
Affiliation(s)
- Donnamae Klocek
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
| | - Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Lucie Tichá
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Alexei Yu Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
| |
Collapse
|
8
|
Macedo DH, Grybchuk D, Režnarová J, Votýpka J, Klocek D, Yurchenko T, Ševčík J, Magri A, Dolinská MU, Záhonová K, Lukeš J, Servienė E, Jászayová A, Serva S, Malysheva MN, Frolov AO, Yurchenko V, Kostygov AY. Diversity of RNA viruses in the cosmopolitan monoxenous trypanosomatid Leptomonas pyrrhocoris. BMC Biol 2023; 21:191. [PMID: 37697369 PMCID: PMC10496375 DOI: 10.1186/s12915-023-01687-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/22/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Trypanosomatids are parasitic flagellates well known because of some representatives infecting humans, domestic animals, and cultural plants. Many trypanosomatid species bear RNA viruses, which, in the case of human pathogens Leishmania spp., influence the course of the disease. One of the close relatives of leishmaniae, Leptomonas pyrrhocoris, has been previously shown to harbor viruses of the groups not documented in other trypanosomatids. At the same time, this species has a worldwide distribution and high prevalence in the natural populations of its cosmopolitan firebug host. It therefore represents an attractive model to study the diversity of RNA viruses. RESULTS We surveyed 106 axenic cultures of L. pyrrhocoris and found that 64 (60%) of these displayed 2-12 double-stranded RNA fragments. The analysis of next-generation sequencing data revealed four viral groups with seven species, of which up to five were simultaneously detected in a single trypanosomatid isolate. Only two of these species, a tombus-like virus and an Ostravirus, were earlier documented in L. pyrrhocoris. In addition, there were four new species of Leishbuviridae, the family encompassing trypanosomatid-specific viruses, and a new species of Qinviridae, the family previously known only from metatranscriptomes of invertebrates. Currently, this is the only qinvirus with an unambiguously determined host. Our phylogenetic inferences suggest reassortment in the tombus-like virus owing to the interaction of different trypanosomatid strains. Two of the new Leishbuviridae members branch early on the phylogenetic tree of this family and display intermediate stages of genomic segment reduction between insect Phenuiviridae and crown Leishbuviridae. CONCLUSIONS The unprecedented wide range of viruses in one protist species and the simultaneous presence of up to five viral species in a single Leptomonas pyrrhocoris isolate indicate the uniqueness of this flagellate. This is likely determined by the peculiarity of its firebug host, a highly abundant cosmopolitan species with several habits ensuring wide distribution and profuseness of L. pyrrhocoris, as well as its exposure to a wider spectrum of viruses compared to other trypanosomatids combined with a limited ability to transmit these viruses to its relatives. Thus, L. pyrrhocoris represents a suitable model to study the adoption of new viruses and their relationships with a protist host.
Collapse
Affiliation(s)
- Diego H Macedo
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- University of Stockholm, Stockholm, Sweden
| | - Danyil Grybchuk
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Central European Institute of Technology, Masaryk University, 625 00, Brno, Czech Republic
| | - Jana Režnarová
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- University Hospital in Ostrava, Ostrava, Czech Republic
| | - Jan Votýpka
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Science, Charles University, 128 44, Prague, Czech Republic
| | - Donnamae Klocek
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Tatiana Yurchenko
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Jan Ševčík
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
| | - Alice Magri
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Department of Veterinary Medical Sciences, Alma Mater Studiorum - University of Bologna, Ozzano Dell'Emilia, 40064, Bologna, Italy
| | - Michaela Urda Dolinská
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy, 041 81, Košice, Slovakia
| | - Kristína Záhonová
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Science, Charles University, BIOCEV, 252 50, Vestec, Czech Republic
- Division of Infectious Diseases, Department of Medicine, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05, České Budějovice, Czech Republic
- Faculty of Sciences, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Elena Servienė
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, 08412, Vilnius, Lithuania
| | - Alexandra Jászayová
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic
- Institute of Parasitology, Slovak Academy of Sciences, 040 01, Košice, Slovakia
- University of Veterinary Medicine and Pharmacy, 041 81, Košice, Slovakia
| | - Saulius Serva
- Department of Biochemistry and Molecular Biology, Institute of Biosciences, Vilnius University, 10257, Vilnius, Lithuania
| | - Marina N Malysheva
- Zoological Institute of Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | - Alexander O Frolov
- Zoological Institute of Russian Academy of Sciences, 199034, St. Petersburg, Russia
| | | | - Alexei Yu Kostygov
- Faculty of Science, University of Ostrava, 710 00, Ostrava, Czech Republic.
| |
Collapse
|
9
|
Gonzalez K, De León SS, Pineda V, Samudio F, Capitan-Barrios Z, Suarez JA, Weeden A, Ortiz B, Rios M, Moreno B, Gundacker ND, Pascale JM, López-Vergès S, Sosa N, Saldaña A, Ábrego LE. Detection of Leishmania RNA Virus 1 in Leishmania (Viannia) panamensis Isolates, Panama. Emerg Infect Dis 2023; 29:1250-1253. [PMID: 37209675 DOI: 10.3201/eid2906.220012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2023] Open
Abstract
We detected Leishmania RNA virus 1 (LRV1) in 11 isolates of Leishmania (Viannia) panamensis collected during 2014-2019 from patients from different geographic areas in Panama. The distribution suggested a spread of LRV1 in L. (V.) panamensis parasites. We found no association between LRV1 and an increase in clinical pathology.
Collapse
|
10
|
Rosales-Chilama M, Y. Oviedo M, K. Quintero Y, L. Fernández O, Gómez MA. Leishmania RNA Virus Is Not Detected in All Species of the Leishmania Viannia Subgenus: The Case of L. (V.) panamensis in Colombia. Am J Trop Med Hyg 2023; 108:555-560. [PMID: 36716739 PMCID: PMC9978567 DOI: 10.4269/ajtmh.22-0551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2002] [Accepted: 11/21/2022] [Indexed: 01/31/2023] Open
Abstract
The endosymbiotic Leishmania RNA virus 1 (LRV1) has been associated with severity and clinical manifestations of American tegumentary leishmaniasis caused by species of the Leishmania (Viannia) subgenus. Between and within Leishmania species, and among endemic countries, the prevalence of LRV is highly variable. The LRV virus has not been detected in L. (V.) panamensis, the second-most prevalent species in Central America and Colombia. However, no systematic screening of LRV has been conducted in L. (V.) panamensis, and thus it is still controversial whether this virus is truly absent from the species. We sought to determine the prevalence of LRV1 in L. (V.) panamensis clinical strains isolated from patients with cutaneous leishmaniasis (CL), from different geographic areas of Colombia. We analyzed 219 clinical strains; 78% were L. (V.) panamensis, 18% were L. (V.) braziliensis, and 4% were L. (V.) guyanensis. Screening for LRV1 was performed by quantitative reverse transcription-polymerase chain reaction. The LRV1 was detected in 18% (7 of 40) of L. (V) braziliensis strains, and was not detected in any of the L. (V.) guyanensis or L. (V.) panamensis strains. The LRV1-positive L. (V). braziliensis strains came from the Amazon Basin. Of the seven LRV1-positive strains, two were isolated from patients with mucocutaneous leishmaniasis, and the remaining from patients with CL. Our results confirm the absence of LRV1 in L. (V.) panamensis in Colombia.
Collapse
Affiliation(s)
- Mariana Rosales-Chilama
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | - Monica Y. Oviedo
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
| | - Yury K. Quintero
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Universidad Industrial de Santander, Bucaramanga, Colombia
| | - Olga L. Fernández
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Universidad Icesi, Cali, Colombia
| | - María Adelaida Gómez
- Centro Internacional de Entrenamiento e Investigaciones Médicas-CIDEIM, Cali, Colombia
- Universidad Icesi, Cali, Colombia
| |
Collapse
|
11
|
Abstract
In this work we reviewed historical and recent data on Leishmania spp. infection combining data collected in Turkmenistan, Uzbekistan, Kazakhstan, Kyrgyzstan, Iran, China and Mongolia. We specifically focused on a complex of co-existing species (Leishmania major, Leishmania turanica and Leishmania gerbilli) sharing the same animal reservoirs and vectors. In addition, we analysed the presence of dsRNA viruses in these species and discussed future research directions to identify species-specific traits, which may determine susceptibility of different Leishmania spp. to viral infection.
Collapse
|
12
|
Mata-Somarribas C, Quesada-López J, Matamoros MF, Cervantes-Gómez C, Mejía A, Chacón K, Bendig I, Campos R, Quesada-Morera R, Cantanhêde LM, Pereira LDOR, Cupolillo E. Raising the suspicion of a non-autochthonous infection: identification of Leishmania guyanensis from Costa Rica exhibits a Leishmaniavirus related to Brazilian north-east and French Guiana viral genotypes. Mem Inst Oswaldo Cruz 2023; 117:e220162. [PMID: 36651455 PMCID: PMC9870268 DOI: 10.1590/0074-02760220162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Costa Rica has a history of neglecting prevention, control and research of leishmaniasis, including limited understanding on Leishmania species causing human disease across the country and a complete lack of knowledge on the Leishmania RNA virus, described as a factor linked to the worsening and metastasis of leishmanial lesions. OBJECTIVES The aim of this work was to describe a case of cutaneous leishmaniasis by Leishmania (Viannia) guyanensis, bearing infection with Leishmaniavirus 1 (LRV1) in Costa Rica, raising the suspicion of imported parasites in the region. METHODS The Leishmania strain was previously identified by routine hsp70 polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) in Costa Rica and subsequently characterised by isoenzyme electrophoresis and Sanger sequencing in Brazil. Screening for LRV1 was conducted with a dual RT-PCR approach and sequencing of the fragment obtained. FINDINGS Since 2016 Costa Rica performs Leishmania isolation and typing as part of its epidemiological surveillance activities. Amongst 113 strains typed until 2019, only one was characterised as a L. (V.) guyanensis, corresponding to the first confirmed report of this species in the country. Interestingly, the same strain tested positive for LRV1. Sequencing of the viral orf1 and 2, clustered this sample with other LRV1 genotypes of South American origin, from the Northeast of Brazil and French Guiana. MAIN CONCLUSION The unique characteristics of this finding raised the suspicion that it was not an autochthonous strain. Notwithstanding its presumed origin, this report points to the occurrence of said endosymbiont in Central American Leishmania strains. The possibility of its local dispersion represents one more challenge faced by regional health authorities in preventing and controlling leishmaniasis.
Collapse
Affiliation(s)
- Carlos Mata-Somarribas
- Instituto Costarricense de Investigación y Enseñanza en Nutrición y Salud, Centro Nacional de Referencia de Parasitología, Cartago, Costa Rica
| | - José Quesada-López
- Caja Costarricense de Seguro Social, Área de Salud Santa Rosa de Pocosol, Alajuela, Costa Rica
| | - María F Matamoros
- Caja Costarricense de Seguro Social, Hospital Escalante Pradilla, San José, Costa Rica
| | | | - Annia Mejía
- Caja Costarricense de Seguro Social, Área de Salud Florencia, Alajuela, Costa Rica
| | - Karen Chacón
- Caja Costarricense de Seguro Social, Hospital Ciudad Neily, Puntarenas, Costa Rica
| | - Ivannia Bendig
- Caja Costarricense de Seguro Social, Hospital de Guápiles, Limón, Costa Rica
| | - Roger Campos
- Caja Costarricense de Seguro Social, Área de Salud Matina, Limón, Costa Rica
| | | | - Lilian Motta Cantanhêde
- Fiocruz-Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Leishmanioses, Rio de Janeiro, RJ, Brasil
| | - Luiza de Oliveira R Pereira
- Fiocruz-Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Leishmanioses, Rio de Janeiro, RJ, Brasil
| | - Elisa Cupolillo
- Fiocruz-Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Laboratório de Pesquisa em Leishmanioses, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
13
|
Procházková M, Füzik T, Grybchuk D, Yurchenko V, Plevka P. Virion structure of Leishmania RNA virus 1. Virology 2022; 577:149-154. [PMID: 36371873 DOI: 10.1016/j.virol.2022.09.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022]
Abstract
The presence of Leishmania RNA virus 1 (LRV1) enables Leishmania protozoan parasites to cause more severe disease than the virus-free strains. The structure of LRV1 virus-like particles has been determined previously, however, the structure of the LRV1 virion has not been characterized. Here we used cryo-electron microscopy and single-particle reconstruction to determine the structures of the LRV1 virion and empty particle isolated from Leishmania guyanensis to resolutions of 4.0 Å and 3.6 Å, respectively. The capsid of LRV1 is built from sixty dimers of capsid proteins organized with icosahedral symmetry. RNA genomes of totiviruses are replicated inside the virions by RNA polymerases expressed as C-terminal extensions of a sub-population of capsid proteins. Most of the virions probably contain one or two copies of the RNA polymerase, however, the location of the polymerase domains in LRV1 capsid could not be identified, indicating that it varies among particles. Importance. Every year over 200 000 people contract leishmaniasis and more than five hundred people die of the disease. The mucocutaneous form of leishmaniasis produces lesions that can destroy the mucous membranes of the nose, mouth, and throat. Leishmania parasites carrying Leishmania RNA virus 1 (LRV1) are predisposed to cause aggravated symptoms in the mucocutaneous form of leishmaniasis. Here, we present the structure of the LRV1 virion determined using cryo-electron microscopy.
Collapse
Affiliation(s)
- Michaela Procházková
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Tibor Füzik
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Danyil Grybchuk
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Pavel Plevka
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno, 625 00, Czech Republic.
| |
Collapse
|
14
|
Grybchuk D, Procházková M, Füzik T, Konovalovas A, Serva S, Yurchenko V, Plevka P. Structures of L-BC virus and its open particle provide insight into Totivirus capsid assembly. Commun Biol 2022; 5:847. [PMID: 35986212 PMCID: PMC9391438 DOI: 10.1038/s42003-022-03793-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/03/2022] [Indexed: 11/18/2022] Open
Abstract
L-BC virus persists in the budding yeast Saccharomyces cerevisiae, whereas other viruses from the family Totiviridae infect a diverse group of organisms including protists, fungi, arthropods, and vertebrates. The presence of totiviruses alters the fitness of the host organisms, for example, by maintaining the killer system in yeast or increasing the virulence of Leishmania guyanensis. Despite the importance of totiviruses for their host survival, there is limited information about Totivirus structure and assembly. Here we used cryo-electron microscopy to determine the structure of L-BC virus to a resolution of 2.9 Å. The L-BC capsid is organized with icosahedral symmetry, with each asymmetric unit composed of two copies of the capsid protein. Decamers of capsid proteins are stabilized by domain swapping of the C-termini of subunits located around icosahedral fivefold axes. We show that capsids of 9% of particles in a purified L-BC sample were open and lacked one decamer of capsid proteins. The existence of the open particles together with domain swapping within a decamer provides evidence that Totiviridae capsids assemble from the decamers of capsid proteins. Furthermore, the open particles may be assembly intermediates that are prepared for the incorporation of the virus (+) strand RNA. A 2.9 Å resolution structure of the L-BC virus provides insight into the contacts between capsid proteins and the mechanism of capsid assembly.
Collapse
|
15
|
Kopelyanskiy D, Desponds C, Prevel F, Rossi M, Migliorini R, Snäkä T, Eren RO, Claudinot S, Lye LF, Pasparakis M, Beverley SM, Fasel N. Leishmania guyanensis suppressed inducible nitric oxide synthase provoked by its viral endosymbiont. Front Cell Infect Microbiol 2022; 12:944819. [PMID: 36034693 PMCID: PMC9416488 DOI: 10.3389/fcimb.2022.944819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Inducible nitric oxide synthase (iNOS) is essential to the production of nitric oxide (NO), an efficient effector molecule against intracellular human pathogens such as Leishmania protozoan parasites. Some strains of Leishmania are known to bear a viral endosymbiont termed Leishmania RNA virus 1 (LRV1). Recognition of LRV1 by the innate immune sensor Toll-like receptor-3 (TLR3) leads to conditions worsening the disease severity in mice. This process is governed by type I interferon (type I IFNs) arising downstream of TLR3 stimulation and favoring the formation of secondary metastatic lesions. The formation of these lesions is mediated by the inflammatory cytokine IL-17A and occurs in the absence, or low level of, protective cytokine IFN-γ. Here, we described that the presence of LRV1 led to the initial expression of iNOS and low production of NO that failed to control infection. We subsequently showed that LRV1-triggered type I IFN was essential but insufficient to induce robust iNOS induction, which requires strong activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). Leishmania guyanensis carrying LRV1 (LgyLRV1+) parasites mitigated strong iNOS production by limiting NF-kB activation via the induction of tumor necrosis factor-alpha-induced protein 3 (TNFAIP3), also known as A20. Moreover, our data suggested that production of LRV1-induced iNOS could be correlated with parasite dissemination and metastasis via elevated secretion of IL-17A in the draining lymph nodes. Our findings support an additional strategy by which LRV1-bearing Leishmania guyanensis evaded killing by nitric oxide and suggest that low levels of LRV1-induced NO might contribute to parasite metastasis.
Collapse
Affiliation(s)
| | - Chantal Desponds
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Florence Prevel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Matteo Rossi
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Romain Migliorini
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Tiia Snäkä
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Remzi Onur Eren
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | | | - Lon-Fye Lye
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, MO, United States
| | - Manolis Pasparakis
- Institute for Genetics, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine, University of Cologne, Cologne, Germany
| | - Stephen M. Beverley
- Department of Molecular Microbiology, School of Medicine, Washington University, St. Louis, MO, United States
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
16
|
Bekkar A, Isorce N, Snäkä T, Claudinot S, Desponds C, Kopelyanskiy D, Prével F, Reverte M, Xenarios I, Fasel N, Teixeira F. Dissection of the macrophage response towards infection by the Leishmania-viral endosymbiont duo and dynamics of the type I interferon response. Front Cell Infect Microbiol 2022; 12:941888. [PMID: 35992159 PMCID: PMC9386148 DOI: 10.3389/fcimb.2022.941888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Leishmania RNA virus 1 (LRV1) is a double-stranded RNA virus found in some strains of the human protozoan parasite Leishmania, the causative agent of leishmaniasis, a neglected tropical disease. Interestingly, the presence of LRV1 inside Leishmania constitutes an important virulence factor that worsens the leishmaniasis outcome in a type I interferon (IFN)–dependent manner and contributes to treatment failure. Understanding how macrophages respond toward Leishmania alone or in combination with LRV1 as well as the role that type I IFNs may play during infection is fundamental to oversee new therapeutic strategies. To dissect the macrophage response toward infection, RNA sequencing was performed on murine wild-type and Ifnar-deficient bone marrow–derived macrophages infected with Leishmania guyanensis (Lgy) devoid or not of LRV1. Additionally, macrophages were treated with poly I:C (mimetic virus) or with type I IFNs. By implementing a weighted gene correlation network analysis, the groups of genes (modules) with similar expression patterns, for example, functionally related, coregulated, or the members of the same functional pathway, were identified. These modules followed patterns dependent on Leishmania, LRV1, or Leishmania exacerbated by the presence of LRV1. Not only the visualization of how individual genes were embedded to form modules but also how different modules were related to each other were observed. Thus, in the context of the observed hyperinflammatory phenotype associated to the presence of LRV1, it was noted that the biomarkers tumor-necrosis factor α (TNF-α) and the interleukin 6 (IL-6) belonged to different modules and that their regulating specific Src-family kinases were segregated oppositely. In addition, this network approach revealed the strong and sustained effect of LRV1 on the macrophage response and genes that had an early, late, or sustained impact during infection, uncovering the dynamics of the IFN response. Overall, this study contributed to shed light and dissect the intricate macrophage response toward infection by the Leishmania-LRV1 duo and revealed the crosstalk between modules made of coregulated genes and provided a new resource that can be further explored to study the impact of Leishmania on the macrophage response.
Collapse
Affiliation(s)
- Amel Bekkar
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Nathalie Isorce
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Tiia Snäkä
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Chantal Desponds
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | | | - Florence Prével
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Marta Reverte
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
| | - Ioannis Xenarios
- Agora Center, Center Hospitalier Universitaire (CHUV), Lausanne, Switzerland
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Fasel
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- *Correspondence: Nicolas Fasel, ; Filipa Teixeira,
| | - Filipa Teixeira
- Department of Immunobiology, University of Lausanne, Epalinges, Switzerland
- *Correspondence: Nicolas Fasel, ; Filipa Teixeira,
| |
Collapse
|
17
|
Saberi R, Fakhar M, Hajjaran H, Abbaszadeh Afshar MJ, Mohebali M, Hezarjaribi HZ, Moghadam Y, Sharbatkhori M. Leishmania RNA virus 2 (LRV2) exacerbates dermal lesions caused by Leishmania major and comparatively unresponsive to meglumine antimoniate treatment. Exp Parasitol 2022; 241:108340. [PMID: 35932908 DOI: 10.1016/j.exppara.2022.108340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/17/2022] [Accepted: 07/20/2022] [Indexed: 11/04/2022]
Abstract
PURPOSE The present study investigated the possible role of Leishmania RNA virus 2 (LRV2) in the severity of dermal lesions and treatment failure due to Leishmania major. METHODS The drug susceptibility of 14 clinical isolates of L.major, including resistant (n = 7) and sensitive (n = 7) isolates, was checked in the J774A.1 macrophage cell line. The presence of LRV2 among isolates was investigated by the RdRp gene and semi-nested PCR. Moreover, 1 × 106 sensitive L. major LRV2+ and LRV2- promastigotes were inoculated subcutaneously into the base tails of the 40 BALB/c mice divided into 4 groups (n = 10 in each group), including clinical LRV2+, clinical LRV2-, positive control LRV2+ and negative control LRV2-. The groups were infected with a unique isolate. The lesion size and parasite burden were evaluated. RESULTS Sensitive and resistant isolates were determined by the drug susceptibility method. A higher presence of LRV2 was observed among MA-resistant isolates (6/7) compared with susceptible isolates (4/7), which was not statistically significant (P = 0.237). On the other hand, a comparison of the lesion sizes between the LRV2+ and LRV2- BALB/c mice groups revealed that the mean size of the lesion in the LRV2+ groups was significantly higher than the LRV2- (P = 0.034). In the same direction, there was an increased parasite burden in mice inoculated with LRV2+ groups compared with the LRV2- BALB/c mice groups (P = 0.002). CONCLUSIONS Our findings showed that the presence of LRV2 could be one of the factors contributing to exacerbating CL. Although we found a higher presence of LRV2 in the resistant isolates, it seems that further investigations are recommended to determine the detailed association between lesions' aggravation and being comparatively unresponsive to treatment.
Collapse
Affiliation(s)
- Reza Saberi
- Pediatric Infectious Diseases Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Pediatric Infectious Diseases Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Center for Research of Endemic Parasites of Iran (CREPI), Tehran University of Medical Sciences, Tehran, Iran
| | - Hajar Ziaei Hezarjaribi
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yusef Moghadam
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mitra Sharbatkhori
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
18
|
Nalçacı M, Karakuş M, Özbel Y, Özbilgin A, Töz S. Increasing the Sensitivity of Leishmania RNA Virus 2 (LRV2) Detection with a Modification in cDNA Synthesis. TURKIYE PARAZITOLOJII DERGISI 2022; 46:86-90. [PMID: 35604183 DOI: 10.4274/tpd.galenos.2022.30074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
OBJECTIVE Leishmania RNA virus was detected the first time in the New World Leishmania species. Recent studies were also showed the presence of Leishmania RNA virus 2 (LRV2) in Old Word Leishmania species including Turkish L. major and L. tropica isolates. This study aimed to increase the sensitivity of qPCR with a modification in the denaturation step of cDNA preparation protocol. METHODS In this study, LRV2+ three L. major, two L. tropica strains and L. major control strain (MHOM/SU/73/5-ASKH) were included. Total RNA isolation was done using different numbers of Leishmania promastigotes (108, 105 and 103). Before cDNA synthesis, samples were denatured at 95 °C for 2 min, as a modification of the kit procedure. qPCR was undertaken using 0.5 mM primers (LRV F-HR/LRV R-HR) diluted in SYBR Green Master mix. RESULTS We observed lower Ct values in amplicons with the modified version than with the classical kit protocol for cDNA synthesis, in all of the strains used in the study. The addition of pre-denaturation step at 95 °C showed lower Ct values meaning the sensitivity increased. Different parasite dilutions showed similar results. CONCLUSION It is important to increase the sensitivity especially with the aim for detecting LRV in clinical samples obtained from patients probably have less number of parasites. The presence and burden of the virus can help to understand the relationship between the clinical findings and the pathogenicity of the parasite which may lead to changes in the course of treatment.
Collapse
Affiliation(s)
- Muhammed Nalçacı
- Ege University Graduate School of Natural and Applied Sciences, Department of Biology, İzmir, Turkey
| | - Mehmet Karakuş
- University of Health Sciences Turkey Hamidiye Faculty of Medicine, Department of Medical Microbiology, İstanbul, Turkey
| | - Yusuf Özbel
- Ege University Faculty of Medicine, Department of Parasitology, İzmir, Turkey
| | - Ahmet Özbilgin
- Celal Bayar University Faculty of Medicine, Department of Parasitology, Manisa, Turkey
| | - Seray Töz
- Ege University Faculty of Medicine, Department of Parasitology, İzmir, Turkey
| |
Collapse
|
19
|
Reverte M, Snäkä T, Fasel N. The Dangerous Liaisons in the Oxidative Stress Response to Leishmania Infection. Pathogens 2022; 11:pathogens11040409. [PMID: 35456085 PMCID: PMC9029764 DOI: 10.3390/pathogens11040409] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmania parasites preferentially invade macrophages, the professional phagocytic cells, at the site of infection. Macrophages play conflicting roles in Leishmania infection either by the destruction of internalized parasites or by providing a safe shelter for parasite replication. In response to invading pathogens, however, macrophages induce an oxidative burst as a mechanism of defense to promote pathogen removal and contribute to signaling pathways involving inflammation and the immune response. Thus, oxidative stress plays a dual role in infection whereby free radicals protect against invading pathogens but can also cause inflammation resulting in tissue damage. The induced oxidative stress in parasitic infections triggers the activation in the host of the antioxidant response to counteract the damaging oxidative burst. Consequently, macrophages are crucial for disease progression or control. The ultimate outcome depends on dangerous liaisons between the infecting Leishmania spp. and the type and strength of the host immune response.
Collapse
|
20
|
Urayama SI, Takaki Y, Chiba Y, Zhao Y, Kuroki M, Hagiwara D, Nunoura T. Eukaryotic Microbial RNA Viruses-Acute or Persistent? Insights into Their Function in the Aquatic Ecosystem. Microbes Environ 2022; 37:ME22034. [PMID: 35922920 PMCID: PMC9763035 DOI: 10.1264/jsme2.me22034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Isolated RNA viruses mainly parasitize eukaryotes. RNA viruses either expand horizontally by infecting hosts (acute type) or coexist with the host and are vertically inherited (persistent type). The significance of persistent-type RNA viruses in environmental viromes (the main hosts are expected to be microbes) was only recently reported because they had previously been overlooked in virology. In this review, we summarize the host-virus relationships of eukaryotic microbial RNA viruses. Picornavirales and Reoviridae are recognized as representative acute-type virus families, and most of the microbial viruses in Narnaviridae, Totiviridae, and Partitiviridae are categorized as representative persistent-type viruses. Acute-type viruses have only been found in aquatic environments, while persistent-type viruses are present in various environments, including aquatic environments. Moreover, persistent-type viruses are potentially widely spread in the RNA viral sequence space. This emerging evidence provides novel insights into RNA viral diversity, host-virus relationships, and their history of co-evolution.
Collapse
Affiliation(s)
- Syun-ichi Urayama
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan, Corresponding author. E-mail: ; Tel: +81–29–853–6636; Fax: +81–29–853–4605
| | - Yoshihiro Takaki
- Super-cutting-edge Grand and Advanced Research (SUGAR) Program, Japan Agency for Marine Science and Technology (JAMSTEC), 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| | - Yuto Chiba
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Yanjie Zhao
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Misa Kuroki
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Daisuke Hagiwara
- Department of Life and Environmental Sciences, Laboratory of Fungal Interaction and Molecular Biology (donated by IFO), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan,Microbiology Research Center for Sustainability (MiCS), University of Tsukuba, 1–1–1 Tennodai, Tsukuba, Ibaraki 305–8577, Japan
| | - Takuro Nunoura
- Research Center for Bioscience and Nanoscience (CeBN), JAMSTEC, 2–15 Natsushima-cho, Yokosuka, Kanagawa 237–0061, Japan
| |
Collapse
|
21
|
Analyses of Leishmania-LRV Co-Phylogenetic Patterns and Evolutionary Variability of Viral Proteins. Viruses 2021; 13:v13112305. [PMID: 34835111 PMCID: PMC8624691 DOI: 10.3390/v13112305] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023] Open
Abstract
Leishmania spp. are important pathogens causing a vector-borne disease with a broad range of clinical manifestations from self-healing ulcers to the life-threatening visceral forms. Presence of Leishmania RNA virus (LRV) confers survival advantage to these parasites by suppressing anti-leishmanial immunity in the vertebrate host. The two viral species, LRV1 and LRV2 infect species of the subgenera Viannia and Leishmania, respectively. In this work we investigated co-phylogenetic patterns of leishmaniae and their viruses on a small scale (LRV2 in L. major) and demonstrated their predominant coevolution, occasionally broken by intraspecific host switches. Our analysis of the two viral genes, encoding the capsid and RNA-dependent RNA polymerase (RDRP), revealed them to be under the pressure of purifying selection, which was considerably stronger for the former gene across the whole tree. The selective pressure also differs between the LRV clades and correlates with the frequency of interspecific host switches. In addition, using experimental (capsid) and predicted (RDRP) models we demonstrated that the evolutionary variability across the structure is strikingly different in these two viral proteins.
Collapse
|
22
|
The Maze Pathway of Coevolution: A Critical Review over the Leishmania and Its Endosymbiotic History. Genes (Basel) 2021; 12:genes12050657. [PMID: 33925663 PMCID: PMC8146029 DOI: 10.3390/genes12050657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 01/10/2023] Open
Abstract
The description of the genus Leishmania as the causative agent of leishmaniasis occurred in the modern age. However, evolutionary studies suggest that the origin of Leishmania can be traced back to the Mesozoic era. Subsequently, during its evolutionary process, it achieved worldwide dispersion predating the breakup of the Gondwana supercontinent. It is assumed that this parasite evolved from monoxenic Trypanosomatidae. Phylogenetic studies locate dixenous Leishmania in a well-supported clade, in the recently named subfamily Leishmaniinae, which also includes monoxenous trypanosomatids. Virus-like particles have been reported in many species of this family. To date, several Leishmania species have been reported to be infected by Leishmania RNA virus (LRV) and Leishbunyavirus (LBV). Since the first descriptions of LRVs decades ago, differences in their genomic structures have been highlighted, leading to the designation of LRV1 in L. (Viannia) species and LRV2 in L. (Leishmania) species. There are strong indications that viruses that infect Leishmania spp. have the ability to enhance parasitic survival in humans as well as in experimental infections, through highly complex and specialized mechanisms. Phylogenetic analyses of these viruses have shown that their genomic differences correlate with the parasite species infected, suggesting a coevolutionary process. Herein, we will explore what has been described in the literature regarding the relationship between Leishmania and endosymbiotic Leishmania viruses and what is known about this association that could contribute to discussions about the worldwide dispersion of Leishmania.
Collapse
|
23
|
Abstract
Twelve million people worldwide suffer from leishmaniasis, resulting in more than 30 thousand deaths annually. The disease has several variants that differ in their symptoms. Leishmania parasites cause a variety of symptoms, including mucocutaneous leishmaniasis, which results in the destruction of the mucous membranes of the nose, mouth, and throat. The species of Leishmania carrying Leishmania RNA virus 1 (LRV1), from the family Totiviridae, are more likely to cause severe disease and are less sensitive to treatment than those that do not contain the virus. Although the importance of LRV1 for the severity of leishmaniasis was discovered a long time ago, the structure of the virus remained unknown. Here, we present a cryo-electron microscopy reconstruction of the virus-like particle of LRV1 determined to a resolution of 3.65 Å. The capsid has icosahedral symmetry and is formed by 120 copies of a capsid protein assembled in asymmetric dimers. RNA genomes of viruses from the family Totiviridae are synthetized, but not capped at the 5′ end, by virus RNA polymerases. To protect viral RNAs from degradation, capsid proteins of the L-A totivirus cleave the 5′ caps of host mRNAs, creating decoys to overload the cellular RNA quality control system. Capsid proteins of LRV1 form positively charged clefts, which may be the cleavage sites for the 5′ cap of Leishmania mRNAs. The putative RNA binding site of LRV1 is distinct from that of the related L-A virus. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative decapping site. Such inhibitors may be developed into a treatment for mucocutaneous leishmaniasis caused by LRV1-positive species of Leishmania. IMPORTANCE Twelve million people worldwide suffer from leishmaniasis, resulting in more than 30 thousand deaths annually. The disease has several variants that differ in their symptoms. The mucocutaneous form, which leads to disintegration of the nasal septum, lips, and palate, is caused predominantly by Leishmania parasites carrying Leishmania RNA virus 1 (LRV1). Here, we present the structure of the LRV1 capsid determined using cryo-electron microscopy. Capsid proteins of a related totivirus, L-A virus, protect viral RNAs from degradation by cleaving the 5′ caps of host mRNAs. Capsid proteins of LRV1 may have the same function. We show that the LRV1 capsid contains positively charged clefts that may be sites for the cleavage of mRNAs of Leishmania cells. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative mRNA cleavage site. Such inhibitors may be used as treatments for mucocutaneous leishmaniasis.
Collapse
|
24
|
Torrecilhas AC, Soares RP, Schenkman S, Fernández-Prada C, Olivier M. Extracellular Vesicles in Trypanosomatids: Host Cell Communication. Front Cell Infect Microbiol 2020; 10:602502. [PMID: 33381465 PMCID: PMC7767885 DOI: 10.3389/fcimb.2020.602502] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Trypanosoma cruzi, Trypanosoma brucei and Leishmania (Trypanosomatidae: Kinetoplastida) are parasitic protozoan causing Chagas disease, African Trypanosomiasis and Leishmaniases worldwide. They are vector borne diseases transmitted by triatomine bugs, Tsetse fly, and sand flies, respectively. Those diseases cause enormous economic losses and morbidity affecting not only rural and poverty areas but are also spreading to urban areas. During the parasite-host interaction, those organisms release extracellular vesicles (EVs) that are crucial for the immunomodulatory events triggered by the parasites. EVs are involved in cell-cell communication and can act as important pro-inflammatory mediators. Therefore, interface between EVs and host immune responses are crucial for the immunopathological events that those diseases exhibit. Additionally, EVs from these organisms have a role in the invertebrate hosts digestive tracts prior to parasite transmission. This review summarizes the available data on how EVs from those medically important trypanosomatids affect their interaction with vertebrate and invertebrate hosts.
Collapse
Affiliation(s)
- Ana Claudia Torrecilhas
- Departamento de Ciências Farmacêuticas, Federal University of Sao Paulo (UNIFESP), Diadema, Brazil
| | | | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, UNIFESP, São Paulo, Brazil
| | | | - Martin Olivier
- The Research Institute of the McGill University Health Centre, McGill University, Montréal, QC, Canada
| |
Collapse
|
25
|
Parra-Muñoz M, Aponte S, Ovalle-Bracho C, Saavedra CH, Echeverry MC. Detection of Leishmania RNA Virus in Clinical Samples from Cutaneous Leishmaniasis Patients Varies according to the Type of Sample. Am J Trop Med Hyg 2020; 104:233-239. [PMID: 33146111 DOI: 10.4269/ajtmh.20-0073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Leishmania RNA virus (LRV) is a double-stranded RNA virus belonging to the Totiviridae family detected as cytoplasmic inclusions in some strains of the human parasite Leishmania spp. Experimental evidence supports the hypothesis that human coinfection with Leishmania spp.-LRV triggers an exacerbated immune response in the host that can be responsible for the observed complicated outcomes in cutaneous leishmaniasis (CL), such as mucosal leishmaniasis (ML) and treatment failure of CL. However, the reported frequencies of LRV associated with complicated outcomes in patient's series are highly variable, diminishing the relevance on the virus presence in the pathogenesis of the disease. To assess whether or not the inconsistent information about the frequency of LRV associated with CL complicated outcomes could be related to the virus detection approach, the present study evaluated the LRV presence in clinical samples using a diagnostic algorithm according to the type of the sample. In 36 samples with diagnosis of complicated forms of CL (15 of ML and 21 of CL antimony treatment failure) and six samples with non-Leishmania spp. infection, the LRV presence was assessed by RT-PCR, RT-qPCR, and nested RT-PCR. Viral load was estimated in parasite clinical isolates. By combining the methods, LRV1 presence was confirmed in 45% (9/20) of isolates and 37.5% (6/16) of the incisional biopsies. Remarkably, in some cases (4/8), LRV1 was undetectable in the isolates but present in their respective biopsies, and less frequently, the opposite was observed (1/8), suggesting the possibility of loss of parasites harboring LRV1 during the in vitro growth.
Collapse
Affiliation(s)
- Marcela Parra-Muñoz
- 1Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Samanda Aponte
- 1Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - Carlos H Saavedra
- 3Departamento de Medicina, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - María C Echeverry
- 1Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
26
|
Saberi R, Fakhar M, Hajjaran H, Ataei-Pirkooh A, Mohebali M, Taghipour N, Ziaei Hezarjaribi H, Moghadam Y, Bagheri A. Presence and diversity of Leishmania RNA virus in an old zoonotic cutaneous leishmaniasis focus, northeastern Iran: haplotype and phylogenetic based approach. Int J Infect Dis 2020; 101:6-13. [PMID: 32947050 DOI: 10.1016/j.ijid.2020.08.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/09/2020] [Accepted: 08/11/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE Leishmania RNA virus (LRV) is a double-stranded RNA (dsRNA) virus that circulates within many species of the Leishmania parasite. In this study, we aimed to investigate the presence of LRV2 circulating in Leishmania isolates in an old focus of ZCL located in northeastern of Iran. METHODS Leishmania isolates were collected from 85 patients that confirmed to have cutaneous leishmaniasis (CL) based on parasitological examination. To identify the Leishmania isolates, species-specific primer sets were applied for molecular identification. The presence of LRV2 was performed by RdRp-semi nested-PCR. The genetic diversity were calculated using MEGA and DnaSP. To assess haplotype diversity, 31 LRV2 strains in different regions were surveyed using analysis a 292-bp section of the RdRp sequences. RESULTS Out of 85 patients, 83 (97.6 %) were diagnosed with L. major and 2 (2.4 %) with L. tropica. LRV2 virus was detected in 59 (69.4%) of the CL cases. For the first time, LRV2 was reported in one L. tropica strain in Iran. The current LRV2 sequences indicated the highest similarities to an Old World LRV2. Moreover, 10 unique haplotypes were identified based on the analyzed sequences of the RdRp gene. CONCLUSIONS Our results indicated the highest occurrence of Leishmania/LRV2 co-circulation in this known ZCL focus from northeastern Iran. Phylogenetic analyses of LRV2 sequences confirmed that these isolates belong to the order of LRV2 from the Old World. This study offered an insight into LRV2 haplotype that the informative issue can be used for genetic research of LRV2 in other regions.
Collapse
Affiliation(s)
- Reza Saberi
- Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran; Center for Research of Endemic Parasites of Iran, Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Fakhar
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Homa Hajjaran
- Center for Research of Endemic Parasites of Iran, Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| | - Angila Ataei-Pirkooh
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Center for Research of Endemic Parasites of Iran, Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Niloofar Taghipour
- Department of Tissue engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hajar Ziaei Hezarjaribi
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Yousef Moghadam
- Pediatric Infectious Diseases Research Center, Communicable Diseases Institute, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abouzar Bagheri
- Toxoplasmosis Research Center, Communicable Diseases Institute, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
27
|
Reimão JQ, Pita Pedro DP, Coelho AC. The preclinical discovery and development of oral miltefosine for the treatment of visceral leishmaniasis: a case history. Expert Opin Drug Discov 2020; 15:647-658. [PMID: 32202449 DOI: 10.1080/17460441.2020.1743674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Visceral leishmaniasis (VL) is a vector-borne disease caused by Leishmania donovani or Leishmania infantum. Closely related to poverty, VL is fatal and represents one of the main burdens on public health in developing countries. Treatment of VL relies exclusively on chemotherapy, a strategy still experiencing numerous limitations. Miltefosine (MF) has been used in the chemotherapy of VL in some endemic areas, and has been expanded to other regions, being considered crucial in eradication programs. AREAS COVERED This article reviews the most relevant preclinical and clinical aspects of MF, its mechanism of action and resistance to Leishmania parasites, as well as its limitations. The authors also give their perspectives on the treatment of VL. EXPERT OPINION The discovery of MF represented an enormous advance in the chemotherapy of VL, since it was the first oral drug for this neglected disease. Beyond selection of resistant parasites due to drug pressure, several other factors can lead to treatment failure such as, for example, factors intrinsic to the host, parasite and the drug itself. Although its efficacy as a monotherapy has reduced over recent years, MF is still an important alternative in VL chemotherapy, especially when used in combination with other drugs.
Collapse
Affiliation(s)
- Juliana Q Reimão
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí , Jundiaí, Brazil
| | - Débora P Pita Pedro
- Departamento de Morfologia e Patologia Básica, Faculdade de Medicina de Jundiaí , Jundiaí, Brazil
| | - Adriano C Coelho
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas , Campinas, Brazil
| |
Collapse
|
28
|
Abtahi M, Eslami G, Cavallero S, Vakili M, Hosseini SS, Ahmadian S, Boozhmehrani MJ, Khamesipour A. Relationship of Leishmania RNA Virus (LRV) and treatment failure in clinical isolates of Leishmania major. BMC Res Notes 2020; 13:126. [PMID: 32178715 PMCID: PMC7074996 DOI: 10.1186/s13104-020-04973-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 02/24/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Leishmaniasis is caused by different Leishmania spp. Treatment failure (TF) of cutaneous leishmaniasis (CL) is a serious issue that may be due to various reasons, previous studies suggested Leishmania RNA virus (LRV) as a potential cause of TF. Two variant groups of LRV1 and LRV2 are reported. In this study, the presence of LRV1/LRV2 was compared in TF with treatment response (TR) isolates of L. major. Clinical isolates of 15 TF and 15 TR were collected from CL patients referred to the Health Centers of Isfahan. Genomic DNA was extracted to identify Leishmania spp. using ITS1-PCR-RFLP. Identification of LRV1/LRV2 was performed using SYBR Green Real-Time PCR. The statistical analysis to test relationship between the treatment response with Glucantime and the presence of LRV were performed using SPSS 16.0 with Fisher's Exact test. P value of less than 0.05 was considered significant. RESULTS ITS1-PCR-RFLP results showed that every isolate was identified as L. major. The results showed no LRV1 in any of the samples but 7 TR isolates and 2 TF isolates showed positive for LRV2. Statistical analysis showed no significant difference between the presence of LRV2 and response to Glucantime (p-value = 0.1086). Therefore, other mechanisms might be responsible for TF.
Collapse
Affiliation(s)
- Mohsen Abtahi
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blv, Yazd, Iran.,Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Gilda Eslami
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blv, Yazd, Iran. .,Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Serena Cavallero
- Department of Public Health and Infectious Diseases, Parasitology Section, Sapienza University of Rome, Rome, Italy
| | - Mahmood Vakili
- Department of Community and Preventive Medicine, Health Monitoring Research Center, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Saeedeh Sadat Hosseini
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blv, Yazd, Iran
| | - Salman Ahmadian
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blv, Yazd, Iran.,Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Javad Boozhmehrani
- Research Center for Food Hygiene and Safety, Shahid Sadoughi University of Medical Sciences, Shohadaye Gomnam Blv, Yazd, Iran.,Department of Parasitology and Mycology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Grybchuk D, Macedo DH, Kleschenko Y, Kraeva N, Lukashev AN, Bates PA, Kulich P, Leštinová T, Volf P, Kostygov AY, Yurchenko V. The First Non-LRV RNA Virus in Leishmania. Viruses 2020; 12:v12020168. [PMID: 32024293 PMCID: PMC7077295 DOI: 10.3390/v12020168] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/21/2020] [Accepted: 01/29/2020] [Indexed: 12/25/2022] Open
Abstract
In this work, we describe the first Leishmania-infecting leishbunyavirus-the first virus other than Leishmania RNA virus (LRV) found in trypanosomatid parasites. Its host is Leishmania martiniquensis, a human pathogen causing infections with a wide range of manifestations from asymptomatic to severe visceral disease. This virus (LmarLBV1) possesses many characteristic features of leishbunyaviruses, such as tripartite organization of its RNA genome, with ORFs encoding RNA-dependent RNA polymerase, surface glycoprotein, and nucleoprotein on L, M, and S segments, respectively. Our phylogenetic analyses suggest that LmarLBV1 originated from leishbunyaviruses of monoxenous trypanosomatids and, probably, is a result of genomic re-assortment. The LmarLBV1 facilitates parasites' infectivity in vitro in primary murine macrophages model. The discovery of a virus in L. martiniquensis poses the question of whether it influences pathogenicity of this parasite in vivo, similarly to the LRV in other Leishmania species.
Collapse
Affiliation(s)
- Danyil Grybchuk
- Life Science Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; (D.G.); (D.H.M.); (N.K.)
- Central European Institute of Technology, Masaryk University, 60177 Brno, Czech Republic
| | - Diego H. Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; (D.G.); (D.H.M.); (N.K.)
| | - Yulia Kleschenko
- Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow 119435, Russia, (A.N.L.)
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; (D.G.); (D.H.M.); (N.K.)
| | - Alexander N. Lukashev
- Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow 119435, Russia, (A.N.L.)
| | - Paul A. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YE, UK;
| | - Pavel Kulich
- Laboratory of Electron Microscopy, Veterinary Research Institute, 62100 Brno, Czech Republic;
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (T.L.); (P.V.)
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, 12844 Prague, Czech Republic; (T.L.); (P.V.)
| | - Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; (D.G.); (D.H.M.); (N.K.)
- Laboratory of Cellular and Molecular Protistology, Zoological Institute of the Russian Academy of Sciences, St. Petersburg 199034, Russia
- Correspondence: (A.Y.K.); (V.Y.)
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic; (D.G.); (D.H.M.); (N.K.)
- Martsinovsky Institute of Medical Parasitology, Sechenov University, Moscow 119435, Russia, (A.N.L.)
- Correspondence: (A.Y.K.); (V.Y.)
| |
Collapse
|
30
|
de Carvalho RVH, Lima-Junior DS, da Silva MVG, Dilucca M, Rodrigues TS, Horta CV, Silva ALN, da Silva PF, Frantz FG, Lorenzon LB, Souza MM, Almeida F, Cantanhêde LM, Ferreira RDGM, Cruz AK, Zamboni DS. Leishmania RNA virus exacerbates Leishmaniasis by subverting innate immunity via TLR3-mediated NLRP3 inflammasome inhibition. Nat Commun 2019; 10:5273. [PMID: 31754185 PMCID: PMC6872735 DOI: 10.1038/s41467-019-13356-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Leishmania RNA virus (LRV) is an important virulence factor associated with the development of mucocutaneous Leishmaniasis, a severe form of the disease. LRV-mediated disease exacerbation relies on TLR3 activation, but downstream mechanisms remain largely unexplored. Here, we combine human and mouse data to demonstrate that LRV triggers TLR3 and TRIF to induce type I IFN production, which induces autophagy. This process results in ATG5-mediated degradation of NLRP3 and ASC, thereby limiting NLRP3 inflammasome activation in macrophages. Consistent with the known restricting role of NLRP3 for Leishmania replication, the signaling pathway triggered by LRV results in increased parasite survival and disease progression. In support of this data, we find that lesions in patients infected with LRV+ Leishmania are associated with reduced inflammasome activation and the development of mucocutaneous disease. Our findings reveal the mechanisms triggered by LRV that contribute to the development of the debilitating mucocutaneous form of Leishmaniasis.
Collapse
Affiliation(s)
- Renan V H de Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Djalma S Lima-Junior
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcus Vinícius G da Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marisa Dilucca
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Tamara S Rodrigues
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Catarina V Horta
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre L N Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Patrick F da Silva
- Laboratório de Imunologia e Epigenética, Departamento de Análises Clínicas, Toxicológicas e Bromatologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Fabiani G Frantz
- Laboratório de Imunologia e Epigenética, Departamento de Análises Clínicas, Toxicológicas e Bromatologia, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas B Lorenzon
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcos Michel Souza
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fausto Almeida
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | - Angela K Cruz
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
31
|
Kleschenko Y, Grybchuk D, Matveeva NS, Macedo DH, Ponirovsky EN, Lukashev AN, Yurchenko V. Molecular Characterization of Leishmania RNA virus 2 in Leishmania major from Uzbekistan. Genes (Basel) 2019; 10:genes10100830. [PMID: 31640177 PMCID: PMC6826456 DOI: 10.3390/genes10100830] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/16/2019] [Accepted: 10/18/2019] [Indexed: 12/15/2022] Open
Abstract
Here we report sequence and phylogenetic analysis of two new isolates of Leishmania RNA virus 2 (LRV2) found in Leishmania major isolated from human patients with cutaneous leishmaniasis in south Uzbekistan. These new virus-infected flagellates were isolated in the same region of Uzbekistan and the viral sequences differed by only nineteen SNPs, all except one being silent mutations. Therefore, we concluded that they belong to a single LRV2 species. New viruses are closely related to the LRV2-Lmj-ASKH documented in Turkmenistan in 1995, which is congruent with their shared host (L. major) and common geographical origin.
Collapse
Affiliation(s)
- Yuliya Kleschenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia.
| | - Danyil Grybchuk
- Life Sciences Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic.
- CEITEC-Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic.
| | - Nadezhda S Matveeva
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia.
- Department of Molecular Biology, Faculty of Biology, Moscow State University, 119991 Moscow, Russia.
| | - Diego H Macedo
- Life Sciences Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic.
| | - Evgeny N Ponirovsky
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia.
| | - Alexander N Lukashev
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia.
| | - Vyacheslav Yurchenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, 119435 Moscow, Russia.
- Life Sciences Research Centre, Faculty of Science, University of Ostrava, 71000 Ostrava, Czech Republic.
| |
Collapse
|
32
|
Saberi R, Fakhar M, Mohebali M, Anvari D, Gholami S. Global status of synchronizing Leishmania RNA virus in Leishmania parasites: A systematic review with meta-analysis. Transbound Emerg Dis 2019; 66:2244-2251. [PMID: 31376334 DOI: 10.1111/tbed.13316] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/01/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Leishmaniasis is one of the most neglected tropical diseases caused by protozoan parasites belonging to the genus Leishmania. There is much evidence regarding prevalence of Leishmania RNAvirus (LRV) causing Old World leishmaniasis (OWL) and New World leishmaniasis (NWL); however, a combined evidence-based knowledge on this topic is not still available. The purpose of this systematic review and meta-analysis was to address the global status of synchronizing LRV in Leishmania in the available literature. The data were systematically collected from the English electronic databases up to May 2018. Then, the studies were screened based on the inclusion and exclusion criteria. The random-effect model was used by forest plot with 95% confidence interval (CI). Overall, 877 samples from 17 articles were included in this study. Given species of Leishmania, the highest prevalence of LRV belonged to Leishmania (L.) Viannia (V.) guyanensis and L. V. braziliensis. Additionally, the virus was detected also in L. V. amazonensis, L. V. panamanensis, L. V. lainsoni, L. aethiopica, L. major and L. infantum. By random-effect model, the global prevalence of LRV was estimated to be 26.2% (95% CI: 14.4% - 40.1%). The high prevalence of LRV among causative agents of NWLisolated from the metastatic clinical forms suggests potential association of LRV with metastatic clinical forms in New World endemic regions. A comprehensive investigation on experimental and clinical aspects of LRV is needed to fully appraise the role of these viruses in pathogenicity of Leishmania parasites and their drug resistance.
Collapse
Affiliation(s)
- Reza Saberi
- Student Research Committee, Mazandaran University of Medical Science, Sari, Iran.,Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Davood Anvari
- Student Research Committee, Mazandaran University of Medical Science, Sari, Iran.,Department of Microbiology and Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Sara Gholami
- Toxoplasmosis Research Center, Department of Parasitology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
33
|
S. L. Figueiredo de Sá B, Rezende AM, de Melo Neto OP, de Brito MEF, Brandão Filho SP. Identification of divergent Leishmania (Viannia) braziliensis ecotypes derived from a geographically restricted area through whole genome analysis. PLoS Negl Trop Dis 2019; 13:e0007382. [PMID: 31170148 PMCID: PMC6581274 DOI: 10.1371/journal.pntd.0007382] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 06/18/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
Leishmania braziliensis, the main etiological agent of cutaneous leishmaniasis (CL) in Latin America, is characterized by major differences in basic biology in comparison with better-known Leishmania species. It is also associated with a high phenotypic and possibly genetic diversity that need to be more adequately defined. Here we used whole genome sequences to evaluate the genetic diversity of ten L. braziliensis isolates from a CL endemic area from Northeastern Brazil, previously classified by Multi Locus Enzyme Electrophoresis (MLEE) into ten distinct zymodemes. These sequences were first mapped using the L. braziliensis M2904 reference genome followed by identification of Single Nucleotide Polymorphisms (SNPs). A substantial level of diversity was observed when compared with the reference genome, with SNP counts ranging from ~95,000 to ~131,000 for the different isolates. When the genome data was used to infer relationship between isolates, those belonging to zymodemes Z72/Z75, recovered from forested environments, were found to cluster separately from the others, generally associated with more urban environments. Among the remaining isolates, those from zymodemes Z74/Z106 were also found to form a separate group. Phylogenetic analyses were also performed using Multi-Locus Sequence Analysis from genes coding for four metabolic enzymes used for MLEE as well as the gene sequence coding for the Hsp70 heat shock protein. All 10 isolates were firmly identified as L. braziliensis, including the zymodeme Z26 isolate previously classified as Leishmania shawi, with the clustering into three groups confirmed. Aneuploidy was also investigated but found in general restricted to chromosome 31, with a single isolate, from zymodeme Z27, characterized by extra copies for other chromosomes. Noteworthy, both Z72 and Z75 isolates are characterized by a much reduced heterozygosity. Our data is consistent with the existence of distinct evolutionary groups in the restricted area sampled and a substantial genetic diversity within L. braziliensis.
Collapse
Affiliation(s)
| | - Antonio M. Rezende
- Department of Microbiology, Aggeu Magalhães Institute/FIOCRUZ, Recife, Pernambuco, Brazil
| | | | | | | |
Collapse
|
34
|
Nalçacı M, Karakuş M, Yılmaz B, Demir S, Özbilgin A, Özbel Y, Töz S. Detection of Leishmania RNA virus 2 in Leishmania species from Turkey. Trans R Soc Trop Med Hyg 2019; 113:410-417. [DOI: 10.1093/trstmh/trz023] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Muhammed Nalçacı
- Ege University, Institute of Science, Division of Biology, Department of Zoology, Bornova, İzmir, Turkey
| | - Mehmet Karakuş
- University of Health Sciences, Health Sciences Institute, Biotechnology Department, Üsküdar, İstanbul, Turkey
| | - Bahtiyar Yılmaz
- Ege University, Institute of Science, Division of Biology, Department of Microbiology, Bornova, İzmir, Turkey
| | - Samiye Demir
- Ege University, Institute of Science, Division of Biology, Department of Zoology, Bornova, İzmir, Turkey
| | - Ahmet Özbilgin
- Manisa Celal Bayar University, Medical Faculty, Department of Parasitology, Manisa, Turkey
| | - Yusuf Özbel
- Ege University, Medical Faculty, Department of Parasitology, Bornova, İzmir, Turkey
| | - Seray Töz
- Ege University, Medical Faculty, Department of Parasitology, Bornova, İzmir, Turkey
| |
Collapse
|
35
|
Exploitation of the Leishmania exosomal pathway by Leishmania RNA virus 1. Nat Microbiol 2019; 4:714-723. [PMID: 30692670 DOI: 10.1038/s41564-018-0352-y] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 12/15/2018] [Indexed: 01/01/2023]
Abstract
Leishmania are ancient eukaryotes that have retained the exosome pathway through evolution. Leishmania RNA virus 1 (LRV1)-infected Leishmania species are associated with a particularly aggressive mucocutaneous disease triggered in response to the double-stranded RNA (dsRNA) virus. However, it is unclear how LRV1 is exposed to the mammalian host cells. In higher eukaryotes, some viruses are known to utilize the host exosome pathway for their formation and cell-to-cell spread. As a result, exosomes derived from infected cells contain viral material or particles. Herein, we investigated whether LRV1 exploits the Leishmania exosome pathway to reach the extracellular environment. Biochemical and electron microscopy analyses of exosomes derived from LRV1-infected Leishmania revealed that most dsRNA LRV1 co-fractionated with exosomes, and that a portion of viral particles was surrounded by these vesicles. Transfer assays of LRV1-containing exosome preparations showed that a significant amount of parasites were rapidly and transiently infected by LRV1. Remarkably, these freshly infected parasites generated more severe lesions in mice than non-infected ones. Moreover, mice co-infected with parasites and LRV1-containing exosomes also developed a more severe disease. Overall, this work provides evidence that Leishmania exosomes function as viral envelopes, thereby facilitating LRV1 transmission and increasing infectivity in the mammalian host.
Collapse
|
36
|
Borges AF, Gomes RS, Ribeiro-Dias F. Leishmania (Viannia) guyanensis in tegumentary leishmaniasis. Pathog Dis 2018; 76:4950396. [PMID: 29722820 DOI: 10.1093/femspd/fty025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 03/20/2018] [Indexed: 12/20/2022] Open
Abstract
Leishmania (Viannia) guyanensis is a causal agent of American tegumentary leishmaniasis (ATL). This protozoan has been poorly investigated; however, it can cause different clinical forms of ATL, ranging from a single cutaneous lesion to severe lesions that can lead to destruction of the nasopharyngeal mucosa. L. (V.) guyanensis and the disease caused by this species can present unique aspects revealing the need to better characterize this parasite species to improve our knowledge of the immunopathological mechanisms and treatment options for ATL. The mechanisms by which some patients develop a more severe form of ATL remain unclear. It is known that the host immune profile and parasite factors may influence the clinical manifestations of the disease. Besides intrinsic parasite factors, Leishmaniavirus RNA 1 (LRV1) infecting L. guyanensis can contribute to ATL immunopathogenesis. In this review, general aspects of L. guyanensis infection in humans and mouse models are presented.
Collapse
Affiliation(s)
- Arissa Felipe Borges
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiás, Brazil
| | - Rodrigo Saar Gomes
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiás, Brazil
| | - Fátima Ribeiro-Dias
- Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiás, Brazil
| |
Collapse
|
37
|
Cantanhêde LM, Fernandes FG, Ferreira GEM, Porrozzi R, Ferreira RDGM, Cupolillo E. New insights into the genetic diversity of Leishmania RNA Virus 1 and its species-specific relationship with Leishmania parasites. PLoS One 2018; 13:e0198727. [PMID: 29912912 PMCID: PMC6005476 DOI: 10.1371/journal.pone.0198727] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/23/2018] [Indexed: 12/16/2022] Open
Abstract
Cutaneous leishmaniasis is a neglected parasitic disease that manifests in infected individuals under different phenotypes, with a range of factors contributing to its broad clinical spectrum. One factor, Leishmania RNA Virus 1 (LRV1), has been described as an endosymbiont present in different species of Leishmania. LRV1 significantly worsens the lesion, exacerbating the immune response in both experimentally infected animals and infected individuals. Little is known about the composition and genetic diversity of these viruses. Here, we investigated the relationship between the genetic composition of LRV1 detected in strains of Leishmania (Viannia) braziliensis and L. (V.) guyanensis and the interaction between the endosymbiont and the parasitic species, analyzing an approximately 850 base pair region of the viral genome. We also included one LRV1 sequence detected in L. (V.) shawi, representing the first report of LRV1 in a species other than L. braziliensis and L. guyanensis. The results illustrate the genetic diversity of the LRV1 strains analyzed here, with smaller divergences detected among viral sequences from the same parasite species. Phylogenetic analyses showed that the LRV1 sequences are grouped according to the parasite species and possibly according to the population of the parasite in which the virus was detected, corroborating the hypothesis of joint evolution of the viruses with the speciation of Leishmania parasites.
Collapse
Affiliation(s)
- Lilian Motta Cantanhêde
- Laboratório de Epidemiologia Genética, Fundação Oswaldo Cruz, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | - Flavia Gonçalves Fernandes
- Laboratório de Epidemiologia Genética, Fundação Oswaldo Cruz, Unidade Rondônia, Porto Velho, Rondônia, Brazil
| | | | - Renato Porrozzi
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Elisa Cupolillo
- Laboratório de Pesquisa em Leishmaniose, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Robinson JI, Beverley SM. Concentration of 2'C-methyladenosine triphosphate by Leishmania guyanensis enables specific inhibition of Leishmania RNA virus 1 via its RNA polymerase. J Biol Chem 2018; 293:6460-6469. [PMID: 29511088 DOI: 10.1074/jbc.ra117.001515] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/05/2018] [Indexed: 01/06/2023] Open
Abstract
Leishmania is a widespread trypanosomatid protozoan parasite causing significant morbidity and mortality in humans. The endobiont dsRNA virus Leishmania RNA virus 1 (LRV1) chronically infects some strains, where it increases parasite numbers and virulence in murine leishmaniasis models, and correlates with increased treatment failure in human disease. Previously, we reported that 2'-C-methyladenosine (2CMA) potently inhibited LRV1 in Leishmania guyanensis (Lgy) and Leishmania braziliensis, leading to viral eradication at concentrations above 10 μm Here we probed the cellular mechanisms of 2CMA inhibition, involving metabolism, accumulation, and inhibition of the viral RNA-dependent RNA polymerase (RDRP). Activation to 2CMA triphosphate (2CMA-TP) was required, as 2CMA showed no inhibition of RDRP activity from virions purified on cesium chloride gradients. In contrast, 2CMA-TP showed IC50 values ranging from 150 to 910 μm, depending on the CsCl density of the virion (empty, ssRNA-, and dsRNA-containing). Lgy parasites incubated in vitro with 10 μm 2CMA accumulated 2CMA-TP to 410 μm, greater than the most sensitive RDRP IC50 measured. Quantitative modeling showed good agreement between the degree of LRV1 RDRP inhibition and LRV1 levels. These results establish that 2CMA activity is due to its conversion to 2CMA-TP, which accumulates to levels that inhibit RDRP and cause LRV1 loss. This attests to the impact of the Leishmania purine uptake and metabolism pathways, which allow even a weak RDRP inhibitor to effectively eradicate LRV1 at micromolar concentrations. Future RDRP inhibitors with increased potency may have potential therapeutic applications for ameliorating the increased Leishmania pathogenicity conferred by LRV1.
Collapse
Affiliation(s)
- John I Robinson
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Stephen M Beverley
- From the Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
39
|
Grybchuk D, Kostygov AY, Macedo DH, d'Avila-Levy CM, Yurchenko V. RNA viruses in trypanosomatid parasites: a historical overview. Mem Inst Oswaldo Cruz 2018. [PMID: 29513877 PMCID: PMC5851034 DOI: 10.1590/0074-02760170487] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Viruses of trypanosomatids are now being extensively studied because of their diversity and the roles they play in flagellates' biology. Among the most prominent examples are leishmaniaviruses implicated in pathogenesis of Leishmania parasites. Here, we present a historical overview of this field, starting with early reports of virus-like particles on electron microphotographs, and culminating in detailed molecular descriptions of viruses obtained using modern next generation sequencing-based techniques. Because of their diversity, different life cycle strategies and host specificity, we believe that trypanosomatids are a fertile ground for further explorations to better understand viral evolution, routes of transitions, and molecular mechanisms of adaptation to different hosts.
Collapse
Affiliation(s)
- Danyil Grybchuk
- University of Ostrava, Faculty of Science, Life Science Research Centre, Ostrava, Czech Republic
| | - Alexei Y Kostygov
- University of Ostrava, Faculty of Science, Life Science Research Centre, Ostrava, Czech Republic
| | - Diego H Macedo
- University of Ostrava, Faculty of Science, Life Science Research Centre, Ostrava, Czech Republic
| | - Claudia M d'Avila-Levy
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Estudos Integrados em Protozoologia, Coleção de Protozoários, Rio de Janeiro, RJ, Brasil
| | - Vyacheslav Yurchenko
- University of Ostrava, Faculty of Science, Life Science Research Centre, Ostrava, Czech Republic
| |
Collapse
|
40
|
Tirera S, Ginouves M, Donato D, Caballero IS, Bouchier C, Lavergne A, Bourreau E, Mosnier E, Vantilcke V, Couppié P, Prevot G, Lacoste V. Unraveling the genetic diversity and phylogeny of Leishmania RNA virus 1 strains of infected Leishmania isolates circulating in French Guiana. PLoS Negl Trop Dis 2017; 11:e0005764. [PMID: 28715422 PMCID: PMC5531682 DOI: 10.1371/journal.pntd.0005764] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/27/2017] [Accepted: 06/30/2017] [Indexed: 01/23/2023] Open
Abstract
Introduction Leishmania RNA virus type 1 (LRV1) is an endosymbiont of some Leishmania (Vianna) species in South America. Presence of LRV1 in parasites exacerbates disease severity in animal models and humans, related to a disproportioned innate immune response, and is correlated with drug treatment failures in humans. Although the virus was identified decades ago, its genomic diversity has been overlooked until now. Methodology/Principles findings We subjected LRV1 strains from 19 L. (V.) guyanensis and one L. (V.) braziliensis isolates obtained from cutaneous leishmaniasis samples identified throughout French Guiana with next-generation sequencing and de novo sequence assembly. We generated and analyzed 24 unique LRV1 sequences over their full-length coding regions. Multiple alignment of these new sequences revealed variability (0.5%–23.5%) across the entire sequence except for highly conserved motifs within the 5’ untranslated region. Phylogenetic analyses showed that viral genomes of L. (V.) guyanensis grouped into five distinct clusters. They further showed a species-dependent clustering between viral genomes of L. (V.) guyanensis and L. (V.) braziliensis, confirming a long-term co-evolutionary history. Noteworthy, we identified cases of multiple LRV1 infections in three of the 20 Leishmania isolates. Conclusions/Significance Here, we present the first-ever estimate of LRV1 genomic diversity that exists in Leishmania (V.) guyanensis parasites. Genetic characterization and phylogenetic analyses of these viruses has shed light on their evolutionary relationships. To our knowledge, this study is also the first to report cases of multiple LRV1 infections in some parasites. Finally, this work has made it possible to develop molecular tools for adequate identification and genotyping of LRV1 strains for diagnostic purposes. Given the suspected worsening role of LRV1 infection in the pathogenesis of human leishmaniasis, these data have a major impact from a clinical viewpoint and for the management of Leishmania-infected patients. Leishmaniasis is a well-known parasitosis due to an infection by the protozoan Leishmania parasites firmly established in South America. In French Guiana, where leishmaniasis is a public health problem, having an annual incidence of 5.6 cases/10,000 inhabitants, 80% of Leishmania spp. parasites are infected by an endosymbiotic virus, Leishmania RNA virus 1 (LRV1). The purpose of this study was to gain insights on the genetic variability and evolution of LRV1 at the genomic level. We subjected 20 Leishmania isolates obtained from cutaneous lesions with next generation sequencing and de novo sequence assembly. This allowed generating 24 LRV1 full-length coding sequences presenting among themselves a significant genetic diversity. The inferred phylogenetic relationships enabled to identify distinct well-supported genotypes and support the hypothesis of co-evolution between LRV1 strains and their parasite hosts. In addition, we identified multiple LRV1 infections in three parasite isolates. Based on these data, future characterization of new strains from other geographic areas and other parasite species should extend knowledge of LRV1 diversification processes. Finally, these results allowed us to identify genomic regions where best to allocate resources for subsequent analyses of LRV1 viral diversity and genotyping that could serve for accurate routine molecular diagnostic applications.
Collapse
Affiliation(s)
- Sourakhata Tirera
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Marine Ginouves
- Ecosystèmes Amazoniens et Pathologie Tropicale, EA 3593, Medicine Department, University of French Guiana, Cayenne, French Guiana
- National Reference Center for Leishmania, associated laboratory, Laboratory of Parasitology and Mycology, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Damien Donato
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Ignacio S. Caballero
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
- Bioinformatics Graduate Program, Boston University, Boston, MA, United States of America
| | | | - Anne Lavergne
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Eliane Bourreau
- Laboratoire d’Immunologie des Leishmanioses, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Emilie Mosnier
- Ecosystèmes Amazoniens et Pathologie Tropicale, EA 3593, Medicine Department, University of French Guiana, Cayenne, French Guiana
- Unité des Maladies Infectieuses et Tropicales, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
- Centres Délocalisés de Préventions et de Soins, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Vincent Vantilcke
- Department of Medicine, Centre Hospitalier de l'Ouest Guyanais, Saint Laurent du Maroni, French Guiana
| | - Pierre Couppié
- Ecosystèmes Amazoniens et Pathologie Tropicale, EA 3593, Medicine Department, University of French Guiana, Cayenne, French Guiana
- National Reference Center for Leishmania, associated laboratory, Laboratory of Parasitology and Mycology, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
- Dermatology Unit, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Ghislaine Prevot
- Ecosystèmes Amazoniens et Pathologie Tropicale, EA 3593, Medicine Department, University of French Guiana, Cayenne, French Guiana
| | - Vincent Lacoste
- Laboratoire des Interactions Virus-Hôtes, Institut Pasteur de la Guyane, Cayenne, French Guiana
- Department of Virology, Institut Pasteur, Paris, France
- * E-mail:
| |
Collapse
|
41
|
He D, Pengtao G, Ju Y, Jianhua L, He L, Guocai Z, Xichen Z. Differential Protein Expressions in Virus-Infected and Uninfected Trichomonas vaginalis. THE KOREAN JOURNAL OF PARASITOLOGY 2017; 55:121-128. [PMID: 28506033 PMCID: PMC5450954 DOI: 10.3347/kjp.2017.55.2.121] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 02/05/2017] [Accepted: 02/22/2017] [Indexed: 11/23/2022]
Abstract
Protozoan viruses may influence the function and pathogenicity of the protozoa. Trichomonas vaginalis is a parasitic protozoan that could contain a double stranded RNA (dsRNA) virus, T. vaginalis virus (TVV). However, there are few reports on the properties of the virus. To further determine variations in protein expression of T. vaginalis, we detected 2 strains of T. vaginalis; the virus-infected (V+) and uninfected (V−) isolates to examine differentially expressed proteins upon TVV infection. Using a stable isotope N-terminal labeling strategy (iTRAQ) on soluble fractions to analyze proteomes, we identified 293 proteins, of which 50 were altered in V+ compared with V− isolates. The results showed that the expression of 29 proteins was increased, and 21 proteins decreased in V+ isolates. These differentially expressed proteins can be classified into 4 categories: ribosomal proteins, metabolic enzymes, heat shock proteins, and putative uncharacterized proteins. Quantitative PCR was used to detect 4 metabolic processes proteins: glycogen phosphorylase, malate dehydrogenase, triosephosphate isomerase, and glucose-6-phosphate isomerase, which were differentially expressed in V+ and V− isolates. Our findings suggest that mRNA levels of these genes were consistent with protein expression levels. This study was the first which analyzed protein expression variations upon TVV infection. These observations will provide a basis for future studies concerning the possible roles of these proteins in host-parasite interactions.
Collapse
Affiliation(s)
- Ding He
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Gong Pengtao
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Yang Ju
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Li Jianhua
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Li He
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Zhang Guocai
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| | - Zhang Xichen
- College of Veterinary Medicine, Jilin University, Changchun 130062, P. R. China
| |
Collapse
|
42
|
Type I interferons induced by endogenous or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proc Natl Acad Sci U S A 2017; 114:4987-4992. [PMID: 28439019 DOI: 10.1073/pnas.1621447114] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The presence of the endogenous Leishmania RNA virus 1 (LRV1) replicating stably within some parasite species has been associated with the development of more severe forms of leishmaniasis and relapses after drug treatment in humans. Here, we show that the disease-exacerbatory role of LRV1 relies on type I IFN (type I IFNs) production by macrophages and signaling in vivo. Moreover, infecting mice with the LRV1-cured Leishmania guyanensis (LgyLRV1- ) strain of parasites followed by type I IFN treatment increased lesion size and parasite burden, quantitatively reproducing the LRV1-bearing (LgyLRV1+ ) infection phenotype. This finding suggested the possibility that exogenous viral infections could likewise increase pathogenicity, which was tested by coinfecting mice with L. guyanensis and lymphocytic choriomeningitis virus (LCMV), or the sand fly-transmitted arbovirus Toscana virus (TOSV). The type I IFN antiviral response increased the pathology of L. guyanensis infection, accompanied by down-regulation of the IFN-γ receptor normally required for antileishmanial control. Further, LCMV coinfection of IFN-γ-deficient mice promoted parasite dissemination to secondary sites, reproducing the LgyLRV1+ metastatic phenotype. Remarkably, LCMV coinfection of mice that had healed from L. guyanensis infection induced reactivation of disease pathology, overriding the protective adaptive immune response. Our findings establish that type I IFN-dependent responses, arising from endogenous viral elements (dsRNA/LRV1), or exogenous coinfection with IFN-inducing viruses, are able to synergize with New World Leishmania parasites in both primary and relapse infections. Thus, viral infections likely represent a significant risk factor along with parasite and host factors, thereby contributing to the pathological spectrum of human leishmaniasis.
Collapse
|
43
|
Patterson JL. Role of LRV1 and RNAi in the Pathogenesis of Leishmania. Trends Parasitol 2017; 33:76-78. [DOI: 10.1016/j.pt.2016.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 12/27/2022]
|
44
|
Antiviral screening identifies adenosine analogs targeting the endogenous dsRNA Leishmania RNA virus 1 (LRV1) pathogenicity factor. Proc Natl Acad Sci U S A 2017; 114:E811-E819. [PMID: 28096399 DOI: 10.1073/pnas.1619114114] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The endogenous double-stranded RNA (dsRNA) virus Leishmaniavirus (LRV1) has been implicated as a pathogenicity factor for leishmaniasis in rodent models and human disease, and associated with drug-treatment failures in Leishmania braziliensis and Leishmania guyanensis infections. Thus, methods targeting LRV1 could have therapeutic benefit. Here we screened a panel of antivirals for parasite and LRV1 inhibition, focusing on nucleoside analogs to capitalize on the highly active salvage pathways of Leishmania, which are purine auxotrophs. Applying a capsid flow cytometry assay, we identified two 2'-C-methyladenosine analogs showing selective inhibition of LRV1. Treatment resulted in loss of LRV1 with first-order kinetics, as expected for random virus segregation, and elimination within six cell doublings, consistent with a measured LRV1 copy number of about 15. Viral loss was specific to antiviral nucleoside treatment and not induced by growth inhibitors, in contrast to fungal dsRNA viruses. Comparisons of drug-treated LRV1+ and LRV1- lines recapitulated LRV1-dependent pathology and parasite replication in mouse infections, and cytokine secretion in macrophage infections. Agents targeting Totiviridae have not been described previously, nor are there many examples of inhibitors acting against dsRNA viruses more generally. The compounds identified here provide a key proof-of-principle in support of further studies identifying efficacious antivirals for use in in vivo studies of LRV1-mediated virulence.
Collapse
|
45
|
Tilting the balance between RNA interference and replication eradicates Leishmania RNA virus 1 and mitigates the inflammatory response. Proc Natl Acad Sci U S A 2016; 113:11998-12005. [PMID: 27790981 DOI: 10.1073/pnas.1615085113] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many Leishmania (Viannia) parasites harbor the double-stranded RNA virus Leishmania RNA virus 1 (LRV1), which has been associated with increased disease severity in animal models and humans and with drug treatment failures in humans. Remarkably, LRV1 survives in the presence of an active RNAi pathway, which in many organisms controls RNA viruses. We found significant levels (0.4 to 2.5%) of small RNAs derived from LRV1 in both Leishmania braziliensis and Leishmania guyanensis, mapping across both strands and with properties consistent with Dicer-mediated cleavage of the dsRNA genome. LRV1 lacks cis- or trans-acting RNAi inhibitory activities, suggesting that virus retention must be maintained by a balance between RNAi activity and LRV1 replication. To tilt this balance toward elimination, we targeted LRV1 using long-hairpin/stem-loop constructs similar to those effective against chromosomal genes. LRV1 was completely eliminated, at high efficiency, accompanied by a massive overproduction of LRV1-specific siRNAs, representing as much as 87% of the total. For both L. braziliensis and L. guyanensis, RNAi-derived LRV1-negative lines were no longer able to induce a Toll-like receptor 3-dependent hyperinflammatory cytokine response in infected macrophages. We demonstrate in vitro a role for LRV1 in virulence of L. braziliensis, the Leishmania species responsible for the vast majority of mucocutaneous leishmaniasis cases. These findings establish a targeted method for elimination of LRV1, and potentially of other Leishmania viruses, which will facilitate mechanistic dissection of the role of LRV1-mediated virulence. Moreover, our data establish a third paradigm for RNAi-viral relationships in evolution: one of balance rather than elimination.
Collapse
|
46
|
Hartley MA, Bourreau E, Rossi M, Castiglioni P, Eren RO, Prevel F, Couppié P, Hickerson SM, Launois P, Beverley SM, Ronet C, Fasel N. Leishmaniavirus-Dependent Metastatic Leishmaniasis Is Prevented by Blocking IL-17A. PLoS Pathog 2016; 12:e1005852. [PMID: 27658195 PMCID: PMC5033371 DOI: 10.1371/journal.ppat.1005852] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022] Open
Abstract
Cutaneous leishmaniasis has various outcomes, ranging from self-healing reddened papules to extensive open ulcerations that metastasise to secondary sites and are often resistant to standard therapies. In the case of L. guyanensis (L.g), about 5-10% of all infections result in metastatic complications. We recently showed that a cytoplasmic virus within L.g parasites (LRV1) is able to act as a potent innate immunogen, worsening disease outcome in a murine model. In this study, we investigated the immunophenotype of human patients infected by L.g and found a significant association between the inflammatory cytokine IL-17A, the presence of LRV1 and disease chronicity. Further, IL-17A was inversely correlated to the protective cytokine IFN-γ. These findings were experimentally corroborated in our murine model, where IL-17A produced in LRV1+ L.g infection contributed to parasite virulence and dissemination in the absence of IFN-γ. Additionally, IL-17A inhibition in mice using digoxin or SR1001, showed therapeutic promise in limiting parasite virulence. Thus, this murine model of LRV1-dependent infectious metastasis validated markers of disease chronicity in humans and elucidated the immunologic mechanism for the dissemination of Leishmania parasites to secondary sites. Moreover, it confirms the prognostic value of LRV1 and IL-17A detection to prevent metastatic leishmaniasis in human patients.
Collapse
Affiliation(s)
- Mary-Anne Hartley
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Eliane Bourreau
- Immunologie des Leishmanioses, Institut Pasteur de la Guyane, Cayenne, French Guiana
| | - Matteo Rossi
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Patrik Castiglioni
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Remzi Onur Eren
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Florence Prevel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Pierre Couppié
- Service de Dermatologie, Centre Hospitalier Andrée Rosemon, Cayenne, French Guiana
| | - Suzanne M. Hickerson
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Pascal Launois
- World Health Organization Immunology Research and Training centre (WHO-IRTC), Epalinges, Switzerland
| | - Stephen M. Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, United States of America
| | - Catherine Ronet
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Nicolas Fasel
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
- * E-mail:
| |
Collapse
|
47
|
Macedo DH, Menezes-Neto A, Rugani JM, Rocha AC, Silva SO, Melo MN, Lye LF, Beverley SM, Gontijo CM, Soares RP. Low frequency of LRV1 in Leishmania braziliensis strains isolated from typical and atypical lesions in the State of Minas Gerais, Brazil. Mol Biochem Parasitol 2016; 210:50-54. [PMID: 27546549 DOI: 10.1016/j.molbiopara.2016.08.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/12/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
Abstract
The double stranded RNA (dsRNA) virus Leishmaniavirus (Totiviridae) was first described in Leishmania guyanensis and L. braziliensis (LRV1), and more recently from L. major and L. aethiopica (LRV2). Parasites bearing LRV1 elicit a higher pro-inflammatory profile, arising through activation of Toll like receptor 3(TLR3) interacting with the viral dsRNA. LRV1 is most common in Leishmania from the Amazon region; however data for other regions of Brazil are more limited. Here we applied PCR tests with validated 'universal' LRV1 primers to search for LRV1 in 40 strains of cultured L. braziliensis from several locales within Minas Gerais State, including patients presenting with atypical lesion pathology. All strains were negative however. These data are in agreement with results from other areas of Southeastern Brazil that LRV1 is relatively uncommon.
Collapse
Affiliation(s)
- Diego H Macedo
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | | | - Jeronimo M Rugani
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Ana C Rocha
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Soraia O Silva
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Maria N Melo
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lon-Fye Lye
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Stephen M Beverley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Célia M Gontijo
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Rodrigo P Soares
- Centro de Pesquisas René Rachou/FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
48
|
Atkins JF, Loughran G, Bhatt PR, Firth AE, Baranov PV. Ribosomal frameshifting and transcriptional slippage: From genetic steganography and cryptography to adventitious use. Nucleic Acids Res 2016; 44:7007-78. [PMID: 27436286 PMCID: PMC5009743 DOI: 10.1093/nar/gkw530] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/26/2016] [Indexed: 12/15/2022] Open
Abstract
Genetic decoding is not ‘frozen’ as was earlier thought, but dynamic. One facet of this is frameshifting that often results in synthesis of a C-terminal region encoded by a new frame. Ribosomal frameshifting is utilized for the synthesis of additional products, for regulatory purposes and for translational ‘correction’ of problem or ‘savior’ indels. Utilization for synthesis of additional products occurs prominently in the decoding of mobile chromosomal element and viral genomes. One class of regulatory frameshifting of stable chromosomal genes governs cellular polyamine levels from yeasts to humans. In many cases of productively utilized frameshifting, the proportion of ribosomes that frameshift at a shift-prone site is enhanced by specific nascent peptide or mRNA context features. Such mRNA signals, which can be 5′ or 3′ of the shift site or both, can act by pairing with ribosomal RNA or as stem loops or pseudoknots even with one component being 4 kb 3′ from the shift site. Transcriptional realignment at slippage-prone sequences also generates productively utilized products encoded trans-frame with respect to the genomic sequence. This too can be enhanced by nucleic acid structure. Together with dynamic codon redefinition, frameshifting is one of the forms of recoding that enriches gene expression.
Collapse
Affiliation(s)
- John F Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland School of Microbiology, University College Cork, Cork, Ireland Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pramod R Bhatt
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E Firth
- Division of Virology, Department of Pathology, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Pavel V Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| |
Collapse
|
49
|
Molecular characterization of double-stranded RNA virus in Trichomonas vaginalis Egyptian isolates and its association with pathogenicity. Parasitol Res 2016; 115:4027-36. [DOI: 10.1007/s00436-016-5174-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 06/09/2016] [Indexed: 11/25/2022]
|
50
|
Martinez J, Lepetit D, Ravallec M, Fleury F, Varaldi J. Additional heritable virus in the parasitic wasp Leptopilina boulardi: prevalence, transmission and phenotypic effects. J Gen Virol 2016; 97:523-535. [DOI: 10.1099/jgv.0.000360] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Julien Martinez
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| | - David Lepetit
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| | - Marc Ravallec
- Unité BiVi (Biologie Intégrative et Virologie des Insectes), Université Montpellier II-INRA 1231, France
| | - Frédéric Fleury
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| | - Julien Varaldi
- Université Lyon 1, CNRS, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Lyon, France
| |
Collapse
|