1
|
An In Vivo Screening Model for Investigation of Pathophysiology of Human Implantation Failure. Biomolecules 2022; 13:biom13010079. [PMID: 36671464 PMCID: PMC9856033 DOI: 10.3390/biom13010079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
To improve current infertility treatments, it is important to understand the pathophysiology of implantation failure. However, many molecules are involved in the normal biological process of implantation and the roles of each molecule and the molecular mechanism are not fully understood. This review highlights the hemagglutinating virus of Japan (HVJ; Sendai virus) envelope (HVJ-E) vector, which uses inactivated viral particles as a local and transient gene transfer system to the murine uterus during the implantation period in order to investigate the molecular mechanism of implantation. In vivo screening in mice using the HVJ-E vector system suggests that signal transducer and activator of transcription-3 (Stat-3) could be a diagnostic and therapeutic target for women with a history of implantation failure. The HVJ-E vector system hardly induces complete defects in genes; however, it not only suppresses but also transiently overexpresses some genes in the murine uterus. These features may be useful in investigating the pathophysiology of implantation failure in women.
Collapse
|
2
|
Caballero I, Al Ghareeb S, Basatvat S, Sánchez-López JA, Montazeri M, Maslehat N, Elliott S, Chapman NR, Fazeli A. Human trophoblast cells modulate endometrial cells nuclear factor κB response to flagellin in vitro. PLoS One 2013; 8:e39441. [PMID: 23320062 PMCID: PMC3540055 DOI: 10.1371/journal.pone.0039441] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 10/05/2012] [Indexed: 01/06/2023] Open
Abstract
Background Implantation is a complex process that requires a delicate cooperation between the immune and reproductive system. Any interference in the fine balance could result in embryo loss and infertility. We have recently shown that Toll-like receptor 5 activation results in a decrease of trophoblast cells binding to endometrial cells in an in vitro model of human implantation. However, little is known about the downstream signalling leading to the observed failure in implantation and the factors that modulate this immune response. Methods and Principal Findings An in vitro model of embryo implantation was used to evaluate the effect of trophoblasts and flagellin on the activation of NF-κB in endometrial cells and whether TLR5-related in vitro implantation failure is signalled through NF-κB. We generated two different NF-κB reporting cell lines by transfecting either an immortalized endometrial epithelial cell line (hTERT-EECs) or a human endometrial carcinoma cell line (Ishikawa 3-H-12) with a plasmid containing the secreted alkaline phosphatase (SEAP) under the control of five NF-κB sites. The presence of trophoblast cells as well as flagellin increased NF-κB activity when compared to controls. The NF-κB activation induced by flagellin was further increased by the addition of trophoblast cells. Moreover, blocking NF-κB signalling with a specific inhibitor (BAY11-7082) was able to restore the binding ability of our trophoblast cell line to the endometrial monolayer. Conclusions These are the first results showing a local effect of the trophoblasts on the innate immune response of the endometrial epithelium. Moreover, we show that implantation failure caused by intrauterine infections could be associated with abnormal levels of NF-κB activation. Further studies are needed to evaluate the target genes through which NF-κB activation after TLR5 stimulation lead to failure in implantation and the effect of the embryo on those genes. Understanding these pathways could help in the diagnosis and treatment of implantation failure cases.
Collapse
Affiliation(s)
- Ignacio Caballero
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sumiah Al Ghareeb
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Shaghayegh Basatvat
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Javier A. Sánchez-López
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Mehrnaz Montazeri
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Nasim Maslehat
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Sarah Elliott
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Neil R. Chapman
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Alireza Fazeli
- Academic Unit of Reproductive and Developmental Medicine, Department of Human Metabolism, The Medical School, University of Sheffield, Sheffield, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Neo SJ, Su X, Thomsen JS. Surface plasmon resonance study of cooperative interactions of estrogen receptor alpha and transcriptional factor Sp1 with composite DNA elements. Anal Chem 2009; 81:3344-9. [PMID: 19331400 DOI: 10.1021/ac802543x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have applied surface plasmon resonance (SPR) spectroscopy to study the cooperative interactions of estrogen receptor alpha (ERalpha) and transcription factor Sp1 with a composite DNA element, containing an estrogen response element (ERE) half-site upstream of two adjacent Sp1 sites (+571 ERE/Sp1 composite site in promoter A of the human PR gene). Using nuclear extracts of MCF-7 breast cancer cells as sample, we have shown that Sp1 is associated with Sp1-binding sites only, whereas ERalpha can be recruited to DNA both through direct binding to the ERE half-site and/or through protein-protein interactions with DNA-bound Sp1. The ERE half-site and the proximal Sp1 site are only 4 bp apart, and our data suggests that one transcription factor bound to DNA constitutes a sterical hindrance of the accessibility of the binding site for the other transcription factor. Our data confirms previous observations that ERalpha increases the amount of Sp1 recruited to the composite binding site in a dose-dependent manner. Using recombinant proteins, we have unambiguously proved the formation of a ternary complex of ERalpha/Sp1-composite DNA, for which previously published electrophoretic mobility shift assay (EMSA) results are contradictive. With this study, we have demonstrated that the solid-liquid-phase SPR assay is a powerful alternative for studying multiprotein-DNA interactions and is superior to the EMSA experiments as it is capable of real-time measurements, can quantify the amount of protein bound, and can capture transient and weak binding interactions. The comprehensive characterization of the synergistic interactions between ERalpha-DNA, Sp1-DNA, and ERalpha-Sp1 contributes to the understanding of how ERalpha and Sp1 influence and activate gene transcription.
Collapse
Affiliation(s)
- Siew Jun Neo
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 3 Research Link, Singapore 117602
| | | | | |
Collapse
|
4
|
Velarde MC, Zeng Z, McQuown JR, Simmen FA, Simmen RCM. Krüppel-Like Factor 9 Is a Negative Regulator of Ligand-Dependent Estrogen Receptor α Signaling in Ishikawa Endometrial Adenocarcinoma Cells. Mol Endocrinol 2007; 21:2988-3001. [PMID: 17717078 DOI: 10.1210/me.2007-0242] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractEstrogen and progesterone, acting through their respective receptors and other nuclear proteins, exhibit opposing activities in target cells. We previously reported that Krüppel-like factor 9 (KLF9) cooperates with progesterone receptor (PR) to facilitate P-dependent gene transcription in uterine epithelial cells. Here we evaluated whether KLF9 may further support PR function by directly opposing estrogen receptor (ER) signaling. Using human Ishikawa endometrial epithelial cells, we showed that 17β-estradiol (E2)-dependent down-regulation of ERα expression was reversed by a small interfering RNA to KLF9. Transcription assays with the E2-sensitive 4× estrogen-responsive element-thymidine kinase-promoter-luciferase reporter gene demonstrated inhibition of ligand-dependent ERα transactivation with ectopic KLF9 expression. E2 induced PR-A/B and PR-B isoform expression in the absence of effects on KLF9 levels. Addition of KLF9 small interfering RNA augmented E2 induction of PR-A/B while abrogating that of PR-B, indicating selective E2-mediated inhibition of PR-A by KLF9. Chromatin immunoprecipitation of the ERα minimal promoter demonstrated KLF9 promotion of E2-dependent ERα association to a region containing functional GC-rich motifs. KLF9 inhibited the recruitment of the ERα coactivator specificity protein 1 (Sp1) to the PR proximal promoter region containing a half-estrogen responsive element and GC-rich sites, but had no effect on Sp1 association to the PR distal promoter region containing GC-rich sequences. In vivo association of KLF9 and Sp1, but not of ERα with KLF9 or Sp1, was observed in control and E2-treated cells. Our data identify KLF9 as a transcriptional repressor of ERα signaling and suggest that it may function at the node of PR and ER genomic pathways to influence cell proliferation.
Collapse
Affiliation(s)
- Michael C Velarde
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
| | | | | | | | | |
Collapse
|
5
|
Bryant DN, Sheldahl LC, Marriott LK, Shapiro RA, Dorsa DM. Multiple pathways transmit neuroprotective effects of gonadal steroids. Endocrine 2006; 29:199-207. [PMID: 16785596 DOI: 10.1385/endo:29:2:199] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 11/30/1999] [Accepted: 10/25/2005] [Indexed: 12/27/2022]
Abstract
Numerous preclinical studies suggest that gonadal steroids, particularly estrogen, may be neuroprotective against insult or disease progression. This paper reviews the mechanisms contributing to estrogen-mediated neuroprotection. Rapid signaling pathways, such as MAPK, PI3K, Akt, and PKC, are required for estrogen's ability to provide neuroprotection. These rapid signaling pathways converge on genomic pathways to modulate transcription of E2-responsive genes via ERE-dependent and ERE-independent mechanisms. It is clear that both rapid signaling and transcription are important for estrogen's neuroprotective effects. A mechanistic understanding of estrogen-mediated neuroprotection is crucial for the development of therapeutic interventions that enhance quality of life without deleterious side effects.
Collapse
Affiliation(s)
- Damani N Bryant
- Department of Physiology and Pharmacology (L334), Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | | |
Collapse
|
6
|
Wu H, Chen Y, Liang J, Shi B, Wu G, Zhang Y, Wang D, Li R, Yi X, Zhang H, Sun L, Shang Y. Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 2006; 438:981-7. [PMID: 16355216 DOI: 10.1038/nature04225] [Citation(s) in RCA: 201] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 09/08/2005] [Indexed: 11/10/2022]
Abstract
Tamoxifen, a selective oestrogen receptor modulator, has been used in the treatment of all stages of hormone-responsive breast cancer. However, tamoxifen shows partial oestrogenic activity in the uterus and its use has been associated with an increased incidence of endometrial cancer. The molecular explanation for these observations is not known. Here we show that tamoxifen and oestrogen have distinct but overlapping target gene profiles. Among the overlapping target genes, we identify a paired-box gene, PAX2, that is crucially involved in cell proliferation and carcinogenesis in the endometrium. Our experiments show that PAX2 is activated by oestrogen and tamoxifen in endometrial carcinomas but not in normal endometrium, and that this activation is associated with cancer-linked hypomethylation of the PAX2 promoter.
Collapse
Affiliation(s)
- Huijian Wu
- Department of Biochemistry and Molecular Biology, Peking University Health Science Center, Beijing 100083, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Sator K, Sator MO, Sator PG, Egarter C, Huber JC. Effects of tibolone on selectins in postmenopausal women. Maturitas 2006; 53:166-70. [PMID: 15894441 DOI: 10.1016/j.maturitas.2005.03.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2004] [Revised: 03/22/2005] [Accepted: 03/30/2005] [Indexed: 11/24/2022]
Abstract
OBJECTIVE The first step in atherosclerosis is characterized by the adherence of lymphocytes and monocytes to cell adhesion molecules expressed by endothelial cells. The precise mechanism by which steroid hormones may be exerting a protective action against atherogenesis remains unclear. Therefore, we wanted to investigate the effect of tibolone on the circulating levels of various selectins in postmenopausal women. METHODS Thirty healthy postmenopausal women were enrolled in a prospective, randomized, double blind, placebo-controlled outpatient trial. RESULTS Patients treated with tibolone revealed a significant decrease for the variables sE-selectin, sL-selectin, and sPECAM-1 after 8 weeks of treatment. CONCLUSIONS By reducing leukocyte adhesion molecule expression on human endothelial cells, tibolone may have the intrinsic potential to exert additional, lipid-independent, cardiovascular protective effects that may explain the clinical benefits of cardiovascular diseases in postmenopausal women.
Collapse
Affiliation(s)
- Kathrin Sator
- Department of Obstetrics and Gynaecology, Division of Endocrinology & Reproductive Medicine, University of Vienna, General Hospital, Waehringer, Austria
| | | | | | | | | |
Collapse
|
8
|
Amantea D, Russo R, Bagetta G, Corasaniti MT. From clinical evidence to molecular mechanisms underlying neuroprotection afforded by estrogens. Pharmacol Res 2005; 52:119-32. [PMID: 15967377 DOI: 10.1016/j.phrs.2005.03.002] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2005] [Accepted: 03/14/2005] [Indexed: 11/15/2022]
Abstract
Recent studies have highlighted that female sex hormones represent potential neuroprotective agents against damage produced by acute and chronic injuries in the adult brain. Clinical reports have documented the effectiveness of estrogens to attenuate symptoms associated with Parkinson's disease, and to reduce the risk of Alzheimer's disease and cerebrovascular stroke. This evidence is corroborated by numerous experimental studies documenting the protective role of female sex hormones both in vitro and in vivo. Accordingly, estrogens have been shown to promote survival and differentiation of several neuronal populations maintained in culture, and to reduce cell death associated with excitotoxicity, oxidative stress, serum deprivation or exposure to beta-amyloid. The neuroprotective effects of estrogens have been widely documented in animal models of neurological disorders, such as Alzheimer's and Parkinson's diseases, as well as cerebral ischemia. Although estrogens are known to exert several direct effects on neurones, the cellular and molecular mechanisms implicated in their protective actions on the brain are not completely understood. Thus, on the basis of clinical and experimental evidence, in this review, we discuss recent findings concerning the neuronal effects of estrogens that may contribute to their neuroprotective actions. Both estrogen receptor-dependent and -independent mechanisms will be described. These include modulation of cell death regulators, such as Bcl-2, Akt and calpain, as well as interaction with growth factors, such as BDNF, NGF, IGF-I and their receptors. The anti-inflammatory effects of estrogens will also be described, namely their ability to reduce brain levels of inflammatory mediators, cytokines and chemokines. Finally, a brief overview about receptor-independent mechanisms of neuroprotection will aim at describing the antioxidant effects of estrogens, as well as their ability to modulate neurotransmission.
Collapse
Affiliation(s)
- Diana Amantea
- Department of Pharmacobiology, University of Calabria, Via P. Bucci, Ed. Polifunzionale, Arcavacata di Rende (CS), Italy
| | | | | | | |
Collapse
|
9
|
Nalbandian G, Paharkova-Vatchkova V, Mao A, Nale S, Kovats S. The Selective Estrogen Receptor Modulators, Tamoxifen and Raloxifene, Impair Dendritic Cell Differentiation and Activation. THE JOURNAL OF IMMUNOLOGY 2005; 175:2666-75. [PMID: 16081843 DOI: 10.4049/jimmunol.175.4.2666] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Most immune cells, including myeloid progenitors and terminally differentiated dendritic cells (DC), express estrogen receptors (ER) making these cells sensitive to estrogens. Our laboratory recently demonstrated that 17-beta-estradiol (E2) promotes the GM-CSF-mediated development of CD11c+ CD11b(int) DC from murine bone marrow precursors. We tested whether the therapeutic selective estrogen receptor modulators (SERM), raloxifene and tamoxifen, can perturb DC development and activation. SERM, used in treatment of breast cancer and osteoporosis, bind to ER and mediate tissue-specific agonistic or antagonistic effects. Raloxifene and tamoxifen inhibited the differentiation of estrogen-dependent DC from bone marrow precursors ex vivo in competition experiments with physiological levels of E2. DC differentiated in the presence of SERM were assessed for their capacity to internalize fluoresceinated Ags as well as respond to inflammatory stimuli by increasing surface expression of molecules important for APC function. Although SERM-exposed DC exhibited increased ability to internalize Ags, they were hyporesponsive to bacterial LPS: relative to control DC, they less efficiently up-regulated the expression of MHC class II, CD86, and to a lesser extent, CD80 and CD40. This phenotype indicates that these SERM act to maintain DC in an immature state by inhibiting DC responsiveness to inflammatory stimuli. Thus, raloxifene and tamoxifen impair E2-promoted DC differentiation and reduce the immunostimulatory capacity of DC. These observations suggest that SERM may depress immunity when given to healthy individuals for the prevention of osteoporosis and breast cancer and may interfere with immunotherapeutic strategies to improve antitumor immunity in breast cancer patients.
Collapse
Affiliation(s)
- Greg Nalbandian
- Division of Immunology, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | | | | | | | |
Collapse
|
10
|
Seo KH, Lee HS, Jung B, Ko HM, Choi JH, Park SJ, Choi IH, Lee HK, Im SY. Estrogen enhances angiogenesis through a pathway involving platelet-activating factor-mediated nuclear factor-kappaB activation. Cancer Res 2004; 64:6482-8. [PMID: 15374958 DOI: 10.1158/0008-5472.can-03-2774] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this study, we investigated the molecular events involved in estrogen-induced angiogenesis. Treatment of the human endometrial adenocarcinoma cells, HEC-1A, with estrogen up-regulated mRNA expression and protein synthesis of various angiogenic factors such as tumor necrosis factor-alpha, interleukin-1, basic fibroblast growth factor, and vascular endothelial growth factor. The estrogen-dependent induction of the expression was blocked by the platelet-activating factor (PAF) antagonists, WEB 2170. Estrogen treatment caused the activation of nuclear factor (NF)-kappaB in HEC-1A cells and was also blocked by PAF antagonist. Inhibitors of NF-kappaB activation inhibited estrogen-induced mRNA expression and protein synthesis of the angiogenic factors. Estrogen led to a pronounced angiogenesis as assessed by a mouse Matrigel model in vivo and endothelial cell sprouting in vitro. PAF antagonists or NF-kappaB inhibitors significantly inhibited this estrogen-dependent angiogenesis. Estrogen caused phospholipase A2 (PLA2) gene and protein expression. Estrogen-induced vascular endothelial growth factor mRNA expression and sprouting were significantly inhibited by PLA2 inhibitors, suggesting PLA2 expression is the upstream pathway in the estrogen-induced angiogenesis. Taken together, these results suggest that estrogen induces the production of angiogenic factors via a mechanism involving PAF-mediated NF-kappaB activation.
Collapse
Affiliation(s)
- Kook Heon Seo
- Department of Biological Sciences, The Institute of Basic Sciences, Hormone Research Center, Chonnam National University, Kwangju, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Nakamura H, Kimura T, Ogita K, Koyama S, Tsujie T, Tsutsui T, Shimoya K, Koyama M, Kaneda Y, Murata Y. Alteration of the timing of implantation by in vivo gene transfer: delay of implantation by suppression of nuclear factor kappaB activity and partial rescue by leukemia inhibitory factor. Biochem Biophys Res Commun 2004; 321:886-92. [PMID: 15358109 DOI: 10.1016/j.bbrc.2004.07.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Indexed: 11/15/2022]
Abstract
Nuclear factor kappaB (NF-kappaB) is activated in the murine endometrium during implantation period [Am. J. Reprod. Immunol. 51 (2004) 16]. Transient transfection of IkappaBalpha mutant (IkappaBalphaM) cDNA into the mouse uterine cavity using hemagglutinating virus of Japan envelope vector suppressed uterine NF-kappaB activity less than half of that observed in control on days 3.5 and 4.5 p.c. IkappaBalphaM cDNA transfection led to significant delay of implantation. After IkappaBalphaM cDNA transfection, LIF mRNA expression in the uterus was significantly suppressed on days 3.5 and 4.5 p.c. Co-transfection of LIF cDNA with IkappaBalphaM cDNA in the uterus partially rescued the delay of implantation induced by suppression of NF-kappaB activity. Taken together, these findings indicate that NF-kappaB activation determines the timing of the implantation, at least in part, via control of LIF expression.
Collapse
Affiliation(s)
- Hitomi Nakamura
- Division of Obstetrics and Gynecology, Department of Specific Organ Regulation, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka 5650871, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Shishodia S, Aggarwal BB. Guggulsterone inhibits NF-kappaB and IkappaBalpha kinase activation, suppresses expression of anti-apoptotic gene products, and enhances apoptosis. J Biol Chem 2004; 279:47148-58. [PMID: 15322087 DOI: 10.1074/jbc.m408093200] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Guggulsterone, derived from Commiphora mukul and used to treat obesity, diabetes, hyperlipidemia, atherosclerosis, and osteoarthritis, has been recently shown to antagonize the farnesoid X receptor and decrease the expression of bile acid-activated genes. Because activation of NF-kappaB has been closely linked with inflammatory diseases affected by guggulsterone, we postulated that it must modulate NF-kappaB activation. In the present study, we tested this hypothesis by investigating the effect of this steroid on the activation of NF-kappaB induced by inflammatory agents and carcinogens. Guggulsterone suppressed DNA binding of NF-kappaB induced by tumor necrosis factor (TNF), phorbol ester, okadaic acid, cigarette smoke condensate, hydrogen peroxide, and interleukin-1. NF-kappaB activation was not cell type-specific, because both epithelial and leukemia cells were inhibited. Guggulsterone also suppressed constitutive NF-kappaB activation expressed in most tumor cells. Through inhibition of IkappaB kinase activation, this steroid blocked IkappaBalpha phosphorylation and degradation, thus suppressing p65 phosphorylation and nuclear translocation. NF-kappaB-dependent reporter gene transcription induced by TNF, TNFR1, TRADD, TRAF2, NIK, and IKK was also blocked by guggulsterone but without affecting p65-mediated gene transcription. In addition, guggulsterone decreased the expression of gene products involved in anti-apoptosis (IAP1, xIAP, Bfl-1/A1, Bcl-2, cFLIP, and survivin), proliferation (cyclin D1 and c-Myc), and metastasis (MMP-9, COX-2, and VEGF); this correlated with enhancement of apoptosis induced by TNF and chemotherapeutic agents. Overall, our results indicate that guggulsterone suppresses NF-kappaB and NF-kappaB-regulated gene products, which may explain its anti-inflammatory activities.
Collapse
Affiliation(s)
- Shishir Shishodia
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
13
|
Nakamura H, Kimura T, Ogita K, Nakamura T, Takemura M, Shimoya K, Koyama S, Tsujie T, Koyama M, Murata Y. NF-κB Activation at Implantation Window of the Mouse Uterus. Am J Reprod Immunol 2004; 51:16-21. [PMID: 14725562 DOI: 10.1046/j.8755-8920.2003.00116.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PROBLEM Nuclear factor kappa B (NF-kappaB) is one candidate transcriptional modulator, which might regulate many kinds of molecules that play sequential roles at implantation in the endometrium. However, temporal and spatial activation of NF-kappaB at implantation window is unknown. METHODS Activation of NF-kappaB in the mouse uterus was determined by electrophoretic mobility shift assays. Localization of p50 and p65, components of NF-kappaB, was analyzed by immunohistochemistry. RESULTS NF-kappaB was activated in the proestrus and estrus phases in non-pregnant uterus. In the pregnant uterus, NF-kappaB was activated after day 1.5 post-coitum, and the activation continued during implantation period. The immunoreactivities of p50 and p65 were mainly localized in endometrial epithelium, and were weaker in endometrial stroma cells. CONCLUSION NF-kappaB activity is dynamically regulated during the sexual cycle as well as during the implantation period in the endometrium, where the biochemical interaction between mother and conceptus first occurs.
Collapse
Affiliation(s)
- Hitomi Nakamura
- Division of Obstetrics and Gynecology, Department of Specific Organ Regulation, Osaka University Graduate School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
OBJECTIVE The first step in atherosclerosis is characterized by the adherence of lymphocytes and monocytes to cell adhesion molecules expressed by endothelial cells. Therefore, we wanted to investigate the effect of tibolone on the circulating levels of various cell adhesion molecules. DESIGN Thirty postmenopausal women were enrolled in a double-blind, randomized, placebo-controlled outpatient trial. RESULTS Tibolone led to a significant decrease in soluble intercellular adhesion molecule-1, soluble intercellular adhesion molecule-3, and soluble vascular cell adhesion molecule-1, but had no effect on monocyte chemotactic protein-1. CONCLUSIONS The direct favorable effects of tibolone on endothelial cells may explain the clinical benefits of this substance in terms of anti-ischemic effects and osteoporosis prevention.
Collapse
Affiliation(s)
- Christian Egarter
- Department of Obstetrics and Gynecology, University of Vienna Medical School, Austria.
| | | | | |
Collapse
|
15
|
Abstract
Exercise-induced muscle damage is a well documented phenomenon that often follows unaccustomed and sustained metabolically demanding activities. This is a well researched, but poorly understood area, including the actual mechanisms involved in the muscle damage and repair cycle. An integrated model of muscle damage has been proposed by Armstrong and is generally accepted. A more recent aspect of exercise-induced muscle damage to be investigated is the potential of estrogen to have a protective effect against skeletal muscle damage. Estrogen has been demonstrated to have a potent antioxidant capacity that plays a protective role in cardiac muscle, but whether this antioxidant capacity has the ability to protect skeletal muscle is not fully understood. In both human and rat studies, females have been shown to have lower creatine kinase (CK) activity following both eccentric and sustained exercise compared with males. As CK is often used as an indirect marker of muscle damage, it has been suggested that female muscle may sustain less damage. However, these findings may be more indicative of the membrane stabilising effect of estrogen as some studies have shown no histological differences in male and female muscle following a damaging protocol. More recently, investigations into the potential effect of estrogen on muscle damage have explored the possible role that estrogen may play in the inflammatory response following muscle damage. In light of these studies, it may be suggested that if estrogen inhibits the vital inflammatory response process associated with the muscle damage and repair cycle, it has a negative role in restoring normal muscle function after muscle damage has occurred. This review is presented in two sections: firstly, the processes involved in the muscle damage and repair cycle are reviewed; and secondly, the possible effects that estrogen has upon these processes and muscle damage in general is discussed. The muscle damage and repair cycle is presented within a model, with particular emphasis on areas that are important to understanding the potential effect that estrogen has upon these processes.
Collapse
Affiliation(s)
- Becky Kendall
- School of Sport, Health and Exercise Sciences, University of Wales, Bangor, UK.
| | | |
Collapse
|
16
|
Abstract
This review highlights recent evidence from clinical and basic science studies supporting a role for estrogen in neuroprotection. Accumulated clinical evidence suggests that estrogen exposure decreases the risk and delays the onset and progression of Alzheimer's disease and schizophrenia, and may also enhance recovery from traumatic neurological injury such as stroke. Recent basic science studies show that not only does exogenous estradiol decrease the response to various forms of insult, but the brain itself upregulates both estrogen synthesis and estrogen receptor expression at sites of injury. Thus, our view of the role of estrogen in neural function must be broadened to include not only its function in neuroendocrine regulation and reproductive behaviors, but also to include a direct protective role in response to degenerative disease or injury. Estrogen may play this protective role through several routes. Key among these are estrogen dependent alterations in cell survival, axonal sprouting, regenerative responses, enhanced synaptic transmission and enhanced neurogenesis. Some of the mechanisms underlying these effects are independent of the classically defined nuclear estrogen receptors and involve unidentified membrane receptors, direct modulation of neurotransmitter receptor function, or the known anti-oxidant activities of estrogen. Other neuroprotective effects of estrogen do depend on the classical nuclear estrogen receptor, through which estrogen alters expression of estrogen responsive genes that play a role in apoptosis, axonal regeneration, or general trophic support. Yet another possibility is that estrogen receptors in the membrane or cytoplasm alter phosphorylation cascades through direct interactions with protein kinases or that estrogen receptor signaling may converge with signaling by other trophic molecules to confer resistance to injury. Although there is clear evidence that estradiol exposure can be deleterious to some neuronal populations, the potential clinical benefits of estrogen treatment for enhancing cognitive function may outweigh the associated central and peripheral risks. Exciting and important avenues for future investigation into the protective effects of estrogen include the optimal ligand and doses that can be used clinically to confer benefit without undue risk, modulation of neurotrophin and neurotrophin receptor expression, interaction of estrogen with regulated cofactors and coactivators that couple estrogen receptors to basal transcriptional machinery, interactions of estrogen with other survival and regeneration promoting factors, potential estrogenic effects on neuronal replenishment, and modulation of phenotypic choices by neural stem cells.
Collapse
|
17
|
Maggi A, Vegeto E, Brusadelli A, Belcredito S, Pollio G, Ciana P. Identification of estrogen target genes in human neural cells. J Steroid Biochem Mol Biol 2000; 74:319-25. [PMID: 11162940 DOI: 10.1016/s0960-0760(00)00107-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In mammals, estrogens have a multiplicity of effects ranging from control of differentiation of selected brain nuclei, reproductive functions, sexual behavior. In addition, these hormones influence the manifestation of disorders like depression and Alzheimer's. Study of the cells target for the hormone has shown that estrogen receptors (ERs) are expressed in all known neural cells, including microglia. In view of the potential interest in the use of estrogens in the therapy of several pathologies of the nervous system, it would be of interest to fully understand the mechanism of estrogen activity in the various neural target cells and get an insight on the molecular means allowing the hormone to display such a variety of effects. We have proposed the use of a reductionist approach for the systematic understanding of the estrogen activities in each specific type of target cell. Thus, we have generated a model system in which to study the activation of one of the known (ERs), estrogen receptor alpha. This system allowed us to identify a number of novel genes which expression may be influenced following the activation of this receptor subtype by estradiol (E(2)). We here report on data recently obtained by the study of one of these target genes, nip2, which encodes a proapoptotic protein product. We hypothesize that nip2 might be an important molecular determinant for estrogen anti-apoptotic activity in cells of neural origin and represents a potential target for drugs aimed at mimicking the E(2) beneficial effects in neural cells.
Collapse
Affiliation(s)
- A Maggi
- Center Milan Molecular Pharmacology Laboratory, Institute of Pharmacological Sciences, University of Milan, Via Balzaretti 9, 20133, Milan, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
The NF-kappaB transcription factor modulates a number of gene responses to hormonal stimuli. NF-kappaB can be induced by growth promoting hormones and cytokines, has been shown to counteract the effectiveness of steroid hormones and has recently been found to be regulated during mammalian spermatogenesis. Recent advances in the characterization of the NF-kappaB signaling pathway offer new opportunities to examine how hormonal stimuli regulate NF-kappaB mediated gene expression. In this mini-review we outline the signal pathways responsible for activating NF-kappaB, discuss the hormonal regulation of NF-kappaB and the regulation of hormonal responses by NF-kappaB, as well as summarize new studies characterizing NF-kappaB expression and activity in the mammalian testis.
Collapse
Affiliation(s)
- F Delfino
- Department of Cell Biology and Physiology, University of Pittsburgh, PA 15261, USA
| | | |
Collapse
|
19
|
Banerjee SK, Campbell DR, Weston AP, Banerjee DK. Biphasic estrogen response on bovine adrenal medulla capillary endothelial cell adhesion, proliferation and tube formation. Mol Cell Biochem 1997; 177:97-105. [PMID: 9450650 DOI: 10.1023/a:1006888020596] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Abnormal angiogenesis underlies many pathological conditions and is critical for the growth and maintenance of various types of tumors, including hormone-dependent cancers. Since estrogens are potent carcinogens in humans and rodents, and are involved in regulating angiogenesis, this study was designed to examine the effect of estrogen on the behavior of an established bovine capillary endothelial cell line, a simple and physiologically relevant model of the capillary wall. The results demonstrate that 17beta-estradiol (E2), at different conditions, exerts both stimulatory and inhibitory effects on endothelial cell adhesion, proliferation and tube formation in vitro. Utilizing a cellular attachment assay, chronic exposure to nanomolar concentrations of E2 (i.e. 1 and 10 nM) increased endothelial cell adhesion significantly compared to vehicle treated controls. Cellular adhesion was inhibited by micromolar concentrations of E2. Cell count, PCNA immunohistochemistry and Western blot analysis demonstrated enhanced cell proliferation at low E2 concentration in estrogen-deplete medium. Inhibition of cellular proliferation was observed in both estrogen-replete and deplete medium at higher E2 concentrations (i.e. 1 and 10 microM). Furthermore, in vitro tube formation increased up to 3.0 fold in the presence of 10 nM and higher E2 concentrations. The present observations indicate that in vitro regulation of capillary endothelial cell adhesion, proliferation and capillary tube formation by estrogen, are dose dependent.
Collapse
Affiliation(s)
- S K Banerjee
- Research Division, V.A. Medical Center, Kansas City, USA
| | | | | | | |
Collapse
|
20
|
Venkov CD, Rankin AB, Vaughan DE. Identification of authentic estrogen receptor in cultured endothelial cells. A potential mechanism for steroid hormone regulation of endothelial function. Circulation 1996; 94:727-33. [PMID: 8772695 DOI: 10.1161/01.cir.94.4.727] [Citation(s) in RCA: 190] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Estrogen plays a major role in the delayed expression of coronary heart disease (CHD) in women, and recent data indicate that postmenopausal estrogen therapy reduces the incidence of CHD by > 40%. The mechanism or mechanisms through which estrogen exerts this benefit are unknown, although effects on blood pressure, carbohydrate and lipid metabolism, and coagulation have been suggested. We hypothesized that at least part of the effect of estrogen in reducing the incidence of CHD is due to an effect on endothelial cell function. METHODS AND RESULTS In the present study, we examined human aortic and umbilical vein endothelial cells and bovine aortic endothelial cells for the presence of estrogen receptors (ERs) through immunoblot and mRNA analyses. Electrophoretic mobility shift assays were also performed to determine the DNA-binding properties of the putative ERs. Nuclear extracts from all three endothelial cell types were found to contain a 67-kD protein that reacted with anti-ER monoclonal antibodies specific to different domains of the ERs. Each of these types of cells expresses proteins that bind specifically to consensus estrogen-responsive elements. Finally, Northern blots verified that endothelial cells express abundant amount of mRNA for the ER. CONCLUSIONS These data indicate that endothelial cells constitutively possess the potential for transcriptional regulation of target genes by estrogen. The evolutionary conservation of this receptor in bovine and human endothelial cells suggests a common mechanism for estrogen regulation of endothelial function.
Collapse
Affiliation(s)
- C D Venkov
- Cardiovascular Division, Vanderbilt University Medical Center, Nashville, Tenn 37232-6300, USA
| | | | | |
Collapse
|
21
|
Caulin-Glaser T, Watson CA, Pardi R, Bender JR. Effects of 17beta-estradiol on cytokine-induced endothelial cell adhesion molecule expression. J Clin Invest 1996; 98:36-42. [PMID: 8690801 PMCID: PMC507398 DOI: 10.1172/jci118774] [Citation(s) in RCA: 264] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
One of the earliest events in atherosclerosis is interaction of circulating mononuclear leukocytes and the endothelium. Endothelial cell (EC) activation by cytokines results in expression of adhesion molecules and production of chemotactic factors, augmenting leukocyte adhesion and recruitment, respectively. The incidence of atherosclerosis in premenopausal women is significantly less than that observed in age-matched males with similar risk profiles. Because estrogen has gene regulatory effects, we investigated whether 17beta-estradiol (E2) can inhibit cytokine-mediated EC adhesion molecule transcriptional activation. Cultured human umbilical vein EC (estrogen receptor-positive) were propagated in gonadal hormone-free medium and were E2-pretreated for 48 h before IL-1 activation. Detected by FACS analysis, E2 strongly (60-80%) inhibited IL-1-mediated membrane E-selectin and vascular cell adhesion molecule-1 induction, and intercellular adhesion molecule-1 hyperinduction. 17alpha-estradiol (an inactive E2 stereoisomer) had no effect. This inhibition correlated with similar reductions in steady state-induced E-selectin mRNA levels, and was abrogated by the E2 antagonist ICI 164,384, demonstrating a specific, estrogen receptor-mediated effect. Nuclear run-offs confirmed suppression at the transcriptional level. The implications of these results for the cardiovascular protective role of estrogen are discussed.
Collapse
Affiliation(s)
- T Caulin-Glaser
- Molecular Cardiobiology, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536-0812, USA
| | | | | | | |
Collapse
|
22
|
Pennypacker KR, Hong JS. Kainate-induced changes in gene expression in the rat hippocampus. PROGRESS IN BRAIN RESEARCH 1995; 105:105-16. [PMID: 7568869 DOI: 10.1016/s0079-6123(08)63288-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- K R Pennypacker
- Neuropharmacology Section, NIEHS/NIH, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
23
|
Batuman OA, Ferrero AP, Diaz A, Berger B, Pomerantz RJ. Glucocorticoid-mediated inhibition of interleukin-2 receptor alpha and -beta subunit expression by human T cells. IMMUNOPHARMACOLOGY 1994; 27:43-55. [PMID: 8206753 DOI: 10.1016/0162-3109(94)90006-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
To determine the mechanism of glucocorticoid (GC)-mediated inhibition of T cell functions, the effect of dexamethasone (DM) on T cell proliferation and interleukin-2 receptor (IL-2R) generation were studied. Dexamethasone inhibited IL-2-induced T cell proliferation by 30%-88%, relative to its concentration within the cultures. The effect of DM on expression of IL-2R alpha (Tac, p55, CD25) and beta (p75) genes in activated T cells was examined next. In T cells stimulated with purified phytohemagglutinin (PHA-p) and 4 beta-phorbol 12-myristate 13-acetate (PMA) addition of DM to the cultures resulted in a 60% reduction in IL-2R alpha and a 30% reduction in IL-2R beta membrane expression compared to T cells cultured in the absence of DM (p < 0.01). Inhibition of membrane IL-2R alpha and IL-2R beta expression by 10(-6) M DM was partially reversible by recombinant human IL-2 (rhIL-2). By Northern blot analysis, DM caused a comparable decrease in IL-2R alpha and in IL-2R beta mRNA levels to membrane receptor expression in mitogen-stimulated T cells. By in vitro transcription assays, DM regulated IL-2R alpha gene expression at a transcriptional level while transcription of IL-2R beta gene was unaffected by DM. The mechanism of action of DM on IL-2R alpha transcription was examined by determining the mRNA levels of the p50 subunit of nuclear factor kappa B (NF-kappa B), a transcription factor that stimulates IL-2R alpha gene expression. The data indicate that 10(-6) M DM increased T cell p50 NF-kappa B mRNA levels by four-fold compared to the levels obtained in the absence of DM. Further, the level of nuclear proteins capable of binding to the NF-kappa B sites in activated T cells increased in response to DM. In sum, DM regulates T cell membrane expression of IL-2R by more than one molecular mechanism.
Collapse
Affiliation(s)
- O A Batuman
- Hematology Division, SUNY Health Science Center at Brooklyn 11203
| | | | | | | | | |
Collapse
|