1
|
Khan F, Khan S, Nabeka H, Mimuro H, Nishizono A, Hamada F, Matsuda S. Neurotoxic stimulation alters prosaposin levels in the salivary systems of rats. Cell Tissue Res 2024; 395:159-169. [PMID: 38082139 DOI: 10.1007/s00441-023-03847-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/15/2023] [Indexed: 02/03/2024]
Abstract
Prosaposin (PSAP), a potent neurotrophic factor, is found in neuronal and non-neuronal tissues and various biological fluids. Neuropathological conditions often alter PSAP production in neural tissues. However, little is known about its alterations in non-neural tissues, particularly in the salivary glands, which are natural reservoirs of various neurotrophic factors. In this study, we explored whether neurotoxic stimulation by kainic acid (KA), a glutamate analog, altered PSAP levels in the salivary system of rats. The results revealed that KA injection did not alter total saliva production. However, KA-induced neurotoxic stimulation significantly increased the PSAP level in the secreted saliva but decreased it in the serum. In addition, KA-induced elevated immunoreactivities of PSAP and its receptors have been observed in the granular convoluted tubule (GCT) cells of the submandibular gland (SMG), a major salivary secretory organ. Indeed, a large number of PSAP-expressing immunogold particles were observed in the secretory granules of the SMG. Furthermore, KA-induced overexpression of PSAP was co-localized with secretogranin in secretory acini (mostly in GCT cells) and the ductal system of the SMG, suggesting the release of excess PSAP from the salivary glands into the oral cavity. In conclusion, the salivary system produces more PSAP during neurotoxic conditions, which may play a protective role in maintaining the secretory function of the salivary glands and may work in distant organs.
Collapse
Affiliation(s)
- Farzana Khan
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, 879-5593, Japan
- Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| | - Sakirul Khan
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, 879-5593, Japan.
- Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan.
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan.
| | - Hiroaki Nabeka
- Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
- Department of Physiological Chemistry, College of Pharmaceutical Sciences, School of Clinical Pharmacy, Matsuyama University, Matsuyama, Ehime, 790-8578, Japan
| | - Hitomi Mimuro
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, 879-5593, Japan
| | - Akira Nishizono
- Research Center for Global and Local Infectious Diseases, Oita University, Yufu, Oita, 879-5593, Japan
- Department of Microbiology, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan
| | - Fumihiko Hamada
- Department of Human Anatomy, Faculty of Medicine, Oita University, Yufu, Oita, 879-5593, Japan
| | - Seiji Matsuda
- Department of Developmental Biology and Functional Genomics, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
2
|
Kitamura K, Homma T, Sohel MSH, Fuyuki A, Miyawaki S, Onouchi S, Saito S. Expression patterns of prosaposin and its receptors, G protein-coupled receptor (GPR) 37 and GPR37L1, in the mouse olfactory organ. Tissue Cell 2023; 82:102093. [PMID: 37075680 DOI: 10.1016/j.tice.2023.102093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023]
Abstract
Prosaposin is a glycoprotein conserved widely in vertebrates, because it is a precursor for saposins that are required for normal lysosomal function and thus for autophagy, and acts as a neurotrophic factor. Most tetrapods possess two kinds of olfactory neuroepithelia, namely, the olfactory epithelium (OE) and the vomeronasal epithelium (VNE). This study examined the expression patterns of prosaposin and its candidate receptors, G protein-coupled receptor (GPR) 37 and GPR37L1, in mouse OE and VNE by immunofluorescence and in situ hybridization. Prosaposin immunoreactivity was observed in the olfactory receptor neurons, vomeronasal receptor neurons, Bowman's gland (BG), and Jacobson's gland (JG). Prosaposin expression was mainly observed in mature neurons. Prosaposin mRNA expression was observed not only in these cells but also in the apical region of the VNE. GPR37 and GPR37L1 immunoreactivities were found only in the BG and/or the JG. Prosaposin was suggested to secrete and facilitate the autophagic activities of the neurons and modulate the mucus secretion in mouse olfactory organ.
Collapse
Affiliation(s)
- Kai Kitamura
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Takeshi Homma
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Md Shahriar Hasan Sohel
- Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Aimi Fuyuki
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Shingo Miyawaki
- Laboratory of Veterinary Surgery, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan
| | - Sawa Onouchi
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Gifu, Japan; Laboratory of Veterinary Anatomy, Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Japan.
| |
Collapse
|
3
|
Hertz E, Saarinen M, Svenningsson P. GM1 Is Cytoprotective in GPR37-Expressing Cells and Downregulates Signaling. Int J Mol Sci 2021; 22:ijms222312859. [PMID: 34884663 PMCID: PMC8657933 DOI: 10.3390/ijms222312859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 01/02/2023] Open
Abstract
G-protein-coupled receptors (GPCRs) are commonly pharmacologically modulated due to their ability to translate extracellular events to intracellular changes. Previously, studies have mostly focused on protein–protein interactions, but the focus has now expanded also to protein–lipid connections. GM1, a brain-expressed ganglioside known for neuroprotective effects, and GPR37, an orphan GPCR often reported as a potential drug target for diseases in the central nervous system, have been shown to form a complex. In this study, we looked into the functional effects. Endogenous GM1 was downregulated when stably overexpressing GPR37 in N2a cells (N2aGPR37-eGFP). However, exogenous GM1 specifically rescued N2aGPR37-eGFP from toxicity induced by the neurotoxin MPP+. The treatment did not alter transcription levels of GPR37 or the enzyme responsible for GM1 production, both potential mechanisms for the effect. However, GM1 treatment inhibited cAMP-dependent signaling from GPR37, here reported as potentially consecutively active, possibly contributing to the protective effects. We propose an interplay between GPR37 and GM1 as one of the many cytoprotective effects reported for GM1.
Collapse
Affiliation(s)
- Ellen Hertz
- Correspondence: (E.H.); (P.S.); Tel.: +46-8517-74-614 (E.H.)
| | | | | |
Collapse
|
4
|
Taniguchi M, Nabeka H, Yamamiya K, Khan MSI, Shimokawa T, Islam F, Doihara T, Wakisaka H, Kobayashi N, Hamada F, Matsuda S. The expression of prosaposin and its receptors, GRP37 and GPR37L1, are increased in the developing dorsal root ganglion. PLoS One 2021; 16:e0255958. [PMID: 34379697 PMCID: PMC8357083 DOI: 10.1371/journal.pone.0255958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/27/2021] [Indexed: 11/18/2022] Open
Abstract
Prosaposin (PSAP), a highly conserved glycoprotein, is a precursor of saposins A-D. Accumulating evidence suggests that PSAP is a neurotrophic factor, as well as a regulator of lysosomal enzymes. Recently, the orphan G-protein-coupled receptors GPR37 and GPR37L1 were recognized as PSAP receptors, but their functions have not yet been clarified. In this study, we examined the distribution of PSAP and its receptors in the dorsal root ganglion (DRG) during development using specific antibodies, and showed that PSAP accumulates primarily in lysosomes and is dispersed throughout the cytoplasm of satellite cells. Later, PSAP colocalized with two receptors in satellite cells, and formed a characteristic ring shape approximately 8 weeks after birth, during a period of rapid DRG development. This ring shape, which was only observed around larger neurons, is evidence that several satellite cells are synchronously activated. We found that sortilin, a transporter of a wide variety of intracellular proteins containing PSAP, is strongly localized to the inner side of satellite cells, which contact the neuronal surface. These findings suggest that PSAP and GPR37/GPR37L1 play a role in activating both satellite and nerve cells.
Collapse
Affiliation(s)
- Miho Taniguchi
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kimiko Yamamiya
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Md Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Farzana Islam
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takuya Doihara
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiroyuki Wakisaka
- Department of Otorhinolaryngology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Naoto Kobayashi
- Department of Medical Education Center, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Fumihiko Hamada
- Department of Human Anatomy, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
5
|
Prosaposin, a neurotrophic factor, protects neurons against kainic acid-induced neurotoxicity. Anat Sci Int 2021; 96:359-369. [PMID: 33534127 DOI: 10.1007/s12565-021-00605-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 01/16/2021] [Indexed: 01/30/2023]
Abstract
Prosaposin (PS) is the precursor of four sphingolipid activator proteins, saposin A-D. PS is both a precursor protein and a neuroprotective factor, and is up-regulated in response to excitotoxicity induced by kainic acid (KA), a glutamate analogue. Excess glutamate release induces neuropathological disorders such as ischemia and seizure. Our group's research revealed that PS immunoreactivity (IR) increased significantly in the hippocampal and cortical neurons on day 3 after KA injection, and high PS levels were maintained even after 3 weeks. The increase in PS, but not saposins, as detected by immunoblotting, suggests that the increase in PS-IR after KA injection was not caused by an increase in saposins acting as lysosomal enzymes after neuronal damage but, rather, by an increase in PS as a neurotrophic factor to improve neuronal survival. An 18-mer peptide (PS18) derived from the PS neurotrophic region significantly protected hippocampal neurons against KA-induced destruction. Furthermore, parvalbumin-positive GABAergic inhibitory interneurons and their axons exhibited intense PS expression. These results suggest that axonally transported PS protects damaged hippocampal pyramidal neurons from KA-induced neurotoxicity. Further in vitro studies that include the transfection of the PS gene will help with clarifying the mechanisms underlying the transport and secretion of PS.
Collapse
|
6
|
Shimokawa T, Nabeka H, Khan SI, Yamamiya K, Doihara T, Kobayashi N, Wakisaka H, Matsuda S. Prosaposin in the rat oviductal epithelial cells. Cell Tissue Res 2020; 383:1191-1202. [PMID: 33242172 DOI: 10.1007/s00441-020-03339-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/05/2020] [Indexed: 10/22/2022]
Abstract
Prosaposin (PSAP) has two forms: a precursor and a secreted form. The secreted form has neurotrophic, myelinotrophic, and myotrophic properties. The precursor form is a precursor protein of saposins A-D. Although the distribution of PSAP in male reproductive organs is well known, its distribution in female reproductive organs, especially in the oviduct, is unclear. Immunoblots and immunohistochemistry of oviducts showed that oviductal tissues contain PSAP proteins, and a significant increase in PSAP was observed in the estrus-metestrus phase compared to the diestrus-proestrus phase in the ampulla. To identify PSAP trafficking in cells, double-immunostaining was performed with antibodies against PSAP in combination with sortilin, mannose 6 phosphate receptor (M6PR), or low-density lipoprotein receptor-related protein 1 (LRP1). PSAP and sortilin double-positive reactions were observed near the nuclei, as well as in the apical portion of microvillous epithelial cells, whereas these reactions were only observed near the nuclei of ciliated epithelial cells. PSAP and M6PR double-positive reactions were observed near the nuclei of microvillous and ciliated epithelial cells. PSAP and M6PR double-positive reactions were also observed in the apical portion of microvillous epithelial cells. PSAP and LRP1 double-positive reactions were observed in the plasma membrane and apical portion of both microvillous and ciliated epithelial cells. Immunoelectron staining revealed PSAP immunoreactive small vesicles with exocytotic features at the apical portion of microvillous epithelial cells. These findings suggest that PSAP is present in the oviductal epithelium and has a pivotal role during pregnancy in providing an optimal environment for gametes and/or sperm in the ampulla.
Collapse
Affiliation(s)
- Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0212, Japan.
| | - Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0212, Japan
| | - Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0212, Japan
| | - Kimiko Yamamiya
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0212, Japan
| | - Takuya Doihara
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0212, Japan
| | - Naoto Kobayashi
- Medical Education Center, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, Japan
| | - Hiroyuki Wakisaka
- Department of Liberal Arts, Ehime Prefectural University of Health Sciences, 543 Takaoda, Tobe, Ehime, 791-2101, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime, 791-0212, Japan
| |
Collapse
|
7
|
Hernández-Silva G, Fabián López-Araiza JE, López-Torres AS, Larrea F, Torres-Flores V, Chirinos M. Proteomic characterization of human sperm plasma membrane-associated proteins and their role in capacitation. Andrology 2019; 8:171-180. [PMID: 31002753 DOI: 10.1111/andr.12627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 03/01/2019] [Accepted: 03/21/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Plasma membranes of ejaculated sperm are covered by epididymal and accessory glands secreted proteins that must be released from sperm surface during the female reproductive tract passage in order to capacitate and fertilize the oocyte. OBJECTIVES As human sperm plasma membrane-associated proteins (SMAP) have not yet been investigated, the aim of this study was to characterize the SMAP released during in vitro human capacitation and to study their possible role as decapacitation factors. MATERIALS AND METHODS SMAP were characterized by 2-dimensional electrophoresis and mass spectrometry analysis. Besides, we explored SMAP effects on motility, protein tyrosine phosphorylation, and calcium ionophore-induced acrosome reaction of spermatozoa either incubated for 6 h in capacitating medium ± SMAP or for 5 h in capacitating medium alone followed by incubation for 1 h ± SMAP. RESULTS Mass spectrometry analysis allowed the identification of 29 proteins, all of which have previously been identified in the human seminal fluid. Spermatozoa incubated for 6 h under capacitating conditions in the presence of the SMAP showed a significant decrease in the incidence of non-progressive motility, hyperactivation, protein tyrosine phosphorylation, and calcium ionophore-induced acrosome reaction. However, spermatozoa incubated for 5 h in capacitating medium and further incubated for 1 h with the SMAP showed a lower percentage of spermatozoa with non-progressive motility and hyperactivated cells but no effects on protein tyrosine phosphorylation were detected. DISCUSSION AND CONCLUSIONS Our results indicate that SMAP inhibit the progress of human sperm capacitation, but only motility changes related to capacitation may be reversed by these proteins. The study of the identified proteins on sperm function and their mechanisms of action on this cell may contribute to the understanding of their role during capacitation.
Collapse
Affiliation(s)
- Gabriela Hernández-Silva
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México.,Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | | | - Aideé Saray López-Torres
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Fernando Larrea
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| | - Víctor Torres-Flores
- Laboratorio de Biomembranas, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Mayel Chirinos
- Departamento de Biología de la Reproducción Dr. Carlos Gual Castro, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, México
| |
Collapse
|
8
|
Forster CS, Haffey WD, Bennett M, Greis KD, Devarajan P. Identification of Urinary CD44 and Prosaposin as Specific Biomarkers of Urinary Tract Infections in Children With Neurogenic Bladders. Biomark Insights 2019; 14:1177271919835570. [PMID: 30906192 PMCID: PMC6421595 DOI: 10.1177/1177271919835570] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
PURPOSE Distinguishing urinary tract infection (UTI) from urinary tract colonization (UTC) in children with neurogenic bladders who require clean intermittent catheterization (CIC) is challenging. Our objective was to identify urinary proteins to distinguish UTI from UTC in CIC-dependent children that have potential to serve as objective markers of UTI. EXPERIMENTAL DESIGN A total of 10 CIC-dependent children were included in the mass spectrometry analysis (UTI = 5, UTC = 5). Quantitative profiling of urine proteins with isobaric protein labeling was performed using tandem mass spectrometry. Candidate markers were normalized using a collective mixture of proteins from all samples. Relative quantitative abundance of proteins across all samples were compared. Proteins with >50% change in the average abundance were identified as proteins of interest, which were then measured using enzyme-linked immunosorbent assay (ELISA) in an additional 40 samples (no growth = 10, UTC = 15, UTI = 15). RESULTS Mass spectrometry revealed 8 differentially expressed proteins. Of these, apolipoprotein D, alpha-amylase 2B, non-secretory ribonuclease, CD44 antigen, and prosaposin were measurable by ELISA. Concentrations of both CD44 and prosaposin were significantly higher in UTI, with area under the curves (AUCs) of 0.72 and 0.78, respectively. CONCLUSION Urinary CD44 and prosaposin are candidate markers that may assist with the diagnosis of UTI in CIC-dependent children.
Collapse
Affiliation(s)
- Catherine S Forster
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, Children’s National Medical Center, Washington, DC, USA
- Catherine S Forster, Children’s National Medical Center, 111 Michigan Ave, NW, Suite 4800M, Washington, DC 20010, USA.
| | - Wendy D Haffey
- Department of Cancer Biology and Proteomics Laboratory, University of Cincinnati, Cincinnati, OH, USA
| | - Michael Bennett
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kenneth D Greis
- Department of Cancer Biology and Proteomics Laboratory, University of Cincinnati, Cincinnati, OH, USA
| | - Prasad Devarajan
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| |
Collapse
|
9
|
Jiang Y, Zhou J, Luo P, Gao H, Ma Y, Chen YS, Li L, Zou D, Zhang Y, Jing Z. Prosaposin promotes the proliferation and tumorigenesis of glioma through toll-like receptor 4 (TLR4)-mediated NF-κB signaling pathway. EBioMedicine 2018; 37:78-90. [PMID: 30385233 PMCID: PMC6286187 DOI: 10.1016/j.ebiom.2018.10.053] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/17/2018] [Accepted: 10/22/2018] [Indexed: 02/07/2023] Open
Abstract
Background As a neurotrophic factor, prosaposin (PSAP) can exert neuroprotective and neurotrophic effects. It is involved in the occurrence and development of prostate and breast cancer. However, there is no research about the role of PSAP in glioma. Methods The PSAP overexpressed or silenced glioma cells or glioma stem cells were established based on Lentiviral vector transfection. Cell viability assay, Edu assay, neurosphere formation assay and xenograft experiments were used to detect the proliferative ability. Western blot, Elisa and luciferase reporter assays were used to detect the possible mechanism. Findings Our study firstly found that PSAP was highly expressed and secreted in clinical glioma specimens, glioma stem cells, and glioma cell lines. It was associated with poor prognosis. We found that PSAP significantly promoted the proliferation of glioma stem cells and cell lines. Moreover, PSAP promoted tumorigenesis in subcutaneous and orthotopic models of this disease. Furthermore, GSEA and KEGG analysis predicted that PSAP acts through the TLR4 and NF-κB signaling pathways, which was confirmed by western blot, immunoprecipitation, immunofluorescence, and use of the TLR4-specific inhibitor TAK-242. Interpretation The findings of this study suggest that PSAP can promote glioma cell proliferation via the TLR4/NF-κB signaling pathway and may be an important target for glioma treatment. Fund This work was funded by National Natural Science Foundation of China (Nos. 81101917, 81270036, 81201802, 81673025), Program for Liaoning Excellent Talents in University (No. LR2014023), and Liaoning Province Natural Science Foundation (Nos. 20170541022, 20172250290). The funders did not play a role in manuscript design, data collection, data analysis, interpretation nor writing of the manuscript.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City 110001, China
| | - Jinpeng Zhou
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City 110001, China
| | - Peng Luo
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City 110001, China
| | - Huiling Gao
- College of Life and Health Sciences, Northeastern University, Shenyang, China
| | - Yanju Ma
- Department of Medical Oncology, Cancer Hospital of China Medical University, Shenyang 110042, China
| | - Yin-Sheng Chen
- Department of Neurosurgery/Neuro-oncology, SunYat-sen University Cancer Center; State Key Laboratory of Oncology in South China; Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Long Li
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City 110001, China
| | - Dan Zou
- The First laboratory of cancer institute, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City 110001, China
| | - Ye Zhang
- The First laboratory of cancer institute, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City 110001, China.
| | - Zhitao Jing
- Department of Neurosurgery, The First Hospital of China Medical University, NO.155, North Nanjing Street, Heping District, Shenyang City 110001, China.
| |
Collapse
|
10
|
Nabeka H, Saito S, Li X, Shimokawa T, Khan MSI, Yamamiya K, Kawabe S, Doihara T, Hamada F, Kobayashi N, Matsuda S. Interneurons secrete prosaposin, a neurotrophic factor, to attenuate kainic acid-induced neurotoxicity. IBRO Rep 2017; 3:17-32. [PMID: 30135939 PMCID: PMC6084830 DOI: 10.1016/j.ibror.2017.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 07/16/2017] [Accepted: 07/21/2017] [Indexed: 12/30/2022] Open
Abstract
PS increased mainly in the axons of PV positive interneurons after kainic acid (KA) injection. Electron microscopy revealed PS containing vesicles in PV positive axons. PS is secreted with secretogranin from synapses. The increased PS in the interneurons was due to increases in PS + 0, as in the choroid plexus. Interneurons produce and secrete intact PS around the hippocampal pyramidal neurons to protect them from KA neurotoxicity.
Prosaposin (PS) is a secretory neurotrophic factor, as well as a regulator of lysosomal enzymes. We previously reported the up-regulation of PS and the possibility of its axonal transport by GABAergic interneurons after exocitotoxicity induced by kainic acid (KA), a glutamate analog. In the present study, we performed double immunostaining with PS and three calcium binding protein markers: parvalbumin (PV), calbindin, and calretinin, for the subpopulation of GABAergic interneurons, and clarified that the increased PS around the hippocampal pyramidal neurons after KA injection existed mainly in the axons of PV positive interneurons. Electron microscopy revealed PS containing vesicles in the PV positive axon. Double immunostaining with PS and secretogranin or synapsin suggested that PS is secreted with secretogranin from synapses. Based on the results from in situ hybridization with two alternative splicing forms of PS mRNA, the increase of PS in the interneurons was due to the increase of PS + 0 (mRNA without 9-base insertion) as in the choroid plexus, but not PS + 9 (mRNA with 9-base insertion). These results were similar to those from the choroid plexus, which secretes an intact form PS + 0 to the cerebrospinal fluid. Neurons, especially PV positive GABAergic interneurons, produce and secrete the intact form of PS around hippocampal pyramidal neurons to protect them against KA neurotoxicity.
Collapse
Affiliation(s)
- Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Xuan Li
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Md Sakirul Islam Khan
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Kimiko Yamamiya
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | | | - Takuya Doihara
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Fumihiko Hamada
- Department of Human Anatomy, Oita University Fuculty of Medicine, Yufu, Oita, Japan
| | - Naoto Kobayashi
- Medical Education Center, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
11
|
Othberg AI, Willing AE, Cameron DF, Anton A, Saporta S, Freeman TB, Sanberg PR. Trophic Effect of Porcine Sertoli Cells on Rat and Human Ventral Mesencephalic Cells and Hnt Neurons in Vitro. Cell Transplant 2017; 7:157-64. [PMID: 9588597 DOI: 10.1177/096368979800700210] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The poor survival of embryonic dopaminergic (DA) neurons transplanted into patients with Parkinson's disease (PD) has encouraged researchers to search for new methods to affect the short- as well as long-term survival of these neurons after transplantation. In several previous rodent studies Sertoli cells increased survival of islet cells and chromaffin cells when cotransplanted in vivo. The aims of this study were to investigate whether porcine Sertoli cells had a positive effect on the survival and maturation of rat and human DA neurons, and whether the Sertoli cells had an effect on differentiation of neurons derived from a human teratocarcinoma cell line (hNT neurons). A significant increase of tyrosine hydroxylase (TH)-positive neurons of both rat and human ventral mesencephalic tissue was found when cocultured with Sertoli cells. Furthermore, there was a significantly increased soma size and neurite outgrowth of neurons in the coculture treated group. The Sertoli cell and hNT coculture also revealed an increased number of TH-positive cells. These results demonstrate that the wide variety of proteins and factors secreted by porcine Sertoli cells benefit the survival and maturation of embryonic DA neurons and suggest that cotransplantation of Sertoli cells and embryonic DA neurons may be useful for a cell transplantation therapy in PD.
Collapse
Affiliation(s)
- A I Othberg
- Department of Surgery, University of South Florida, College of Medicine, Tampa 33612, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Lustig LR, Alemi S, Sun Y, Grabowski G, Akil O. Role of saposin C and D in auditory and vestibular function. Laryngoscope 2015. [PMID: 26198053 DOI: 10.1002/lary.25479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVES/HYPOTHESIS Saposins are small proteins derived from a precursor protein, prosaposin. Each of the four saposins (A-D) is necessary for the activity of lysosomal glycosphingolipid hydrolases. Individual saposin mutations lead to lysosomal storage diseases, some of which are associated with hearing loss. Here we evaluate the effects of the loss of saposins C and D on auditory and vestibular function in transgenic mice. METHODS Transgenic mice with either loss of saposin C function or a combined loss of saposin C + D function were studied. Light microscopy and immunofluorescence were used to evaluate histologic and morphologic changes in the auditory and vestibular organs. Acoustic brainstem response thresholds and distortion product otoacoustic emissions were used to study the auditory phenotype. RESULTS A null mutation of saposin C did not result in any identifiable histologic changes or loss of hearing through postnatal day 55. Combined losses of saposins C and D similarly did not result in any changes in organ of Corti histology or loss of hearing. However, inclusions within the vestibular end organs was noted, consistent with afferent and efferent neuronal sprouting, although to a much milder degree than seen in the previously studied prosaposin knockout mouse. CONCLUSIONS Loss of saposin C and D function, although causing mild phenotypic changes in the vestibular end organs, otherwise results in minimal functional impairment and no changes in the auditory system. It is more likely that the auditory and vestibular effects of the loss of prosaposin are mediated through the actions of saposin A and/or B. LEVEL OF EVIDENCE NA.
Collapse
Affiliation(s)
- Lawrence R Lustig
- Department of Otolaryngology-Head & Neck Surgery, Columbia University Medical Center, New York, New York
| | - Sean Alemi
- Department of Otolaryngology-Head & Neck Surgery, University of California, San Francisco, San Francisco, California
| | - Ying Sun
- Department of Human Genetics, University of Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Gregory Grabowski
- Department of Human Genetics, University of Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, U.S.A
| | - Omar Akil
- Department of Otolaryngology-Head & Neck Surgery, University of California, San Francisco, San Francisco, California
| |
Collapse
|
13
|
Nabeka H, Shimokawa T, Doihara T, Saito S, Wakisaka H, Hamada F, Kobayashi N, Matsuda S. A prosaposin-derived Peptide alleviates kainic Acid-induced brain injury. PLoS One 2015; 10:e0126856. [PMID: 25993033 PMCID: PMC4436272 DOI: 10.1371/journal.pone.0126856] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 04/08/2015] [Indexed: 12/22/2022] Open
Abstract
Four sphingolipid activator proteins (i.e., saposins A–D) are synthesized from a single precursor protein, prosaposin (PS), which exerts exogenous neurotrophic effects in vivo and in vitro. Kainic acid (KA) injection in rodents is a good model in which to study neurotrophic factor elevation; PS and its mRNA are increased in neurons and the choroid plexus in this animal model. An 18-mer peptide (LSELIINNATEELLIKGL; PS18) derived from the PS neurotrophic region prevents neuronal damage after ischemia, and PS18 is a potent candidate molecule for use in alleviating ischemia-induced learning disabilities and neuronal loss. KA is a glutamate analog that stimulates excitatory neurotransmitter release and induces ischemia-like neuronal degeneration; it has been used to define mechanisms involved in neurodegeneration and neuroprotection. In the present study, we demonstrate that a subcutaneous injection of 0.2 and 2.0 mg/kg PS18 significantly improved behavioral deficits of Wistar rats (n = 6 per group), and enhanced the survival of hippocampal and cortical neurons against neurotoxicity induced by 12 mg/kg KA compared with control animals. PS18 significantly protected hippocampal synapses against KA-induced destruction. To evaluate the extent of PS18- and KA-induced effects in these hippocampal regions, we performed histological evaluations using semithin sections stained with toluidine blue, as well as ordinal sections stained with hematoxylin and eosin. We revealed a distinctive feature of KA-induced brain injury, which reportedly mimics ischemia, but affects a much wider area than ischemia-induced injury: KA induced neuronal degeneration not only in the CA1 region, where neurons degenerate following ischemia, but also in the CA2, CA3, and CA4 hippocampal regions.
Collapse
Affiliation(s)
- Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- * E-mail:
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takuya Doihara
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | | | - Fumihiko Hamada
- Department of Human Anatomy, Oita University Fuculty of Medicine, Yufu, Oita, Japan
| | - Naoto Kobayashi
- Medical Education Center, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
14
|
Nabeka H, Uematsu K, Takechi H, Shimokawa T, Yamamiya K, Li C, Doihara T, Saito S, Kobayashi N, Matsuda S. Prosaposin overexpression following kainic acid-induced neurotoxicity. PLoS One 2014; 9:e110534. [PMID: 25461957 PMCID: PMC4251898 DOI: 10.1371/journal.pone.0110534] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 09/18/2014] [Indexed: 12/21/2022] Open
Abstract
Because excessive glutamate release is believed to play a pivotal role in numerous neuropathological disorders, such as ischemia or seizure, we aimed to investigate whether intrinsic prosaposin (PS), a neuroprotective factor when supplied exogenously in vivo or in vitro, is up-regulated after the excitotoxicity induced by kainic acid (KA), a glutamate analog. In the present study, PS immunoreactivity and its mRNA expression in the hippocampal and cortical neurons showed significant increases on day 3 after KA injection, and high PS levels were maintained even after 3 weeks. The increase in PS, but not saposins, detected by immunoblot analysis suggests that the increase in PS-like immunoreactivity after KA injection was not due to an increase in saposins as lysosomal enzymes after neuronal damage, but rather to an increase in PS as a neurotrophic factor to improve neuronal survival. Furthermore, several neurons with slender nuclei inside/outside of the pyramidal layer showed more intense PS mRNA expression than other pyramidal neurons. Based on the results from double immunostaining using anti-PS and anti-GABA antibodies, these neurons were shown to be GABAergic interneurons in the extra- and intra-pyramidal layers. In the cerebral cortex, several large neurons in the V layer showed very intense PS mRNA expression 3 days after KA injection. The choroid plexus showed intense PS mRNA expression even in the normal rat, and the intensity increased significantly after KA injection. The present study indicates that inhibitory interneurons as well as stimulated hippocampal pyramidal and cortical neurons synthesize PS for neuronal survival, and the choroid plexus is highly activated to synthesize PS, which may prevent neurons from excitotoxic neuronal damage. To the best of our knowledge, this is the first study that demonstrates axonal transport and increased production of neurotrophic factor PS after KA injection.
Collapse
Affiliation(s)
- Hiroaki Nabeka
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Keigo Uematsu
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hiroko Takechi
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
- * E-mail:
| | - Kimiko Yamamiya
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Cheng Li
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Takuya Doihara
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Shouichiro Saito
- Laboratory of Veterinary Anatomy, Faculty of Applied Biological Sciences, Gifu University, Yanagido, Gifu, Japan
| | - Naoto Kobayashi
- Medical Education Center, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Seiji Matsuda
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
15
|
Meyer RC, Giddens MM, Coleman BM, Hall RA. The protective role of prosaposin and its receptors in the nervous system. Brain Res 2014; 1585:1-12. [PMID: 25130661 DOI: 10.1016/j.brainres.2014.08.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/18/2014] [Accepted: 08/10/2014] [Indexed: 12/12/2022]
Abstract
Prosaposin (also known as SGP-1) is an intriguing multifunctional protein that plays roles both intracellularly, as a regulator of lysosomal enzyme function, and extracellularly, as a secreted factor with neuroprotective and glioprotective effects. Following secretion, prosaposin can undergo endocytosis via an interaction with the low-density lipoprotein-related receptor 1 (LRP1). The ability of secreted prosaposin to promote protective effects in the nervous system is known to involve activation of G proteins, and the orphan G protein-coupled receptors GPR37 and GPR37L1 have recently been shown to mediate signaling induced by both prosaposin and a fragment of prosaposin known as prosaptide. In this review, we describe recent advances in our understanding of prosaposin, its receptors and their importance in the nervous system.
Collapse
Affiliation(s)
- Rebecca C Meyer
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Michelle M Giddens
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Brilee M Coleman
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States
| | - Randy A Hall
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, United States.
| |
Collapse
|
16
|
Phillips CJ, Phillips CD, Goecks J, Lessa EP, Sotero-Caio CG, Tandler B, Gannon MR, Baker RJ. Dietary and flight energetic adaptations in a salivary gland transcriptome of an insectivorous bat. PLoS One 2014; 9:e83512. [PMID: 24454705 PMCID: PMC3891661 DOI: 10.1371/journal.pone.0083512] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 11/04/2013] [Indexed: 12/12/2022] Open
Abstract
We hypothesized that evolution of salivary gland secretory proteome has been important in adaptation to insectivory, the most common dietary strategy among Chiroptera. A submandibular salivary gland (SMG) transcriptome was sequenced for the little brown bat, Myotis lucifugus. The likely secretory proteome of 23 genes included seven (RETNLB, PSAP, CLU, APOE, LCN2, C3, CEL) related to M. lucifugus insectivorous diet and metabolism. Six of the secretory proteins probably are endocrine, whereas one (CEL) most likely is exocrine. The encoded proteins are associated with lipid hydrolysis, regulation of lipid metabolism, lipid transport, and insulin resistance. They are capable of processing exogenous lipids for flight metabolism while foraging. Salivary carboxyl ester lipase (CEL) is thought to hydrolyze insect lipophorins, which probably are absorbed across the gastric mucosa during feeding. The other six proteins are predicted either to maintain these lipids at high blood concentrations or to facilitate transport and uptake by flight muscles. Expression of these seven genes and coordinated secretion from a single organ is novel to this insectivorous bat, and apparently has evolved through instances of gene duplication, gene recruitment, and nucleotide selection. Four of the recruited genes are single-copy in the Myotis genome, whereas three have undergone duplication(s) with two of these genes exhibiting evolutionary 'bursts' of duplication resulting in multiple paralogs. Evidence for episodic directional selection was found for six of seven genes, reinforcing the conclusion that the recruited genes have important roles in adaptation to insectivory and the metabolic demands of flight. Intragenic frequencies of mobile- element-like sequences differed from frequencies in the whole M. lucifugus genome. Differences among recruited genes imply separate evolutionary trajectories and that adaptation was not a single, coordinated event.
Collapse
Affiliation(s)
- Carleton J. Phillips
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Caleb D. Phillips
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Jeremy Goecks
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
- Department of Math and Computer Science, Emory University, Atlanta, Georgia, United States of America
| | - Enrique P. Lessa
- Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Cibele G. Sotero-Caio
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Bernard Tandler
- Department of Biological Sciences, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Michael R. Gannon
- Department of Biology, Pennsylvania State University, Altoona College, Altoona, Pennsylvania, United States of America
| | - Robert J. Baker
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| |
Collapse
|
17
|
Saposins modulate human invariant Natural Killer T cells self-reactivity and facilitate lipid exchange with CD1d molecules during antigen presentation. Proc Natl Acad Sci U S A 2013; 110:E4753-61. [PMID: 24248359 DOI: 10.1073/pnas.1310050110] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Lipid transfer proteins, such as molecules of the saposin family, facilitate extraction of lipids from biological membranes for their loading onto CD1d molecules. Although it has been shown that prosaposin-deficient mice fail to positively select invariant natural killer T (iNKT) cells, it remains unclear whether saposins can facilitate loading of endogenous iNKT cell agonists in the periphery during inflammatory responses. In addition, it is unclear whether saposins, in addition to loading, also promote dissociation of lipids bound to CD1d molecules. To address these questions, we used a combination of cellular assays and demonstrated that saposins influence CD1d-restricted presentation to human iNKT cells not only of exogenous lipids but also of endogenous ligands, such as the self-glycosphingolipid β-glucopyranosylceramide, up-regulated by antigen-presenting cells following bacterial infection. Furthermore, we demonstrated that in human myeloid cells CD1d-loading of endogenous lipids after bacterial infection, but not at steady state, requires trafficking of CD1d molecules through an endo-lysosomal compartment. Finally, using BIAcore assays we demonstrated that lipid-loaded saposin B increases the off-rate of lipids bound to CD1d molecules, providing important insights into the mechanisms by which it acts as a "lipid editor," capable of fine-tuning loading and unloading of CD1d molecules. These results have important implications in understanding how to optimize lipid-loading onto antigen-presenting cells, to better harness iNKT cells central role at the interface between innate and adaptive immunity.
Collapse
|
18
|
Chu Z, Abu-Baker S, Palascak MB, Ahmad SA, Franco RS, Qi X. Targeting and cytotoxicity of SapC-DOPS nanovesicles in pancreatic cancer. PLoS One 2013; 8:e75507. [PMID: 24124494 PMCID: PMC3790873 DOI: 10.1371/journal.pone.0075507] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 08/14/2013] [Indexed: 01/05/2023] Open
Abstract
Only a small number of promising drugs target pancreatic cancer, which is the fourth leading cause of cancer deaths with a 5-year survival of less than 5%. Our goal is to develop a new biotherapeutic agent in which a lysosomal protein (saposin C, SapC) and a phospholipid (dioleoylphosphatidylserine, DOPS) are assembled into nanovesicles (SapC-DOPS) for treating pancreatic cancer. A distinguishing feature of SapC-DOPS nanovesicles is their high affinity for phosphatidylserine (PS) rich microdomains, which are abnormally exposed on the membrane surface of human pancreatic tumor cells. To evaluate the role of external cell PS, in vitro assays were used to correlate PS exposure and the cytotoxic effect of SapC-DOPS in human tumor and nontumorigenic pancreatic cells. Next, pancreatic tumor xenografts (orthotopic and subcutaneous models) were used for tumor targeting and therapeutic efficacy studies with systemic SapC-DOPS treatment. We observed that the nanovesicles selectively killed human pancreatic cancer cells in vitro by inducing apoptotic death, whereas untransformed cells remained unaffected. This in vitro cytotoxic effect correlated to the surface exposure level of PS on the tumor cells. Using xenografts, animals treated with SapC-DOPS showed clear survival benefits and their tumors shrank or disappeared. Furthermore, using a double-tracking method in live mice, we showed that the nanovesicles were specifically targeted to orthotopically-implanted, bioluminescent pancreatic tumors. These data suggest that the acidic phospholipid PS is a biomarker for pancreatic cancer that can be effectively targeted for therapy utilizing cancer-selective SapC-DOPS nanovesicles. This study provides convincing evidence in support of developing a new therapeutic approach to pancreatic cancer.
Collapse
Affiliation(s)
- Zhengtao Chu
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Shadi Abu-Baker
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Mary B. Palascak
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Syed A. Ahmad
- Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Robert S. Franco
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- Division of Human Genetics, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| |
Collapse
|
19
|
Shimokawa T, Nabeka H, Yamamiya K, Wakisaka H, Takeuchi T, Kobayashi N, Matsuda S. Distribution of prosaposin in rat lymphatic tissues. Cell Tissue Res 2013; 352:685-93. [PMID: 23420452 DOI: 10.1007/s00441-013-1575-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 01/17/2013] [Indexed: 11/26/2022]
Abstract
Prosaposin (PSAP) is as a trophic factor and an activator protein for sphingolipid hydrolase in lysosomes. We generated a specific antibody to PSAP and examined the spatiotemporal distribution of PSAP-immunoreactive (PSAP-IR) cells in the lymphatic tissues of Wistar rats. Immunoblots of tissue homogenates separated electrophoretically showed a single band for PSAP in brain but two bands in spleen. PSAP-IR cells were distributed in both the red and white pulp of the spleen, in both the cortex and medulla of the thymus and in mesenteric lymph nodes. Many PSAP-IR cells were found in the dome portion of Peyer's patches and the number of PSAP-IR cells increased with the age of the rat. To identify the PSAP-IR cells, double- and triple-immunostainings were performed with antibodies against PSAP, CD68 and CD1d. The large number of double- and triple-positive cells suggested that antigen-presenting cells contained much PSAP in these lymphatic tissues. Intense expression of PSAP mRNA, examined by in situ hybridisation, was observed in the red pulp and corona of the spleen. In rats, the PSAP gene generates two alternative splicing forms of mRNA: Pro+9 containing a 9-base insertion and Pro+0 without the insertion. We examined the expression patterns of the alternative splicing forms of PSAP mRNA in the spleen. The presence of both types of mRNA (Pro+9 and Pro+0) indicated that the spleen contains various types of prosaposin-producing and/or secreting cells. These findings suggest diverse functions for PSAP in the immune system.
Collapse
Affiliation(s)
- Tetsuya Shimokawa
- Department of Anatomy and Embryology, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0212, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Attenuation of MPTP/MPP(+) toxicity in vivo and in vitro by an 18-mer peptide derived from prosaposin. Neuroscience 2013; 236:373-93. [PMID: 23321539 DOI: 10.1016/j.neuroscience.2013.01.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Revised: 12/29/2012] [Accepted: 01/08/2013] [Indexed: 01/23/2023]
Abstract
Parkinson's disease (PD) is a chronic progressive neurological disorder with an increasing incidence in the aging population. Neuroprotective and/or neuroregenerative strategies remain critical in the treatment of this increasingly prevalent disease. Prosaposin is a neurotrophic factor whose neurotrophic activity is attributed to a stretch of 12 amino acids located at the N-terminal region of saposin C. The present study was performed to investigate the protective effect and mechanism of action of a prosaposin-derived 18-mer peptide (PS18: LSELIINNATEELLIKGL) in Parkinson's disease models. We used 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 1-methyl-4-phenylpyridinium ion (MPP(+))-induced dopaminergic neurotoxicity in C57BL/6J mice or SH-SY5Y cells and explored the protective effect and mechanisms of action of PS18 on dopaminergic neurons. Treatment with 2.0mg/kg PS18 significantly improved behavioral deficits, enhanced the survival of tyrosine hydroxylase-positive neurons, and decreased the activity of astrocytes in the substantia nigra and striatum in MPTP-induced PD model mice. In vitro, a Cell Counting Kit-8 assay and Hoechst 33258 staining revealed that co-treatment with 300ng/mL PS18 and 5mM MPP(+) protected against MPP(+)-induced nuclear morphological changes and attenuated cell death induced by MPP(+). We also found that PS18-FAM entered the cells, and the retention time of PS18-FAM in the cytoplasm of MPP(+)-treated cells was shorter than that of untreated cells. In addition, PS18 showed protection from MPP(+)/MPTP-induced apoptosis in the SH-SY5Y cells and dopaminergic neurons in the PD model mice via suppression of the c-Jun N-terminal kinase/c-Jun pathway; upregulation of Bcl-2; downregulation of BAX, attenuating mitochondrial damage; and inhibition of caspase-3. These findings suggest that PS18 may provide a valuable therapeutic strategy for the treatment of progressive neurodegenerative diseases such as PD.
Collapse
|
21
|
Abu-Baker S, Chu Z, Stevens AM, Li J, Qi X. Cytotoxicity and Selectivity in Skin Cancer by SapC-DOPS Nanovesicles. ACTA ACUST UNITED AC 2012; 3:321-326. [PMID: 25485166 DOI: 10.4236/jct.2012.34041] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Squamous cell carcinoma (SCC) and melanoma are malignant human cancers of the skin with an annual mortality that exceed 10,000 cases every year in the USA alone. In this study, the lysosomal protein saposin C (SapC) and the phospholipid dioloylphosphatidylserine (DOPS) were assembled into cancer-selective nanovesicles (SapC-DOPS) and successfully tested using several in vitro and in vivo skin cancer models. Using MTT assay that measures the percentage of cell death, SapC-DOPS cytotoxic effect on three skin tumor cell lines (squamous cell carcinoma, SK-MEL-28, and MeWo) was compared to two normal nontumorigenic skin cells lines, normal immortalized keratinocyte (NIK) and human fibroblast cell (HFC). We observed that the nanovesicles selectively killed the skin cancer cells by inducing apoptotic cell death whereas untransformed skin cancer cells remained unaffected. Using subcutaneous skin tumor xenografts, animals treated with SapC-DOPS by subcutaneous injection showed a 79.4 % tumor reduced compared to the control after 4 days of treatment. We observed that the nanovesicles killed skin cancer cells by inducing apoptotic cell death compared to the control as revealed by TUNEL staining of xenograft tumor sections.
Collapse
Affiliation(s)
- Shadi Abu-Baker
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Zhengtao Chu
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH ; Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Ashley M Stevens
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH ; Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Jie Li
- Department of Dermatology, University of Miami, Miami, FL
| | - Xiaoyang Qi
- Division of Hematology/Oncology, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH ; Division of Human Genetics, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
22
|
Walsh CJ, Leggett SR, Carter BJ, Colle C. Effects of brevetoxin exposure on the immune system of loggerhead sea turtles. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 97:293-303. [PMID: 20060602 DOI: 10.1016/j.aquatox.2009.12.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 12/04/2009] [Accepted: 12/12/2009] [Indexed: 05/28/2023]
Abstract
Blooms of the toxic dinoflagellate, Karenia brevis, occur almost annually off the Florida coast. These blooms, commonly called "red tides", produce a group of neurotoxins collectively termed brevetoxins. Many species of sealife, including sea turtles, are severely impacted by brevetoxin exposure. Effects of brevetoxins on immune cells were investigated in rescued loggerhead sea turtles, Caretta caretta, as well as through in vitro experiments using peripheral blood leukocytes (PBL) collected from captive sea turtles. In rescued animals, plasma brevetoxin concentrations were measured using a competitive ELISA. Plasma lysozyme activity was measured using a turbidity assay. Lysozyme activity correlated positively with plasma brevetoxin concentrations. Differential expression of genes affected by brevetoxin exposure was determined using two separate suppression subtractive hybridization experiments. In one experiment, genes from PBL collected from sea turtles rescued from red tide toxin exposure were compared to genes from PBL collected from healthy captive loggerhead sea turtles. In the second experiment, PBL from healthy captive loggerhead sea turtles were exposed to brevetoxin (500 ng PbTx-2/ml) in vitro for 18 h and compared to unexposed PBL. Results from the subtraction hybridization experiment conducted with red tide rescued sea turtle PBL indicated that genes involved in oxidative stress or xenobiotic metabolism were up-regulated. Using quantitative real-time PCR, a greater than 2-fold increase in superoxide dismutase and thioredoxin and greater than 10-fold increase in expression of thiopurine S-methyltransferase were observed. Results from the in vitro subtraction hybridization experiment indicated that genes coding for cytochrome c oxidases were the major up-regulated genes. Using quantitative real-time PCR, a greater than 8-fold increase in expression of beta-tubulin and greater than 3-fold increase in expression of ubiquinol were observed. Brevetoxin exposure may have significant implications for immune function in loggerhead sea turtles.
Collapse
Affiliation(s)
- Catherine J Walsh
- Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL 34236, USA.
| | | | | | | |
Collapse
|
23
|
Abstract
Saposins or sphingolipid activator proteins (SAPs) are small, nonenzymatic glycoproteins that are ubiquitously present in lysosomes. SAPs comprise the five molecules saposins A-D and the GM2 activator protein. Saposins are essential for sphingolipid degradation and membrane digestion. On the one hand, they bind the respective hydrolases required to catabolize sphingolipid molecules; on the other hand, saposins can interact with intralysosomal membrane structures to render lipids accessible to their degrading enzymes. Thus, saposins bridge the physicochemical gap between lipid substrate and hydrophilic hydrolases. Accordingly, defects in saposin function can lead to lysosomal lipid accumulation. In addition to their specific functions in sphingolipid metabolism, saposins have membrane-perturbing properties. At the low pH of lysosomes, saposins get protonated and exhibit a high binding affinity for anionic phospholipids. Based on their universal principle to interact with membrane bilayers, we present the immunological functions of saposins with regard to lipid antigen presentation to CD1-restricted T cells, processing of apoptotic bodies for antigen delivery and cross-priming, as well as their potential antimicrobial impact.
Collapse
Affiliation(s)
- Alexandre Darmoise
- Program in Cellular and Molecular Medicine at Children's Hospital, Immune Disease Institute, Department of Pathology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
24
|
Qi X, Chu Z, Mahller YY, Stringer KF, Witte DP, Cripe TP. Cancer-selective targeting and cytotoxicity by liposomal-coupled lysosomal saposin C protein. Clin Cancer Res 2009; 15:5840-51. [PMID: 19737950 DOI: 10.1158/1078-0432.ccr-08-3285] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE Saposin C is a multifunctional protein known to activate lysosomal enzymes and induce membrane fusion in an acidic environment. Excessive accumulation of lipid-coupled saposin C in lysosomes is cytotoxic. Because neoplasms generate an acidic microenvironment, caused by leakage of lysosomal enzymes and hypoxia, we hypothesized that saposin C may be an effective anticancer agent. We investigated the antitumor efficacy and systemic biodistribution of nanovesicles comprised of saposin C coupled with dioleoylphosphatidylserine in preclinical cancer models. EXPERIMENTAL DESIGN Neuroblastoma, malignant peripheral nerve sheath tumor and, breast cancer cells were treated with saposin C-dioleoylphosphatidylserine nanovesicles and assessed for cell viability, ceramide elevation, caspase activation, and apoptosis. Fluorescently labeled saposin C-dioleoylphosphatidylserine was i.v. injected to determine in vivo tumor-targeting specificity. Antitumor activity and toxicity profile of saposin C-dioleoylphosphatidylserine were evaluated in xenograft models. RESULTS Saposin C-dioleoylphosphatidylserine nanovesicles, with a mean diameter of approximately 190 nm, showed specific tumor-targeting activity shown through in vivo imaging. Following i.v. administration, saposin C-dioleoylphosphatidylserine nanovesicles preferentially accumulated in tumor vessels and cells in tumor-bearing mice. Saposin C-dioleoylphosphatidylserine induced apoptosis in multiple cancer cell types while sparing normal cells and tissues. The mechanism of saposin C-dioleoylphosphatidylserine induction of apoptosis was determined to be in part through elevation of intracellular ceramides, followed by caspase activation. In in vivo models, saposin C-dioleoylphosphatidylserine nanovesicles significantly inhibited growth of preclinical xenografts of neuroblastoma and malignant peripheral nerve sheath tumor. I.v. dosing of saposin C-dioleoylphosphatidylserine showed no toxic effects in nontumor tissues. CONCLUSIONS Saposin C-dioleoylphosphatidylserine nanovesicles offer promise as a novel, nontoxic, cancer-targeted, antitumor agent for treating a broad range of cancers.
Collapse
Affiliation(s)
- Xiaoyang Qi
- Division and Program in HumanGenetics, 3333 Burnet Avenue, Cincinnati, Ohio 45229-3039, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Yoneshige A, Suzuki K, Kojima N, Matsuda J. Regional expression of prosaposin in the wild-type and saposin D-deficient mouse brain detected by an anti-mouse prosaposin-specific antibody. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2009; 85:422-434. [PMID: 19907127 PMCID: PMC3621563 DOI: 10.2183/pjab.85.422] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 10/05/2009] [Indexed: 05/28/2023]
Abstract
Prosaposin is a precursor of saposins A, B, C, and D. Saposins are indispensable for lysosomal hydrolysis of sphingolipids. The notion that prosaposin itself is likely involved in brain development led us to generate an anti-mouse prosaposin-specific antibody that do not cross-react with any of the processed saposins. We have used it to study expression of prosaposin in the brain of wild-type (WT) and saposin D knockout mice (Sap-D(-/-)). Immunoblot studies indicated that prosaposin, already abundant in the brain of WT, was dramatically increased in Sap-D(-/-). By immunohistochemistry, the brain of WT was rich in prosaposin in hippocampal CA3 pyramidal neurons, tufted cells and mitral cells in olfactory bulb, and cerebellar Purkinje cells. In Sap-D(-/-), immunoreactivity of prosaposin was increased in these neurons, most notably in the CA3 pyramidal neurons which contained prosaposin immuno-positive inclusion bodies in the endoplasmic reticulum. Further characterization of these prosaposin-rich neurons may provide new insights into the physiological functions of prosaposin in the nervous system.
Collapse
Affiliation(s)
- Azusa Yoneshige
- Institute of Glycoscience, Tokai University, Kanagawa,
Japan
| | - Kunihiko Suzuki
- Institute of Glycoscience, Tokai University, Kanagawa,
Japan
| | - Naoya Kojima
- Institute of Glycoscience, Tokai University, Kanagawa,
Japan
| | - Junko Matsuda
- Institute of Glycoscience, Tokai University, Kanagawa,
Japan
| |
Collapse
|
26
|
Sorice M, Molinari S, Di Marzio L, Mattei V, Tasciotti V, Ciarlo L, Hiraiwa M, Garofalo T, Misasi R. Neurotrophic signalling pathway triggered by prosaposin in PC12 cells occurs through lipid rafts. FEBS J 2008; 275:4903-12. [DOI: 10.1111/j.1742-4658.2008.06630.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
27
|
Ochiai T, Takenaka Y, Kuramoto Y, Kasuya M, Fukuda K, Kimura M, Shimeno H, Misasi R, Hiraiwa M, Soeda S. Molecular mechanism for neuro-protective effect of prosaposin against oxidative stress: its regulation of dimeric transcription factor formation. Biochim Biophys Acta Gen Subj 2008; 1780:1441-7. [PMID: 18706485 DOI: 10.1016/j.bbagen.2008.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2008] [Revised: 07/16/2008] [Accepted: 07/18/2008] [Indexed: 12/09/2022]
Abstract
Prosaposin triggers G-protein-coupled receptor (GPCR)-mediated protein kinase B (Akt)/extracellular signal-regulated kinase (ERK) phosphorylation cascades to exert its neurotrophic and myelinotrophic activity capable of preventing neural cell death and promoting neural proliferation and glial differentiation. In the present study, we investigated the down-stream neurotrophic signaling mechanism of prosaposin by which rat pheochromocytoma (PC-12) cells are protected from cell death induced by oxidative stress. When PC-12 cells were exposed to H2O2, the cells underwent abrupt shrinkage followed by apoptosis. Prosaposin treatment at as low as 1 nM protected PC-12 cells from cell death by the oxidative stress with the activation of an ERK phosphorylation cascade. Simultaneously, prosaposin blocked the oxidative stress induced-Akt phosphorylation that acts on the down-stream of caspase-3 activation. A MEK inhibitor, PD98059, or a phosphatidylinositol 3-kinase (PI3K) inhibitor, LY294002, abolished the survival effect of prosaposin on the oxidative stress-induced cell death. Furthermore, prosaposin blocked the oxidative stress-induced phosphorylations of c-Jun N-terminal kinase (JNK) and p38 stress-activated protein kinase. We further investigated the effect of prosaposin treatment on the phosphorylation of activating protein-1 (AP-1) complex components, c-Jun and activating transcription factor (ATF)-3. Western blot analysis demonstrated that prosaposin treatment at 100 ng/ml decreased the levels of c-Jun and ATF-3 induced by H2O2 stimulation. Our results suggest that prosaposin aids survival of PC-12 cells from oxidative stress not only by reducing the phosphorylation levels of JNK and p38, but also by regulating the c-Jun/AP-1 pathway.
Collapse
Affiliation(s)
- Takashi Ochiai
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Fukuoka University, 8-19-1 Nanakuma, Jonan-ku, Fukuoka 814-0180, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
CHU ZHENGTAO, SUN YING, KUAN CHIAYI, GRABOWSKI GREGORYA, QI XIAOYANG. Saposin C: Neuronal Effect and CNS Delivery by Liposomes. Ann N Y Acad Sci 2008. [DOI: 10.1111/j.1749-6632.2005.tb00031.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
29
|
Pasini EM, Kirkegaard M, Salerno D, Mortensen P, Mann M, Thomas AW. Deep coverage mouse red blood cell proteome: a first comparison with the human red blood cell. Mol Cell Proteomics 2008; 7:1317-30. [PMID: 18344233 DOI: 10.1074/mcp.m700458-mcp200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mice have close genetic/physiological relationships to humans, breed rapidly, and can be genetically modified, making them the most used mammal in biomedical research. Because the red blood cell (RBC) is the sole gas transporter in vertebrates, diseases of the RBC are frequently severe; much research has therefore focused on RBC and cardiovascular disorders of mouse and humans. RBCs also host malaria parasites. Recently we presented an in-depth proteome for the human RBC. Here we present directly comparable data for the mouse RBC as membrane-only, soluble-only, and combined membrane-bound/soluble proteomes (comprising, respectively, 247, 232, and 165 proteins). All proteins were identified, validated, and categorized in terms of subcellular localization, protein family, and function, and in comparison with the human RBC, were classified as orthologs, family-related, or unique. Splice isoforms were identified, and polypeptides migrating with anomalous apparent molecular weights were grouped into putatively ubiquitinated or partially degraded complexes. Overall there was close concordance between mouse and human proteomes, confirming the unexpected RBC complexity. Several novel findings in the human proteome have been confirmed here. This comparison sheds light on several open issues in RBC biology and provides a departure point for more comprehensive understanding of RBC function.
Collapse
Affiliation(s)
- Erica M Pasini
- Biomedical Primate Research Centre, Lange Kleiweg 139, 2288 GJ Rijswijk, The Netherlands
| | | | | | | | | | | |
Collapse
|
30
|
Abstract
The classic concept of self-non-self discrimination by the immune system focused on the recognition of fragments from proteins presented by classical MHC molecules. However, the discovery of MHC-class-I-like CD1 antigen-presentation molecules now explains how the immune system also recognizes the abundant and diverse universe of lipid-containing antigens. The CD1 molecules bind and present amphipathic lipid antigens for recognition by T-cell receptors. Here, we outline the recent advances in our understanding of how the processes of CD1 assembly, trafficking, lipid-antigen binding and T-cell activation are achieved and the new insights into how lipid antigens differentially elicit CD1-restricted innate and adaptive T-cell responses.
Collapse
Affiliation(s)
- Duarte C Barral
- Division of Rheumatology, Immunology and Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, 1 Jimmy Fund Way, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
31
|
Hosoda Y, Miyawaki K, Saito S, Chen J, Bing X, Terashita T, Kobayashi N, Araki N, Shimokawa T, Hamada F, Sano A, Tanabe H, Matsuda S. Distribution of prosaposin in the rat nervous system. Cell Tissue Res 2007; 330:197-207. [PMID: 17763872 DOI: 10.1007/s00441-007-0464-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2007] [Accepted: 07/04/2007] [Indexed: 10/22/2022]
Abstract
Prosaposin is the precursor of four sphingolipid activator proteins (saposins A, B, C, and D) for lysosomal hydrolases and is abundant in the nervous system and muscle. In addition to its role as a precursor of saposins in lysosomes, intact prosaposin has neurotrophic effects in vivo or in vitro when supplied exogenously. We examined the distribution of prosaposin in the central and peripheral nervous systems and its intracellular distribution. Using a monospecific antisaposin D antibody that crossreacts with prosaposin but not with saposins A, B, or C, immunoblot experiments showed that both the central and peripheral nervous systems express unprocessed prosaposin and little saposin D. Using the antisaposin D antibodies, we demonstrated that prosaposin is abundant in almost all neurons of both the central and peripheral nervous systems, including autonomic nerves, as well as motor and sensory nerves. Immunoelectron microscopy using double staining with antisaposin D and anticathepsin D antibodies showed strong prosaposin immunoreactivity mainly in the lysosomal granules in the neurons in both the central and peripheral nervous systems. The expression of prosaposin mRNA, examined using in situ hybridization, was observed in these same neurons. Our results suggest that prosaposin is synthesized ubiquitously in neurons of both the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Yoshiki Hosoda
- Department of Neuropsychiatry, Ehime University Graduate School of Medicine, Toon, Ehime, 791-0212, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Schrantz N, Sagiv Y, Liu Y, Savage PB, Bendelac A, Teyton L. The Niemann-Pick type C2 protein loads isoglobotrihexosylceramide onto CD1d molecules and contributes to the thymic selection of NKT cells. ACTA ACUST UNITED AC 2007; 204:841-52. [PMID: 17389239 PMCID: PMC2118543 DOI: 10.1084/jem.20061562] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The Niemann-Pick type C2 (NPC2) protein is a small, soluble, lysosomal protein important for cholesterol and sphingolipid transport in the lysosome. The immunological phenotype of NPC2-deficient mice was limited to an impaired thymic selection of Vα14 natural killer T cells (NKT cells) and a subsequent reduction of NKT cells in the periphery. The remaining NKT cells failed to produce measurable quantities of interferon-γ in vivo and in vitro after activation with α-galactosylceramide. In addition, thymocytes and splenocytes from NPC2-deficient mice were poor presenters of endogenous and exogenous lipids to CD1d-restricted Vα14 hybridoma cells. Importantly, we determined that similar to saposins, recombinant NPC2 was able to unload lipids from and load lipids into CD1d. This transfer activity was associated with a dimeric form of NPC2, suggesting a unique mechanism of glycosphingolipid transfer by NPC2. Similar to saposin B, NPC2 dimers were able to load isoglobotrihexosylceramide (iGb3), the natural selecting ligand of NKT cells in the thymus, into CD1d. These observations strongly suggested that the phenotype observed in NPC2-deficient animals was directly linked to the efficiency of the loading of iGb3 into CD1d molecules expressed by thymocytes. This conclusion was supported by the rescue of endogenous and exogenous iGb3 presentation by recombinant NPC2. Thus, the loading of endogenous and exogenous lipids and glycolipids onto CD1d is dependent on various small, soluble lipid transfer proteins present in the lysosome.
Collapse
Affiliation(s)
- Nicolas Schrantz
- Department of Immunology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | |
Collapse
|
33
|
Sun Y, Witte DP, Zamzow M, Ran H, Quinn B, Matsuda J, Grabowski GA. Combined saposin C and D deficiencies in mice lead to a neuronopathic phenotype, glucosylceramide and α-hydroxy ceramide accumulation, and altered prosaposin trafficking. Hum Mol Genet 2007; 16:957-71. [PMID: 17353235 DOI: 10.1093/hmg/ddm040] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Saposins (A, B, C and D) are approximately 80 amino acid stimulators of glycosphingolipid (GSL) hydrolases that derive from a single precursor, prosaposin. In both humans and mice, prosaposin/saposin deficiencies lead to severe neurological deficits. The CD-/- mice with saposin C and D combined deficiencies were produced by introducing genomic point mutations into a critical cysteine in each of these saposins. These mice develop a severe neurological phenotype with ataxia, kyphotic posturing and hind limb paralysis. Relative to prosaposin null mice ( approximately 30 days), CD-/- mice had an extended life span ( approximately 56 days). Loss of Purkinje cells was evident after 6 weeks, and storage bodies were present in neurons of the spinal cord, brain and dorsal root ganglion. Electron microscopy showed well-myelinated fibers and axonal inclusions in the brain and sciatic nerve. Marked accumulations of glucosylceramides and alpha-hydroxy ceramides were present in brain and kidney. Minor storage of lactosylceramide (LacCer) was observed when compared with tissues from the prosaposin null mice, suggesting a compensation in LacCer degradation by saposin B for the saposin C deficiency. Skin fibroblasts and tissues from CD-/- mice showed an increase of intracellular prosaposin, impaired prosaposin secretion, deficiencies of saposins C and D and decreases in saposins A and B. In addition, the deficiency of saposin C in CD-/- mice resulted in cellular decreases of acid beta-glucosidase activity and protein. This CD null mouse model provides a tool to explore the in vivo functional interactions of saposins in GSL metabolism and lysosomal storage diseases, and prosaposin's physiological effects.
Collapse
Affiliation(s)
- Ying Sun
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Nieh MP, Pencer J, Katsaras J, Qi X. Spontaneously forming ellipsoidal phospholipid unilamellar vesicles and their interactions with helical domains of saposin C. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2006; 22:11028-33. [PMID: 17154581 DOI: 10.1021/la062275j] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We have observed a bimodal distribution of ellipsoidal unilamellar vesicles (ULVs) in a phospholipid mixture composed of dioleoyl phosphatidylserine (DOPS) and dipalmitoyl and dihexanoyl phosphatidylcholine, DPPC and DHPC, respectively. Dynamic light scattering and transmission electron microscopy data indicate a bimodal size distribution of these nanoparticles with hydrodynamic radii of approximately 200 and >500 nm, while small-angle neutron scattering data were fit using a model of coexisting monodisperse morphologies, namely, oblate and triaxial ellipsoidal vesicles. Unlike DOPS ULV formed by sonication, which can fuse days after being formed, these ULVs are stable over a period of 12 months at 4 degrees C. We also report on the structure of these ULVs associated with the two helical peptide domains (H1 and H2) of a glucosylprotein, namely, Saposin C, to gain some insight into protein-membrane interactions.
Collapse
Affiliation(s)
- Mu-Ping Nieh
- Canadian Neutron Beam Center, Steacie Institute for Molecular Sciences, National Research Council at Canada, Chalk River, Ontario, Canada K0J-1J0.
| | | | | | | |
Collapse
|
35
|
Cove J, Morales CR, Baranes D. SGP-1 increases dendritic and synaptic development dependent on synaptic activity. Neurosci Res 2006; 56:372-85. [PMID: 17050025 DOI: 10.1016/j.neures.2006.08.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 08/13/2006] [Accepted: 08/14/2006] [Indexed: 11/21/2022]
Abstract
Neurotrophic factors are a group of secreted proteins which generally regulate neurite outgrowth and synaptic development. SGP-1 has been reported as a neurotrophic factor, though little is known of its effect on neurite outgrowth, and it is unknown whether SGP-1 affects synaptic development. We report here that SGP-1 is distributed in vesicle-like puncta in somas and dendrites of primary neurons in culture, and that SGP-1 is secreted in culture and is taken up by endocytosis in dendrites. Endogenous extracellular activity of SGP-1 promotes dendritic, but not axonal outgrowth. Furthermore, endogenous activity of SGP-1 increases synaptogenesis in hippocampal neurons as determined by measuring the density and size of synaptophysin puncta and by determining the density of dendritic spines, their surface expression of GluR2 and their immunoreactivity for GluR1. The effect of SGP-1 on the amount of postsynaptic receptors in dendritic spines depends on synaptic activity and apparently on activation of MAPK, as inhibition of either of these abolished the affect. Hence, SGP-1 has neurotrophic effects, increasing dendritic growth and promoting synaptic development in an activity-dependent fashion.
Collapse
Affiliation(s)
- Joshua Cove
- Department of Life Sciences, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | | | | |
Collapse
|
36
|
Abstract
Saposins A and C are sphingolipid activator proteins required for the lysosomal breakdown of galactosylceramide and glucosylceramide, respectively. The saposins interact with lipids, leading to an enhanced accessibility of the lipid headgroups to their cognate hydrolases. We have determined the crystal structures of human saposins A and C to 2.0 Angstroms and 2.4 Angstroms, respectively, and both reveal the compact, monomeric saposin fold. We confirmed that these two proteins were monomeric in solution at pH 7.0 by analytical centrifugation. However, at pH 4.8, in the presence of the detergent C(8)E(5), saposin A assembled into dimers, while saposin C formed trimers. Saposin B was dimeric under all conditions tested. The self-association of the saposins is likely to be relevant to how these small proteins interact with lipids, membranes, and hydrolase enzymes.
Collapse
Affiliation(s)
- Victoria E Ahn
- Department of Medical Biophysics, University of Toronto, Canada
| | | | | | | | | |
Collapse
|
37
|
Kiss RS, Ma Z, Nakada-Tsukui K, Brugnera E, Vassiliou G, McBride HM, Ravichandran KS, Marcel YL. The lipoprotein receptor-related protein-1 (LRP) adapter protein GULP mediates trafficking of the LRP ligand prosaposin, leading to sphingolipid and free cholesterol accumulation in late endosomes and impaired efflux. J Biol Chem 2006; 281:12081-92. [PMID: 16497666 DOI: 10.1074/jbc.m600621200] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
One of the conserved functional pathways linked to engulfment of apoptotic corpses involves two membrane proteins low density lipoprotein receptor-related protein-1 (LRP) and ABCA1 and the LRP adapter protein GULP. Because LRP and ABCA1 play roles in cellular lipid trafficking and efflux, here we addressed whether the third member, the LRP adapter protein GULP, also affects cellular lipid transport. Several lines of evidence show that overexpression of GULP causes glycosphingolipid and free cholesterol accumulation in the late endosome/lysosome compartment that is accompanied by down-regulation of ABCA1 and decreased efflux. Conversely, knockdown of endogenous GULP expression promoted cholesterol flux through the late endosomes and up-regulation of ABCA1, even in the context of a disease state such as Niemann-Pick Type C disease. Mechanistically, we were able to show that trafficking of the LRP ligands alpha2-macroglobulin and prosaposin, a protein cofactor necessary for glycosphingolipid degradation, are impaired in cells expressing full-length GULP protein, resulting in glycosphingolipid and free cholesterol accumulation in the late endosome/lysosome compartment. On the other hand, knockdown of endogenous GULP results in enhanced targeting of prosaposin and enhanced clearance of glycosphingolipids and cholesterol from the late endosomes. Taken together, these data reveal that GULP/LRP/ABCA1 represents a triad of molecules involved in engulfment and cellular lipid homeostasis.
Collapse
Affiliation(s)
- Robert S Kiss
- Lipoprotein and Atherosclerosis Research Group, Department of Pathology and Laboratory Medicine, University of Ottawa Heart Institute, Ottawa K1Y 4W7, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Ciaffoni F, Tatti M, Boe A, Salvioli R, Fluharty A, Sonnino S, Vaccaro AM. Saposin B binds and transfers phospholipids. J Lipid Res 2006; 47:1045-53. [PMID: 16461955 DOI: 10.1194/jlr.m500547-jlr200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saposin B (Sap B) is a member of a family of four small glycoproteins, Sap A, B, C, and D. Like the other three saposins, Sap B plays a physiological role in the lysosomal degradation of sphingolipids (SLs). Although the interaction of Sap B with SLs has been investigated extensively, that with the main membrane lipid components, namely phospholipids and cholesterol (Chol), is scarcely known. Using large unilamellar vesicles (LUVs) as membrane models, we have now found that Sap B simultaneously extracts from the lipid surface neutral [phosphatidylcholine (PC)] and anionic [phosphatidylinositol (PI)] phospholipids, fewer SLs [ganglioside GM1 (GM1) or cerebroside sulfate (CS)], and no Chol. More PI than SL (GM1 or CS) was solubilized from LUVs containing equal amounts of PI and SLs. An increase in PI level had a poor effect on the Sap B-induced solubilization of GM1 or CS but strongly inhibited that of PC. Sap B was able not only to bind, but also to transfer phospholipids between lipid surfaces. Both the phospholipid binding and transfer activities were optimal at low pH values. These results represent the first biochemical analysis of the Sap B interaction with phospholipids. The capacity of Sap B to bind and transfer phospholipids occurs under conditions mimicking the interior of the late endosomal/lysosomal compartment and thus might have physiological relevance.
Collapse
Affiliation(s)
- Fiorella Ciaffoni
- Department of Hematology, Oncology, and Molecular Medicine, Istituto Superiore Sanita, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
39
|
Bruhn H. A short guided tour through functional and structural features of saposin-like proteins. Biochem J 2005; 389:249-57. [PMID: 15992358 PMCID: PMC1175101 DOI: 10.1042/bj20050051] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
SAPLIPs (saposin-like proteins) are a diverse family of lipid-interacting proteins that have various and only partly understood, but nevertheless essential, cellular functions. Their existence is conserved in phylogenetically most distant organisms, such as primitive protozoa and mammals. Owing to their remarkable sequence variability, a common mechanism for their actions is not known. Some shared principles beyond their diversity have become evident by analysis of known three-dimensional structures. Whereas lipid interaction is the basis for their functions, the special cellular tasks are often defined by interaction partners other than lipids. Based on recent findings, this review summarizes phylogenetic relations, function and structural features of the members of this family.
Collapse
Affiliation(s)
- Heike Bruhn
- Research Center for Infectious Diseases, Röntgenring 11, D-97070 Würzburg, Germany.
| |
Collapse
|
40
|
Lauc G, Heffer-Lauc M. Shedding and uptake of gangliosides and glycosylphosphatidylinositol-anchored proteins. Biochim Biophys Acta Gen Subj 2005; 1760:584-602. [PMID: 16388904 DOI: 10.1016/j.bbagen.2005.11.014] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 10/25/2022]
Abstract
Gangliosides and glycosylphosphatidylinositol (GPI)-anchored proteins have very different biosynthetic origin, but they have one thing in common: they are both comprised of a relatively large hydrophilic moiety tethered to a membrane by a relatively small lipid tail. Both gangliosides and GPI-anchored proteins can be actively shed from the membrane of one cell and taken up by other cells by insertion of their lipid anchors into the cell membrane. The process of shedding and uptake of gangliosides and GPI-anchored proteins has been independently discovered in several disciplines during the last few decades, but these discoveries were largely ignored by people working in other areas of science. By bringing together results from these, sometimes very distant disciplines, in this review, we give an overview of current knowledge about shedding and uptake of gangliosides and GPI-anchored proteins. Tumor cells and some pathogens apparently misuse this process for their own advantage, but its real physiological functions remain to be discovered.
Collapse
Affiliation(s)
- Gordan Lauc
- Department of Chemistry and Biochemistry, University of Osijek School of Medicine, Croatia.
| | | |
Collapse
|
41
|
Cohen T, Auerbach W, Ravid L, Bodennec J, Fein A, Futerman AH, Joyner AL, Horowitz M. The exon 8-containing prosaposin gene splice variant is dispensable for mouse development, lysosomal function, and secretion. Mol Cell Biol 2005; 25:2431-40. [PMID: 15743835 PMCID: PMC1061615 DOI: 10.1128/mcb.25.6.2431-2440.2005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prosaposin is a multifunctional protein with diverse functions. Intracellularly, prosaposin is a precursor of four sphingolipid activator proteins, saposins A to D, which are required for hydrolysis of sphingolipids by several lysosomal exohydrolases. Secreted prosaposin has been implicated as a neurotrophic, myelinotrophic, and myotrophic factor as well as a spermatogenic factor. It has also been implicated in fertilization. The human and the mouse prosaposin gene has a 9-bp exon (exon 8) that is alternatively spliced, resulting in an isoform with three extra amino acids, Gln-Asp-Gln, within the saposin B domain. Alternative splicing in the prosaposin gene is conserved from fish to humans, tissue specific, and regulated in the brain during development and nerve regeneration-degeneration processes. To elucidate the physiological role of alternative splicing, we have generated a mouse lacking exon 8 by homologous recombination. The exon 8 prosaposin mutant mice are healthy and fertile with no obvious phenotype. No changes were detected in prosaposin secretion or in accumulation and metabolism of gangliosides, sulfatides, neutral glycosphingolipids, neutral phospholipids, other neutral lipids, and ceramide. These data strongly indicate that the prosaposin variant containing the exon 8-encoded three amino acids is dispensable for normal mouse development and fertility as well as for prosaposin secretion and its lysosomal function, at least in the presence of the prosaposin variant missing the exon 8-encoded three amino acids.
Collapse
Affiliation(s)
- Tsadok Cohen
- Department of Cell Research and Immunology, Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Unuma K, Chen J, Saito S, Kobayashi N, Sato K, Saito K, Wakisaka H, Mominoki K, Sano A, Matsuda S. Changes in expression of prosaposin in the rat facial nerve nucleus after facial nerve transection. Neurosci Res 2005; 52:220-7. [PMID: 15927723 DOI: 10.1016/j.neures.2005.03.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2005] [Revised: 03/05/2005] [Accepted: 03/18/2005] [Indexed: 11/30/2022]
Abstract
Prosaposin is the precursor of saposins A, B, C and D, which are activators of sphingolipid hydrolases. In addition, unprocessed prosaposin functions as a neurotrophic factor in the central and peripheral nervous systems by acting to prevent neuronal apoptosis, to elongate neurites and to facilitate myelination. In this study, the expression pattern of prosaposin in the facial nerve nucleus after facial nerve transection was examined by immunohistochemistry and in situ hybridization. Prosaposin immunoreactivity in the neurons on the operated side facial nerve nucleus showed a biphasic pattern: it was significantly increased on day 3 after transection, decreased dramatically on day 7, started to increase gradually on day 14 and reached another peak on day 21 after transection. Significant increases in the levels of prosaposin mRNA were identified in the neurons on the operated side, suggesting that prosaposin was synthesized vigorously by the neurons themselves in the case of facial nerve transection. The diverse changes in prosaposin immunoreactivity during the process of facial nerve regeneration may reflect the diverse neurotrophic activities of prosaposin in facial motoneurons.
Collapse
Affiliation(s)
- Kana Unuma
- Division of Anatomy and Embryology, Department of Integrated Basic Medical Science, Ehime University School of Medicine, Shitsukawa, Toon-shi, Ehime 791-0295, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Walch M, Eppler E, Dumrese C, Barman H, Groscurth P, Ziegler U. Uptake of Granulysin via Lipid Rafts Leads to Lysis of IntracellularListeria innocua. THE JOURNAL OF IMMUNOLOGY 2005; 174:4220-7. [PMID: 15778384 DOI: 10.4049/jimmunol.174.7.4220] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The bacteriolytic activity of CTL is mediated by granulysin, which has been reported to kill intracellular Mycobacterium tuberculosis in dendritic cells (DC) with high efficiency. Despite that crucial effector function, the killing mechanism and uptake of granulysin into target cells have not been well investigated. To this end we analyzed granulysin binding, uptake, and the subsequent lysis of intracellular Listeria innocua in human DC. Recombinant granulysin was found to be actively taken up by DC into early endosomal Ag 1-labeled endosomes, as detected by immunofluorescence. Further transfer to L. innocua-containing phagosomes was indicated by colocalization of bacterial DNA with granulysin. After uptake of granulysin by DC, lysis of L. innocua was found in a dose-dependent manner. Uptake as well as lysis of Listeria were inhibited after blocking endocytosis by lowering the temperature and by cholesterol depletion of DC. Colocalization of granulysin with cholera toxin during uptake showed binding to and internalization via lipid rafts. In contrast to cholera toxin, which was targeted to the perinuclear compartment, granulysin was found exclusively in endosomal-phagosomal vesicles. Lipid raft microdomains, enriched in the immunological synapse, may thus enhance uptake and transfer of granulysin into bacterial infected host cells.
Collapse
Affiliation(s)
- Michael Walch
- Division of Cell Biology, Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | |
Collapse
|
44
|
Scaccianoce S, Mattei V, Del Bianco P, Gizzi C, Sorice M, Hiraiwa M, Misasi R. Hippocampal prosaposin changes during stress: a glucocorticoid-independent event. Hippocampus 2004; 14:275-80. [PMID: 15132426 DOI: 10.1002/hipo.10192] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Several studies indicate that stress can produce remarkable effects on neurotrophic factors. In this regard, hippocampus is the most interesting structure of the brain because of its broad involvement in behavioral and neuroendocrine phenomena. In the present study, we investigated the effect of stress on hippocampal prosaposin, which is known to act as a neurotrophic and neuroprotective factor. Rats subjected to restraint stress (120 min) had a significant and transient reduction of hippocampal, but not hypothalamic, prosaposin full-length protein. Indeed, when this stressful stimulus was applied daily for 3 days, no differences were detected in comparison with naive rats. To investigate the role of glucocorticoids in the stress-induced decrease in hippocampal prosaposin, adrenalectomized and corticosterone-treated rats were studied. The results indicate that adrenalectomized rats behave as intact animals. This finding indicates that the absence of endogenous corticosterone does not prevent a decrease in hippocampal prosaposin. When an increase of corticosterone was achieved through exogenous administration, hippocampal prosaposin concentrations were unchanged in comparison with vehicle-injected (sesame oil) rats. These results led to the conclusion that stress, not via an increase of glucocorticoid hormone, transiently reduces hippocampal prosaposin levels. This phenomenon is followed by rapid recovery of the neurotrophin level, even when the stress stimulus persists.
Collapse
Affiliation(s)
- Sergio Scaccianoce
- Dipartimento di Fisiologia Umana e Farmacologia, Vittorio Erspamer, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
45
|
Qi X, Chu Z. Fusogenic domain and lysines in saposin C. Arch Biochem Biophys 2004; 424:210-8. [PMID: 15047193 DOI: 10.1016/j.abb.2004.02.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2003] [Revised: 02/17/2004] [Indexed: 02/07/2023]
Abstract
Saposin C, a sphingolipid activator protein with fusogenic activity, interacts specifically with the membrane containing negatively charged, unsaturated phospholipids. The kinetics and mechanism of saposin C-induced membrane fusion were previously investigated using acidic phospholipid liposomes. A hypothetic clip-on model for such a fusion process was illustrated by the ionic binding between saposin C and lipids, as well as the inter-saposin C hydrophobic interaction. Here, we report the location of the fusogenic domain in a linear sequence at the amino-terminal half of saposin C. This domain consisted of the first and second helical sequences. Selected positively charged lysines in the fusogenic domain were mutated to study the roles of basic residues in the saposin C-induced vesicle fusion. Based on the results, Lys13 and Lys17 were critical for the fusogenic activity, but had no effect on the enzymatic activation of acid beta-glucosidase (GCase). These results clearly indicate the segregation of the fusion and activation function into two different regions of saposin C. Interestingly, all the Lys mutant saposin Cs anchored on the acidic phospholipid membrane. Our data suggest that saposin C's fusogenic and activation functions have different requirements for the orientation and insertion manners of helical peptides in membranes.
Collapse
Affiliation(s)
- Xiaoyang Qi
- The Division and Program in Human Genetics, Cincinnati Children's Hospital Research Foundation, and Department of Pediatrics, The University of Cincinnati College of Medicine, 3333 Burnet Avenue, Cincinnati, OH 45229-3039, USA.
| | | |
Collapse
|
46
|
Lu YY, Liu Y, Cheng J, Ling YD, Chen TY, Shao Q, Wang L, Zhang LX. Screening and identification of genes trans-regulated by a novel HBeAg binding protein E-18 with microarray assay. Shijie Huaren Xiaohua Zazhi 2004; 12:817-820. [DOI: 10.11569/wcjd.v12.i4.817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the biological functions of a novel hepatitis B virus e antigen (HBeAg) binding protein E-18, and to use cDNA microarray technique to screen genes regulated by E-18.
METHODS: A novel gene E-18 coding for HBeAg was screened and identified by using yeast two-hybrid system 3 and co-immunoprecipitation technique. The E-18 coding DNA fragment was amplified by reverse transcription polymerase chain reaction (RT-PCR) technique from HepG2 cell. The expressive vector of pcDNA3.1-E-18 was constructed by routine molecular biological methods. The HepG2 cells were transfected with pcDNA3.1(-) and pcDNA3.1-E-18, respectively by using lipofectamine. The total RNA was isolated and reverse transcribed. The cDNA of each sample were subjected to microarray screening with 1 152 cDNA probes and analyzed by bioinformatics.
RESULTS: E-18 cDNA sequence was obtained and identified by yeast two-hybrid screening and bioinformatics analysis. The expressive vector was constructed and confirmed by DNA sequencing analysis and restriction enzyme digestion. High quality mRNA and cDNA of transfected HepG2 cells had been prepared and successful microarray screening conducted. From the scanning results, there were 52 differential expression genes, of which 36 genes were down-regulated, and 16 genes were up-regulated.
CONCLUSION: Microarray technique is successfully used to screen the genes trans-regulated by E-18. The expression of E-18 protein affects the expression spectrum of HepG2 cell.
Collapse
|
47
|
Winau F, Schwierzeck V, Hurwitz R, Remmel N, Sieling PA, Modlin RL, Porcelli SA, Brinkmann V, Sugita M, Sandhoff K, Kaufmann SHE, Schaible UE. Erratum: Corrigendum: Saposin C is required for lipid presentation by human CD1b. Nat Immunol 2004. [DOI: 10.1038/ni0304-344c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Lu YY, Liu Y, Cheng J, Ling YD, Chen TY, Shao Q, Wang L, Zhang LX. Genes trans-regulated by a novel hepatitis B virus preS2 antigen binding protein S2-29 by cDNA microarray. Shijie Huaren Xiaohua Zazhi 2004; 12:58-61. [DOI: 10.11569/wcjd.v12.i1.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To study the biological functions of a novel hepatitis B virus preS2 antigen binding protein S2-29, and to analyze the gene expression profiles of HepG2 cell transfected with S2-29 gene.
METHODS: S2-29 gene was screened and identified by using yeast two-hybrid system 3 and coimmunoprecipita-tion technique. Full-length encoding frame S2-29 and its amino acid sequences were identified by using bioinformatics method and the recombined eukaryotic expression plasmid pcDNA3.1(-)-S2-29 was constructed and transfected into HepG2 cells. Total mRNA was isolated from the HepG2 cells transfected with pcDNA3.1(-) and pcDNA3.1(-)-S2-29, respectively. cDNA microarray was employed for detecting and analysing of mRNA from the HepG2 cells.
RESULTS: S2-29 cDNA sequence was obtained and identified by yeast two-hybrid screening and the bioinformatics analysis. Among 1 152 genes, there were 10 differences, of which 9 genes were upregulated and 1 gene were downregulated in HepG2 cells transfected with S2-29 protein expression plasmid. These genes differentially down-regulated by S2-29 protein included eukaryotic translation elongation factor 2, MAP-kinase activating death domain, glutathione peroxidase 5, gelsolin-like capping protein (actin filament), NDRG family member 2, prosaposin, SUMO-1 activating enzyme subunit 1, insulin receptor and a novel protein.
CONCLUSION: Microarray technique is successfully used to screen the genes trans-regulated by S2-29, which brings some new clues for studying the trans-regulation and biological function of S2-29.
Collapse
|
49
|
Kang SJ, Cresswell P. Saposins facilitate CD1d-restricted presentation of an exogenous lipid antigen to T cells. Nat Immunol 2004; 5:175-81. [PMID: 14716312 DOI: 10.1038/ni1034] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2003] [Accepted: 12/19/2003] [Indexed: 11/09/2022]
Abstract
Members of the CD1 family present antigenic lipids to T lymphocytes. CD1 molecules survey endocytic compartments for lipid antigens that are sorted into these vesicles after incorporation into the membrane bilayer, and extraction from the bilayer is likely to be a critical step for lipid association. We hypothesized that lysosomal saposins, which are cofactors required for sphingolipid degradation, might be involved in this process. Here we show that saposins, although not required for the autoreactive recognition of CD1d by natural killer T cells, are indispensable for the binding of an exogenous lipid antigen, alpha-galactosylceramide, to CD1d in the endocytic pathway. We suggest that saposins mobilize monomeric lipids from lysosomal membranes and facilitate their association with CD1d.
Collapse
Affiliation(s)
- Suk-Jo Kang
- Howard Hughes Medical Institute, Section of Immunobiology, Yale University School of Medicine, PO Box 208011, New Haven, CT 06520-8011, USA
| | | |
Collapse
|
50
|
Tadano-Aritomi K, Matsuda J, Fujimoto H, Suzuki K, Ishizuka I. Seminolipid and its precursor/degradative product, galactosylalkylacylglycerol, in the testis of saposin A- and prosaposin-deficient mice. J Lipid Res 2003; 44:1737-43. [PMID: 12810822 DOI: 10.1194/jlr.m300119-jlr200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sphingolipid activator proteins (saposins A, B, C, and D) are derived from a common precursor protein (prosaposin) and specifically activate in vivo degradation of glycolipids with short carbohydrate chains. A mouse model of prosaposin deficiency (prosaposin-/-) closely mimics the human disease with an elevation of multiple glycolipids. The recently developed saposin A-/- mice showed a chronic form of globoid cell leukodystrophy, establishing the essential in vivo role of saposin A as an activator for galactosylceramidase to degrade galactosylceramide. Seminolipid, the principal glycolipid in spermatozoa, and its precursor/degradative product, galactosylalkylacylglycerol (GalEAG), were analyzed in the testis of the two mouse mutants by electrospray ionization mass spectrometry. Saposin A-/- mice showed the normal seminolipid level, while that of prosaposin-/- mice was approximately 150% of the normal level at the terminal stage. In contrast, GalEAG increased up to 10 times in saposin A-/- mice, whereas it decreased with age in the wild-type as well as in prosaposin-/- mice. These analytical findings on the two saposin mutants may shed some light on the physiological function of seminolipid and GalEAG.
Collapse
Affiliation(s)
- Keiko Tadano-Aritomi
- Department of Biochemistry, Teikyo University School of Medicine, Kaga 2-11-1, Itabashi-ku, Tokyo 173-8605, Japan
| | | | | | | | | |
Collapse
|