1
|
Zhang H, Gong Z, Zhu JK. Active DNA demethylation in plants: 20 years of discovery and beyond. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2022; 64:2217-2239. [PMID: 36478523 DOI: 10.1111/jipb.13423] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Maintaining proper DNA methylation levels in the genome requires active demethylation of DNA. However, removing the methyl group from a modified cytosine is chemically difficult and therefore, the underlying mechanism of demethylation had remained unclear for many years. The discovery of the first eukaryotic DNA demethylase, Arabidopsis thaliana REPRESSOR OF SILENCING 1 (ROS1), led to elucidation of the 5-methylcytosine base excision repair mechanism of active DNA demethylation. In the 20 years since ROS1 was discovered, our understanding of this active DNA demethylation pathway, as well as its regulation and biological functions in plants, has greatly expanded. These exciting developments have laid the groundwork for further dissecting the regulatory mechanisms of active DNA demethylation, with potential applications in epigenome editing to facilitate crop breeding and gene therapy.
Collapse
Affiliation(s)
- Heng Zhang
- State Key Laboratory of Molecular Plant Genetics, Shanghai Centre for Plant Stress Biology, Centre for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding, 071002, China
| | - Jian-Kang Zhu
- School of Life Sciences, Institute of Advanced Biotechnology, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
2
|
Chandramouly G. Gadd45 in DNA Demethylation and DNA Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:55-67. [PMID: 35505162 DOI: 10.1007/978-3-030-94804-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growth arrest and DNA damage 45 (Gadd45) family genes, Gadd45A, Gadd45B, and GADD45 G are implicated as stress sensors that are rapidly induced upon genotoxic/physiological stress. They are involved in regulation of various cellular functions such as DNA repair, senescence, and cell cycle control. Gadd45 family of genes serve as tumor suppressors in response to different stimuli and defects in Gadd45 pathway can give rise to oncogenesis. More recently, Gadd45 has been shown to promote gene activation by demethylation and this function is important for transcriptional regulation and differentiation during development. Gadd45 serves as an adaptor for DNA repair factors to promote removal of 5-methylcytosine from DNA at gene specific loci. Therefore, Gadd45 serves as a powerful link between DNA repair and epigenetic gene regulation.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
3
|
Proietti S, Cucina A, Pensotti A, Fuso A, Marchese C, Nicolini A, Bizzarri M. Tumor reversion and embryo morphogenetic factors. Semin Cancer Biol 2020; 79:83-90. [DOI: 10.1016/j.semcancer.2020.09.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 07/09/2020] [Accepted: 09/01/2020] [Indexed: 12/20/2022]
|
4
|
Pérez-Mojica JE, Lillycrop KA, Cooper C, Calder PC, Burdge GC. Docosahexaenoic acid and oleic acid induce altered DNA methylation of individual CpG loci in Jurkat T cells. Prostaglandins Leukot Essent Fatty Acids 2020; 158:102128. [PMID: 32464433 DOI: 10.1016/j.plefa.2020.102128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/30/2020] [Accepted: 05/07/2020] [Indexed: 12/27/2022]
Abstract
Docosahexaenoic acid (DHA, 22:6n-3) and oleic acid (18:1n-9) can alter the DNA methylation of individual CpG loci in vivo and in vitro, although the targeting mechanism is unknown. We tested the hypothesis that the targeting of altered methylation is associated with putative transcription factor response elements (pTREs) proximal to modified loci. Jurkat cells were treated with 22:6n-3 or 18:1n-9 (both 15 μM) for eight days and DNA methylation measured using the MethylationEPIC 850K array. 1596 CpG loci were altered significantly (508 hypermethylated) by 22:6n-3 and 563 CpG loci (294 hypermethylated) by 18:1n-9. 78 loci were modified by both fatty acids. Induced differential methylation was not modified by the PPARα antagonist GW6471. DNA sequences proximal to differentially methylated CpG loci were enriched in zinc-finger pTREs. These findings suggest that zinc-finger-containing transcription factors may be involved in targeting altered DNA methylation modifying processes induced by fatty acids to individual CpG loci.
Collapse
Affiliation(s)
- J Eduardo Pérez-Mojica
- School of Human Development and Health, Faculty of Medicine, Institute of Developmental Sciences Building (MP887), University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Karen A Lillycrop
- Centre for Biological Science, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton, UK
| | - Cyrus Cooper
- MRC Lifecourse Epidemiology Unit, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Philip C Calder
- School of Human Development and Health, Faculty of Medicine, Institute of Developmental Sciences Building (MP887), University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK
| | - Graham C Burdge
- School of Human Development and Health, Faculty of Medicine, Institute of Developmental Sciences Building (MP887), University of Southampton, Southampton General Hospital, Tremona Road, Southampton SO16 6YD, UK.
| |
Collapse
|
5
|
Sato Y, Ohtsubo H, Nihei N, Kaneko T, Sato Y, Adachi SI, Kondo S, Nakamura M, Mizunoya W, Iida H, Tatsumi R, Rada C, Yoshizawa F. Apobec2 deficiency causes mitochondrial defects and mitophagy in skeletal muscle. FASEB J 2018; 32:1428-1439. [PMID: 29127187 PMCID: PMC5892721 DOI: 10.1096/fj.201700493r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Apobec2 is a member of the activation-induced deaminase/apolipoprotein B mRNA editing enzyme catalytic polypeptide cytidine deaminase family expressed in differentiated skeletal and cardiac muscle. We previously reported that Apobec2 deficiency in mice leads to a shift in muscle fiber type, myopathy, and diminished muscle mass. However, the mechanisms of myopathy caused by Apobec2 deficiency and its physiologic functions are unclear. Here we show that, although Apobec2 localizes to the sarcomeric Z-lines in mouse tissue and cultured myotubes, the sarcomeric structure is not affected in Apobec2-deficient muscle. In contrast, electron microscopy reveals enlarged mitochondria and mitochondria engulfed by autophagic vacuoles, suggesting that Apobec2 deficiency causes mitochondrial defects leading to increased mitophagy in skeletal muscle. Indeed, Apobec2 deficiency results in increased reactive oxygen species generation and depolarized mitochondria, leading to mitophagy as a defensive response. Furthermore, the exercise capacity of Apobec2-/- mice is impaired, implying Apobec2 deficiency results in ongoing muscle dysfunction. The presence of rimmed vacuoles in myofibers from 10-mo-old mice suggests that the chronic muscle damage impairs normal autophagy. We conclude that Apobec2 deficiency causes mitochondrial defects that increase muscle mitophagy, leading to myopathy and atrophy. Our findings demonstrate that Apobec2 is required for mitochondrial homeostasis to maintain normal skeletal muscle function.-Sato, Y., Ohtsubo, H., Nihei, N., Kaneko, T., Sato, Y., Adachi, S.-I., Kondo, S., Nakamura, M., Mizunoya, W., Iida, H., Tatsumi, R., Rada, C., Yoshizawa, F. Apobec2 deficiency causes mitochondrial defects and mitophagy in skeletal muscle.
Collapse
Affiliation(s)
- Yusuke Sato
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Hideaki Ohtsubo
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Naohiro Nihei
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Takane Kaneko
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Yoriko Sato
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Shin-Ichi Adachi
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Shinji Kondo
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan
| | - Mako Nakamura
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Wataru Mizunoya
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Iida
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Ryuichi Tatsumi
- Department of Animal and Marine Bioresource Sciences, Kyushu University, Fukuoka, Japan
| | - Cristina Rada
- Medical Research Council, Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Fumiaki Yoshizawa
- Department of Agrobiology and Bioresources, Utsunomiya University, Tochigi, Japan.,United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
6
|
Ravichandran M, Jurkowska RZ, Jurkowski TP. Target specificity of mammalian DNA methylation and demethylation machinery. Org Biomol Chem 2018; 16:1419-1435. [DOI: 10.1039/c7ob02574b] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We review here the molecular mechanisms employed by DNMTs and TET enzymes that are responsible for shaping the DNA methylation pattern of a mammalian cell.
Collapse
Affiliation(s)
| | | | - T. P. Jurkowski
- Universität Stuttgart
- Abteilung Biochemie
- Institute für Biochemie und Technische Biochemie
- Stuttgart D-70569
- Germany
| |
Collapse
|
7
|
Lillycrop KA, Burdge GC. Environmental challenge, epigenetic plasticity and the induction of altered phenotypes in mammals. Epigenomics 2015; 6:623-36. [PMID: 25531256 DOI: 10.2217/epi.14.51] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The level of transcriptional activity of a gene is regulated by epigenetic processes. There is compelling evidence that environmental challenges throughout the life course can induce phenotypic change. In this review, we summarize the current evidence, focusing specifically on the effects of nutrition and of environmental pollutants, that epigenetic processes underpin the induction by environmental change of altered phenotypic traits, emphasizing the implications for health outcomes. We also discuss whether epigenetic processes may be involved in the passage of induced traits between generations. Overall, current findings indicate that epigenetic processes may play an important role in determining disease risk, but there is a lack of studies that demonstrate causal links between epigenetic change and tissue function.
Collapse
Affiliation(s)
- Karen A Lillycrop
- Faculty of Natural & Environmental Sciences, Southampton General Hospital, University of Southampton, SO16 6YD, UK
| | | |
Collapse
|
8
|
Szyf M. Epigenetics, a key for unlocking complex CNS disorders? Therapeutic implications. Eur Neuropsychopharmacol 2015; 25:682-702. [PMID: 24857313 DOI: 10.1016/j.euroneuro.2014.01.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/07/2013] [Accepted: 01/11/2014] [Indexed: 12/13/2022]
Abstract
Aberrant changes in gene function are believed to be involved in a wide spectrum of human disease including behavioral, cognitive and neurodegenerative pathologies. Most of the attention in last few decades have focused on changes in gene sequence as a cause of gene dysfunction leading to disease and mental health disorders. Germ line mutations or other alterations in the sequence of DNA that associate with different behavioral and neurological pathologies have been identified. However, sequence alterations explain only a small fraction of the cases. In addition there is evidence for "gene-environment" interactions in the brain suggesting mechanisms that alter gene function and the phenotype through environmental exposure. Genes are programmed by "epigenetic" mechanisms such as chromatin structure, chromatin modification and DNA methylation. These mechanisms confer on similar sequences different identities during cellular differentiation. Epigenetic differences are proposed to be involved in differentiating gene function in response to different environmental contexts and could result in alterations in functional gene networks that lead to brain disease. Epigenetic markers could serve important biomarkers in brain and behavioral diseases. Moreover, epigenetic processes are potentially reversible pointing to epigenetic therapeutics in psychotherapy.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada H3G1Y5.
| |
Collapse
|
9
|
Abstract
There has been a substantial body of evidence, which has shown that genetic variation is an important determinant of disease risk. However, there is now increasing evidence that alterations in epigenetic processes also play a role in determining susceptibility to disease. Epigenetic processes, which include DNA methylation, histone modifications and non-coding RNAs play a central role in regulating gene expression, determining when and where a gene is expressed as well as the level of gene expression. The epigenome is highly sensitive to a variety of environmental factors, especially in early life. One factor that has been shown consistently to alter the epigenome is maternal diet. This review will focus on how maternal diet can modify the epigenome of the offspring, producing different phenotypes and altered disease susceptibilities.
Collapse
|
10
|
Abstract
It is well established that genotype plays an important role in the ageing process. However, recent studies have suggested that epigenetic mechanisms may also influence the onset of ageing-associated diseases and longevity. Epigenetics is defined as processes that induce heritable changes in gene expression without a change in the DNA nucleotide sequence. The major epigenetic mechanisms are DNA methylation, histone modification and non-coding RNA. Such processes are involved in the regulation of tissue-specific gene expression, cell differentiation and genomic imprinting. However, epigenetic dysregulation is frequently seen with ageing. Relatively little is known about the factors that initiate such changes. However, there is emerging evidence that the early life environment, in particular nutrition, in early life can induce long-term changes in DNA methylation resulting in an altered susceptibility to a range of ageing-associated diseases. In this review, we will focus on the changes in DNA methylation that occur during ageing; their role in the ageing process and how early life nutrition can modulate DNA methylation and influence longevity. Understanding the mechanisms by which diet in early life can influence the epigenome will be crucial for the development of preventative and intervention strategies to increase well-being in later life.
Collapse
|
11
|
Epigenetic mechanisms of perinatal programming: translational approaches from rodent to human and back. ADVANCES IN NEUROBIOLOGY 2015; 10:363-80. [PMID: 25287549 DOI: 10.1007/978-1-4939-1372-5_17] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Perinatal life is a period of enhanced plasticity and susceptibility to environmental effects via the maternal environment or parental care. A variety of studies have indicated that epigenetic mechanisms, which can alter gene function without a change in gene sequence, play a role in setting developmental trajectories that impact health, including mental health. This chapter reviews examples of translational approaches to the study of biological embedding of mental health via differences in parental care.
Collapse
|
12
|
Maccari S, Krugers HJ, Morley-Fletcher S, Szyf M, Brunton PJ. The consequences of early-life adversity: neurobiological, behavioural and epigenetic adaptations. J Neuroendocrinol 2014; 26:707-23. [PMID: 25039443 DOI: 10.1111/jne.12175] [Citation(s) in RCA: 258] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/12/2022]
Abstract
During the perinatal period, the brain is particularly sensitive to remodelling by environmental factors. Adverse early-life experiences, such as stress exposure or suboptimal maternal care, can have long-lasting detrimental consequences for an individual. This phenomenon is often referred to as 'early-life programming' and is associated with an increased risk of disease. Typically, rodents exposed to prenatal stress or postnatal maternal deprivation display enhanced neuroendocrine responses to stress, increased levels of anxiety and depressive-like behaviours, and cognitive impairments. Some of the phenotypes observed in these models of early-life adversity are likely to share common neurobiological mechanisms. For example, there is evidence for impaired glucocorticoid negative-feedback control of the hypothalamic-pituitary-adrenal axis, altered glutamate neurotransmission and reduced hippocampal neurogenesis in both prenatally stressed rats and rats that experienced deficient maternal care. The possible mechanisms through which maternal stress during pregnancy may be transmitted to the offspring are reviewed, with special consideration given to altered maternal behaviour postpartum. We also discuss what is known about the neurobiological and epigenetic mechanisms that underpin early-life programming of the neonatal brain in the first generation and subsequent generations, with a view to abrogating programming effects and potentially identifying new therapeutic targets for the treatment of stress-related disorders and cognitive impairment.
Collapse
Affiliation(s)
- S Maccari
- LIA, International Laboratory Associated, UMR 8576 CNRS Neural plasticity Team, University of Lille 1, France and Sapienza University of Rome, IRCCS NEUROMED, Italy
| | | | | | | | | |
Collapse
|
13
|
Mu X, Sultankulov B, Agarwal R, Mahjoub A, Schott T, Greco N, Huard J, Weiss K. Chick embryo extract demethylates tumor suppressor genes in osteosarcoma cells. Clin Orthop Relat Res 2014; 472:865-73. [PMID: 23761177 PMCID: PMC3916611 DOI: 10.1007/s11999-013-3104-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Epigenetics is the study of changes in gene expression or cellular phenotype caused by mechanisms other than changes in the underlying DNA sequence. It is widely accepted that cancer has genetic and epigenetic origins. The idea of epigenetic reprogramming of cancer cells by an embryonic microenvironment possesses potential interest from the prospect of both basic science and potential therapeutic strategies. Chick embryo extract (CEE) has been used for the successful expansion of many specific stem cells and has demonstrated the ability to facilitate DNA demethylation. QUESTIONS/PURPOSES The current study was conducted to compare the status of DNA methylation in highly metastatic and less metastatic osteosarcoma cells and to investigate whether CEE may affect the epigenetic regulation of tumor suppressor genes and thus change the metastatic phenotypes of highly metastatic osteosarcoma cells. METHODS K7M2 murine OS cells were treated with CEE to determine its potential effect on DNA methylation, cell apoptosis, and invasion capacity. RESULTS Our current results suggest that the methylation status of tumor suppressor genes (p16, p53, and E-cadherin) is significantly greater in highly metastatic mouse ostoesarcoma K7M2 cells in comparison with less metastatic mouse osteosarcoma K12 cells. CEE treatment of K7M2 cells caused demethylation of p16, p53, and E-cadherin genes, upregulated their expression, and resulted in the reversion of metastatic phenotypes in highly metastatic osteosarcoma cells. CONCLUSIONS CEE may promote the reversion of metastatic phenotypes of osteosarcoma cells and can be a helpful tool to study osteosarcoma tumor reversion by epigenetic reprogramming. CLINICAL RELEVANCE Demethylation of tumor suppressor genes in osteosarcoma may represent a novel strategy to diminish the metastatic potential of this neoplasm. Further studies, both in vitro and in vivo, are warranted to evaluate the clinical feasibility of this approach as an adjuvant to current therapy.
Collapse
Affiliation(s)
- Xiaodong Mu
- Cancer Stem Cell Laboratory, Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Bridgeside Point 2, Suite 206, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Bolat Sultankulov
- Department of Biophysics, Nazarbayev University Research and Innovation System, Astana, Kazakhstan
| | - Riddhima Agarwal
- Cancer Stem Cell Laboratory, Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Bridgeside Point 2, Suite 206, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Adel Mahjoub
- Cancer Stem Cell Laboratory, Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Bridgeside Point 2, Suite 206, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Trevor Schott
- Cancer Stem Cell Laboratory, Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Bridgeside Point 2, Suite 206, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Nicholas Greco
- Cancer Stem Cell Laboratory, Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Bridgeside Point 2, Suite 206, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Johnny Huard
- Cancer Stem Cell Laboratory, Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Bridgeside Point 2, Suite 206, 450 Technology Drive, Pittsburgh, PA 15219 USA
| | - Kurt Weiss
- Cancer Stem Cell Laboratory, Stem Cell Research Center, Department of Orthopaedic Surgery, University of Pittsburgh, Bridgeside Point 2, Suite 206, 450 Technology Drive, Pittsburgh, PA 15219 USA
| |
Collapse
|
14
|
Szyf M. The genome- and system-wide response of DNA methylation to early life adversity and its implication on mental health. CANADIAN JOURNAL OF PSYCHIATRY. REVUE CANADIENNE DE PSYCHIATRIE 2013; 58:697-704. [PMID: 24331290 DOI: 10.1177/070674371305801208] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Early life adversity is associated with long-tem impacts on behaviour and physical and mental health. The mechanisms mediating the impact of early life environment on the phenotype are proposed to involve a change in the state of deoxyribonucleic acid (DNA) methylation and, as a consequence, in the stable programming of gene expression. Recent studies suggest that the changes in DNA methylation affect broad genomic regions, as well as peripheral tissues in addition to brain regions. Although the data are still scarce, it points to the possibility that DNA methylation is a mechanism of genome adaptation to signals from early life social environment. This modulation of the DNA methylation pattern is proposed to result in long-term impact on the phenotype that could become maladaptive under certain contexts later in life. This model has implications on our understanding of behavioural and mental health pathologies, as well as their diagnosis and therapeutics.
Collapse
Affiliation(s)
- Moshe Szyf
- Professor, Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec
| |
Collapse
|
15
|
Kaweewong K, Garnjanagoonchorn W, Jirapakkul W, Roytrakul S. Solubilization and identification of hen eggshell membrane proteins during different times of chicken embryo development using the proteomic approach. Protein J 2013; 32:297-308. [PMID: 23636516 DOI: 10.1007/s10930-013-9487-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A fertilized chicken egg is a unit of life. During hatching, transport of nutrients, including calcium, have been reported from the egg components to the developing embryo. Calcium is mobilized from the eggshell with the involvement of Ca(2+)-binding proteins. In addition, other unknown proteins may also play some important roles during embryo developing process. Therefore identification and prediction of biological functions of eggshell membrane (ESM) proteins during chick embryo development was conducted by proteome analysis. Comparison of different lysis solutions indicated that the highest ability to extract ESM proteins could be obtained with 1 % sodium dodecyl sulfate in 5 mM Tris-HCl buffer pH 8.8 containing 0.1 % 2-mercaptoethanol. In this study fertilized Cornish chicken eggs were incubated at 37 °C in humidified incubators for up to 21 days. At selected times (days 1, 9, 15 and 21), samples were taken and the ESMs were carefully separated by hand, washed with distilled water, and air-dried at room temperature. The ESM proteins were then solubilized and analyzed by proteome analysis. Sodium dodecyl sulfate polyacrylamide gel electrophoresis combined with high performance liquid chromatography and mass spectrometry revealed 62 proteins in the ESM; only keratin is known ESM protein, 8 of which are egg white proteins and related while 53 others have not previously been reported. Some differences in the types of proteins and their molecular functions were noted in ESM at different incubation times. One protein which was present only at days 15 and 21 of egg incubation was identified as a calcium binding protein i.e. EGF like repeats and discoidin I like domain 3 (EDIL3 homologous protein).
Collapse
Affiliation(s)
- Kritsda Kaweewong
- Department of Food Science and Technology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand.
| | | | | | | |
Collapse
|
16
|
Keil KP, Altmann HM, Mehta V, Abler LL, Elton EA, Vezina CM. Catalog of mRNA expression patterns for DNA methylating and demethylating genes in developing mouse lower urinary tract. Gene Expr Patterns 2013; 13:413-24. [PMID: 23920106 DOI: 10.1016/j.gep.2013.07.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/07/2013] [Accepted: 07/25/2013] [Indexed: 10/26/2022]
Abstract
The mouse prostate develops from a component of the lower urinary tract (LUT) known as the urogenital sinus (UGS). This process requires androgens and signaling between mesenchyme and epithelium. Little is known about DNA methylation during prostate development, including which factors are expressed, whether their expression changes over time, and if DNA methylation contributes to androgen signaling or influences signaling between mesenchyme and epithelium. We used in situ hybridization to evaluate the spatial and temporal expression pattern of mRNAs which encode proteins responsible for establishing, maintaining or remodeling DNA methylation. These include DNA methyltransferases, DNA deaminases, DNA glycosylases, base excision repair and mismatch repair pathway members. The mRNA expression patterns were compared between male and female LUT prior to prostatic bud formation (14.5 days post coitus (dpc)), during prostatic bud formation (17.5 dpc) and during prostatic branching morphogenesis (postnatal day (P) 5). We found dramatic changes in the patterns of these mRNAs over the course of prostate development and identified examples of sexually dimorphic mRNA expression. Future investigation into how DNA methylation patterns are established, maintained and remodeled during the course of embryonic prostatic bud formation may provide insight into prostate morphogenesis and disease.
Collapse
Affiliation(s)
- Kimberly P Keil
- Department of Comparative Biosciences, University of Wisconsin-Madison, 1656 Linden Dr., Madison, WI 53706, USA
| | | | | | | | | | | |
Collapse
|
17
|
Szyf M. DNA Methylation, Behavior and Early Life Adversity. J Genet Genomics 2013; 40:331-8. [DOI: 10.1016/j.jgg.2013.06.004] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 06/16/2013] [Accepted: 06/19/2013] [Indexed: 10/26/2022]
|
18
|
On the potential role of active DNA demethylation in establishing epigenetic states associated with neural plasticity and memory. Neurobiol Learn Mem 2013; 105:125-32. [PMID: 23806749 DOI: 10.1016/j.nlm.2013.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 06/11/2013] [Accepted: 06/11/2013] [Indexed: 11/20/2022]
Abstract
Dynamic variations in DNA methylation regulate neuronal gene expression in an experience-dependent manner. Although DNA methylation has been implicated in synaptic plasticity, learning and memory, active DNA demethylation is also induced by learning, which suggests that an interaction between the two processes is necessary for cognitive function. Active DNA demethylation is a complex process involving a variety of proteins and epigenetic regulatory enzymes, the understanding of which with respect to its role in the adult brain is in its infancy. We here provide an overview of the current understanding of active DNA demethylation, and describe how this process may establish persistent epigenetic states that are associated with neural plasticity and memory formation.
Collapse
|
19
|
Bergman Y, Cedar H. DNA methylation dynamics in health and disease. Nat Struct Mol Biol 2013; 20:274-81. [PMID: 23463312 DOI: 10.1038/nsmb.2518] [Citation(s) in RCA: 423] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 01/04/2013] [Indexed: 12/13/2022]
Abstract
DNA methylation is an epigenetic mark that is erased in the early embryo and then re-established at the time of implantation. In this Review, dynamics of DNA methylation during normal development in vivo are discussed, starting from fertilization through embryogenesis and postnatal growth, as well as abnormal methylation changes that occur in cancer.
Collapse
Affiliation(s)
- Yehudit Bergman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University Medical School, Jerusalem, Israel.
| | | |
Collapse
|
20
|
Booij L, Wang D, Lévesque ML, Tremblay RE, Szyf M. Looking beyond the DNA sequence: the relevance of DNA methylation processes for the stress-diathesis model of depression. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120251. [PMID: 23440465 DOI: 10.1098/rstb.2012.0251] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The functioning of the hypothalamic-pituitary-adrenal (HPA) axis and serotonergic (5-HT) system are known to be intertwined with mood. Alterations in these systems are often associated with depression. However, neither are sufficient to cause depression in and of themselves. It is now becoming increasingly clear that the environment plays a crucial role, particularly, the perinatal environment. In this review, we posit that early environmental stress triggers a series of epigenetic mechanisms that adapt the genome and programme the HPA axis and 5-HT system for survival in a harsh environment. We focus on DNA methylation as it is the most stable epigenetic mark. Given that DNA methylation patterns are in large part set within the perinatal period, long-term gene expression programming by DNA methylation is especially vulnerable to environmental insults during this period. We discuss specific examples of genes in the 5-HT system (serotonin transporter) and HPA axis (glucocorticoid receptor and arginine vasopressin enhancer) whose DNA methylation state is associated with early life experience and may potentially lead to depression vulnerability. We conclude with a discussion on the relevance of studying epigenetic mechanisms in peripheral tissue as a proxy for those occurring in the human brain and suggest avenues for future research.
Collapse
Affiliation(s)
- Linda Booij
- Sainte-Justine Hospital Research Center, University of Montreal, Montreal, Quebec, Canada.
| | | | | | | | | |
Collapse
|
21
|
Schäfer A. Gadd45 proteins: key players of repair-mediated DNA demethylation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 793:35-50. [PMID: 24104472 DOI: 10.1007/978-1-4614-8289-5_3] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The three growth arrest and DNA damage 45 (Gadd45) family genes encode for stress-response proteins that are rapidly induced upon cellular stress or differentiation cues. They are well-characterized regulators of cell cycle, senescence, survival, and apoptosis. More recently, it has become clear that Gadd45 proteins promote active DNA demethylation thereby mediating gene activation. This epigenetic function of Gadd45 is important for differentiation and transcriptional regulation during development. Mechanistically, Gadd45 acts as an adapter for DNA repair factors at gene-specific loci to promote removal of 5-methylcytosine from DNA. Hence, Gadd45 is a nexus between DNA repair and epigenetic gene regulation.
Collapse
|
22
|
Abstract
Traditionally it has been widely accepted that our genes together with adult lifestyle factors determine our risk of developing non-communicable diseases such as type 2 diabetes mellitus, cardiovascular disease and obesity in later life. However, there is now substantial evidence that the pre and early postnatal environment plays a key role in determining our susceptible to such diseases in later life. Moreover the mechanism by which the environment can alter long term disease risk may involve epigenetic processes. Epigenetic processes play a central role in regulating tissue specific gene expression and hence alterations in these processes can induce long-term changes in gene expression and metabolism which persist throughout the lifecourse. This review will focus on how nutritional cues in early life can alter the epigenome, producing different phenotypes and altered disease susceptibilities.
Collapse
Affiliation(s)
- Karen A Lillycrop
- Centre for Biological Sciences, Institute of Developmental Sciences, University of Southampton, Southampton, UK.
| | | |
Collapse
|
23
|
Franchini DM, Schmitz KM, Petersen-Mahrt SK. 5-Methylcytosine DNA demethylation: more than losing a methyl group. Annu Rev Genet 2012; 46:419-41. [PMID: 22974304 DOI: 10.1146/annurev-genet-110711-155451] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Demethylation of 5-methylcytosine in DNA is integral to the maintenance of an intact epigenome. The balance between the presence or absence of 5-methylcytosine determines many physiological aspects of cell metabolism, with a turnover that can be measured in minutes to years. Biochemically, addition of the methyl group is shared among all living kingdoms and has been well characterized, whereas the removal or reversion of this mark seems diverse and much less understood. Here, we present a summary of how DNA demethylation can be initiated directly, utilizing the ten-eleven translocation (TET) family of proteins, activation-induced deaminase (AID), or other DNA modifying enzymes, or indirectly, via transcription, RNA metabolism, or DNA repair; how intermediates in those pathways are substrates of the DNA repair machinery; and how demethylation pathways are linked and possibly balanced, avoiding mutations.
Collapse
Affiliation(s)
- Don-Marc Franchini
- DNA Editing in Immunity and Epigenetics, IFOM-Fondazione Istituto FIRC di Oncologia Molecolare, 20139 Milano, Italy.
| | | | | |
Collapse
|
24
|
Niehrs C, Schäfer A. Active DNA demethylation by Gadd45 and DNA repair. Trends Cell Biol 2012; 22:220-7. [PMID: 22341196 DOI: 10.1016/j.tcb.2012.01.002] [Citation(s) in RCA: 184] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Revised: 12/23/2011] [Accepted: 01/05/2012] [Indexed: 11/13/2022]
Abstract
How DNA methylation patterns are established, maintained and remodeled is incompletely understood, however, it has become clear that DNA methylation is reversible and dynamic as a result of enzymatic DNA demethylation. Several different mechanisms that may account for demethylation have recently been put forward and all seem to involve DNA repair. Here, we review DNA demethylation mediated by multifunctional growth arrest and DNA damage 45 (Gadd45) protein family members which mediate DNA demethylation during cell differentiation and stress response. Gadd45 recruits nucleotide and/or base excision repair factors to gene-specific loci and acts as an adapter between repair factors and chromatin, thereby creating a nexus between epigenetics and DNA repair.
Collapse
|
25
|
Abstract
DNA methylation represents a form of genome annotation that mediates gene repression by serving as a maintainable mark that can be used to reconstruct silent chromatin following each round of replication. During development, germline DNA methylation is erased in the blastocyst, and a bimodal pattern is established anew at the time of implantation when the entire genome gets methylated while CpG islands are protected. This brings about global repression and allows housekeeping genes to be expressed in all cells of the body. Postimplantation development is characterized by stage- and tissue-specific changes in methylation that ultimately mold the epigenetic patterns that define each individual cell type. This is directed by sequence information in DNA and represents a secondary event that provides long-term expression stability. Abnormal methylation changes play a role in diseases, such as cancer or fragile X syndrome, and may also occur as a function of aging or as a result of environmental influences.
Collapse
Affiliation(s)
- Howard Cedar
- Department of Developmental Biology and Cancer Research, Hebrew University Medical School, Ein Kerem, Jerusalem, Israel.
| | | |
Collapse
|
26
|
|
27
|
Szyf M. The early life social environment and DNA methylation: DNA methylation mediating the long-term impact of social environments early in life. Epigenetics 2011; 6:971-8. [PMID: 21772123 DOI: 10.4161/epi.6.8.16793] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although epidemiological data provides evidence that there is an interaction between genetics (nature) and the social and physical environments (nurture) in human development; the main open question remains the mechanism. The pattern of distribution of methyl groups in DNA is different from cell-type to cell type and is conferring cell specific identity on DNA during cellular differentiation and organogenesis. This is an innate and highly programmed process. However, recent data suggests that DNA methylation is not only involved in cellular differentiation but that it is also involved in modulation of genome function in response to signals from the physical, biological and social environments. We propose that modulation of DNA methylation in response to environmental cues early in life serves as a mechanism of life-long genome "adaptation" that molecularly embeds the early experiences of a child ("nurture") in the genome ("nature"). There is an emerging line of data supporting this hypothesis in rodents, non-human primates and humans that will be reviewed here. However, several critical questions remain including the identification of mechanisms that transmit the signals from the social environment to the DNA methylation/demethylation enzymes.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University Montreal CA, USA.
| |
Collapse
|
28
|
Szyf M. DNA methylation, the early-life social environment and behavioral disorders. J Neurodev Disord 2011; 3:238-49. [PMID: 21484196 PMCID: PMC3261271 DOI: 10.1007/s11689-011-9079-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Accepted: 02/14/2011] [Indexed: 01/12/2023] Open
Abstract
One of the outstanding questions in behavioral disorders is untangling the complex relationship between nurture and nature. Although epidemiological data provide evidence that there is an interaction between genetics (nature) and the social and physical environments (nurture) in a spectrum of behavioral disorders, the main open question remains the mechanism. Emerging data support the hypothesis that DNA methylation, a covalent modification of the DNA molecule that is a component of its chemical structure, serves as an interface between the dynamic environment and the fixed genome. We propose that modulation of DNA methylation in response to environmental cues early in life serves as a mechanism of life-long genome adaptation. Under certain contexts, this adaptation can turn maladaptive resulting in behavioral disorders. This hypothesis has important implications on understanding, predicting, preventing, and treating behavioral disorders including autism that will be discussed.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, H3G 1Y6, Canada,
| |
Collapse
|
29
|
He XJ, Chen T, Zhu JK. Regulation and function of DNA methylation in plants and animals. Cell Res 2011; 21:442-65. [PMID: 21321601 DOI: 10.1038/cr.2011.23] [Citation(s) in RCA: 344] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA methylation is an important epigenetic mark involved in diverse biological processes. In plants, DNA methylation can be established through the RNA-directed DNA methylation pathway, an RNA interference pathway for transcriptional gene silencing (TGS), which requires 24-nt small interfering RNAs. In mammals, de novo DNA methylation occurs primarily at two developmental stages: during early embryogenesis and during gametogenesis. While it is not clear whether establishment of DNA methylation patterns in mammals involves RNA interference in general, de novo DNA methylation and suppression of transposons in germ cells require 24-32-nt piwi-interacting small RNAs. DNA methylation status is dynamically regulated by DNA methylation and demethylation reactions. In plants, active DNA demethylation relies on the repressor of silencing 1 family of bifunctional DNA glycosylases, which remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, initiating a base excision repair (BER) pathway. In animals, multiple mechanisms of active DNA demethylation have been proposed, including a deaminase- and DNA glycosylase-initiated BER pathway. New information concerning the effects of various histone modifications on the establishment and maintenance of DNA methylation has broadened our understanding of the regulation of DNA methylation. The function of DNA methylation in plants and animals is also discussed in this review.
Collapse
Affiliation(s)
- Xin-Jian He
- National Institute of Biological Sciences, Beijing 102206, China.
| | | | | |
Collapse
|
30
|
Szyf M. The implications of DNA methylation for toxicology: toward toxicomethylomics, the toxicology of DNA methylation. Toxicol Sci 2011; 120:235-55. [PMID: 21297083 DOI: 10.1093/toxsci/kfr024] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Identifying agents that have long-term deleterious impact on health but exhibit no immediate toxicity is of prime importance. It is well established that long-term toxicity of chemicals could be caused by their ability to generate changes in the DNA sequence through the process of mutagenesis. Several assays including the Ames test and its different modifications were developed to assess the mutagenic potential of chemicals (Ames, B. N., Durston, W. E., Yamasaki, E., and Lee, F. D. (1973a). Carcinogens are mutagens: a simple test system combining liver homogenates for activation and bacteria for detection. Proc. Natl. Acad. Sci. U.S.A. 70, 2281-2285; Ames, B. N., Lee, F. D., and Durston, W. E. (1973b). An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc. Natl. Acad. Sci. U.S.A. 70, 782-786). These tests have also been employed for assessing the carcinogenic potential of compounds. However, the DNA molecule contains within its chemical structure two layers of information. The DNA sequence that bears the ancestral genetic information and the pattern of distribution of covalently bound methyl groups on cytosines in DNA. DNA methylation patterns are generated by an innate program during gestation but are attuned to the environment in utero and throughout life including physical and social exposures. DNA function and health could be stably altered by exposure to environmental agents without changing the sequence, just by changing the state of DNA methylation. Our current screening tests do not detect agents that have long-range impact on the phenotype without altering the genotype. The realization that long-range damage could be caused without changing the DNA sequence has important implications on the way we assess the safety of chemicals, drugs, and food and broadens the scope of definition of toxic agents.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
31
|
Abstract
The rapid increase in the incidence of chronic non-communicable diseases over the past two decades cannot be explained solely by genetic and adult lifestyle factors. There is now considerable evidence that the fetal and early postnatal environment also strongly influences the risk of developing such diseases in later life. Human studies have shown that low birth weight is associated with an increased risk of CVD, type II diabetes, obesity and hypertension, although recent studies have shown that over-nutrition in early life can also increase susceptibility to future metabolic disease. These findings have been replicated in a variety of animal models, which have shown that both maternal under- and over-nutrition can induce persistent changes in gene expression and metabolism within the offspring. The mechanism by which the maternal nutritional environment induces such changes is beginning to be understood and involves the altered epigenetic regulation of specific genes. The demonstration of a role for altered epigenetic regulation of genes in the developmental induction of chronic diseases raises the possibility that nutritional or pharmaceutical interventions may be used to modify long-term cardio-metabolic disease risk and combat this rapid rise in chronic non-communicable diseases.
Collapse
|
32
|
Environmental epigenomics: understanding the effects of parental care on the epigenome. Essays Biochem 2010; 48:275-87. [PMID: 20822499 DOI: 10.1042/bse0480275] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An organism's behavioural and physiological and social milieu influence and are influenced by the epigenome, which is comprised predominantly of chromatin and the covalent modification of DNA by methylation. Epigenetic patterns are sculpted during development to shape the diversity of gene expression programmes in the organism. In contrast with the genetic sequence, which is determined by inheritance and is virtually identical in all tissues, the epigenetic pattern varies from cell type to cell type and is potentially dynamic throughout life. It is postulated that different environmental exposures could effect epigenetic patterns relevant for human behaviour. Because epigenetic programming defines the state of expression of genes, epigenetic differences could have the same consequences as genetic polymorphisms. Yet in contrast with genetic sequence differences, epigenetic alterations are potentially reversible. In the present chapter, we will discuss evidence that epigenetic processes early in life play a role in defining inter-individual trajectories of behaviour, with implications for mental health in adulthood.
Collapse
|
33
|
Abstract
Several lines of evidence suggest the involvement of disturbance in epigenetic processes in autoimmune disease. Most noteworthy is the global DNA hypomethylation seen in lupus. Epigenetic states in difference from genetic lesions are potentially reversible and hence candidates for pharmacological intervention. Potential targets for drug development are histone modification and DNA methylating and demethylating enzymes. The most advanced set of drugs in clinical development are histone deacetylase (HDAC) inhibitors. However, the prevalence of DNA hypomethylation in lupus suggests that we should shift our attention from HDAC inhibitors to DNA demethylation inhibitors. MBD2 was recently proposed to be involved in demethylation in T cells in lupus and is, therefore, a candidate target. Although this field is at its infancy, it carries great promise.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, 3655 Sir William Osler Promenade, Montreal, QC, H3G 1Y6, Canada.
| |
Collapse
|
34
|
Burdge GC, Lillycrop KA. Nutrition, epigenetics, and developmental plasticity: implications for understanding human disease. Annu Rev Nutr 2010; 30:315-39. [PMID: 20415585 DOI: 10.1146/annurev.nutr.012809.104751] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
There is considerable evidence for induction of differential risk of noncommunicable diseases in humans by variation in the quality of the early life environment. Studies in animal models show that induction and stability of induced changes in the phenotype of the offspring involve altered epigenetic regulation by DNA methylation and covalent modifications of histones. These findings indicate that such epigenetic changes are highly gene specific and function at the level of individual CpG dinucleotides. Interventions using supplementation with folic acid or methyl donors during pregnancy, or folic acid after weaning, alter the phenotype and epigenotype induced by maternal dietary constraint during gestation. This suggests a possible means for reducing risk of induced noncommunicable disease, although the design and conduct of such interventions may require caution. The purpose of this review is to discuss recent advances in understanding the mechanism that underlies the early life origins of disease and to place these studies in a broader life-course context.
Collapse
Affiliation(s)
- Graham C Burdge
- Institute of Human Nutrition, University of Southampton School of Medicine, Southampton, SO16 6YD, United Kingdom.
| | | |
Collapse
|
35
|
Szyf M. DNA methylation and demethylation probed by small molecules. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2010; 1799:750-9. [DOI: 10.1016/j.bbagrm.2010.09.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2010] [Revised: 09/05/2010] [Accepted: 09/08/2010] [Indexed: 10/19/2022]
|
36
|
Abstract
DNA methylation is one of the best-characterized epigenetic modifications and has been implicated in numerous biological processes, including transposable element silencing, genomic imprinting and X chromosome inactivation. Compared with other epigenetic modifications, DNA methylation is thought to be relatively stable. Despite its role in long-term silencing, DNA methylation is more dynamic than originally thought as active DNA demethylation has been observed during specific stages of development. In the past decade, many enzymes have been proposed to carry out active DNA demethylation and growing evidence suggests that, depending on the context, this process may be achieved by multiple mechanisms. Insight into how DNA methylation is dynamically regulated will broaden our understanding of epigenetic regulation and have great implications in somatic cell reprogramming and regenerative medicine.
Collapse
|
37
|
Klug M, Heinz S, Gebhard C, Schwarzfischer L, Krause SW, Andreesen R, Rehli M. Active DNA demethylation in human postmitotic cells correlates with activating histone modifications, but not transcription levels. Genome Biol 2010; 11:R63. [PMID: 20565882 PMCID: PMC2911111 DOI: 10.1186/gb-2010-11-6-r63] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Revised: 04/20/2010] [Accepted: 06/18/2010] [Indexed: 01/11/2023] Open
Abstract
Background In mammals, the dynamics of DNA methylation, in particular the regulated, active removal of cytosine methylation, has remained a mystery, partly due to the lack of appropriate model systems to study DNA demethylation. Previous work has largely focused on proliferating cell types that are mitotically arrested using pharmacological inhibitors to distinguish between active and passive mechanisms of DNA demethylation. Results We explored this epigenetic phenomenon in a natural setting of post-mitotic cells: the differentiation of human peripheral blood monocytes into macrophages or dendritic cells, which proceeds without cell division. Using a global, comparative CpG methylation profiling approach, we identified many novel examples of active DNA demethylation and characterized accompanying transcriptional and epigenetic events at these sites during monocytic differentiation. We show that active DNA demethylation is not restricted to proximal promoters and that the time-course of demethylation varies for individual CpGs. Irrespective of their location, the removal of methylated cytosines always coincided with the appearance of activating histone marks. Conclusions Demethylation events are highly reproducible in monocyte-derived dendritic cells from different individuals. Our data suggest that active DNA demethylation is a precisely targeted event that parallels or follows the modification of histones, but is not necessarily coupled to alterations in transcriptional activity.
Collapse
Affiliation(s)
- Maja Klug
- Department of Hematology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93042 Regensburg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The rapid increase in incidence of obesity over the past two decades cannot be explained solely by genetic and adult lifestyle factors. There is now considerable evidence that the fetal and early postnatal environments also strongly influence the risk of developing obesity in later life. Initially, human studies showed that low birth weight was associated with an increased risk of obesity but increasingly there is evidence that overnutrition in the early life can also increase susceptibility to future obesity. These findings have now been replicated in animal models, which have shown that both maternal under- and overnutrition can induce persistent changes in gene expression and metabolism. The mechanism by which the maternal nutritional environment induces such changes is beginning to be understood and involves the altered epigenetic regulation of specific genes. In this review, we discuss the recent evidence that shows that early-life environment can induce altered epigenetic regulation leading to the induction of an altered phenotype. The demonstration of a role for altered epigenetic regulation of genes in the developmental induction of obesity opens the possibility that interventions, either through nutrition or specific drugs, may modify long-term obesity risk and combat this rapid rise in obesity.
Collapse
|
39
|
Wild L, Flanagan JM. Genome-wide hypomethylation in cancer may be a passive consequence of transformation. Biochim Biophys Acta Rev Cancer 2010; 1806:50-7. [PMID: 20398739 DOI: 10.1016/j.bbcan.2010.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 03/30/2010] [Indexed: 12/31/2022]
Abstract
Epigenetics describes the study of stable, reversible alterations to the genome that affect gene expression and genome function, the most studied mechanisms are DNA methylation and histone modifications. Over recent years there has been rapid progress to elucidate the nature and role of the mechanisms involved in promoter hypermethylation during carcinogenesis, however, the mechanism behind one of the earliest epigenetic observations in cancer, genome-wide hypomethylation, remains unclear. Current evidence is divided between the hypotheses that hypomethylation is either an important early cancer-causing aberration or that it is a passive inconsequential side effect of carcinogenesis. With recent discoveries of gene-body methylation, fast cyclic methylation of hormone dependent genes and candidate proteins involved in DNA demethylation elucidation of the role of hypomethylation and the mechanism behind it appears ever closer. With the burgeoning use of DNA methyltransferase inhibitors as a cancer therapy there is an increased need to understand the mechanisms and importance of genome-wide hypomethylation in cancer. This review will discuss the timing and potential causes of genomic hypomethylation during carcinogenesis and will propose a way forward to understand the underlying mechanisms.
Collapse
|
40
|
Abstract
Active DNA demethylation is involved in many vital developmental and physiological processes of plants and animals. Recent genetic and biochemical studies in Arabidopsis have demonstrated that a subfamily of DNA glycosylases function to promote DNA demethylation through a base excision-repair pathway. These specialized bifunctional DNA glycosylases remove the 5-methylcytosine base and then cleave the DNA backbone at the abasic site, resulting in a gap that is then filled with an unmethylated cytosine nucleotide by as yet unknown DNA polymerase and ligase enzymes. Evidence suggests that active DNA demethylation in mammalian cells is also mediated at least in part by a base excision repair pathway where the AID/Apobec family of deaminases convert 5-methylcytosine to thymine followed by G/T mismatch repair by the DNA glycosylase MBD4 or TDG. This review also discusses other possible mechanisms of active DNA demethylation, how genome DNA methylation status might be sensed to regulate the expression of demethylase genes, and the targeting of demethylases by small RNAs.
Collapse
Affiliation(s)
- Jian-Kang Zhu
- Institute for Integrative Genome Biology and Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
41
|
Pogribny IP, Beland FA. DNA hypomethylation in the origin and pathogenesis of human diseases. Cell Mol Life Sci 2009; 66:2249-61. [PMID: 19326048 PMCID: PMC11115809 DOI: 10.1007/s00018-009-0015-5] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 02/25/2009] [Accepted: 03/06/2009] [Indexed: 12/15/2022]
Abstract
The pathogenesis of any given human disease is a complex multifactorial process characterized by many biologically significant and interdependent alterations. One of these changes, specific to a wide range of human pathologies, is DNA hypomethylation. DNA hypomethylation signifies one of the major DNA methylation states that refers to a relative decrease from the "normal" methylation level. It is clear that disease by itself can induce hypomethylation of DNA; however, a decrease in DNA methylation can also have an impact on the predisposition to pathological states and disease development. This review presents evidence suggesting the involvement of DNA hypomethylation in the pathogenesis of several major human pathologies, including cancer, atherosclerosis, Alzheimer's disease, and psychiatric disorders.
Collapse
Affiliation(s)
- Igor P Pogribny
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR 72079, USA.
| | | |
Collapse
|
42
|
Ma DK, Guo JU, Ming GL, Song H. DNA excision repair proteins and Gadd45 as molecular players for active DNA demethylation. Cell Cycle 2009; 8:1526-31. [PMID: 19377292 PMCID: PMC2738863 DOI: 10.4161/cc.8.10.8500] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA cytosine methylation represents an intrinsic modification signal of the genome that plays important roles in heritable gene silencing, heterochromatin formation and certain transgenerational epigenetic inheritance. In contrast to the process of DNA methylation that is catalyzed by specific classes of methyltransferases, molecular players underlying active DNA demethylation have long been elusive. Emerging biochemical and functional evidence suggests that active DNA demethylation in vertebrates can be mediated through DNA excision repair enzymes, similar to the well-known repair-based DNA demethylation mechanism in Arabidopsis. As key regulators, non-enzymatic Gadd45 proteins function to recruit enzymatic machineries and promote coupling of deamination, base and nucleotide-excision repair in the process of DNA demethylation. In this article, we review recent findings and discuss functional and evolutionary implications of such mechanisms underlying active DNA demethylation.
Collapse
Affiliation(s)
- Dengke K. Ma
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Junjie U. Guo
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Guo-li Ming
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - Hongjun Song
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
- The Solomon Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| |
Collapse
|
43
|
Abstract
Evidence is emerging that several diseases and behavioral pathologies result from defects in gene function. The best-studied example is cancer, but other diseases such as autoimmune disease, asthma, type 2 diabetes, metabolic disorders, and autism display aberrant gene expression. Gene function may be altered by either a change in the sequence of the DNA or a change in epigenetic programming of a gene in the absence of a sequence change. With epigenetic drugs, it is possible to reverse aberrant gene expression profiles associated with different disease states. Several epigenetic drugs targeting DNA methylation and histone deacetylation enzymes have been tested in clinical trials. Understanding the epigenetic machinery and the differential roles of its components in specific disease states is essential for developing targeted epigenetic therapy.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
44
|
Szyf M. The early life environment and the epigenome. Biochim Biophys Acta Gen Subj 2009; 1790:878-85. [PMID: 19364482 DOI: 10.1016/j.bbagen.2009.01.009] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 01/20/2009] [Accepted: 01/27/2009] [Indexed: 01/22/2023]
Abstract
Several lines of evidence point to the early origin of adult onset disease. A key question is: what are the mechanisms that mediate the effects of the early environment on our health? Another important question is: what is the impact of the environment during adulthood and how reversible are the effects of early life later in life? The genome is programmed by the epigenome, which is comprised of chromatin, a covalent modification of DNA by methylation and noncoding RNAs. The epigenome is sculpted during gestation, resulting in the diversity of gene expression programs in the distinct cell types of the organism. Recent data suggest that epigenetic programming of gene expression profiles is sensitive to the early-life environment and that both the chemical and social environment early in life could affect the manner by which the genome is programmed by the epigenome. We propose that epigenetic alterations early in life can have a life-long lasting impact on gene expression and thus on the phenotype, including susceptibility to disease. We will discuss data from animal models as well as recent data from human studies supporting the hypothesis that early life social-adversity leaves its marks on our epigenome and affects stress responsivity, health, and mental health later in life.
Collapse
Affiliation(s)
- Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
45
|
Active DNA demethylation and DNA repair. Differentiation 2008; 77:1-11. [PMID: 19281759 DOI: 10.1016/j.diff.2008.09.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Revised: 06/19/2008] [Accepted: 07/07/2008] [Indexed: 12/17/2022]
Abstract
DNA methylation on cytosine is an epigenetic modification and is essential for gene regulation and genome stability in vertebrates. Traditionally DNA methylation was considered as the most stable of all heritable epigenetic marks. However, it has become clear that DNA methylation is reversible by enzymatic "active" DNA demethylation, with examples in plant cells, animal development and immune cells. It emerges that "pruning" of methylated cytosines by active DNA demethylation is an important determinant for the DNA methylation signature of a cell. Work in plants and animals shows that demethylation occurs by base excision and nucleotide excision repair. Far from merely protecting genomic integrity from environmental insult, DNA repair is therefore at the heart of an epigenetic activation process.
Collapse
|
46
|
Zhou J, Blue EK, Hu G, Herring BP. Thymine DNA glycosylase represses myocardin-induced smooth muscle cell differentiation by competing with serum response factor for myocardin binding. J Biol Chem 2008; 283:35383-92. [PMID: 18945672 DOI: 10.1074/jbc.m805489200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myocardin is a serum response factor (SRF) co-activator that regulates transcription of many smooth muscle-specific genes and is essential for development of vascular smooth muscle. We used a yeast two-hybrid screen, with myocardin as bait in a search for factors that regulate myocardin transcriptional activity. From this screen, thymine DNA glycosylase (TDG) was identified as a myocardin-associated protein. TDG was originally identified as an enzyme involved in base excision repair of T:G mismatches caused by spontaneous deamination of methylated cytosines. However, TDG has also been shown to act as a transcriptional co-activator or co-repressor. The interaction between TDG and myocardin was confirmed in vitro by glutathione S-transferase pull down and in vivo by co-immunoprecipitation assays. We found that TDG abrogates myocardin induced expression of smooth muscle-specific genes and represses the trans-activation of the promoters of myocardin of these genes. Overexpression of TDG in SMCs down-regulated smooth muscle marker expression. Conversely, depletion of endogenous TDG in SMCs increased smooth muscle-specific myosin heavy chain (SM MHC) and Telokin gene expression. Glutathione S-transferase pull-down assays demonstrated that TDG binds to a region of myocardin that includes the SRF binding domain. Furthermore, TDG was found to compete with SRF for binding to myocardin in vitro and in vivo, suggesting that TDG can inhibit expression of smooth muscle-specific genes, at least in part, through disrupting SRF/myocardin interactions. Finally, we demonstrated that the glycosylase activity of TDG is not required for its inhibitory effects on myocardin function. This study reveals a previously unsuspected role for the repair enzyme TDG as a repressor of smooth muscle differentiation via competing with SRF for binding to myocardin.
Collapse
Affiliation(s)
- Jiliang Zhou
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA.
| | | | | | | |
Collapse
|
47
|
May A, Kirchner R, Müller H, Hartmann P, El Hajj N, Tresch A, Zechner U, Mann W, Haaf T. Multiplex rt-PCR expression analysis of developmentally important genes in individual mouse preimplantation embryos and blastomeres. Biol Reprod 2008; 80:194-202. [PMID: 18784354 DOI: 10.1095/biolreprod.107.064691] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We have developed a microfluidic chip-based qualitative assay for sensitive (10 RNA copies) detection of multiple transcripts in single cells. We determined the expression patterns of 17 developmentally important genes and isoforms in individual mouse preimplantation embryos from superovulated matings and blastomeres. The ubiquitously expressed histone variant H3f3a and the transcription factor Pou5f1 generated mRNA-derived products in all analyzed (1-cell, 2-cell, 4-cell, and morula stage) embryos and in all analyzed blastomeres from 16-cell embryos, indicating a uniform reactivation of pluripotency gene expression during mouse preimplantation development. In contrast, mRNA expression of different methyltransferases for DNA methylation, methylcytosine-binding proteins for chromatin modification, and base excision repair enzymes, which may provide a mechanism for active demethylation, varied considerably between individual cells from the same embryo and even more dramatically between cells from different embryos. We conclude that at a given point in time the transcriptome encoding the reprogramming machinery and, by extrapolation, genome reprogramming differs between blastomeres. By studying the cell-to-cell variability in gene expression, we can distinguish the following two classes: mouse 16-cell embryos in which most cells express the reprogramming machinery and embryos in which most cells do not contain detectable mRNA levels of DNA and chromatin modification genes. Immunolocalization of DNMT3A, MBD3, APEX1, and LIG3 in most or all nuclei of 40-60-cell embryos is a good indicator of functional activity of genes that are activated by the 16-cell stage.
Collapse
Affiliation(s)
- Andreas May
- Institute for Human Genetics, Johannes Gutenberg University Mainz, 55101 Mainz, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
McGowan PO, Meaney MJ, Szyf M. Diet and the epigenetic (re)programming of phenotypic differences in behavior. Brain Res 2008; 1237:12-24. [PMID: 18694740 DOI: 10.1016/j.brainres.2008.07.074] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 07/16/2008] [Accepted: 07/17/2008] [Indexed: 12/12/2022]
Abstract
Phenotypic diversity is shaped by both genetic and epigenetic mechanisms that program tissue specific patterns of gene expression. Cells, including neurons, undergo massive epigenetic reprogramming during development through modifications to chromatin structure, and by covalent modifications of the DNA through methylation. There is evidence that these changes are sensitive to environmental influences such as maternal behavior and diet, leading to sustained differences in phenotype. For example, natural variations in maternal behavior in the rat that influence stress reactivity in offspring induce long-term changes in gene expression, including in the glucocorticoid receptor, that are associated with altered histone acetylation, DNA methylation, and NGFI-A transcription factor binding. These effects can be reversed by early postnatal cross-fostering, and by pharmacological manipulations in adulthood, including Trichostatin A (TSA) and L-methionine administration, that influence the epigenetic status of critical loci in the brain. Because levels of methionine are influenced by diet, these effects suggest that diet could contribute significantly to this behavioral plasticity. Recent data suggest that similar mechanisms could influence human behavior and mental health. Epidemiological data suggest indeed that dietary changes in methyl contents could affect DNA methylation and gene expression programming. Nutritional restriction during gestation could affect epigenetic programming in the brain. These findings provide evidence for a stable yet dynamic epigenome capable of regulating phenotypic plasticity through epigenetic programming.
Collapse
Affiliation(s)
- Patrick O McGowan
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | | |
Collapse
|
49
|
Abstract
Patterns of DNA cytosine methylation are subject to mitotic inheritance in both plants and vertebrates. Plants use 5-methylcytosine glycosylases and the base excision repair pathway to remove excess cytosine methylation. In mammals, active demethylation has been proposed to operate via several very different mechanisms. Two recent reports in Nature now claim that the demethylation process is initiated by the same enzymes that establish the methylation mark, the DNA methyltransferases DNMT3A and DNMT3B (Kangaspeska et al., 2008; Métivier et al., 2008).
Collapse
Affiliation(s)
- Steen K T Ooi
- Department of Genetics and Development, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA
| | | |
Collapse
|
50
|
Takagi H, Tajima S, Asano A. Overexpression of DNA Methyltransferase in Myoblast Cells Accelerates Myotube Formation. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1432-1033.1995.0282e.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|