1
|
Moldovan JB, Kopera HC, Liu Y, Garcia-Canadas M, Catalina P, Leone P, Sanchez L, Kitzman J, Kidd J, Garcia-Perez J, Moran J. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes. Nucleic Acids Res 2024; 52:7761-7779. [PMID: 38850156 PMCID: PMC11260458 DOI: 10.1093/nar/gkae448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 06/10/2024] Open
Abstract
Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1) ORF2-encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 (Alu-permissive) strains, but not in HeLa-JVM or HeLa-H1 (Alu-nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA-derived SINEs and tRNA-derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR-Alu (SVA) element, and an L1 ORF1-containing mRNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu-permissive and Alu-nonpermissive HeLa strains, suggesting that 7SL- and tRNA-derived SINEs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1-containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu-permissive and Alu-nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu-nonpermissive HeLa strains.
Collapse
Affiliation(s)
- John B Moldovan
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huira C Kopera
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ying Liu
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Marta Garcia-Canadas
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | | | - Paola E Leone
- Genetics and Genomics Laboratory, SOLCA Hospital, Quito, Ecuador
| | - Laura Sanchez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | - Jacob O Kitzman
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jose Luis Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada 18016, Spain
| | - John V Moran
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Bodea GO, Botto JM, Ferreiro ME, Sanchez-Luque FJ, de Los Rios Barreda J, Rasmussen J, Rahman MA, Fenlon LR, Jansz N, Gubert C, Gerdes P, Bodea LG, Ajjikuttira P, Da Costa Guevara DJ, Cumner L, Bell CC, Kozulin P, Billon V, Morell S, Kempen MJHC, Love CJ, Saha K, Palmer LM, Ewing AD, Jhaveri DJ, Richardson SR, Hannan AJ, Faulkner GJ. LINE-1 retrotransposons contribute to mouse PV interneuron development. Nat Neurosci 2024; 27:1274-1284. [PMID: 38773348 PMCID: PMC11239520 DOI: 10.1038/s41593-024-01650-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/14/2024] [Indexed: 05/23/2024]
Abstract
Retrotransposons are mobile DNA sequences duplicated via transcription and reverse transcription of an RNA intermediate. Cis-regulatory elements encoded by retrotransposons can also promote the transcription of adjacent genes. Somatic LINE-1 (L1) retrotransposon insertions have been detected in mammalian neurons. It is, however, unclear whether L1 sequences are mobile in only some neuronal lineages or therein promote neurodevelopmental gene expression. Here we report programmed L1 activation by SOX6, a transcription factor critical for parvalbumin (PV) interneuron development. Mouse PV interneurons permit L1 mobilization in vitro and in vivo, harbor unmethylated L1 promoters and express full-length L1 mRNAs and proteins. Using nanopore long-read sequencing, we identify unmethylated L1s proximal to PV interneuron genes, including a novel L1 promoter-driven Caps2 transcript isoform that enhances neuron morphological complexity in vitro. These data highlight the contribution made by L1 cis-regulatory elements to PV interneuron development and transcriptome diversity, uncovered due to L1 mobility in this milieu.
Collapse
Affiliation(s)
- Gabriela O Bodea
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia.
| | - Juan M Botto
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Maria E Ferreiro
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Francisco J Sanchez-Luque
- Institute of Parasitology and Biomedicine 'López-Neyra', Spanish National Research Council, Granada, Spain
| | | | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Muhammed A Rahman
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Laura R Fenlon
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Natasha Jansz
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Patricia Gerdes
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
| | - Liviu-Gabriel Bodea
- Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Darwin J Da Costa Guevara
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
| | - Linda Cumner
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Charles C Bell
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
| | - Peter Kozulin
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
| | - Victor Billon
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Biology Department, École Normale Supérieure Paris-Saclay, Gif-sur-Yvette, France
| | - Santiago Morell
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
- Department of Genetics, University of Cambridge, Cambridge, UK
| | - Marie-Jeanne H C Kempen
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Chloe J Love
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Karabi Saha
- Department of Pharmaceutical Sciences, South Dakota State University, Brookings, SD, USA
| | - Lucy M Palmer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Adam D Ewing
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
| | - Dhanisha J Jhaveri
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
| | - Sandra R Richardson
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, Brisbane, Queensland, Australia.
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, Queensland, Australia.
| |
Collapse
|
3
|
Moldovan JB, Kopera HC, Liu Y, Garcia-Canadas M, Catalina P, Leone PE, Sanchez L, Kitzman JO, Kidd JM, Garcia-Perez JL, Moran JV. Variable patterns of retrotransposition in different HeLa strains provide mechanistic insights into SINE RNA mobilization processes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592410. [PMID: 38746229 PMCID: PMC11092746 DOI: 10.1101/2024.05.03.592410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Alu elements are non-autonomous Short INterspersed Elements (SINEs) derived from the 7SL RNA gene that are present at over one million copies in human genomic DNA. Alu mobilizes by a mechanism known as retrotransposition, which requires the Long INterspersed Element-1 (LINE-1 or L1) ORF2 -encoded protein (ORF2p). Here, we demonstrate that HeLa strains differ in their capacity to support Alu retrotransposition. Human Alu elements retrotranspose efficiently in HeLa-HA and HeLa-CCL2 ( Alu -permissive) strains, but not in HeLa-JVM or HeLa-H1 ( Alu -nonpermissive) strains. A similar pattern of retrotransposition was observed for other 7SL RNA -derived SINEs and tRNA -derived SINEs. In contrast, mammalian LINE-1s, a zebrafish LINE, a human SINE-VNTR - Alu ( SVA ) element, and an L1 ORF1 -containing messenger RNA can retrotranspose in all four HeLa strains. Using an in vitro reverse transcriptase-based assay, we show that Alu RNAs associate with ORF2p and are converted into cDNAs in both Alu -permissive and Alu -nonpermissive HeLa strains, suggesting that 7SL - and tRNA -derived SINE RNAs use strategies to 'hijack' L1 ORF2p that are distinct from those used by SVA elements and ORF1 -containing mRNAs. These data further suggest ORF2p associates with the Alu RNA poly(A) tract in both Alu -permissive and Alu -nonpermissive HeLa strains, but that Alu retrotransposition is blocked after this critical step in Alu -nonpermissive HeLa strains.
Collapse
|
4
|
Devine SE. Emerging Opportunities to Study Mobile Element Insertions and Their Source Elements in an Expanding Universe of Sequenced Human Genomes. Genes (Basel) 2023; 14:1923. [PMID: 37895272 PMCID: PMC10606232 DOI: 10.3390/genes14101923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Three mobile element classes, namely Alu, LINE-1 (L1), and SVA elements, remain actively mobile in human genomes and continue to produce new mobile element insertions (MEIs). Historically, MEIs have been discovered and studied using several methods, including: (1) Southern blots, (2) PCR (including PCR display), and (3) the detection of MEI copies from young subfamilies. We are now entering a new phase of MEI discovery where these methods are being replaced by whole genome sequencing and bioinformatics analysis to discover novel MEIs. We expect that the universe of sequenced human genomes will continue to expand rapidly over the next several years, both with short-read and long-read technologies. These resources will provide unprecedented opportunities to discover MEIs and study their impact on human traits and diseases. They also will allow the MEI community to discover and study the source elements that produce these new MEIs, which will facilitate our ability to study source element regulation in various tissue contexts and disease states. This, in turn, will allow us to better understand MEI mutagenesis in humans and the impact of this mutagenesis on human biology.
Collapse
Affiliation(s)
- Scott E Devine
- Institute for Genome Sciences, Department of Medicine, and Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Esposito M, Gualandi N, Spirito G, Ansaloni F, Gustincich S, Sanges R. Transposons Acting as Competitive Endogenous RNAs: In-Silico Evidence from Datasets Characterised by L1 Overexpression. Biomedicines 2022; 10:biomedicines10123279. [PMID: 36552034 PMCID: PMC9776036 DOI: 10.3390/biomedicines10123279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/07/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022] Open
Abstract
LINE L1 are transposable elements that can replicate within the genome by passing through RNA intermediates. The vast majority of these element copies in the human genome are inactive and just between 100 and 150 copies are still able to mobilize. During evolution, they could have been positively selected for beneficial cellular functions. Nonetheless, L1 deregulation can be detrimental to the cell, causing diseases such as cancer. The activity of miRNAs represents a fundamental mechanism for controlling transcript levels in somatic cells. These are a class of small non-coding RNAs that cause degradation or translational inhibition of their target transcripts. Beyond this, competitive endogenous RNAs (ceRNAs), mostly made by circular and non-coding RNAs, have been seen to compete for the binding of the same set of miRNAs targeting protein coding genes. In this study, we have investigated whether autonomously transcribed L1s may act as ceRNAs by analyzing public dataset in-silico. We observed that genes sharing miRNA target sites with L1 have a tendency to be upregulated when L1 are overexpressed, suggesting the possibility that L1 might act as ceRNAs. This finding will help in the interpretation of transcriptomic responses in contexts characterized by the specific activation of transposons.
Collapse
Affiliation(s)
- Mauro Esposito
- Computational Genomics Laboratory, Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Nicolò Gualandi
- Computational Genomics Laboratory, Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
| | - Giovanni Spirito
- Computational Genomics Laboratory, Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- CMP3vda, via Lavoratori Vittime del Col Du Mont 28, 11100 Aosta, Italy
| | - Federico Ansaloni
- Computational Genomics Laboratory, Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Stefano Gustincich
- CMP3vda, via Lavoratori Vittime del Col Du Mont 28, 11100 Aosta, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia, 16132 Genova, Italy
| | - Remo Sanges
- Computational Genomics Laboratory, Area of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), 34136 Trieste, Italy
- Central RNA Laboratory, Istituto Italiano di Tecnologia, 16132 Genova, Italy
- Correspondence:
| |
Collapse
|
6
|
Balachandran P, Walawalkar IA, Flores JI, Dayton JN, Audano PA, Beck CR. Transposable element-mediated rearrangements are prevalent in human genomes. Nat Commun 2022; 13:7115. [PMID: 36402840 PMCID: PMC9675761 DOI: 10.1038/s41467-022-34810-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
Transposable elements constitute about half of human genomes, and their role in generating human variation through retrotransposition is broadly studied and appreciated. Structural variants mediated by transposons, which we call transposable element-mediated rearrangements (TEMRs), are less well studied, and the mechanisms leading to their formation as well as their broader impact on human diversity are poorly understood. Here, we identify 493 unique TEMRs across the genomes of three individuals. While homology directed repair is the dominant driver of TEMRs, our sequence-resolved TEMR resource allows us to identify complex inversion breakpoints, triplications or other high copy number polymorphisms, and additional complexities. TEMRs are enriched in genic loci and can create potentially important risk alleles such as a deletion in TRIM65, a known cancer biomarker and therapeutic target. These findings expand our understanding of this important class of structural variation, the mechanisms responsible for their formation, and establish them as an important driver of human diversity.
Collapse
Affiliation(s)
| | | | - Jacob I Flores
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Jacob N Dayton
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Peter A Audano
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Christine R Beck
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
7
|
Ward JR, Khan A, Torres S, Crawford B, Nock S, Frisbie T, Moran J, Longworth M. Condensin I and condensin II proteins form a LINE-1 dependent super condensin complex and cooperate to repress LINE-1. Nucleic Acids Res 2022; 50:10680-10694. [PMID: 36169232 PMCID: PMC9561375 DOI: 10.1093/nar/gkac802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/31/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Condensin I and condensin II are multi-subunit complexes that are known for their individual roles in genome organization and preventing genomic instability. However, interactions between condensin I and condensin II subunits and cooperative roles for condensin I and condensin II, outside of their genome organizing functions, have not been reported. We previously discovered that condensin II cooperates with Gamma Interferon Activated Inhibitor of Translation (GAIT) proteins to associate with Long INterspersed Element-1 (LINE-1 or L1) RNA and repress L1 protein expression and the retrotransposition of engineered L1 retrotransposition in cultured human cells. Here, we report that the L1 3'UTR is required for condensin II and GAIT association with L1 RNA, and deletion of the L1 RNA 3'UTR results in increased L1 protein expression and retrotransposition. Interestingly, like condensin II, we report that condensin I also binds GAIT proteins, associates with the L1 RNA 3'UTR, and represses L1 retrotransposition. We provide evidence that the condensin I protein, NCAPD2, is required for condensin II and GAIT protein association with L1 RNA. Furthermore, condensin I and condensin II subunits interact to form a L1-dependent super condensin complex (SCC) which is located primarily within the cytoplasm of both transformed and primary epithelial cells. These data suggest that increases in L1 expression in epithelial cells promote cytoplasmic condensin protein associations that facilitate a feedback loop in which condensins may cooperate to mediate L1 repression.
Collapse
Affiliation(s)
- Jacqueline R Ward
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Afshin Khan
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sabrina Torres
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Bert Crawford
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Sarah Nock
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Trenton Frisbie
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - John V Moran
- Department of Human Genetics, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
- Internal Medicine, University of Michigan School of Medicine, Ann Arbor, MI 48109, USA
| | - Michelle S Longworth
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA
| |
Collapse
|
8
|
Billon V, Sanchez-Luque FJ, Rasmussen J, Bodea GO, Gerhardt DJ, Gerdes P, Cheetham SW, Schauer SN, Ajjikuttira P, Meyer TJ, Layman CE, Nevonen KA, Jansz N, Garcia-Perez JL, Richardson SR, Ewing AD, Carbone L, Faulkner GJ. Somatic retrotransposition in the developing rhesus macaque brain. Genome Res 2022; 32:1298-1314. [PMID: 35728967 PMCID: PMC9341517 DOI: 10.1101/gr.276451.121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/14/2022] [Indexed: 12/03/2022]
Abstract
The retrotransposon LINE-1 (L1) is central to the recent evolutionary history of the human genome and continues to drive genetic diversity and germline pathogenesis. However, the spatiotemporal extent and biological significance of somatic L1 activity are poorly defined and are virtually unexplored in other primates. From a single L1 lineage active at the divergence of apes and Old World monkeys, successive L1 subfamilies have emerged in each descendant primate germline. As revealed by case studies, the presently active human L1 subfamily can also mobilize during embryonic and brain development in vivo. It is unknown whether nonhuman primate L1s can similarly generate somatic insertions in the brain. Here we applied approximately 40× single-cell whole-genome sequencing (scWGS), as well as retrotransposon capture sequencing (RC-seq), to 20 hippocampal neurons from two rhesus macaques (Macaca mulatta). In one animal, we detected and PCR-validated a somatic L1 insertion that generated target site duplications, carried a short 5' transduction, and was present in ∼7% of hippocampal neurons but absent from cerebellum and nonbrain tissues. The corresponding donor L1 allele was exceptionally mobile in vitro and was embedded in PRDM4, a gene expressed throughout development and in neural stem cells. Nanopore long-read methylome and RNA-seq transcriptome analyses indicated young retrotransposon subfamily activation in the early embryo, followed by repression in adult tissues. These data highlight endogenous macaque L1 retrotransposition potential, provide prototypical evidence of L1-mediated somatic mosaicism in a nonhuman primate, and allude to L1 mobility in the brain over the past 30 million years of human evolution.
Collapse
Affiliation(s)
- Victor Billon
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Francisco J Sanchez-Luque
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
- Institute of Parasitology and Biomedicine "Lopez-Neyra"-Spanish National Research Council, PTS Granada 18016, Spain
| | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Gabriela O Bodea
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Stephanie N Schauer
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
| | - Thomas J Meyer
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
| | - Cora E Layman
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Kimberly A Nevonen
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Natasha Jansz
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Jose L Garcia-Perez
- GENYO. Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| | - Lucia Carbone
- Division of Genetics, Oregon National Primate Research Center, Beaverton, Oregon 97006, USA
- Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, Oregon 97239, USA
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health and Science University, Portland, Oregon 97239, USA
| | - Geoffrey J Faulkner
- Queensland Brain Institute, University of Queensland, St. Lucia, Queensland 4067, Australia
- Mater Research Institute-University of Queensland, Woolloongabba, Queensland 4102, Australia
| |
Collapse
|
9
|
Chuang NT, Gardner EJ, Terry DM, Crabtree J, Mahurkar AA, Rivell GL, Hong CC, Perry JA, Devine SE. Mutagenesis of human genomes by endogenous mobile elements on a population scale. Genome Res 2021; 31:2225-2235. [PMID: 34772701 PMCID: PMC8647825 DOI: 10.1101/gr.275323.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 09/16/2021] [Indexed: 01/22/2023]
Abstract
Several large-scale Illumina whole-genome sequencing (WGS) and whole-exome sequencing (WES) projects have emerged recently that have provided exceptional opportunities to discover mobile element insertions (MEIs) and study the impact of these MEIs on human genomes. However, these projects also have presented major challenges with respect to the scalability and computational costs associated with performing MEI discovery on tens or even hundreds of thousands of samples. To meet these challenges, we have developed a more efficient and scalable version of our mobile element locator tool (MELT) called CloudMELT. We then used MELT and CloudMELT to perform MEI discovery in 57,919 human genomes and exomes, leading to the discovery of 104,350 nonredundant MEIs. We leveraged this collection (1) to examine potentially active L1 source elements that drive the mobilization of new Alu, L1, and SVA MEIs in humans; (2) to examine the population distributions and subfamilies of these MEIs; and (3) to examine the mutagenesis of GENCODE genes, ENCODE-annotated features, and disease genes by these MEIs. Our study provides new insights on the L1 source elements that drive MEI mutagenesis and brings forth a better understanding of how this mutagenesis impacts human genomes.
Collapse
Affiliation(s)
- Nelson T Chuang
- Graduate Program in Molecular Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Division of Gastroenterology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Eugene J Gardner
- Graduate Program in Molecular Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Diane M Terry
- Graduate Program in Molecular Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Jonathan Crabtree
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Anup A Mahurkar
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Guillermo L Rivell
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Charles C Hong
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - James A Perry
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Scott E Devine
- Graduate Program in Molecular Medicine, University of Maryland, Baltimore, Baltimore, Maryland 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
10
|
Wong JS, Jadhav T, Young E, Wang Y, Xiao M. Characterization of full-length LINE-1 insertions in 154 genomes. Genomics 2021; 113:3804-3810. [PMID: 34534648 DOI: 10.1016/j.ygeno.2021.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/18/2021] [Accepted: 09/11/2021] [Indexed: 10/20/2022]
Abstract
Long interspersed nuclear elements (LINEs) are retrotransposons that contribute to genetic variation in the human genome. LINE-1 elements in larger-scale studies are challenging to identify using sequencing technologies due to cost and scalability. We developed an approach using optical mapping for detection of full-length LINE-1 insertions and 10× sequencing for confirmation. We found 51 true positive full-length LINE-1 insertions, of which 4 are novel insertions, in NA12878. Repeating our analysis on a larger sample set representing 26 populations, we identified 329 full-length LINE-1 elements, of which 123 are novel. 24.8% of these 329 LINE-1 insertions were shared amongst all 5 superpopulations (AFR, AMR, EUR, EAS, SAS). The African superpopulation has a higher percentage of population-specific LINE-1 insertions than any other superpopulation. These data indicate that our approach can provide high-speed, cost-effective, and increased accuracy for LINE-1 detection. These data also provide an insight into variations of LINE-1 elements between different populations.
Collapse
Affiliation(s)
- Jessica S Wong
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - Tanaya Jadhav
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - Eleanor Young
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - Yilin Wang
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America
| | - Ming Xiao
- School of Biomedical Engineering, Drexel University, Philadelphia, PA, United States of America; Center for Genomic Sciences, Institute of Molecular Medicine and Infectious Disease, Drexel University, Philadelphia, PA, United States of America.
| |
Collapse
|
11
|
Smits N, Rasmussen J, Bodea GO, Amarilla AA, Gerdes P, Sanchez-Luque FJ, Ajjikuttira P, Modhiran N, Liang B, Faivre J, Deveson IW, Khromykh AA, Watterson D, Ewing AD, Faulkner GJ. No evidence of human genome integration of SARS-CoV-2 found by long-read DNA sequencing. Cell Rep 2021; 36:109530. [PMID: 34380018 PMCID: PMC8316065 DOI: 10.1016/j.celrep.2021.109530] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 01/28/2023] Open
Abstract
A recent study proposed that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) hijacks the LINE-1 (L1) retrotransposition machinery to integrate into the DNA of infected cells. If confirmed, this finding could have significant clinical implications. Here, we apply deep (>50×) long-read Oxford Nanopore Technologies (ONT) sequencing to HEK293T cells infected with SARS-CoV-2 and do not find the virus integrated into the genome. By examining ONT data from separate HEK293T cultivars, we completely resolve 78 L1 insertions arising in vitro in the absence of L1 overexpression systems. ONT sequencing applied to hepatitis B virus (HBV)-positive liver cancer tissues located a single HBV insertion. These experiments demonstrate reliable resolution of retrotransposon and exogenous virus insertions by ONT sequencing. That we find no evidence of SARS-CoV-2 integration suggests that such events are, at most, extremely rare in vivo and therefore are unlikely to drive oncogenesis or explain post-recovery detection of the virus.
Collapse
Affiliation(s)
- Nathan Smits
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Jay Rasmussen
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Gabriela O Bodea
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Alberto A Amarilla
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Francisco J Sanchez-Luque
- GENYO, Pfizer-University of Granada-Andalusian Government Centre for Genomics and Oncological Research, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Cancer (IGC), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Prabha Ajjikuttira
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Naphak Modhiran
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Benjamin Liang
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - Jamila Faivre
- INSERM, U1193, Paul-Brousse University Hospital, Hepatobiliary Centre, Villejuif 94800, France
| | - Ira W Deveson
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Sydney, NSW 2010, Australia; St Vincent's Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Alexander A Khromykh
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| | - Daniel Watterson
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072, Australia; Australian Infectious Diseases Research Centre, Global Virus Network Centre of Excellence, Brisbane, QLD 4072, Australia
| | - Adam D Ewing
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
12
|
Mastora E, Christodoulaki A, Papageorgiou K, Zikopoulos A, Georgiou I. Expression of Retroelements in Mammalian Gametes and Embryos. In Vivo 2021; 35:1921-1927. [PMID: 34182464 DOI: 10.21873/invivo.12458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/18/2021] [Accepted: 05/24/2021] [Indexed: 11/10/2022]
Abstract
Retroelements are genetic mobile elements, expressed during male and female gamete differentiation. Retrotransposons are normally regulated by the methylation machinery, chromatin modifications, non-coding RNAs, and transcription factors, while retrotransposition control is of vital importance in cellular proliferation and differentiation process. Retrotransposition requires a transcription step, by a cellular RNA polymerase, followed by reverse transcription of an RNA intermediate to cDNA and its integration into a new genomic locus. Long interspersed elements (LINEs), human endogenous retroviruses (HERVs), short interspersed elements (SINEs) and SINE-VNTR-Alu elements (SVAs) constitute about half of the human genome, play a crucial role in genome organization, structure and function and interfere with several biological procedures. In this mini review, we discuss recent data regarding retroelement expression (LINE-1, HERVK-10, SVA and VL30) and retrotransposition events in mammalian oocytes and spermatozoa, as well as the importance of their impact on human and mouse preimplantation embryo development.
Collapse
Affiliation(s)
- Eirini Mastora
- Laboratory of Medical Genetics, School of Medicine, University of Ioannina and Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece
| | - Antonia Christodoulaki
- Laboratory of Medical Genetics, School of Medicine, University of Ioannina and Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece
| | - Kyriaki Papageorgiou
- Department of Biological Applications & Technologies, University of Ioannina and Institute of Molecular Biology and Biotechnology, Division of Biomedical Research, Foundation for Research and Technology, Ioannina, Greece
| | - Athanasios Zikopoulos
- Laboratory of Medical Genetics, School of Medicine, University of Ioannina and Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece
| | - Ioannis Georgiou
- Laboratory of Medical Genetics, School of Medicine, University of Ioannina and Medical Genetics and Assisted Reproduction Unit, Department of Obstetrics and Gynecology, University Hospital of Ioannina, Ioannina, Greece;
| |
Collapse
|
13
|
Cervantes-Ayalc A, Ruiz Esparza-Garrido R, Velázquez-Flores MÁ. Long Interspersed Nuclear Elements 1 (LINE1): The chimeric transcript L1-MET and its involvement in cancer. Cancer Genet 2020; 241:1-11. [PMID: 31918342 DOI: 10.1016/j.cancergen.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/21/2019] [Accepted: 11/13/2019] [Indexed: 11/19/2022]
Abstract
Long interspersed nuclear elements 1 (LINE1) are non-LTR retrotransposons that represent the greatest remodeling force of the human genome during evolution. Genomically, LINE1 are constituted by a 5´ untranslated region (UTR), where the promoter regions are located, three open reading frames (ORF0, ORF1, and ORF2) and one 3´UTR, which has a poly(A) tail that harbors the short interspersed nuclear elements (SINEs) Alu and SVA. Although the intrinsic nature of LINE1 is to be copied and inserted into the genome, an increase in their mobility produces genomic instability. In response to this, the cell has "designed" many mechanisms controlling the retrotransposition levels of LINE1; however, alterations in these regulation systems can increase LINE1 mobility and the formation of chimeric genes. Evidence indicates that 988 human genes have LINE1 inserted in their sequence, resulting in the transcriptional control of genes by their own promoters, as well as by the LINE1 antisense promoter (ASP). To date, very little is known about the biologic impact of this and the L1-MET chimera is a more or less studied case. ASP hypomethylation has been observed in all studied cancer types, leading to increased L1-MET expression. In specific types of cancer, this L1-MET increase controls both low and high MET protein levels. It remains to be clarified if this protein product is a chimeric protein.
Collapse
Affiliation(s)
- Andrea Cervantes-Ayalc
- Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX 06720, México.
| | - Ruth Ruiz Esparza-Garrido
- Catedrática CONACyT, Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX 06720, México; Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX 06720, México.
| | - Miguel Ángel Velázquez-Flores
- Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), CDMX 06720, México; Laboratorio de RNAs no codificantes, Unidad de Investigación Médica en Genética Humana del Hospital de Pediatría "Silvestre Frenk Freund", Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social (IMSS), Mexico.
| |
Collapse
|
14
|
Roberson PA, Romero MA, Osburn SC, Mumford PW, Vann CG, Fox CD, McCullough DJ, Brown MD, Roberts MD. Skeletal muscle LINE-1 ORF1 mRNA is higher in older humans but decreases with endurance exercise and is negatively associated with higher physical activity. J Appl Physiol (1985) 2019; 127:895-904. [PMID: 31369326 DOI: 10.1152/japplphysiol.00352.2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The long interspersed nuclear element-1 (L1) is a retrotransposon that constitutes 17% of the human genome and is associated with various diseases and aging. Estimates suggest that ~100 L1 copies are capable of copying and pasting into other regions of the genome. Herein, we examined if skeletal muscle L1 markers are affected by aging or an acute bout of cycling exercise in humans. Apparently healthy younger (23 ± 3 y, n = 15) and older participants (58 ± 8 y, n = 15) donated a vastus lateralis biopsy before 1 h of cycling exercise (PRE) at ~70% of heart rate reserve. Second (2 h) and third (8 h) postexercise muscle biopsies were also obtained. L1 DNA and mRNA expression were quantified using three primer sets [5' untranslated region (UTR), L1.3, and ORF1]. 5'UTR and L1.3 DNA methylation as well as ORF1 protein expression were also quantified. PRE 5'UTR, ORF1, or L1.3 DNA were not different between age groups (P > 0.05). ORF1 mRNA was greater in older versus younger participants (P = 0.014), and cycling lowered this marker at 2 h versus PRE (P = 0.027). 5'UTR and L1.3 DNA methylation were higher in younger versus older participants (P < 0.05). Accelerometry data collected during a 2-wk period before the exercise bout indicated higher moderate-to-vigorous physical activity (MVPA) levels per day was associated with lower PRE ORF1 mRNA in all participants (r = -0.398, P = 0.032). In summary, skeletal muscle ORF1 mRNA is higher in older apparently healthy humans, which may be related to lower DNA methylation patterns. ORF1 mRNA is also reduced with endurance exercise and is negatively associated with higher daily MVPA levels.NEW & NOTEWORTHY The long interspersed nuclear element-1 (L1) gene is highly abundant in the genome and encodes for an autonomous retrotransposon, which is capable of copying and pasting itself into other portions of the genome. This is the first study in humans to demonstrate that certain aspects of skeletal muscle L1 activity are altered with aging. Additionally, this is the first study in humans to demonstrate that L1 ORF1 mRNA levels decrease after a bout of endurance exercise, regardless of age.
Collapse
Affiliation(s)
| | | | | | | | | | - Carlton D Fox
- School of Kinesiology, Auburn University, Auburn, Alabama
| | - Danielle J McCullough
- School of Kinesiology, Auburn University, Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine Auburn Campus, Auburn, Alabama
| | | | - Michael D Roberts
- School of Kinesiology, Auburn University, Auburn, Alabama.,Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine Auburn Campus, Auburn, Alabama
| |
Collapse
|
15
|
Sanchez-Luque FJ, Kempen MJHC, Gerdes P, Vargas-Landin DB, Richardson SR, Troskie RL, Jesuadian JS, Cheetham SW, Carreira PE, Salvador-Palomeque C, García-Cañadas M, Muñoz-Lopez M, Sanchez L, Lundberg M, Macia A, Heras SR, Brennan PM, Lister R, Garcia-Perez JL, Ewing AD, Faulkner GJ. LINE-1 Evasion of Epigenetic Repression in Humans. Mol Cell 2019; 75:590-604.e12. [PMID: 31230816 DOI: 10.1016/j.molcel.2019.05.024] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 04/08/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
Epigenetic silencing defends against LINE-1 (L1) retrotransposition in mammalian cells. However, the mechanisms that repress young L1 families and how L1 escapes to cause somatic genome mosaicism in the brain remain unclear. Here we report that a conserved Yin Yang 1 (YY1) transcription factor binding site mediates L1 promoter DNA methylation in pluripotent and differentiated cells. By analyzing 24 hippocampal neurons with three distinct single-cell genomic approaches, we characterized and validated a somatic L1 insertion bearing a 3' transduction. The source (donor) L1 for this insertion was slightly 5' truncated, lacked the YY1 binding site, and was highly mobile when tested in vitro. Locus-specific bisulfite sequencing revealed that the donor L1 and other young L1s with mutated YY1 binding sites were hypomethylated in embryonic stem cells, during neurodifferentiation, and in liver and brain tissue. These results explain how L1 can evade repression and retrotranspose in the human body.
Collapse
Affiliation(s)
- Francisco J Sanchez-Luque
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain.
| | - Marie-Jeanne H C Kempen
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Patricia Gerdes
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Dulce B Vargas-Landin
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Sandra R Richardson
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Robin-Lee Troskie
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - J Samuel Jesuadian
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Seth W Cheetham
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Patricia E Carreira
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Carmen Salvador-Palomeque
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Marta García-Cañadas
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Martin Muñoz-Lopez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Laura Sanchez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain
| | - Mischa Lundberg
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Angela Macia
- Department of Pediatrics/Rady Children's Hospital San Diego, School of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sara R Heras
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain; Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja, 18071 Granada, Spain
| | - Paul M Brennan
- Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, EH4 2XR, UK
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, the University of Western Australia, Perth, WA 6009, Australia; Harry Perkins Institute of Medical Research, Perth, WA 6009, Australia
| | - Jose L Garcia-Perez
- GENYO Centre for Genomics and Oncological Research, Pfizer University of Granada, Andalusian Regional Government, Avda Ilustración, 114, PTS Granada 18016, Spain; MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, UK
| | - Adam D Ewing
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute, University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
16
|
Dynamic Methylation of an L1 Transduction Family during Reprogramming and Neurodifferentiation. Mol Cell Biol 2019; 39:MCB.00499-18. [PMID: 30692270 PMCID: PMC6425141 DOI: 10.1128/mcb.00499-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/11/2019] [Indexed: 01/28/2023] Open
Abstract
The retrotransposon LINE-1 (L1) is a significant source of endogenous mutagenesis in humans. In each individual genome, a few retrotransposition-competent L1s (RC-L1s) can generate new heritable L1 insertions in the early embryo, primordial germ line, and germ cells. L1 retrotransposition can also occur in the neuronal lineage and cause somatic mosaicism. Although DNA methylation mediates L1 promoter repression, the temporal pattern of methylation applied to individual RC-L1s during neurogenesis is unclear. Here, we identified a de novo L1 insertion in a human induced pluripotent stem cell (hiPSC) line via retrotransposon capture sequencing (RC-seq). The L1 insertion was full-length and carried 5' and 3' transductions. The corresponding donor RC-L1 was part of a large and recently active L1 transduction family and was highly mobile in a cultured-cell L1 retrotransposition reporter assay. Notably, we observed distinct and dynamic DNA methylation profiles for the de novo L1 and members of its extended transduction family during neuronal differentiation. These experiments reveal how a de novo L1 insertion in a pluripotent stem cell is rapidly recognized and repressed, albeit incompletely, by the host genome during neurodifferentiation, while retaining potential for further retrotransposition.
Collapse
|
17
|
Faulkner GJ, Billon V. L1 retrotransposition in the soma: a field jumping ahead. Mob DNA 2018; 9:22. [PMID: 30002735 PMCID: PMC6035798 DOI: 10.1186/s13100-018-0128-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/27/2018] [Indexed: 12/13/2022] Open
Abstract
Retrotransposons are transposable elements (TEs) capable of "jumping" in germ, embryonic and tumor cells and, as is now clearly established, in the neuronal lineage. Mosaic TE insertions form part of a broader landscape of somatic genome variation and hold significant potential to generate phenotypic diversity, in the brain and elsewhere. At present, the LINE-1 (L1) retrotransposon family appears to be the most active autonomous TE in most mammals, based on experimental data obtained from disease-causing L1 mutations, engineered L1 reporter systems tested in cultured cells and transgenic rodents, and single-cell genomic analyses. However, the biological consequences of almost all somatic L1 insertions identified thus far remain unknown. In this review, we briefly summarize the current state-of-the-art in the field, including estimates of L1 retrotransposition rate in neurons. We bring forward the hypothesis that an extensive subset of retrotransposition-competent L1s may be de-repressed and mobile in the soma but largely inactive in the germline. We discuss recent reports of non-canonical L1-associated sequence variants in the brain and propose that the elevated L1 DNA content reported in several neurological disorders may predominantly comprise accumulated, unintegrated L1 nucleic acids, rather than somatic L1 insertions. Finally, we consider the main objectives and obstacles going forward in elucidating the biological impact of somatic retrotransposition.
Collapse
Affiliation(s)
- Geoffrey J. Faulkner
- Mater Research Institute – University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
- School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| | - Victor Billon
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
- Biology Department, École Normale Supérieure Paris-Saclay, 61 Avenue du Président Wilson, 94230 Cachan, France
| |
Collapse
|
18
|
Khazina E, Weichenrieder O. Human LINE-1 retrotransposition requires a metastable coiled coil and a positively charged N-terminus in L1ORF1p. eLife 2018; 7:34960. [PMID: 29565245 PMCID: PMC5940361 DOI: 10.7554/elife.34960] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/21/2018] [Indexed: 12/22/2022] Open
Abstract
LINE-1 (L1) is an autonomous retrotransposon, which acted throughout mammalian evolution and keeps contributing to human genotypic diversity, genetic disease and cancer. L1 encodes two essential proteins: L1ORF1p, a unique RNA-binding protein, and L1ORF2p, an endonuclease and reverse transcriptase. L1ORF1p contains an essential, but rapidly evolving N-terminal portion, homo-trimerizes via a coiled coil and packages L1RNA into large assemblies. Here, we determined crystal structures of the entire coiled coil domain of human L1ORF1p. We show that retrotransposition requires a non-ideal and metastable coiled coil structure, and a strongly basic L1ORF1p amino terminus. Human L1ORF1p therefore emerges as a highly calibrated molecular machine, sensitive to mutation but functional in different hosts. Our analysis rationalizes the locally rapid L1ORF1p sequence evolution and reveals striking mechanistic parallels to coiled coil-containing membrane fusion proteins. It also suggests how trimeric L1ORF1p could form larger meshworks and indicates critical novel steps in L1 retrotransposition. Almost half of the human genome consists of DNA strings that have been copied and pasted from one part of the genome to another many thousands of times. These strings of DNA are called mobile genetic elements. Mobile elements can disrupt important genes, causing disease and cancer, but they can also drive evolution. Presently, only one type of mobile element, called LINE-1, is active in the human genome and able to multiply without help from other mobile elements. LINE-1 DNA is ‘transcribed’ to form molecules of LINE-1 RNA, which can then be ‘translated’ into two distinct proteins. These bind to LINE-1 RNA, which then gets back-transcribed into DNA and inserted as a new LINE-1 element in a new region of the genome. One of the two proteins, called L1ORF1p, forms complexes where three copies of the protein come together. These ‘trimers’ cover and protect LINE-1 RNA and are required for LINE-1 mobility. Different versions of L1ORF1p are found in different animals. Part of the protein is the same across all mammals, and this ‘conserved’ part controls the ability of L1ORF1p to bind to RNA. The non-conserved part of L1ORF1p differs even between humans and their closest animal relatives and little was known about its structure or role. However, this rapidly evolving part of L1ORF1p is essential for LINE-1 mobility. Using X-ray crystallography, Khazina and Weichenrieder obtained a molecular snapshot of the part of L1ORF1p that interacts with other copies of the protein to form trimers. Combined with earlier snapshots of L1ORF1p’s conserved part, this generated a complete structural model of the L1ORF1p trimer. Additional biophysical characterizations suggest that L1ORF1p trimers form a semi-stable structure that can partially open up, indicating how trimers could form larger assemblies of L1ORF1p on LINE-1 RNA. Indeed, the need to maintain a semi-stable structure could explain why L1ORF1p is evolving so rapidly. A second important finding is that the beginning of L1ORF1p needs to be positively charged – a requirement that warrants further exploration. The structural and mechanistic insight into L1ORF1p points to critical new steps in LINE-1 mobilization. It will help to design inhibitor molecules with the goal to halt the mobilization process at various points and to dissect such steps in great detail. Understanding how to control LINE-1 mobility could help to improve stem cell therapies and reproduction assistance techniques, due to the fact that LINE-1 mobility is a potential source of mutation in stem cells, egg and sperm cells, and newly formed embryos.
Collapse
Affiliation(s)
- Elena Khazina
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
19
|
Spliced integrated retrotransposed element (SpIRE) formation in the human genome. PLoS Biol 2018; 16:e2003067. [PMID: 29505568 PMCID: PMC5860796 DOI: 10.1371/journal.pbio.2003067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 03/20/2018] [Accepted: 02/14/2018] [Indexed: 12/20/2022] Open
Abstract
Human Long interspersed element-1 (L1) retrotransposons contain an internal RNA polymerase II promoter within their 5′ untranslated region (UTR) and encode two proteins, (ORF1p and ORF2p) required for their mobilization (i.e., retrotransposition). The evolutionary success of L1 relies on the continuous retrotransposition of full-length L1 mRNAs. Previous studies identified functional splice donor (SD), splice acceptor (SA), and polyadenylation sequences in L1 mRNA and provided evidence that a small number of spliced L1 mRNAs retrotransposed in the human genome. Here, we demonstrate that the retrotransposition of intra-5′UTR or 5′UTR/ORF1 spliced L1 mRNAs leads to the generation of spliced integrated retrotransposed elements (SpIREs). We identified a new intra-5′UTR SpIRE that is ten times more abundant than previously identified SpIREs. Functional analyses demonstrated that both intra-5′UTR and 5′UTR/ORF1 SpIREs lack Cis-acting transcription factor binding sites and exhibit reduced promoter activity. The 5′UTR/ORF1 SpIREs also produce nonfunctional ORF1p variants. Finally, we demonstrate that sequence changes within the L1 5′UTR over evolutionary time, which permitted L1 to evade the repressive effects of a host protein, can lead to the generation of new L1 splicing events, which, upon retrotransposition, generates a new SpIRE subfamily. We conclude that splicing inhibits L1 retrotransposition, SpIREs generally represent evolutionary “dead-ends” in the L1 retrotransposition process, mutations within the L1 5′UTR alter L1 splicing dynamics, and that retrotransposition of the resultant spliced transcripts can generate interindividual genomic variation. Long interspersed element-1 (L1) sequences comprise about 17% of the human genome reference sequence. The average human genome contains about 100 active L1s that mobilize throughout the genome by a “copy and paste” process termed retrotransposition. Active L1s encode two proteins (ORF1p and ORF2p). ORF1p and ORF2p preferentially bind to their encoding RNA, forming a ribonucleoprotein particle (RNP). During retrotransposition, the L1 RNP translocates to the nucleus, where the ORF2p endonuclease makes a single-strand nick in target site DNA that exposes a 3′ hydroxyl group in genomic DNA. The 3′ hydroxyl group then is used as a primer by the ORF2p reverse transcriptase to copy the L1 RNA into cDNA, leading to the integration of an L1 copy at a new genomic location. The evolutionary success of L1 requires the faithful retrotransposition of full-length L1 mRNAs; thus, it was surprising to find that a small number of L1 retrotransposition events are derived from spliced L1 mRNAs. By using genetic, biochemical, and computational approaches, we demonstrate that spliced L1 mRNAs can undergo an initial round of retrotransposition, leading to the generation of spliced integrated retrotransposed elements (SpIREs). SpIREs represent about 2% of previously annotated full-length primate-specific L1s in the human genome reference sequence. However, because splicing leads to intra-L1 deletions that remove critical sequences required for L1 expression, SpIREs generally cannot undergo subsequent rounds of retrotransposition and can be considered “dead on arrival” insertions. Our data further highlight how genetic conflict between L1 and its host has influenced L1 expression, L1 retrotransposition, and L1 splicing dynamics over evolutionary time.
Collapse
|
20
|
Condensin II and GAIT complexes cooperate to restrict LINE-1 retrotransposition in epithelial cells. PLoS Genet 2017; 13:e1007051. [PMID: 29028794 PMCID: PMC5656329 DOI: 10.1371/journal.pgen.1007051] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022] Open
Abstract
LINE-1 (L1) retrotransposons can mobilize (retrotranspose) within the human genome, and mutagenic de novo L1 insertions can lead to human diseases, including cancers. As a result, cells are actively engaged in preventing L1 retrotransposition. This work reveals that the human Condensin II complex restricts L1 retrotransposition in both non-transformed and transformed cell lines through inhibition of L1 transcription and translation. Condensin II subunits, CAP-D3 and CAP-H2, interact with members of the Gamma-Interferon Activated Inhibitor of Translation (GAIT) complex including the glutamyl-prolyl-tRNA synthetase (EPRS), the ribosomal protein L13a, Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and NS1 associated protein 1 (NSAP1). GAIT has been shown to inhibit translation of mRNAs encoding inflammatory proteins in myeloid cells by preventing the binding of the translation initiation complex, in response to Interferon gamma (IFN-γ). Excitingly, our data show that Condensin II promotes complexation of GAIT subunits. Furthermore, RNA-Immunoprecipitation experiments in epithelial cells demonstrate that Condensin II and GAIT subunits associate with L1 RNA in a co-dependent manner, independent of IFN-γ. These findings suggest that cooperation between the Condensin II and GAIT complexes may facilitate a novel mechanism of L1 repression, thus contributing to the maintenance of genome stability in somatic cells.
Collapse
|
21
|
Gardner EJ, Lam VK, Harris DN, Chuang NT, Scott EC, Pittard WS, Mills RE, Devine SE. The Mobile Element Locator Tool (MELT): population-scale mobile element discovery and biology. Genome Res 2017; 27:1916-1929. [PMID: 28855259 PMCID: PMC5668948 DOI: 10.1101/gr.218032.116] [Citation(s) in RCA: 238] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 08/07/2017] [Indexed: 01/22/2023]
Abstract
Mobile element insertions (MEIs) represent ∼25% of all structural variants in human genomes. Moreover, when they disrupt genes, MEIs can influence human traits and diseases. Therefore, MEIs should be fully discovered along with other forms of genetic variation in whole genome sequencing (WGS) projects involving population genetics, human diseases, and clinical genomics. Here, we describe the Mobile Element Locator Tool (MELT), which was developed as part of the 1000 Genomes Project to perform MEI discovery on a population scale. Using both Illumina WGS data and simulations, we demonstrate that MELT outperforms existing MEI discovery tools in terms of speed, scalability, specificity, and sensitivity, while also detecting a broader spectrum of MEI-associated features. Several run modes were developed to perform MEI discovery on local and cloud systems. In addition to using MELT to discover MEIs in modern humans as part of the 1000 Genomes Project, we also used it to discover MEIs in chimpanzees and ancient (Neanderthal and Denisovan) hominids. We detected diverse patterns of MEI stratification across these populations that likely were caused by (1) diverse rates of MEI production from source elements, (2) diverse patterns of MEI inheritance, and (3) the introgression of ancient MEIs into modern human genomes. Overall, our study provides the most comprehensive map of MEIs to date spanning chimpanzees, ancient hominids, and modern humans and reveals new aspects of MEI biology in these lineages. We also demonstrate that MELT is a robust platform for MEI discovery and analysis in a variety of experimental settings.
Collapse
Affiliation(s)
- Eugene J Gardner
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Vincent K Lam
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Daniel N Harris
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Nelson T Chuang
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Division of Gastroenterology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Emma C Scott
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - W Stephen Pittard
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia 30322, USA
| | - Ryan E Mills
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA.,Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | - Scott E Devine
- Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
22
|
LINE-1 activation after fertilization regulates global chromatin accessibility in the early mouse embryo. Nat Genet 2017; 49:1502-1510. [PMID: 28846101 DOI: 10.1038/ng.3945] [Citation(s) in RCA: 255] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 08/04/2017] [Indexed: 12/14/2022]
Abstract
After fertilization, to initiate development, gametes are reprogramed to become totipotent. Approximately half of the mammalian genome consists of repetitive elements, including retrotransposons, some of which are transcribed after fertilization. Retrotransposon activation is generally assumed to be a side effect of the extensive chromatin remodeling underlying the epigenetic reprogramming of gametes. Here, we used a targeted epigenomic approach to address whether specific retrotransposon families play a direct role in chromatin organization and developmental progression. We demonstrate that premature silencing of LINE-1 elements decreases chromatin accessibility, whereas prolonged activation prevents the gradual chromatin compaction that occurs naturally in developmental progression. Preventing LINE-1 activation and interfering with its silencing decreases developmental rates independently of the coding nature of the LINE-1 transcript, thus suggesting that LINE-1 functions primarily at the chromatin level. Our data suggest that activation of LINE-1 regulates global chromatin accessibility at the beginning of development and indicate that retrotransposon activation is integral to the developmental program.
Collapse
|
23
|
Richardson SR, Gerdes P, Gerhardt DJ, Sanchez-Luque FJ, Bodea GO, Muñoz-Lopez M, Jesuadian JS, Kempen MJHC, Carreira PE, Jeddeloh JA, Garcia-Perez JL, Kazazian HH, Ewing AD, Faulkner GJ. Heritable L1 retrotransposition in the mouse primordial germline and early embryo. Genome Res 2017; 27:1395-1405. [PMID: 28483779 PMCID: PMC5538555 DOI: 10.1101/gr.219022.116] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 05/02/2017] [Indexed: 12/31/2022]
Abstract
LINE-1 (L1) retrotransposons are a noted source of genetic diversity and disease in mammals. To expand its genomic footprint, L1 must mobilize in cells that will contribute their genetic material to subsequent generations. Heritable L1 insertions may therefore arise in germ cells and in pluripotent embryonic cells, prior to germline specification, yet the frequency and predominant developmental timing of such events remain unclear. Here, we applied mouse retrotransposon capture sequencing (mRC-seq) and whole-genome sequencing (WGS) to pedigrees of C57BL/6J animals, and uncovered an L1 insertion rate of ≥1 event per eight births. We traced heritable L1 insertions to pluripotent embryonic cells and, strikingly, to early primordial germ cells (PGCs). New L1 insertions bore structural hallmarks of target-site primed reverse transcription (TPRT) and mobilized efficiently in a cultured cell retrotransposition assay. Together, our results highlight the rate and evolutionary impact of heritable L1 retrotransposition and reveal retrotransposition-mediated genomic diversification as a fundamental property of pluripotent embryonic cells in vivo.
Collapse
Affiliation(s)
- Sandra R Richardson
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Patricia Gerdes
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,Invenra, Incorporated, Madison, Wisconsin 53719, USA
| | - Francisco J Sanchez-Luque
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - Gabriela-Oana Bodea
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Martin Muñoz-Lopez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain
| | - J Samuel Jesuadian
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | | | - Patricia E Carreira
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | | | - Jose L Garcia-Perez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncological Research, Pfizer-University of Granada-Andalusian Regional Government, PTS Granada, 18016 Granada, Spain.,Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Haig H Kazazian
- Institute of Genetic Medicine and Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Adam D Ewing
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia
| | - Geoffrey J Faulkner
- Mater Research Institute-University of Queensland, Woolloongabba QLD 4102, Australia.,School of Biomedical Sciences.,Queensland Brain Institute, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
24
|
Carreira PE, Ewing AD, Li G, Schauer SN, Upton KR, Fagg AC, Morell S, Kindlova M, Gerdes P, Richardson SR, Li B, Gerhardt DJ, Wang J, Brennan PM, Faulkner GJ. Evidence for L1-associated DNA rearrangements and negligible L1 retrotransposition in glioblastoma multiforme. Mob DNA 2016; 7:21. [PMID: 27843499 PMCID: PMC5105311 DOI: 10.1186/s13100-016-0076-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/13/2016] [Indexed: 01/23/2023] Open
Abstract
Background LINE-1 (L1) retrotransposons are a notable endogenous source of mutagenesis in mammals. Notably, cancer cells can support unusual L1 retrotransposition and L1-associated sequence rearrangement mechanisms following DNA damage. Recent reports suggest that L1 is mobile in epithelial tumours and neural cells but, paradoxically, not in brain cancers. Results Here, using retrotransposon capture sequencing (RC-seq), we surveyed L1 mutations in 14 tumours classified as glioblastoma multiforme (GBM) or as a lower grade glioma. In four GBM tumours, we characterised one probable endonuclease-independent L1 insertion, two L1-associated rearrangements and one likely Alu-Alu recombination event adjacent to an L1. These mutations included PCR validated intronic events in MeCP2 and EGFR. Despite sequencing L1 integration sites at up to 250× depth by RC-seq, we found no tumour-specific, endonuclease-dependent L1 insertions. Whole genome sequencing analysis of the tumours carrying the MeCP2 and EGFR L1 mutations also revealed no endonuclease-dependent L1 insertions. In a complementary in vitro assay, wild-type and endonuclease mutant L1 reporter constructs each mobilised very inefficiently in four cultured GBM cell lines. Conclusions These experiments altogether highlight the consistent absence of canonical L1 retrotransposition in GBM tumours and cultured cell lines, as well as atypical L1-associated sequence rearrangements following DNA damage in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0076-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Patricia E Carreira
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Adam D Ewing
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Guibo Li
- BGI-Shenzhen, Shenzhen, 518083 China.,Department of Biology and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 1599 Denmark
| | - Stephanie N Schauer
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Kyle R Upton
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia.,School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, QLD 4072 Australia
| | - Allister C Fagg
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Santiago Morell
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Michaela Kindlova
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Patricia Gerdes
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Sandra R Richardson
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Bo Li
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Daniel J Gerhardt
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia
| | - Jun Wang
- BGI-Shenzhen, Shenzhen, 518083 China.,Department of Biology and the Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, 1599 Denmark
| | - Paul M Brennan
- Edinburgh Cancer Research Centre, IGMM, University of Edinburgh, Edinburgh, EH42XR UK
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102 Australia.,Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072 Australia
| |
Collapse
|
25
|
Eckwahl MJ, Arnion H, Kharytonchyk S, Zang T, Bieniasz PD, Telesnitsky A, Wolin SL. Analysis of the human immunodeficiency virus-1 RNA packageome. RNA (NEW YORK, N.Y.) 2016; 22:1228-38. [PMID: 27247436 PMCID: PMC4931115 DOI: 10.1261/rna.057299.116] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 05/15/2016] [Indexed: 05/16/2023]
Abstract
All retroviruses package cellular RNAs into virions. Studies of murine leukemia virus (MLV) revealed that the major host cell RNAs encapsidated by this simple retrovirus were LTR retrotransposons and noncoding RNAs (ncRNAs). Several classes of ncRNAs appeared to be packaged by MLV shortly after synthesis, as precursors to tRNAs, small nuclear RNAs, and small nucleolar RNAs were all enriched in virions. To determine the extent to which the human immunodeficiency virus (HIV-1) packages similar RNAs, we used high-throughput sequencing to characterize the RNAs within infectious HIV-1 virions produced in CEM-SS T lymphoblastoid cells. We report that the most abundant cellular RNAs in HIV-1 virions are 7SL RNA and transcripts from numerous divergent and truncated members of the long interspersed element (LINE) and short interspersed element (SINE) families of retrotransposons. We also detected precursors to several tRNAs and small nuclear RNAs as well as transcripts derived from the ribosomal DNA (rDNA) intergenic spacers. We show that packaging of a pre-tRNA requires the nuclear export receptor Exportin 5, indicating that HIV-1 recruits at least some newly made ncRNAs in the cytoplasm. Together, our work identifies the set of RNAs packaged by HIV-1 and reveals that early steps in HIV-1 assembly intersect with host cell ncRNA biogenesis pathways.
Collapse
Affiliation(s)
- Matthew J Eckwahl
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06536, USA
| | - Helene Arnion
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06536, USA
| | - Siarhei Kharytonchyk
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Trinity Zang
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA Laboratory of Retrovirology, The Rockefeller University, New York, New York 10016, USA Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10016, USA
| | - Paul D Bieniasz
- Aaron Diamond AIDS Research Center, The Rockefeller University, New York, New York 10016, USA Laboratory of Retrovirology, The Rockefeller University, New York, New York 10016, USA Howard Hughes Medical Institute, The Rockefeller University, New York, New York 10016, USA
| | - Alice Telesnitsky
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Sandra L Wolin
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06536, USA Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, Connecticut 06536, USA Yale Cancer Center, Yale School of Medicine, New Haven, Connecticut 06520, USA
| |
Collapse
|
26
|
Scott EC, Gardner EJ, Masood A, Chuang NT, Vertino PM, Devine SE. A hot L1 retrotransposon evades somatic repression and initiates human colorectal cancer. Genome Res 2016; 26:745-55. [PMID: 27197217 PMCID: PMC4889970 DOI: 10.1101/gr.201814.115] [Citation(s) in RCA: 182] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 04/19/2016] [Indexed: 01/16/2023]
Abstract
Although human LINE-1 (L1) elements are actively mobilized in many cancers, a role for somatic L1 retrotransposition in tumor initiation has not been conclusively demonstrated. Here, we identify a novel somatic L1 insertion in the APC tumor suppressor gene that provided us with a unique opportunity to determine whether such insertions can actually initiate colorectal cancer (CRC), and if so, how this might occur. Our data support a model whereby a hot L1 source element on Chromosome 17 of the patient's genome evaded somatic repression in normal colon tissues and thereby initiated CRC by mutating the APC gene. This insertion worked together with a point mutation in the second APC allele to initiate tumorigenesis through the classic two-hit CRC pathway. We also show that L1 source profiles vary considerably depending on the ancestry of an individual, and that population-specific hot L1 elements represent a novel form of cancer risk.
Collapse
Affiliation(s)
- Emma C Scott
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Eugene J Gardner
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Ashiq Masood
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Nelson T Chuang
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Division of Gastroenterology, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | - Paula M Vertino
- Department of Radiation Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA; Winship Cancer Institute, Emory University, Atlanta, Georgia 30322, USA
| | - Scott E Devine
- Graduate Program in Molecular Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| |
Collapse
|
27
|
Kines KJ, Sokolowski M, deHaro DL, Christian CM, Baddoo M, Smither ME, Belancio VP. The endonuclease domain of the LINE-1 ORF2 protein can tolerate multiple mutations. Mob DNA 2016; 7:8. [PMID: 27099633 PMCID: PMC4837594 DOI: 10.1186/s13100-016-0064-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 04/07/2016] [Indexed: 11/26/2022] Open
Abstract
Background Approximately 17 % of the human genome is comprised of the Long INterspersed Element-1 (LINE-1 or L1) retrotransposon, the only currently active autonomous family of retroelements. Though L1 elements have helped to shape mammalian genome evolution over millions of years, L1 activity can also be mutagenic and result in human disease. L1 expression has the potential to contribute to genomic instability via retrotransposition and DNA double-strand breaks (DSBs). Additionally, L1 is responsible for structural genomic variations induced by other transposable elements such as Alu and SVA, which rely on the L1 ORF2 protein for their propagation. Most of the genomic damage associated with L1 activity originates with the endonuclease domain of the ORF2 protein, which nicks the DNA in preparation for target-primed reverse transcription. Results Bioinformatic analysis of full-length L1 loci residing in the human genome identified numerous mutations in the amino acid sequence of the ORF2 endonuclease domain. Some of these mutations were found in residues which were predicted to be phosphorylation sites for cellular kinases. We mutated several of these putative phosphorylation sites in the ORF2 endonuclease domain and investigated the effect of these mutations on the function of the full-length ORF2 protein and the endonuclease domain (ENp) alone. Most of the single and multiple point mutations that were tested did not significantly impact expression of the full-length ORF2p, or alter its ability to drive Alu retrotransposition. Similarly, most of those same mutations did not significantly alter expression of ENp, or impair its ability to induce DNA damage and cause toxicity. Conclusions Overall, our data demonstrate that the full-length ORF2p or the ENp alone can tolerate several specific single and multiple point mutations in the endonuclease domain without significant impairment of their ability to support Alu mobilization or induce DNA damage, respectively. Electronic supplementary material The online version of this article (doi:10.1186/s13100-016-0064-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kristine J Kines
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Mark Sokolowski
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Dawn L deHaro
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Claiborne M Christian
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Melody Baddoo
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Madison E Smither
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| | - Victoria P Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center and Tulane Center for Aging, New Orleans, LA 70112 USA
| |
Collapse
|
28
|
Abstract
Transposable elements have had a profound impact on the structure and function of mammalian genomes. The retrotransposon Long INterspersed Element-1 (LINE-1 or L1), by virtue of its replicative mobilization mechanism, comprises ∼17% of the human genome. Although the vast majority of human LINE-1 sequences are inactive molecular fossils, an estimated 80-100 copies per individual retain the ability to mobilize by a process termed retrotransposition. Indeed, LINE-1 is the only active, autonomous retrotransposon in humans and its retrotransposition continues to generate both intra-individual and inter-individual genetic diversity. Here, we briefly review the types of transposable elements that reside in mammalian genomes. We will focus our discussion on LINE-1 retrotransposons and the non-autonomous Short INterspersed Elements (SINEs) that rely on the proteins encoded by LINE-1 for their mobilization. We review cases where LINE-1-mediated retrotransposition events have resulted in genetic disease and discuss how the characterization of these mutagenic insertions led to the identification of retrotransposition-competent LINE-1s in the human and mouse genomes. We then discuss how the integration of molecular genetic, biochemical, and modern genomic technologies have yielded insight into the mechanism of LINE-1 retrotransposition, the impact of LINE-1-mediated retrotransposition events on mammalian genomes, and the host cellular mechanisms that protect the genome from unabated LINE-1-mediated retrotransposition events. Throughout this review, we highlight unanswered questions in LINE-1 biology that provide exciting opportunities for future research. Clearly, much has been learned about LINE-1 and SINE biology since the publication of Mobile DNA II thirteen years ago. Future studies should continue to yield exciting discoveries about how these retrotransposons contribute to genetic diversity in mammalian genomes.
Collapse
|
29
|
Sanchez-Luque FJ, Richardson SR, Faulkner GJ. Retrotransposon Capture Sequencing (RC-Seq): A Targeted, High-Throughput Approach to Resolve Somatic L1 Retrotransposition in Humans. Methods Mol Biol 2016; 1400:47-77. [PMID: 26895046 DOI: 10.1007/978-1-4939-3372-3_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Mobile genetic elements (MGEs) are of critical importance in genomics and developmental biology. Polymorphic and somatic MGE insertions have the potential to impact the phenotype of an individual, depending on their genomic locations and functional consequences. However, the identification of polymorphic and somatic insertions among the plethora of copies residing in the genome presents a formidable technical challenge. Whole genome sequencing has the potential to address this problem; however, its efficacy depends on the abundance of cells carrying the new insertion. Robust detection of somatic insertions present in only a subset of cells within a given sample can also be prohibitively expensive due to a requirement for high sequencing depth. Here, we describe retrotransposon capture sequencing (RC-seq), a sequence capture approach in which Illumina libraries are enriched for fragments containing the 5' and 3' termini of specific MGEs. RC-seq allows the detection of known polymorphic insertions present in an individual, as well as the identification of rare or private germline insertions not previously described. Furthermore, RC-seq can be used to detect and characterize somatic insertions, providing a valuable tool to elucidate the extent and characteristics of MGE activity in healthy tissues and in various disease states.
Collapse
Affiliation(s)
- Francisco J Sanchez-Luque
- Mater Research Institute,University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.,Pfizer-University of Granada-Andalusian Goverment Centre for Genomics and Oncological Research, Av. de la Ilustracion 114, Granada, 18016, Spain
| | - Sandra R Richardson
- Mater Research Institute,University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia.,Department of Human Genetics, University of Michigan Medical School, 1241 E. Catherine St, Ann Arbor, MI, 48109, USA
| | - Geoffrey J Faulkner
- Mater Research Institute,University of Queensland, 37 Kent Street, Woolloongabba, QLD, 4102, Australia. .,Queensland Brain Institute, University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
30
|
Upton KR, Gerhardt DJ, Jesuadian JS, Richardson SR, Sánchez-Luque FJ, Bodea GO, Ewing AD, Salvador-Palomeque C, van der Knaap MS, Brennan PM, Vanderver A, Faulkner GJ. Ubiquitous L1 mosaicism in hippocampal neurons. Cell 2015; 161:228-39. [PMID: 25860606 PMCID: PMC4398972 DOI: 10.1016/j.cell.2015.03.026] [Citation(s) in RCA: 234] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/28/2014] [Accepted: 02/25/2015] [Indexed: 01/10/2023]
Abstract
Somatic LINE-1 (L1) retrotransposition during neurogenesis is a potential source of genotypic variation among neurons. As a neurogenic niche, the hippocampus supports pronounced L1 activity. However, the basal parameters and biological impact of L1-driven mosaicism remain unclear. Here, we performed single-cell retrotransposon capture sequencing (RC-seq) on individual human hippocampal neurons and glia, as well as cortical neurons. An estimated 13.7 somatic L1 insertions occurred per hippocampal neuron and carried the sequence hallmarks of target-primed reverse transcription. Notably, hippocampal neuron L1 insertions were specifically enriched in transcribed neuronal stem cell enhancers and hippocampus genes, increasing their probability of functional relevance. In addition, bias against intronic L1 insertions sense oriented relative to their host gene was observed, perhaps indicating moderate selection against this configuration in vivo. These experiments demonstrate pervasive L1 mosaicism at genomic loci expressed in hippocampal neurons. An estimated 13.7 somatic L1 insertions occur per hippocampal neuron, on average Target-primed reverse transcription drives somatic L1 retrotransposition Somatic L1 insertions sense oriented to introns are depleted in neurons and glia Hippocampus genes and enhancers are strikingly enriched for somatic L1 insertions
Collapse
Affiliation(s)
- Kyle R Upton
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba QLD 4102, Australia
| | - Daniel J Gerhardt
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba QLD 4102, Australia
| | - J Samuel Jesuadian
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba QLD 4102, Australia
| | - Sandra R Richardson
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba QLD 4102, Australia
| | - Francisco J Sánchez-Luque
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba QLD 4102, Australia
| | - Gabriela O Bodea
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba QLD 4102, Australia
| | - Adam D Ewing
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba QLD 4102, Australia
| | - Carmen Salvador-Palomeque
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba QLD 4102, Australia
| | - Marjo S van der Knaap
- Department of Child Neurology, Neuroscience Campus Amsterdam, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - Paul M Brennan
- Edinburgh Cancer Research Centre, Western General Hospital, Edinburgh, EH4 2XR, UK
| | - Adeline Vanderver
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, DC 20010, USA
| | - Geoffrey J Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba QLD 4102, Australia; Queensland Brain Institute, University of Queensland, Brisbane QLD 4072, Australia.
| |
Collapse
|
31
|
Moldovan JB, Moran JV. The Zinc-Finger Antiviral Protein ZAP Inhibits LINE and Alu Retrotransposition. PLoS Genet 2015; 11:e1005121. [PMID: 25951186 PMCID: PMC4423928 DOI: 10.1371/journal.pgen.1005121] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/03/2015] [Indexed: 11/30/2022] Open
Abstract
Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. To investigate the interplay between the L1 retrotransposition machinery and the host cell, we used co-immunoprecipitation in conjunction with liquid chromatography and tandem mass spectrometry to identify cellular proteins that interact with the L1 first open reading frame-encoded protein, ORF1p. We identified 39 ORF1p-interacting candidate proteins including the zinc-finger antiviral protein (ZAP or ZC3HAV1). Here we show that the interaction between ZAP and ORF1p requires RNA and that ZAP overexpression in HeLa cells inhibits the retrotransposition of engineered human L1 and Alu elements, an engineered mouse L1, and an engineered zebrafish LINE-2 element. Consistently, siRNA-mediated depletion of endogenous ZAP in HeLa cells led to a ~2-fold increase in human L1 retrotransposition. Fluorescence microscopy in cultured human cells demonstrated that ZAP co-localizes with L1 RNA, ORF1p, and stress granule associated proteins in cytoplasmic foci. Finally, molecular genetic and biochemical analyses indicate that ZAP reduces the accumulation of full-length L1 RNA and the L1-encoded proteins, yielding mechanistic insight about how ZAP may inhibit L1 retrotransposition. Together, these data suggest that ZAP inhibits the retrotransposition of LINE and Alu elements. Long INterspersed Element-1 (LINE-1 or L1) is the only active autonomous retrotransposon in the human genome. L1s comprise ~17% of human DNA and it is estimated that an average human genome has ~80–100 active L1s. L1 moves throughout the genome via a “copy-and-paste” mechanism known as retrotransposition. L1 retrotransposition is known to cause mutations; thus, it stands to reason that the host cell has evolved mechanisms to protect the cell from unabated retrotransposition. Here, we demonstrate that the zinc-finger antiviral protein (ZAP) inhibits the retrotransposition of human L1 and Alu retrotransposons, as well as related retrotransposons from mice and zebrafish. Biochemical and genetic data suggest that ZAP interacts with L1 RNA. Fluorescent microscopy demonstrates that ZAP associates with L1 in cytoplasmic foci that co-localize with stress granule proteins. Mechanistic analyses suggest that ZAP reduces the expression of full-length L1 RNA and the L1-encoded proteins, thereby providing mechanistic insight for how ZAP may restricts retrotransposition. Importantly, these data suggest that ZAP initially may have evolved to combat endogenous retrotransposons and subsequently was co-opted as a viral restriction factor.
Collapse
Affiliation(s)
- John B. Moldovan
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (JBM); (JVM)
| | - John V. Moran
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan, United States of America
- Departments of Human Genetics and Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (JBM); (JVM)
| |
Collapse
|
32
|
Abstract
Although members of the L1 (LINE-1) clade of non-LTR retrotransposons can be deleterious, the L1 clade has remained active in most mammals for ∼100 million years and generated almost 40% of the human genome. The details of L1-host interaction are largely unknown, however. Here we report that L1 activity requires phosphorylation of the protein encoded by the L1 ORF1 (ORF1p). Critical phospho-acceptor residues (two serines and two threonines) reside in four conserved proline-directed protein kinase (PDPK) target sites. The PDPK family includes mitogen-activated protein kinases and cyclin-dependent kinases. Mutation of any PDPK phospho-acceptor inhibits L1 retrotransposition. The phosphomimetic aspartic acid can restore activity at the two serine sites, but not at either threonine site, where it is strongly inhibitory. ORF1p also contains conserved PDPK docking sites, which promote specific interaction of PDPKs with their targets. As expected, mutations in these sites also inhibit L1 activity. PDPK mutations in ORF1p that inactivate L1 have no significant effect on the ability of ORF1p to anneal RNA in vitro, an important biochemical property of the protein. We show that phosphorylated PDPK sites in ORF1p are required for an interaction with the peptidyl prolyl isomerase 1 (Pin1), a critical component of PDPK-mediated regulation. Pin1 acts via isomerization of proline side chains at phosphorylated PDPK motifs, thereby affecting substrate conformation and activity. Our demonstration that L1 activity is dependent on and integrated with cellular phosphorylation regulatory cascades significantly increases our understanding of interactions between L1 and its host.
Collapse
|
33
|
Kines KJ, Sokolowski M, deHaro DL, Christian CM, Belancio VP. Potential for genomic instability associated with retrotranspositionally-incompetent L1 loci. Nucleic Acids Res 2014; 42:10488-502. [PMID: 25143528 PMCID: PMC4176336 DOI: 10.1093/nar/gku687] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Expression of the L1 retrotransposon can damage the genome through insertional mutagenesis and the generation of DNA double-strand breaks (DSBs). The majority of L1 loci in the human genome are 5'-truncated and therefore incapable of retrotransposition. While thousands of full-length L1 loci remain, most are retrotranspositionally-incompetent due to inactivating mutations. However, mutations leading to premature stop codons within the L1 ORF2 sequence may yield truncated proteins that retain a functional endonuclease domain. We demonstrate that some truncated ORF2 proteins cause varying levels of toxicity and DNA damage when chronically overexpressed in mammalian cells. Furthermore, transfection of some ORF2 constructs containing premature stop codons supported low levels of Alu retrotransposition, demonstrating the potential for select retrotranspositionally-incompetent L1 loci to generate genomic instability. This result suggests yet another plausible explanation for the relative success of Alu elements in populating the human genome. Our data suggest that a subset of retrotranspositionally-incompetent L1s, previously considered to be harmless to genomic integrity, may have the potential to cause chronic DNA damage by introducing DSBs and mobilizing Alu. These results imply that the number of known L1 loci in the human genome that potentially threaten its stability may not be limited to the retrotranspositionally active loci.
Collapse
Affiliation(s)
- Kristine J Kines
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, and Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Mark Sokolowski
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, and Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Dawn L deHaro
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, and Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Claiborne M Christian
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, and Tulane Center for Aging, New Orleans, LA 70112, USA
| | - Victoria P Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, Tulane Cancer Center, and Tulane Center for Aging, New Orleans, LA 70112, USA
| |
Collapse
|
34
|
Richardson SR, Narvaiza I, Planegger RA, Weitzman MD, Moran JV. APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. eLife 2014; 3:e02008. [PMID: 24843014 PMCID: PMC4003774 DOI: 10.7554/elife.02008] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/02/2014] [Indexed: 12/11/2022] Open
Abstract
Long INterspersed Element-1 (LINE-1 or L1) retrotransposition poses a mutagenic threat to human genomes. Human cells have therefore evolved strategies to regulate L1 retrotransposition. The APOBEC3 (A3) gene family consists of seven enzymes that catalyze deamination of cytidine nucleotides to uridine nucleotides (C-to-U) in single-strand DNA substrates. Among these enzymes, APOBEC3A (A3A) is the most potent inhibitor of L1 retrotransposition in cultured cell assays. However, previous characterization of L1 retrotransposition events generated in the presence of A3A did not yield evidence of deamination. Thus, the molecular mechanism by which A3A inhibits L1 retrotransposition has remained enigmatic. Here, we have used in vitro and in vivo assays to demonstrate that A3A can inhibit L1 retrotransposition by deaminating transiently exposed single-strand DNA that arises during the process of L1 integration. These data provide a mechanistic explanation of how the A3A cytidine deaminase protein can inhibit L1 retrotransposition.DOI: http://dx.doi.org/10.7554/eLife.02008.001.
Collapse
Affiliation(s)
- Sandra R Richardson
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, United States
| | - Iñigo Narvaiza
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, United States
| | - Randy A Planegger
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, United States
| | - Matthew D Weitzman
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and the Children's Hospital of Philadelphia, Philadelphia, United States
| | - John V Moran
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, United States Department of Internal Medicine, Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
35
|
Zhang A, Dong B, Doucet AJ, Moldovan JB, Moran JV, Silverman RH. RNase L restricts the mobility of engineered retrotransposons in cultured human cells. Nucleic Acids Res 2013; 42:3803-20. [PMID: 24371271 PMCID: PMC3973342 DOI: 10.1093/nar/gkt1308] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Retrotransposons are mobile genetic elements, and their mobility can lead to genomic instability. Retrotransposon insertions are associated with a diverse range of sporadic diseases, including cancer. Thus, it is not a surprise that multiple host defense mechanisms suppress retrotransposition. The 2′,5′-oligoadenylate (2-5A) synthetase (OAS)-RNase L system is a mechanism for restricting viral infections during the interferon antiviral response. Here, we investigated a potential role for the OAS-RNase L system in the restriction of retrotransposons. Expression of wild type (WT) and a constitutively active form of RNase L (NΔ385), but not a catalytically inactive RNase L mutant (R667A), impaired the mobility of engineered human LINE-1 (L1) and mouse intracisternal A-type particle retrotransposons in cultured human cells. Furthermore, WT RNase L, but not an inactive RNase L mutant (R667A), reduced L1 RNA levels and subsequent expression of the L1-encoded proteins (ORF1p and ORF2p). Consistently, confocal immunofluorescent microscopy demonstrated that WT RNase L, but not RNase L R667A, prevented formation of L1 cytoplasmic foci. Finally, siRNA-mediated depletion of endogenous RNase L in a human ovarian cancer cell line (Hey1b) increased the levels of L1 retrotransposition by ∼2-fold. Together, these data suggest that RNase L might function as a suppressor of structurally distinct retrotransposons.
Collapse
Affiliation(s)
- Ao Zhang
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine of Case Western Reserve University, Cleveland Clinic, Cleveland, OH, 44195, USA, Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA, Department of Human Genetics, Ann Arbor, MI 48109, USA, Cellular and Molecular Biology Program, Ann Arbor, MI 48109, USA, Department of Internal Medicine, Ann Arbor, MI 48109, USA and Howard Hughes Medical Institute, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
| | | | | | | | | | | |
Collapse
|
36
|
Heras SR, Macias S, Plass M, Fernandez N, Cano D, Eyras E, Garcia-Perez JL, Cáceres JF. The Microprocessor controls the activity of mammalian retrotransposons. Nat Struct Mol Biol 2013; 20:1173-81. [PMID: 23995758 PMCID: PMC3836241 DOI: 10.1038/nsmb.2658] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 07/29/2013] [Indexed: 12/18/2022]
Abstract
More than half of the human genome is made of transposable elements whose ongoing mobilization is a driving force in genetic diversity; however, little is known about how the host regulates their activity. Here, we show that the Microprocessor (Drosha-DGCR8), which is required for microRNA biogenesis, also recognizes and binds RNAs derived from human long interspersed element 1 (LINE-1), Alu and SVA retrotransposons. Expression analyses demonstrate that cells lacking a functional Microprocessor accumulate LINE-1 mRNA and encoded proteins. Furthermore, we show that structured regions of the LINE-1 mRNA can be cleaved in vitro by Drosha. Additionally, we used a cell culture-based assay to show that the Microprocessor negatively regulates LINE-1 and Alu retrotransposition in vivo. Altogether, these data reveal a new role for the Microprocessor as a post-transcriptional repressor of mammalian retrotransposons and a defender of human genome integrity.
Collapse
Affiliation(s)
- Sara R Heras
- 1] Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK. [2] Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government (GENYO), Granada, Spain. [3]
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Li X, Zhang J, Jia R, Cheng V, Xu X, Qiao W, Guo F, Liang C, Cen S. The MOV10 helicase inhibits LINE-1 mobility. J Biol Chem 2013; 288:21148-21160. [PMID: 23754279 DOI: 10.1074/jbc.m113.465856] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
LINE-1 (long interspersed element 1) is an autonomous non-long terminal repeat retrotransposon. Its replication often causes mutation and rearrangement of host genomic DNA. Accordingly, host cells have evolved mechanisms to control LINE-1 mobility. Here, we report that a helicase named MOV10 effectively suppresses LINE-1 transposition. Mutating the helicase motifs impairs this function of MOV10, suggesting that MOV10 requires its helicase activity to suppress LINE-1 replication. Further studies show that MOV10 post-transcriptionally diminishes the level of LINE-1 RNA. The association of MOV10 with both LINE-1 RNA and ORF1 suggests that MOV10 interacts with LINE-1 RNP and consequently causes its RNA degradation. These data demonstrate collectively that MOV10 contributes to the cellular control of LINE-1 replication.
Collapse
Affiliation(s)
- Xiaoyu Li
- From the Institute of Medicinal Biotechnology and
| | - Jianyong Zhang
- the Lady Davis Institute-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada,; the Departments of Medicine and
| | - Rui Jia
- Nankai University, Tianjin 300071, China
| | - Vicky Cheng
- the Lady Davis Institute-Jewish General Hospital, Montreal, Quebec H3T 1E2, Canada,; Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Xin Xu
- Nankai University, Tianjin 300071, China; the Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing 100050, China
| | | | - Fei Guo
- the Institute of Pathogen Biology, Chinese Academy of Medical Science, Beijing 100050, China
| | - Chen Liang
- From the Institute of Medicinal Biotechnology and; the Departments of Medicine and; Microbiology and Immunology, McGill University, Montreal, Quebec H3A 2B4, Canada, and.
| | - Shan Cen
- From the Institute of Medicinal Biotechnology and.
| |
Collapse
|
38
|
Macfarlane CM, Collier P, Rahbari R, Beck CR, Wagstaff JF, Igoe S, Moran JV, Badge RM. Transduction-specific ATLAS reveals a cohort of highly active L1 retrotransposons in human populations. Hum Mutat 2013; 34:974-85. [PMID: 23553801 DOI: 10.1002/humu.22327] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 03/15/2013] [Indexed: 11/09/2022]
Abstract
Long INterspersed Element-1 (LINE-1 or L1) retrotransposons are the only autonomously active transposable elements in the human genome. The average human genome contains ∼80-100 active L1s, but only a subset of these L1s are highly active or 'hot'. Human L1s are closely related in sequence, making it difficult to decipher progenitor/offspring relationships using traditional phylogenetic methods. However, L1 mRNAs can sometimes bypass their own polyadenylation signal and instead utilize fortuitous polyadenylation signals in 3' flanking genomic DNA. Retrotransposition of the resultant mRNAs then results in lineage specific sequence "tags" (i.e., 3' transductions) that mark the descendants of active L1 progenitors. Here, we developed a method (Transduction-Specific Amplification Typing of L1 Active Subfamilies or TS-ATLAS) that exploits L1 3' transductions to identify active L1 lineages in a genome-wide context. TS-ATLAS enabled the characterization of a putative active progenitor of one L1 lineage that includes the disease causing L1 insertion L1RP , and the identification of new retrotransposition events within two other "hot" L1 lineages. Intriguingly, the analysis of the newly discovered transduction lineage members suggests that L1 polyadenylation, even within a lineage, is highly stochastic. Thus, TS-ATLAS provides a new tool to explore the dynamics of L1 lineage evolution and retrotransposon biology.
Collapse
|
39
|
The minimal active human SVA retrotransposon requires only the 5'-hexamer and Alu-like domains. Mol Cell Biol 2012; 32:4718-26. [PMID: 23007156 DOI: 10.1128/mcb.00860-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
RNA-based duplication mediated by reverse transcriptase (RT), a process termed retrotransposition, is ongoing in humans and is a source of significant inter- and perhaps intraindividual genomic variation. The long interspersed element 1 (LINE-1 or L1) ORF2 protein is the genomic source for RT activity required for mobilization of its own RNA in cis and other RNAs, such as SINE/variable-number tandem-repeat (VNTR)/Alu (SVA) elements, in trans. SVA elements are ~2-kb hominid-specific noncoding RNAs that have resulted in single-gene disease in humans through insertional mutagenesis or aberrant mRNA splicing. Here, using an SVA retrotransposition cell culture assay in U2OS cells, we investigated SVA domains important in L1-mediated SVA retrotransposition. Partial- and whole-domain deletions revealed that removal of either the Alu-like or SINE-R domain in the context of a full-length SVA has little to no effect, whereas removal of the CT hexamer or the VNTR domain can result in a 75% decrease in activity. Additional experiments demonstrate that the Alu-like fragment alone can retrotranspose at low levels while the addition of the CT hexamer can enhance activity as much as 2-fold compared to that of the full-length SVA. These results suggest that no SVA domain is essential for retrotransposition in U2OS cells and that the 5' end of SVA (hexamer and Alu-like domain) is sufficient for retrotransposition.
Collapse
|
40
|
Wagstaff BJ, Kroutter EN, Derbes RS, Belancio VP, Roy-Engel AM. Molecular reconstruction of extinct LINE-1 elements and their interaction with nonautonomous elements. Mol Biol Evol 2012; 30:88-99. [PMID: 22918960 PMCID: PMC3525338 DOI: 10.1093/molbev/mss202] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Non-long terminal repeat retroelements continue to impact the human genome through
cis-activity of long interspersed element-1 (LINE-1 or L1) and trans-mobilization of Alu.
Current activity is dominated by modern subfamilies of these elements, leaving behind an
evolutionary graveyard of extinct Alu and L1 subfamilies. Because Alu is a nonautonomous
element that relies on L1 to retrotranspose, there is the possibility that competition
between these elements has driven selection and antagonistic coevolution between Alu and
L1. Through analysis of synonymous versus nonsynonymous codon evolution across L1
subfamilies, we find that the C-terminal ORF2 cys domain experienced a dramatic increase
in amino acid substitution rate in the transition from L1PA5 to L1PA4 subfamilies. This
observation coincides with the previously reported rapid evolution of ORF1 during the same
transition period. Ancestral Alu sequences have been previously reconstructed, as their
short size and ubiquity have made it relatively easy to retrieve consensus sequences from
the human genome. In contrast, creating constructs of extinct L1 copies is a more
laborious task. Here, we report our efforts to recreate and evaluate the
retrotransposition capabilities of two ancestral L1 elements, L1PA4 and L1PA8 that were
active ∼18 and ∼40 Ma, respectively. Relative to the modern L1PA1 subfamily, we
find that both elements are similarly active in a cell culture retrotransposition assay in
HeLa, and both are able to efficiently trans-mobilize Alu elements from several
subfamilies. Although we observe some variation in Alu subfamily retrotransposition
efficiency, any coevolution that may have occurred between LINEs and SINEs is not evident
from these data. Population dynamics and stochastic variation in the number of active
source elements likely play an important role in individual LINE or SINE subfamily
amplification. If coevolution also contributes to changing retrotransposition rates and
the progression of subfamilies, cell factors are likely to play an important mediating
role in changing LINE-SINE interactions over evolutionary time.
Collapse
Affiliation(s)
- Bradley J Wagstaff
- Department of Epidemiology and Tulane Cancer Center, Tulane University, New Orleans, LA, USA
| | | | | | | | | |
Collapse
|
41
|
Sacha JB, Kim IJ, Chen L, Ullah JH, Goodwin DA, Simmons HA, Schenkman DI, von Pelchrzim F, Gifford RJ, Nimityongskul FA, Newman LP, Wildeboer S, Lappin PB, Hammond D, Castrovinci P, Piaskowski SM, Reed JS, Beheler KA, Tharmanathan T, Zhang N, Muscat-King S, Rieger M, Fernandes C, Rumpel K, Gardner JP, Gebhard DH, Janies J, Shoieb A, Pierce BG, Trajkovic D, Rakasz E, Rong S, McCluskie M, Christy C, Merson JR, Jones RB, Nixon DF, Ostrowski MA, Loudon PT, Pruimboom-Brees IM, Sheppard NC. Vaccination with cancer- and HIV infection-associated endogenous retrotransposable elements is safe and immunogenic. THE JOURNAL OF IMMUNOLOGY 2012; 189:1467-79. [PMID: 22745376 DOI: 10.4049/jimmunol.1200079] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The expression of endogenous retrotransposable elements, including long interspersed nuclear element 1 (LINE-1 or L1) and human endogenous retrovirus, accompanies neoplastic transformation and infection with viruses such as HIV. The ability to engender immunity safely against such self-antigens would facilitate the development of novel vaccines and immunotherapies. In this article, we address the safety and immunogenicity of vaccination with these elements. We used immunohistochemical analysis and literature precedent to identify potential off-target tissues in humans and establish their translatability in preclinical species to guide safety assessments. Immunization of mice with murine L1 open reading frame 2 induced strong CD8 T cell responses without detectable tissue damage. Similarly, immunization of rhesus macaques with human LINE-1 open reading frame 2 (96% identity with macaque), as well as simian endogenous retrovirus-K Gag and Env, induced polyfunctional T cell responses to all Ags, and Ab responses to simian endogenous retrovirus-K Env. There were no adverse safety or pathological findings related to vaccination. These studies provide the first evidence, to our knowledge, that immune responses can be induced safely against this class of self-antigens and pave the way for investigation of them as HIV- or tumor-associated targets.
Collapse
Affiliation(s)
- Jonah B Sacha
- AIDS Vaccine Laboratory and Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI 53705, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Hancks DC, Goodier JL, Mandal PK, Cheung LE, Kazazian HH. Retrotransposition of marked SVA elements by human L1s in cultured cells. Hum Mol Genet 2011; 20:3386-400. [PMID: 21636526 DOI: 10.1093/hmg/ddr245] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Human retrotransposons generate structural variation and genomic diversity through ongoing retrotransposition and non-allelic homologous recombination. Cell culture retrotransposition assays have provided great insight into the genomic impact of retrotransposons, in particular, LINE-1(L1) and Alu elements; however, no such assay exists for the youngest active human retrotransposon, SINE-VNTR-Alu (SVA). Here we report the development of an SVA cell culture retrotransposition assay. We marked several SVAs with either neomycin or EGFP retrotransposition indicator cassettes. Engineered SVAs retrotranspose using L1 proteins supplemented in trans in multiple cell lines, including U2OS osteosarcoma cells where SVA retrotransposition is equal to that of an engineered L1. Engineered SVAs retrotranspose at 1-54 times the frequency of a marked pseudogene in HeLa HA cells. Furthermore, our data suggest a variable requirement for L1 ORF1p for SVA retrotransposition. Recovered engineered SVA insertions display all the hallmarks of LINE-1 retrotransposition and some contain 5' and 3' transductions, which are common for genomic SVAs. Of particular interest is the fact that four out of five insertions recovered from one SVA are full-length, with the 5' end of these insertions beginning within 5 nt of the CMV promoter transcriptional start site. This assay demonstrates that SVA elements are indeed mobilized in trans by L1. Previously intractable questions regarding SVA biology can now be addressed.
Collapse
Affiliation(s)
- Dustin C Hancks
- Cell and Molecular Biology Graduate Group, The University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | |
Collapse
|
43
|
Wagstaff BJ, Barnerβoi M, Roy-Engel AM. Evolutionary conservation of the functional modularity of primate and murine LINE-1 elements. PLoS One 2011; 6:e19672. [PMID: 21572950 PMCID: PMC3091869 DOI: 10.1371/journal.pone.0019672] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 04/03/2011] [Indexed: 11/18/2022] Open
Abstract
LINE-1 (L1) retroelements emerged in mammalian genomes over 80 million years ago with a few dominant subfamilies amplifying over discrete time periods that led to distinct human and mouse L1 lineages. We evaluated the functional conservation of L1 sequences by comparing retrotransposition rates of chimeric human-rodent L1 constructs to their parental L1 counterparts. Although amino acid conservation varies from ∼35% to 63% for the L1 ORF1p and ORF2p, most human and mouse L1 sequences can be functionally exchanged. Replacing either ORF1 or ORF2 to create chimeric human-mouse L1 elements did not adversely affect retrotransposition. The mouse ORF2p retains retrotransposition-competency to support both Alu and L1 mobilization when any of the domain sequences we evaluated were substituted with human counterparts. However, the substitution of portions of the mouse cys-domain into the human ORF2p reduces both L1 retrotransposition and Alu trans-mobilization by 200–1000 fold. The observed loss of ORF2p function is independent of the endonuclease or reverse transcriptase activities of ORF2p and RNA interaction required for reverse transcription. In addition, the loss of function is physically separate from the cysteine-rich motif sequence previously shown to be required for RNP formation. Our data suggest an additional role of the less characterized carboxy-terminus of the L1 ORF2 protein by demonstrating that this domain, in addition to mediating RNP interaction(s), provides an independent and required function for the retroelement amplification process. Our experiments show a functional modularity of most of the LINE sequences. However, divergent evolution of interactions within L1 has led to non-reciprocal incompatibilities between human and mouse ORF2 cys-domain sequences.
Collapse
Affiliation(s)
- Bradley J. Wagstaff
- Tulane Cancer Center, Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Miriam Barnerβoi
- Tulane Cancer Center, Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
| | - Astrid M. Roy-Engel
- Tulane Cancer Center, Department of Epidemiology, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
44
|
Abstract
The average human genome contains a small cohort of active L1 retrotransposons that encode two proteins (ORF1p and ORF2p) required for their mobility (i.e., retrotransposition). Prior studies demonstrated that human ORF1p, L1 RNA, and an ORF2p-encoded reverse transcriptase activity are present in ribonucleoprotein (RNP) complexes. However, the inability to physically detect ORF2p from engineered human L1 constructs has remained a technical challenge in the field. Here, we have employed an epitope/RNA tagging strategy with engineered human L1 retrotransposons to identify ORF1p, ORF2p, and L1 RNA in a RNP complex. We next used this system to assess how mutations in ORF1p and/or ORF2p impact RNP formation. Importantly, we demonstrate that mutations in the coiled-coil domain and RNA recognition motif of ORF1p, as well as the cysteine-rich domain of ORF2p, reduce the levels of ORF1p and/or ORF2p in L1 RNPs. Finally, we used this tagging strategy to localize the L1–encoded proteins and L1 RNA to cytoplasmic foci that often were associated with stress granules. Thus, we conclude that a precise interplay among ORF1p, ORF2p, and L1 RNA is critical for L1 RNP assembly, function, and L1 retrotransposition. Long Interspersed Element-1 (LINE-1 or L1) sequences are the predominant class of autonomous retrotransposons in the human genome and comprise an astounding 17% of human DNA. Although the majority of L1s are considered to be “dead,” an average human genome contains ∼80–100 active L1s. Active L1s encode two proteins (ORF1p and ORF2p) that are required for mobility (retrotransposition) by a “copy and paste” mechanism termed target-site primed reverse transcription. Prior experiments suggested that ORF1p, ORF2p reverse transcriptase activity, and L1 mRNA associate in ribonucleoprotein (RNP) particles and that RNP formation is a necessary step in L1 retrotransposition. However, the difficulty in detecting ORF2p from engineered human L1s has prevented a thorough understanding of its role in L1 retrotransposition. Here, we have exploited epitope and/or RNA–tagging strategies to detect and characterize a “basal” RNP complex from engineered human L1s. We also expanded on previous studies and characterized how mutations in conserved functional domains of ORF1p and ORF2p can adversely affect L1 RNP formation/function. Finally, our strategy allowed us to detect the L1–encoded proteins and L1 RNA in cytoplasmic foci. Thus, we have developed and employed a system to gain greater understanding of LINE-1 retrotransposition at the molecular level.
Collapse
|
45
|
LINE-1 retrotransposition activity in human genomes. Cell 2010; 141:1159-70. [PMID: 20602998 DOI: 10.1016/j.cell.2010.05.021] [Citation(s) in RCA: 451] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/23/2010] [Accepted: 05/13/2010] [Indexed: 01/23/2023]
Abstract
Highly active (i.e., "hot") long interspersed element-1 (LINE-1 or L1) sequences comprise the bulk of retrotransposition activity in the human genome; however, the abundance of hot L1s in the human population remains largely unexplored. Here, we used a fosmid-based, paired-end DNA sequencing strategy to identify 68 full-length L1s that are differentially present among individuals but are absent from the human genome reference sequence. The majority of these L1s were highly active in a cultured cell retrotransposition assay. Genotyping 26 elements revealed that two L1s are only found in Africa and that two more are absent from the H952 subset of the Human Genome Diversity Panel. Therefore, these results suggest that hot L1s are more abundant in the human population than previously appreciated, and that ongoing L1 retrotransposition continues to be a major source of interindividual genetic variation.
Collapse
|
46
|
The L1 retrotransposition assay: a retrospective and toolkit. Methods 2009; 49:219-26. [PMID: 19398011 DOI: 10.1016/j.ymeth.2009.04.012] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Revised: 03/18/2009] [Accepted: 04/10/2009] [Indexed: 11/23/2022] Open
Abstract
LINE1s (L1s) are a class of mammalian non-LTR (long terminal repeat) retroelements that make up nearly 20% of the human genome. Because of the difficulty of studying the mobilization of endogenous L1s, an exogenous cell culture retrotransposition assay has become integral to research in L1 biology. This assay has allowed for investigation of the mechanism and consequences of mobilization of this retroelement, both in cell lines and in whole animal models. In this paper, we outline the genesis of in vitro retrotransposition systems which led to the development of the L1 retrotransposition assay in the mid-1990s. We then provide a retrospective, describing the many uses and variations of this assay, ending with caveats and predictions for future developments. Finally, we provide detailed protocols on the application of the retrotransposition assay, including lists of constructs available in the L1 research community and cell lines in which this assay has been applied.
Collapse
|
47
|
Kroutter EN, Belancio VP, Wagstaff BJ, Roy-Engel AM. The RNA polymerase dictates ORF1 requirement and timing of LINE and SINE retrotransposition. PLoS Genet 2009; 5:e1000458. [PMID: 19390602 PMCID: PMC2666806 DOI: 10.1371/journal.pgen.1000458] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 03/25/2009] [Indexed: 01/26/2023] Open
Abstract
Mobile elements comprise close to one half of the mass of the human genome. Only LINE-1 (L1), an autonomous non-Long Terminal Repeat (LTR) retrotransposon, and its non-autonomous partners—such as the retropseudogenes, SVA, and the SINE, Alu—are currently active human retroelements. Experimental evidence shows that Alu retrotransposition depends on L1 ORF2 protein, which has led to the presumption that LINEs and SINEs share the same basic insertional mechanism. Our data demonstrate clear differences in the time required to generate insertions between marked Alu and L1 elements. In our tissue culture system, the process of L1 insertion requires close to 48 hours. In contrast to the RNA pol II-driven L1, we find that pol III transcribed elements (Alu, the rodent SINE B2, and the 7SL, U6 and hY sequences) can generate inserts within 24 hours or less. Our analyses demonstrate that the observed retrotransposition timing does not dictate insertion rate and is independent of the type of reporter cassette utilized. The additional time requirement by L1 cannot be directly attributed to differences in transcription, transcript length, splicing processes, ORF2 protein production, or the ability of functional ORF2p to reach the nucleus. However, the insertion rate of a marked Alu transcript drastically drops when driven by an RNA pol II promoter (CMV) and the retrotransposition timing parallels that of L1. Furthermore, the “pol II Alu transcript” behaves like the processed pseudogenes in our retrotransposition assay, requiring supplementation with L1 ORF1p in addition to ORF2p. We postulate that the observed differences in retrotransposition kinetics of these elements are dictated by the type of RNA polymerase generating the transcript. We present a model that highlights the critical differences of LINE and SINE transcripts that likely define their retrotransposition timing. SINE retroelement amplification has been extremely successful in the human genome. Although these non-autonomous elements parasitize factors from LINEs, both the human Alu and the cumulative rodent SINEs have generated over one million copies in their respective hosts. Alu-induced mutagenesis is responsible for the majority of the documented instances of human retroelement insertion-induced disease. Our data indicate that SINEs require a shorter period of time to complete insertion than L1s, possibly contributing to the ability of Alu elements to effectively parasitize L1 components. We demonstrate that RNA polymerase changes the timing Alu requires to complete retrotransposition and creates the need for the L1 ORF1protein in addition to ORF2p. We postulate that the way cells manage pol III and pol II (mRNA) transcripts affects the timing of a transcript going through the retrotransposition pathway. We propose a model that highlights some of the critical differences of LINE and SINE transcripts that likely play a crucial role in their retrotransposition process.
Collapse
Affiliation(s)
- Emily N. Kroutter
- Tulane Cancer Center SL-66, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Victoria P. Belancio
- Department of Structural and Cellular Biology, Tulane School of Medicine, New Orleans, Louisiana, United States of America
- Tulane Center for Aging, Tulane School of Medicine, New Orleans, Louisiana, United States of America
| | - Bradley J. Wagstaff
- Tulane Cancer Center SL-66, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
| | - Astrid M. Roy-Engel
- Tulane Cancer Center SL-66, Tulane University Health Sciences Center, New Orleans, Louisiana, United States of America
- Department of Epidemiology, Tulane School of Public Health and Tropical Medicine, New Orleans, Louisiana, United States of America
- * E-mail:
| |
Collapse
|
48
|
Georgiou I, Noutsopoulos D, Dimitriadou E, Markopoulos G, Apergi A, Lazaros L, Vaxevanoglou T, Pantos K, Syrrou M, Tzavaras T. Retrotransposon RNA expression and evidence for retrotransposition events in human oocytes. Hum Mol Genet 2009; 18:1221-8. [PMID: 19147684 DOI: 10.1093/hmg/ddp022] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although human diseases of retrotransposition-derived etiology have been documented, retrotransposon RNA expression and the occurrence of retrotransposition events in the human oocyte are not studied. We investigated the RNA expression of L1 and HERV-K10 retrotransposons in human oocytes by RT-PCR analysis with designed primers. Using denucleated germinal vesicles (GVs), we detected RT-PCR products of expressed L1, HERV-K10 and, unexpectedly, SINE-R, VNTR and Alu (SVA) retrotransposons. Their transcript specificities were identified as such following RNA-FISH and their origin by cloning and sequence alignment analyses. Assessing the expression level in comparison with somatic cells by densitometry analysis, we found that although in normal lymphocytes and transformed HeLa cells their profile was in an order of L1 > HERV-K10 > SVA, remarkably this was reversed in oocytes. To investigate whether de novo retrotransposition events occur and reverse transcriptases are expressed in the human oocyte, we introduced in GVs either a retrotransposition active human L1 or mouse reverse transcriptase deficient-VL30 retrotransposon tagged with an EGFP-based retrotransposition cassette. Interestingly, in both the cases, we observed EGFP-positive oocytes, associated with an abnormal morphology for L1 and granulation for VL30, and the retrotransposition events were confirmed by PCR. Our results: (i) show that L1, HERV-K10 and SVA retrotransposons are transcriptionally expressed and (ii) provide evidence, for the first time, for retrotransposition events occurring in the human oocyte. These findings suggest that both, network of retrotransposon transcripts and controlled retrotranspositions, might serve important functions required for oocyte development and fertilization while the uncontrolled ones might explain the onset of genetic disorders.
Collapse
Affiliation(s)
- Ioannis Georgiou
- Laboratory of Reproductive Genetics, Medical School, University of Ioannina, Ioannina, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Walser JC, Ponger L, Furano AV. CpG dinucleotides and the mutation rate of non-CpG DNA. Genome Res 2008; 18:1403-14. [PMID: 18550801 DOI: 10.1101/gr.076455.108] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The neutral mutation rate is equal to the base substitution rate when the latter is not affected by natural selection. Differences between these rates may reveal that factors such as natural selection, linkage, or a mutator locus are affecting a given sequence. We examined the neutral base substitution rate by measuring the sequence divergence of approximately 30,000 pairs of inactive orthologous L1 retrotransposon sequences interspersed throughout the human and chimpanzee genomes. In contrast to other studies, we related ortholog divergence to the time (age) that the L1 sequences resided in the genome prior to the chimpanzee and human speciation. As expected, the younger orthologs contained more hypermutable CpGs than the older ones because of their conversion to TpGs (and CpAs). Consequently, the younger orthologs accumulated more CpG mutations than the older ones during the approximately 5 million years since the human and chimpanzee lineages separated. But during this same time, the younger orthologs also accumulated more non-CpG mutations than the older ones. In fact, non-CpG and CpG mutations showed an almost perfect (R2 = 0.98) correlation for approximately 97% of the ortholog pairs. The correlation is independent of G + C content, recombination rate, and chromosomal location. Therefore, it likely reflects an intrinsic effect of CpGs, or mutations thereof, on non-CpG DNA rather than the joint manifestation of the chromosomal environment. The CpG effect is not uniform for all regions of non-CpG DNA. Therefore, the mutation rate of non-CpG DNA is contingent to varying extents on local CpG content. Aside from their implications for mutational mechanisms, these results indicate that a precise determination of a uniform genome-wide neutral mutation rate may not be attainable.
Collapse
Affiliation(s)
- Jean-Claude Walser
- Section on Genomic Structure and Function, Laboratory of Molecular and Cellular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | | | |
Collapse
|
50
|
Wallace N, Wagstaff BJ, Deininger PL, Roy-Engel AM. LINE-1 ORF1 protein enhances Alu SINE retrotransposition. Gene 2008; 419:1-6. [PMID: 18534786 DOI: 10.1016/j.gene.2008.04.007] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 04/15/2008] [Accepted: 04/15/2008] [Indexed: 11/17/2022]
Abstract
Retroelements have contributed over one third of the human genome mass. The currently active LINE-1 (L1) codes for two proteins (ORF1p and ORF2p), both strictly required for retrotransposition. In contrast, the non-coding parasitic SINE (Alu) only appears to need the L1 ORF2p for its own amplification. This requirement was previously determined using a tissue culture assay system in human cells (HeLa). Because HeLa are likely to express functional L1 proteins, it is possible that low levels of endogenous ORF1p are necessary for the observed tagged Alu mobilization. By individually expressing ORF1 and ORF2 proteins from both human (L1RP and LRE3) and rodent (L1A102 and L1spa) L1 sources, we demonstrate that increasing amounts of ORF1 expressing vector enhances tagged Alu mobilization in HeLa cells. In addition, using chicken fibroblast cells as an alternate cell culture source, we confirmed that ORF1p is not strictly required for Alu mobilization in our assay. Supporting our observations in HeLa cells, we find that tagged Alu retrotransposition is improved by supplementation of ORF1p in the cultured chicken cells. We postulate that L1 ORF1p plays either a direct or indirect role in enhancing the interaction between the Alu RNA and the required factors needed for its retrotransposition.
Collapse
Affiliation(s)
- Nicholas Wallace
- Tulane Cancer Center SL-66, Deparment of Epidemiology, Tulane University Health Sciences Center, 1430 Tulane Ave., New Orleans, LA 70112, USA
| | | | | | | |
Collapse
|