1
|
Xue J, Zhang H, Zhao Q, Cui S, Yu K, Sun R, Yu Y. Construction of Yeast One-Hybrid Library of Alternaria oxytropis and Screening of Transcription Factors Regulating swnK Gene Expression. J Fungi (Basel) 2023; 9:822. [PMID: 37623593 PMCID: PMC10455089 DOI: 10.3390/jof9080822] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/26/2023] Open
Abstract
The indolizidine alkaloid-swainsonine (SW) is the main toxic component of locoweeds and the main cause of locoweed poisoning in grazing animals. The endophytic fungi, Alternaria Section Undifilum spp., are responsible for the biosynthesis of SW in locoweeds. The swnK gene is a multifunctional complex enzyme encoding gene in fungal SW biosynthesis, and its encoding product plays a key role in the multistep catalytic synthesis of SW by fungi using pipecolic acid as a precursor. However, the transcriptional regulation mechanism of the swnK gene is still unclear. To identify the transcriptional regulators involved in the swnK gene in endophytic fungi of locoweeds, we first analyzed the upstream non-coding region of the swnK gene in the A. oxytropis UA003 strain and predicted its high transcriptional activity region combined with dual-luciferase reporter assay. Then, a yeast one-hybrid library of A. oxytropis UA003 strain was constructed, and the transcriptional regulatory factors that may bind to the high-transcriptional activity region of the upstream non-coding region of the swnK gene were screened by this system. The results showed that the high transcriptional activity region was located at -656 bp and -392 bp of the upstream regulatory region of the swnK gene. A total of nine candidate transcriptional regulator molecules, including a C2H2 type transcription factor, seven annotated proteins, and an unannotated protein, were screened out through the Y1H system, which were bound to the upstream high transcriptional activity region of the swnK gene. This study provides new insight into the transcriptional regulation of the swnK gene and lays the foundation for further exploration of the regulatory mechanisms of SW biosynthesis in fungal endophytic locoweeds.
Collapse
Affiliation(s)
- Jiaqi Xue
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Haodong Zhang
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Qingmei Zhao
- College of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Shengwei Cui
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Kun Yu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Ruohan Sun
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| | - Yongtao Yu
- School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
- Ningxia Key Laboratory of Ruminant Molecular and Cellular Breeding, School of Animal Science and Technology, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
2
|
Marintchev A, Ito T. eIF2B and the Integrated Stress Response: A Structural and Mechanistic View. Biochemistry 2020; 59:1299-1308. [PMID: 32200625 DOI: 10.1021/acs.biochem.0c00132] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The eukaryotic translation initiation factor eIF2 is a GTPase, which brings the initiator Met-tRNAi to the ribosome as the eIF2-GTP·Met-tRNAi ternary complex (TC). TC regeneration is catalyzed by the guanine nucleotide exchange factor (GEF) eIF2B. eIF2 phosphorylation by several stress-induced kinases converts it into a competitive inhibitor of eIF2B. Inhibition of eIF2B activity lowers cellular TC concentrations, which in turn triggers the integrated stress response (ISR). Depending on its degree of activation and duration, the ISR protects the cell from the stress or can itself induce apoptosis. ISR dysregulation is a causative factor in the pathology of multiple neurodegenerative disorders, while ISR inhibitors are neuroprotective. The realization that eIF2B is a promising therapeutic target has triggered significant interest in its structure and its mechanisms of action and regulation. Recently, four groups published the cryo-electron microscopy structures of eIF2B with its substrate eIF2 and/or its inhibitor, phosphorylated eIF2 [eIF2(α-P)]. While all three structures of the nonproductive eIF2B·eIF2(α-P) complex are similar to each other, there is a sharp disagreement between the published structures of the productive eIF2B·eIF2 complex. One group reports a structure similar to that of the nonproductive complex, whereas two others observe a vastly different eIF2B·eIF2 complex. Here, we discuss the recent reports on the structure, function, and regulation of eIF2B; the preclinical data on the use of ISR inhibitors for the treatment of neurodegenerative disorders; and how the new structural and biochemical information can inform and influence the use of eIF2B as a therapeutic target.
Collapse
Affiliation(s)
- Assen Marintchev
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - Takuhiro Ito
- RIKEN Center for Biosystems Dynamics Research, Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
3
|
Gordiyenko Y, Llácer JL, Ramakrishnan V. Structural basis for the inhibition of translation through eIF2α phosphorylation. Nat Commun 2019; 10:2640. [PMID: 31201334 PMCID: PMC6572841 DOI: 10.1038/s41467-019-10606-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 05/10/2019] [Indexed: 11/29/2022] Open
Abstract
One of the responses to stress by eukaryotic cells is the down-regulation of protein synthesis by phosphorylation of translation initiation factor eIF2. Phosphorylation results in low availability of the eIF2 ternary complex (eIF2-GTP-tRNAi) by affecting the interaction of eIF2 with its GTP-GDP exchange factor eIF2B. We have determined the cryo-EM structure of yeast eIF2B in complex with phosphorylated eIF2 at an overall resolution of 4.2 Å. Two eIF2 molecules bind opposite sides of an eIF2B hetero-decamer through eIF2α-D1, which contains the phosphorylated Ser51. eIF2α-D1 is mainly inserted between the N-terminal helix bundle domains of δ and α subunits of eIF2B. Phosphorylation of Ser51 enhances binding to eIF2B through direct interactions of phosphate groups with residues in eIF2Bα and indirectly by inducing contacts of eIF2α helix 58–63 with eIF2Bδ leading to a competition with Met-tRNAi. During stress, protein synthesis is inhibited through phosphorylation of the initiation factor eIF2 on its alpha subunit and its interaction with eIF2B. Here the authors describe a structure of the yeast eIF2B in complex with its substrate - the GDP-bound phosphorylated eIF2, providing insights into how phosphorylation results in a tighter interaction with eIF2B.
Collapse
Affiliation(s)
- Yuliya Gordiyenko
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - José Luis Llácer
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK. .,Instituto de Biomedicina de Valencia del Consejo Superior de Investigaciones Científicas and CIBERER-ISCIII, Valencia, 46010, Spain.
| | - V Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| |
Collapse
|
4
|
The structural basis of translational control by eIF2 phosphorylation. Nat Commun 2019; 10:2136. [PMID: 31086188 PMCID: PMC6513899 DOI: 10.1038/s41467-019-10167-3] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 04/23/2019] [Indexed: 12/17/2022] Open
Abstract
Protein synthesis in eukaryotes is controlled by signals and stresses via a common pathway, called the integrated stress response (ISR). Phosphorylation of the translation initiation factor eIF2 alpha at a conserved serine residue mediates translational control at the ISR core. To provide insight into the mechanism of translational control we have determined the structures of eIF2 both in phosphorylated and unphosphorylated forms bound with its nucleotide exchange factor eIF2B by electron cryomicroscopy. The structures reveal that eIF2 undergoes large rearrangements to promote binding of eIF2α to the regulatory core of eIF2B comprised of the eIF2B alpha, beta and delta subunits. Only minor differences are observed between eIF2 and eIF2αP binding to eIF2B, suggesting that the higher affinity of eIF2αP for eIF2B drives translational control. We present a model for controlled nucleotide exchange and initiator tRNA binding to the eIF2/eIF2B complex. During the integrated stress response, translation is modulated through the phosphorylation of translation initiation factor eIF2 and the formation of a complex with eIF2B. Here the authors present structures of the eIF2:eIF2B complex with and without phosphorylation, shedding light on how eIF2 phosphorylation regulates translation.
Collapse
|
5
|
Pavitt GD. Regulation of translation initiation factor eIF2B at the hub of the integrated stress response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1491. [PMID: 29989343 DOI: 10.1002/wrna.1491] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
Phosphorylation of the translation initiation factor eIF2 is one of the most widely used and well-studied mechanisms cells use to respond to diverse cellular stresses. Known as the integrated stress response (ISR), the control pathway uses modulation of protein synthesis to reprogram gene expression and restore homeostasis. Here the current knowledge of the molecular mechanisms of eIF2 activation and its control by phosphorylation at a single-conserved phosphorylation site, serine 51 are discussed with a major focus on the regulatory roles of eIF2B and eIF5 where a current molecular view of ISR control of eIF2B activity is presented. How genetic disorders affect eIF2 or eIF2B is discussed, as are syndromes where excess signaling through the ISR is a component. Finally, studies into the action of recently identified compounds that modulate the ISR in experimental systems are discussed; these suggest that eIF2B is a potential therapeutic target for a wide range of conditions. This article is categorized under: Translation > Translation Regulation.
Collapse
Affiliation(s)
- Graham D Pavitt
- Division Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
6
|
Malzer E, Dominicus CS, Chambers JE, Dickens JA, Mookerjee S, Marciniak SJ. The integrated stress response regulates BMP signalling through effects on translation. BMC Biol 2018; 16:34. [PMID: 29609607 PMCID: PMC5881181 DOI: 10.1186/s12915-018-0503-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 03/08/2018] [Indexed: 12/29/2022] Open
Abstract
Background Developmental pathways must be responsive to the environment. Phosphorylation of eIF2α enables a family of stress-sensing kinases to trigger the integrated stress response (ISR), which has pro-survival and developmental consequences. Bone morphogenetic proteins (BMPs) regulate multiple developmental processes in organisms from insects to mammals. Results Here we show in Drosophila that GCN2 antagonises BMP signalling through direct effects on translation and indirectly via the transcription factor crc (dATF4). Expression of a constitutively active GCN2 or loss of the eIF2α phosphatase dPPP1R15 impairs developmental BMP signalling in flies. In cells, inhibition of translation by GCN2 blocks downstream BMP signalling. Moreover, loss of d4E-BP, a target of crc, augments BMP signalling in vitro and rescues tissue development in vivo. Conclusion These results identify a novel mechanism by which the ISR modulates BMP signalling during development. Electronic supplementary material The online version of this article (10.1186/s12915-018-0503-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elke Malzer
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Caia S Dominicus
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Joseph E Chambers
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Jennifer A Dickens
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK.,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Souradip Mookerjee
- Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK
| | - Stefan J Marciniak
- Cambridge Institute for Medical Research (CIMR), University of Cambridge, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK. .,Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Hills Rd, Cambridge, CB2 0SP, UK.
| |
Collapse
|
7
|
Davis López SA, Griffith DA, Choi B, Cate JHD, Tullman-Ercek D. Evolutionary engineering improves tolerance for medium-chain alcohols in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:90. [PMID: 29619086 PMCID: PMC5880003 DOI: 10.1186/s13068-018-1089-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Yeast-based chemical production is an environmentally friendly alternative to petroleum-based production or processes that involve harsh chemicals. However, many potential alcohol biofuels, such as n-butanol, isobutanol and n-hexanol, are toxic to production organisms, lowering the efficiency and cost-effectiveness of these processes. We set out to improve the tolerance of Saccharomyces cerevisiae toward these alcohols. RESULTS We evolved the laboratory strain of S. cerevisiae BY4741 to be more tolerant toward n-hexanol and show that the mutations which confer tolerance occur in proteins of the translation initiation complex. We found that n-hexanol inhibits initiation of translation and evolved mutations in the α subunit of eIF2 and the γ subunit of its guanine exchange factor eIF2B rescue this inhibition. We further demonstrate that translation initiation is affected by other alcohols such as n-pentanol and n-heptanol, and that mutations in the eIF2 and eIF2B complexes greatly improve tolerance to these medium-chain alcohols. CONCLUSIONS We successfully generated S. cerevisiae strains that have improved tolerance toward medium-chain alcohols and have demonstrated that the causative mutations overcome inhibition of translation initiation by these alcohols.
Collapse
Affiliation(s)
| | - Douglas Andrew Griffith
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E-136, Evanston, IL 60208-3109 USA
| | - Brian Choi
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720 USA
| | - Jamie H. D. Cate
- Department of Chemistry, University of California, Berkeley, CA 94720 USA
| | - Danielle Tullman-Ercek
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Tech E-136, Evanston, IL 60208-3109 USA
| |
Collapse
|
8
|
Jennings MD, Kershaw CJ, Adomavicius T, Pavitt GD. Fail-safe control of translation initiation by dissociation of eIF2α phosphorylated ternary complexes. eLife 2017; 6:e24542. [PMID: 28315520 PMCID: PMC5404910 DOI: 10.7554/elife.24542] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 03/16/2017] [Indexed: 01/21/2023] Open
Abstract
Phosphorylation of eIF2α controls translation initiation by restricting the levels of active eIF2-GTP/Met-tRNAi ternary complexes (TC). This modulates the expression of all eukaryotic mRNAs and contributes to the cellular integrated stress response. Key to controlling the activity of eIF2 are translation factors eIF2B and eIF5, thought to primarily function with eIF2-GDP and TC respectively. Using a steady-state kinetics approach with purified proteins we demonstrate that eIF2B binds to eIF2 with equal affinity irrespective of the presence or absence of competing guanine nucleotides. We show that eIF2B can compete with Met-tRNAi for eIF2-GTP and can destabilize TC. When TC is formed with unphosphorylated eIF2, eIF5 can out-compete eIF2B to stabilize TC/eIF5 complexes. However when TC/eIF5 is formed with phosphorylated eIF2, eIF2B outcompetes eIF5 and destabilizes TC. These data uncover competition between eIF2B and eIF5 for TC and identify that phosphorylated eIF2-GTP translation initiation intermediate complexes can be inhibited by eIF2B.
Collapse
Affiliation(s)
- Martin D Jennings
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Christopher J Kershaw
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Tomas Adomavicius
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Molecular Determinants of the Regulation of Development and Metabolism by Neuronal eIF2α Phosphorylation in Caenorhabditis elegans. Genetics 2017; 206:251-263. [PMID: 28292919 DOI: 10.1534/genetics.117.200568] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/09/2017] [Indexed: 11/18/2022] Open
Abstract
Cell-nonautonomous effects of signaling in the nervous system of animals can influence diverse aspects of organismal physiology. We previously showed that phosphorylation of Ser49 of the α-subunit of eukaryotic translation initiation factor 2 (eIF2α) in two chemosensory neurons by PEK-1/PERK promotes entry of Caenorhabditis elegans into dauer diapause. Here, we identified and characterized the molecular determinants that confer sensitivity to effects of neuronal eIF2α phosphorylation on development and physiology of C. elegans Isolation and characterization of mutations in eif-2Ba encoding the α-subunit of eIF2B support a conserved role, previously established by studies in yeast, for eIF2Bα in providing a binding site for phosphorylated eIF2α to inhibit the exchange factor eIF2B catalytic activity that is required for translation initiation. We also identified a mutation in eif-2c, encoding the γ-subunit of eIF2, which confers insensitivity to the effects of phosphorylated eIF2α while also altering the requirement for eIF2Bγ. In addition, we show that constitutive expression of eIF2α carrying a phosphomimetic S49D mutation in the ASI pair of sensory neurons confers dramatic effects on growth, metabolism, and reproduction in adult transgenic animals, phenocopying systemic responses to starvation. Furthermore, we show that constitutive expression of eIF2α carrying a phosphomimetic S49D mutation in the ASI neurons enhances dauer entry through bypassing the requirement for nutritionally deficient conditions. Our data suggest that the state of eIF2α phosphorylation in the ASI sensory neuron pair may modulate internal nutrient sensing and signaling pathways, with corresponding organismal effects on development and metabolism.
Collapse
|
10
|
Jennings MD, Kershaw CJ, White C, Hoyle D, Richardson JP, Costello JL, Donaldson IJ, Zhou Y, Pavitt GD. eIF2β is critical for eIF5-mediated GDP-dissociation inhibitor activity and translational control. Nucleic Acids Res 2016; 44:9698-9709. [PMID: 27458202 PMCID: PMC5175340 DOI: 10.1093/nar/gkw657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 01/10/2023] Open
Abstract
In protein synthesis translation factor eIF2 binds initiator tRNA to ribosomes and facilitates start codon selection. eIF2 GDP/GTP status is regulated by eIF5 (GAP and GDI functions) and eIF2B (GEF and GDF activities), while eIF2α phosphorylation in response to diverse signals is a major point of translational control. Here we characterize a growth suppressor mutation in eIF2β that prevents eIF5 GDI and alters cellular responses to reduced eIF2B activity, including control of GCN4 translation. By monitoring the binding of fluorescent nucleotides and initiator tRNA to purified eIF2 we show that the eIF2β mutation does not affect intrinsic eIF2 affinities for these ligands, neither does it interfere with eIF2 binding to 43S pre-initiation complex components. Instead we show that the eIF2β mutation prevents eIF5 GDI stabilizing nucleotide binding to eIF2, thereby altering the off-rate of GDP from eIF2•GDP/eIF5 complexes. This enables cells to grow with reduced eIF2B GEF activity but impairs activation of GCN4 targets in response to amino acid starvation. These findings provide support for the importance of eIF5 GDI activity in vivo and demonstrate that eIF2β acts in concert with eIF5 to prevent premature release of GDP from eIF2γ and thereby ensure tight control of protein synthesis initiation.
Collapse
Affiliation(s)
- Martin D Jennings
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher J Kershaw
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher White
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Danielle Hoyle
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Jonathan P Richardson
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Joseph L Costello
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Ian J Donaldson
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Yu Zhou
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
11
|
Crystal structure of eukaryotic translation initiation factor 2B. Nature 2016; 531:122-5. [DOI: 10.1038/nature16991] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/12/2016] [Indexed: 12/15/2022]
|
12
|
Majumder M, Mitchell D, Merkulov S, Wu J, Guan BJ, Snider MD, Krokowski D, Yee VC, Hatzoglou M. Residues required for phosphorylation of translation initiation factor eIF2α under diverse stress conditions are divergent between yeast and human. Int J Biochem Cell Biol 2014; 59:135-41. [PMID: 25541374 DOI: 10.1016/j.biocel.2014.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/26/2014] [Accepted: 12/15/2014] [Indexed: 01/28/2023]
Abstract
PERK, PKR, HRI and GCN2 are the four mammalian kinases that phosphorylate the α subunit of the eukaryotic translation initiation factor 2 (eIF2α) on Ser51. This phosphorylation event is conserved among many species and attenuates protein synthesis in response to diverse stress conditions. In contrast, Saccharmyces cerevisiae expresses only the GCN2 kinase. It was demonstrated previously in S. cerevisiae that single point mutations in eIF2α's N-terminus severely impaired phosphorylation at Ser51. To assess whether similar recognition patterns are present in mammalian eIF2α, we expressed human eIF2α's with these mutations in mouse embryonic fibroblasts and assessed their phosphorylation under diverse stress conditions. Some of the mutations prevented the stress-induced phosphorylation of eIF2α by all mammalian kinases, thus defining amino acid residues in eIF2α (Gly 30, Leu 50, and Asp 83) that are required for substrate recognition. We also identified residues that were less critical or not required for recognition by the mammalian kinases (Ala 31, Met 44, Lys 79, and Tyr 81), even though they were essential for recognition of the yeast eIF2α by GCN2. We propose that mammalian eIF2α kinases evolved to maximize their interactions with the evolutionarily conserved Ser51 residue of eIF2α in response to diverse stress conditions, thus adding to the complex signaling pathways that mammalian cells have over simpler organisms.
Collapse
Affiliation(s)
- Mithu Majumder
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Daniel Mitchell
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Sergei Merkulov
- Virogene Technology, 11000 Cedar Ave., Cleveland, OH, United States
| | - Jing Wu
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Bo-Jhih Guan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Martin D Snider
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Dawid Krokowski
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States
| | - Vivien C Yee
- Department of Biochemistry, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| | - Maria Hatzoglou
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, United States.
| |
Collapse
|
13
|
Thakur M, Seo EJ, Dever TE. Variola virus E3L Zα domain, but not its Z-DNA binding activity, is required for PKR inhibition. RNA (NEW YORK, N.Y.) 2014; 20:214-27. [PMID: 24335187 PMCID: PMC3895273 DOI: 10.1261/rna.042341.113] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Responding to viral infection, the interferon-induced, double-stranded RNA (dsRNA)-activated protein kinase PKR phosphorylates translation initiation factor eIF2α to inhibit cellular and viral protein synthesis. To overcome this host defense mechanism, many poxviruses express the protein E3L, containing an N-terminal Z-DNA binding (Zα) domain and a C-terminal dsRNA-binding domain (dsRBD). While E3L is thought to inhibit PKR activation by sequestering dsRNA activators and by directly binding the kinase, the role of the Zα domain in PKR inhibition remains unclear. Here, we show that the E3L Zα domain is required to suppress the growth-inhibitory properties associated with expression of human PKR in yeast, to inhibit PKR kinase activity in vitro, and to reverse the inhibitory effects of PKR on reporter gene expression in mammalian cells treated with dsRNA. Whereas previous studies revealed that the Z-DNA binding activity of E3L is critical for viral pathogenesis, we identified point mutations in E3L that functionally uncouple Z-DNA binding and PKR inhibition. Thus, our studies reveal a molecular distinction between the nucleic acid binding and PKR inhibitory functions of the E3L Zα domain, and they support the notion that E3L contributes to viral pathogenesis by targeting PKR and other components of the cellular anti-viral defense pathway.
Collapse
|
14
|
Donnelly N, Gorman AM, Gupta S, Samali A. The eIF2α kinases: their structures and functions. Cell Mol Life Sci 2013; 70:3493-511. [PMID: 23354059 PMCID: PMC11113696 DOI: 10.1007/s00018-012-1252-6] [Citation(s) in RCA: 646] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 12/16/2012] [Accepted: 12/20/2012] [Indexed: 01/02/2023]
Abstract
Cell signaling in response to an array of diverse stress stimuli converges on the phosphorylation of the α-subunit of eukaryotic initiation factor 2 (eIF2). Phosphorylation of eIF2α on serine 51 results in a severe decline in de novo protein synthesis and is an important strategy in the cell's armory against stressful insults including viral infection, the accumulation of misfolded proteins, and starvation. The phosphorylation of eIF2α is carried out by a family of four kinases, PERK (PKR-like ER kinase), PKR (protein kinase double-stranded RNA-dependent), GCN2 (general control non-derepressible-2), and HRI (heme-regulated inhibitor). Each primarily responds to a distinct type of stress or stresses. Thus, while significant sequence similarity exists between the eIF2α kinases in their kinase domains, underlying their common role in phosphorylating eIF2α, additional unique features determine the regulation of these four proteins, that is, what signals activate them. This review will describe the structure of each eIF2α kinase and discuss how this is linked to their activation and function. In parallel to the general translational attenuation elicited by eIF2α kinase activation the translation of stress-induced mRNAs, most notably activating transcription factor 4 (ATF4) is enhanced and these set in motion cascades of gene expression constituting the integrated stress response (ISR), which seek to remediate stress and restore homeostasis. Depending on the cellular context and concurrent signaling pathways active, however, translational attenuation can also facilitate apoptosis. Accordingly, the role of the kinases in determining cell fate will also be discussed.
Collapse
Affiliation(s)
- Neysan Donnelly
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Natural Sciences, National University of Ireland, Galway, Ireland
- Present Address: Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich, 82152 Germany
| | - Adrienne M. Gorman
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Sanjeev Gupta
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Medicine, National University of Ireland, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Center, National University of Ireland, Galway, Ireland
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
15
|
Zhong JL, Yang L, Lü F, Xiao H, Xu R, Wang L, Zhu F, Zhang Y. UVA, UVB and UVC induce differential response signaling pathways converged on the eIF2α phosphorylation. Photochem Photobiol 2011; 87:1092-104. [PMID: 21707633 DOI: 10.1111/j.1751-1097.2011.00963.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is clear that solar UV irradiation is a crucial environmental factor resulting in skin diseases partially through activation of cell signaling toward altered gene expression and reprogrammed protein translation. Such a key translational control mechanism is executed by the eukaryotic initiation factor 2α subunit (eIF2α) and the downstream events provoked by phosphorylation of eIF2α at Ser(51) are clearly understood, but the upstream signaling mechanisms on the eIF2α-Ser(51) phosphorylation responses to different types of UV irradiations, namely UVA, UVB and UVC, are still not well elucidated. Herein, our evidence reveals that UVA, UVB and UVC all induce a dose- and time-dependent phosphorylation of eIF2α-Ser(51) through distinct signaling mechanisms. UVA-induced eIF2α phosphorylation occurs through MAPKs, including ERKs, JNKs and p38 kinase, and phosphatidylinositol (PI)-3 kinase. By contrast, UVB-induced eIF2α phosphorylation is through JNKs and p38 kinase, but not ERKs or PI-3 kinase, whereas UVC-stimulated response to eIF2α phosphorylation is via JNKs alone. Furthermore, we have revealed that ATM is involved in induction of the intracellular responses to UVA and UVB, rather than UVC. These findings demonstrate that wavelength-specific UV irradiations activate differential response signaling pathways converged on the eIF2α phosphorylation. Importantly, we also show evidence that a direct eIF2α kinase PKR is activated though phosphorylation by either RSK1 or MSK1, two downstream kinases of MAPKs/PI-3 kinase-mediated signaling pathways.
Collapse
Affiliation(s)
- Julia Li Zhong
- The Base of 111 Project for Biomechanics & Tissue Repair Engineering, College of Medical Bioengineering, University of Chongqing, Shapingba District, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
16
|
The beta/Gcd7 subunit of eukaryotic translation initiation factor 2B (eIF2B), a guanine nucleotide exchange factor, is crucial for binding eIF2 in vivo. Mol Cell Biol 2010; 30:5218-33. [PMID: 20805354 DOI: 10.1128/mcb.00265-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Eukaryotic translation initiation factor 2B (eIF2B) is the guanine nucleotide exchange factor (GEF) for eukaryotic translation initiation factor 2, which stimulates formation of the eIF2-GTP-Met-tRNA(i)(Met) ternary complex (TC) in a manner inhibited by phosphorylated eIF2 [eIF2(αP)]. While eIF2B contains five subunits, the ε/Gcd6 subunit is sufficient for GEF activity in vitro. The δ/Gcd2 and β/Gcd7 subunits function with α/Gcn3 in the eIF2B regulatory subcomplex that mediates tight, inhibitory binding of eIF2(αP)-GDP, but the essential functions of δ/Gcd2 and β/Gcd7 are not well understood. We show that the depletion of wild-type β/Gcd7, three lethal β/Gcd7 amino acid substitutions, and a synthetically lethal combination of substitutions in β/Gcd7 and eIF2α all impair eIF2 binding to eIF2B without reducing ε/Gcd6 abundance in the native eIF2B-eIF2 holocomplex. Additionally, β/Gcd7 mutations that impair eIF2B function display extensive allele-specific interactions with mutations in the S1 domain of eIF2α (harboring the phosphorylation site), which binds to eIF2B directly. Consistent with this, β/Gcd7 can overcome the toxicity of eIF2(αP) and rescue native eIF2B function when overexpressed with δ/Gcd2 or γ/Gcd1. In aggregate, these findings provide compelling evidence that β/Gcd7 is crucial for binding of substrate by eIF2B in vivo, beyond its dispensable regulatory role in the inhibition of eIF2B by eIF (αP).
Collapse
|
17
|
O’Connor T, Doherty-Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, Hitt B, Bembinster LA, Lammich S, Lichtenthaler SF, Hébert SS, De Strooper B, Haass C, Bennett DA, Vassar R. Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron 2008; 60:988-1009. [PMID: 19109907 PMCID: PMC2667382 DOI: 10.1016/j.neuron.2008.10.047] [Citation(s) in RCA: 336] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 09/16/2008] [Accepted: 10/17/2008] [Indexed: 10/21/2022]
Abstract
beta-site APP cleaving enzyme-1 (BACE1), the rate-limiting enzyme for beta-amyloid (Abeta) production, is elevated in Alzheimer's disease (AD). Here, we show that energy deprivation induces phosphorylation of the translation initiation factor eIF2alpha (eIF2alpha-P), which increases the translation of BACE1. Salubrinal, an inhibitor of eIF2alpha-P phosphatase PP1c, directly increases BACE1 and elevates Abeta production in primary neurons. Preventing eIF2alpha phosphorylation by transfection with constitutively active PP1c regulatory subunit, dominant-negative eIF2alpha kinase PERK, or PERK inhibitor P58(IPK) blocks the energy-deprivation-induced BACE1 increase. Furthermore, chronic treatment of aged Tg2576 mice with energy inhibitors increases levels of eIF2alpha-P, BACE1, Abeta, and amyloid plaques. Importantly, eIF2alpha-P and BACE1 are elevated in aggressive plaque-forming 5XFAD transgenic mice, and BACE1, eIF2alpha-P, and amyloid load are correlated in humans with AD. These results strongly suggest that eIF2alpha phosphorylation increases BACE1 levels and causes Abeta overproduction, which could be an early, initiating molecular mechanism in sporadic AD.
Collapse
Affiliation(s)
- Tracy O’Connor
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Erika Maus
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Rodney A. Velliquette
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Jie Zhao
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sarah L. Cole
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - William A. Eimer
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Brian Hitt
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Leslie A. Bembinster
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| | - Sven Lammich
- Center for Integrated Protein Science Munich and Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Neurodegenerative Disease Research, Ludwig-Maximilians-University, Munich, Germany
| | - Stefan F. Lichtenthaler
- Center for Integrated Protein Science Munich and Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Neurodegenerative Disease Research, Ludwig-Maximilians-University, Munich, Germany
| | - Sébastien S. Hébert
- Center for Human Genetics, Katholieke Universiteit Leuven and Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
| | - Bart De Strooper
- Center for Human Genetics, Katholieke Universiteit Leuven and Department of Molecular and Developmental Genetics, VIB, Leuven, Belgium
| | - Christian Haass
- Center for Integrated Protein Science Munich and Adolf-Butenandt-Institute, Department of Biochemistry, Laboratory for Neurodegenerative Disease Research, Ludwig-Maximilians-University, Munich, Germany
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL
| | - Robert Vassar
- Department of Cell & Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL
| |
Collapse
|
18
|
Abstract
Cells reprogram gene expression in response to environmental changes by mobilizing transcriptional activators. The activator protein Gcn4 of the yeast Saccharomyces cerevisiae is regulated by an intricate translational control mechanism, which is the primary focus of this review, and also by the modulation of its stability in response to nutrient availability. Translation of GCN4 mRNA is derepressed in amino acid-deprived cells, leading to transcriptional induction of nearly all genes encoding amino acid biosynthetic enzymes. The trans-acting proteins that control GCN4 translation have general functions in the initiation of protein synthesis, or regulate the activities of initiation factors, so that the molecular events that induce GCN4 translation also reduce the rate of general protein synthesis. This dual regulatory response enables cells to limit their consumption of amino acids while diverting resources into amino acid biosynthesis in nutrient-poor environments. Remarkably, mammalian cells use the same strategy to downregulate protein synthesis while inducing transcriptional activators of stress-response genes under various stressful conditions, including amino acid starvation.
Collapse
Affiliation(s)
- Alan G Hinnebusch
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA.
| |
Collapse
|
19
|
Palmer LK, Shoemaker JL, Baptiste BA, Wolfe D, Keil RL. Inhibition of translation initiation by volatile anesthetics involves nutrient-sensitive GCN-independent and -dependent processes in yeast. Mol Biol Cell 2005; 16:3727-39. [PMID: 15930127 PMCID: PMC1182311 DOI: 10.1091/mbc.e05-02-0127] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 05/20/2005] [Accepted: 05/24/2005] [Indexed: 11/11/2022] Open
Abstract
Volatile anesthetics including isoflurane affect all cells examined, but their mechanisms of action remain unknown. To investigate the cellular basis of anesthetic action, we are studying Saccharomyces cerevisiae mutants altered in their response to anesthetics. The zzz3-1 mutation renders yeast isoflurane resistant and is an allele of GCN3. Gcn3p functions in the evolutionarily conserved general amino acid control (GCN) pathway that regulates protein synthesis and gene expression in response to nutrient availability through phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). Hyperphosphorylation of eIF2alpha inhibits translation initiation during amino acid starvation. Isoflurane rapidly (in <15 min) inhibits yeast cell division and amino acid uptake. Unexpectedly, phosphorylation of eIF2alpha decreased dramatically upon initial exposure although hyperphosphorylation occurred later. Translation initiation was inhibited by isoflurane even when eIF2alpha phosphorylation decreased and this inhibition was GCN-independent. Maintenance of inhibition required GCN-dependent hyperphosphorylation of eIF2alpha. Thus, two nutrient-sensitive stages displaying unique features promote isoflurane-induced inhibition of translation initiation. The rapid phase is GCN-independent and apparently has not been recognized previously. The maintenance phase is GCN-dependent and requires inhibition of general translation imparted by enhanced eIF2alpha phosphorylation. Surprisingly, as shown here, the transcription activator Gcn4p does not affect anesthetic response.
Collapse
Affiliation(s)
- Laura K Palmer
- Department of Biochemistry and Molecular Biology, The Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033-2390, USA
| | | | | | | | | |
Collapse
|
20
|
Dey M, Trieselmann B, Locke EG, Lu J, Cao C, Dar AC, Krishnamoorthy T, Dong J, Sicheri F, Dever TE. PKR and GCN2 kinases and guanine nucleotide exchange factor eukaryotic translation initiation factor 2B (eIF2B) recognize overlapping surfaces on eIF2alpha. Mol Cell Biol 2005; 25:3063-75. [PMID: 15798194 PMCID: PMC1069625 DOI: 10.1128/mcb.25.8.3063-3075.2005] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four stress-responsive protein kinases, including GCN2 and PKR, phosphorylate eukaryotic translation initiation factor 2alpha (eIF2alpha) on Ser51 to regulate general and gene-specific protein synthesis. Phosphorylated eIF2 is an inhibitor of its guanine nucleotide exchange factor, eIF2B. Mutations that block translational regulation were isolated throughout the N-terminal OB-fold domain in Saccharomyces cerevisiae eIF2alpha, including those at residues flanking Ser51 and around 20 A away in the conserved motif K79GYID83. Any mutation at Glu49 or Asp83 blocked translational regulation; however, only a subset of these mutations impaired Ser51 phosphorylation. Substitution of Ala for Asp83 eliminated phosphorylation by GCN2 and PKR both in vivo and in vitro, establishing the critical contributions of remote residues to kinase-substrate recognition. In contrast, mutations that blocked translational regulation but not Ser51 phosphorylation impaired the binding of eIF2B to phosphorylated eIF2alpha. Thus, two structurally distinct effectors of eIF2 function, eIF2alpha kinases and eIF2B, have evolved to recognize the same surface and overlapping determinants on eIF2alpha.
Collapse
Affiliation(s)
- Madhusudan Dey
- National Institutes of Health, 6 Center Dr., Bethesda, MD 20892-2427, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Sullivan WJ, Narasimhan J, Bhatti MM, Wek RC. Parasite-specific eIF2 (eukaryotic initiation factor-2) kinase required for stress-induced translation control. Biochem J 2004; 380:523-31. [PMID: 14989696 PMCID: PMC1224182 DOI: 10.1042/bj20040262] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 02/27/2004] [Accepted: 03/01/2004] [Indexed: 01/31/2023]
Abstract
The ubiquitous intracellular parasite Toxoplasma gondii (phylum Apicomplexa) differentiates into an encysted form (bradyzoite) that can repeatedly re-emerge as a life-threatening acute infection (tachyzoite) upon impairment of immunity. Since the switch from tachyzoite to bradyzoite is a stress-induced response, we sought to identify components related to the phosphorylation of the alpha subunit of eIF2 (eukaryotic initiation factor-2), a well-characterized event associated with stress remediation in other eukaryotic systems. In addition to characterizing Toxoplasma eIF2alpha (TgIF2alpha), we have discovered a novel eIF2 protein kinase, designated TgIF2K-A (Toxoplasma gondii initiation factor-2kinase). Although the catalytic domain of TgIF2K-A contains sequence and structural features that are conserved among members of the eIF2 kinase family, TgIF2K-A has an extended N-terminal region that is highly divergent from other eIF2 kinases. TgIF2K-A specifically phosphorylates the regulatory serine residue of yeast eIF2alpha in vitro and in vivo, and can modulate translation when expressed in the yeast model system. We also demonstrate that TgIF2K-A phosphorylates the analogous regulatory serine residue of recombinant TgIF2alpha in vitro. Finally, we demonstrate that TgIF2alpha phosphorylation in tachyzoites is enhanced in response to heat shock or alkaline stress, conditions known to induce parasite differentiation in vitro. Collectively, this study suggests that eIF2 kinase-mediated stress responses are conserved in Apicomplexa, and a novel family member exists that may control parasite-specific events, including the clinically relevant conversion into bradyzoite cysts.
Collapse
Affiliation(s)
- William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, 635 Barnhill Drive, Medical Sciences Bldg, Indianapolis, IN 46202, USA.
| | | | | | | |
Collapse
|
22
|
Richardson JP, Mohammad SS, Pavitt GD. Mutations causing childhood ataxia with central nervous system hypomyelination reduce eukaryotic initiation factor 2B complex formation and activity. Mol Cell Biol 2004; 24:2352-63. [PMID: 14993275 PMCID: PMC355856 DOI: 10.1128/mcb.24.6.2352-2363.2004] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Childhood ataxia with central nervous system hypomyelination (CACH), or vanishing white matter leukoencephalopathy (VWM), is a fatal brain disorder caused by mutations in eukaryotic initiation factor 2B (eIF2B). eIF2B is essential for protein synthesis and regulates translation in response to cellular stresses. We performed mutagenesis to introduce changes equivalent to 12 human CACH/VWM mutations in three subunits of the equivalent factor from yeast (Saccharomyces cerevisiae) and analyzed effects on cell growth, translation, and gene expression in response to stresses. None of the mutations is lethal or temperature sensitive, but almost all confer some defect in eIF2B function significant enough to alter growth or gene expression under normal or stress conditions. Biochemical analyses indicate that mutations analyzed in eIF2Balpha and -epsilon reduce the steady-state level of the affected subunit, while the most severe mutant tested, eIF2Bbeta(V341D) (human eIF2B(betaV316D)), forms complexes with reduced stability and lower eIF2B activity. eIF2Bdelta is excluded from eIF2Bbeta(V341D) complexes. eIF2B(betav341D) function can be rescued by overexpression of eIF2Bdelta alone. Our findings imply CACH/VWM mutations do not specifically impair responses to eIF2 phosphorylation, but instead cause protein structure defects that impair eIF2B activity. Altered protein folding is characteristic of other diseases, including cystic fibrosis and neurodegenerative disorders such as Huntington, Alzheimer's, and prion diseases.
Collapse
Affiliation(s)
- Jonathan P Richardson
- Biomolecular Sciences, University of Manchester Institute of Science and Technology, Manchester M60 1QD, United Kingdom
| | | | | |
Collapse
|
23
|
Dhaliwal S, Hoffman DW. The crystal structure of the N-terminal region of the alpha subunit of translation initiation factor 2 (eIF2alpha) from Saccharomyces cerevisiae provides a view of the loop containing serine 51, the target of the eIF2alpha-specific kinases. J Mol Biol 2003; 334:187-95. [PMID: 14607111 DOI: 10.1016/j.jmb.2003.09.045] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The alpha subunit of translation initiation factor 2 (eIF2alpha) is the target of specific kinases that can phosphorylate a conserved serine residue as part of a mechanism for regulating protein expression at the translational level in eukaryotes. The structure of the 20 kDa N-terminal region of eIF2alpha from Saccharomyces cerevisiae was determined by X-ray crystallography at 2.5A resolution. In most respects, the structure is similar to that of the recently solved human eIF2alpha; the rather elongated protein contains a five-stranded antiparallel beta-barrel in its N-terminal region, followed by an almost entirely helical domain. The S.cerevisiae eIF2alpha lacks a disulfide bridge that is present in the homologous protein in humans and some of the other higher eukaryotes. Interestingly, a conserved loop consisting of residues 51-65 and containing serine 51, the putative phosphorylation site, is visible in the electron density maps of the S.cerevisiae eIF2alpha; most of this functionally important loop was not observed in the crystal structure of the human protein. This loop is relatively exposed to solvent, and contains two short 3(10) helices in addition to some extended structure. Serine 51 is located at the C-terminal end of one of the 3(10) helices and near several conserved positively charged residues. The side-chain of serine 51 is sufficiently exposed so that its phosphorylation would not necessitate a substantial change in the protein structure. The structures and relative positions of residues that have been implicated in kinase binding and in the interaction with guanine nucleotide exchange factor (eIF2B) are described.
Collapse
Affiliation(s)
- Simrit Dhaliwal
- Department of Chemistry and Biochemistry, Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | | |
Collapse
|
24
|
Krishnamoorthy T, Pavitt GD, Zhang F, Dever TE, Hinnebusch AG. Tight binding of the phosphorylated alpha subunit of initiation factor 2 (eIF2alpha) to the regulatory subunits of guanine nucleotide exchange factor eIF2B is required for inhibition of translation initiation. Mol Cell Biol 2001; 21:5018-30. [PMID: 11438658 PMCID: PMC87228 DOI: 10.1128/mcb.21.15.5018-5030.2001] [Citation(s) in RCA: 269] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation initiation factor 2 (eIF2) is a heterotrimeric protein that transfers methionyl-initiator tRNA(Met) to the small ribosomal subunit in a ternary complex with GTP. The eIF2 phosphorylated on serine 51 of its alpha subunit [eIF2(alphaP)] acts as competitive inhibitor of its guanine nucleotide exchange factor, eIF2B, impairing formation of the ternary complex and thereby inhibiting translation initiation. eIF2B is comprised of catalytic and regulatory subcomplexes harboring independent eIF2 binding sites; however, it was unknown whether the alpha subunit of eIF2 directly contacts any eIF2B subunits or whether this interaction is modulated by phosphorylation. We found that recombinant eIF2alpha (glutathione S-transferase [GST]-SUI2) bound to the eIF2B regulatory subcomplex in vitro, in a manner stimulated by Ser-51 phosphorylation. Genetic data suggest that this direct interaction also occurred in vivo, allowing overexpressed SUI2 to compete with eIF2(alphaP) holoprotein for binding to the eIF2B regulatory subcomplex. Mutations in SUI2 and in the eIF2B regulatory subunit GCD7 that eliminated inhibition of eIF2B by eIF2(alphaP) also impaired binding of phosphorylated GST-SUI2 to the eIF2B regulatory subunits. These findings provide strong evidence that tight binding of phosphorylated SUI2 to the eIF2B regulatory subcomplex is crucial for the inhibition of eIF2B and attendant downregulation of protein synthesis exerted by eIF2(alphaP). We propose that this regulatory interaction prevents association of the eIF2B catalytic subcomplex with the beta and gamma subunits of eIF2 in the manner required for GDP-GTP exchange.
Collapse
Affiliation(s)
- T Krishnamoorthy
- Laboratory of Gene Regulation and Development, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
25
|
Erickson FL, Nika J, Rippel S, Hannig EM. Minimum requirements for the function of eukaryotic translation initiation factor 2. Genetics 2001; 158:123-32. [PMID: 11333223 PMCID: PMC1461651 DOI: 10.1093/genetics/158.1.123] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic translation initiation factor 2 (eIF2) is a G protein heterotrimer required for GTP-dependent delivery of initiator tRNA to the ribosome. eIF2B, the nucleotide exchange factor for eIF2, is a heteropentamer that, in yeast, is encoded by four essential genes and one nonessential gene. We found that increased levels of wild-type eIF2, in the presence of sufficient levels of initiator tRNA, overcome the requirement for eIF2B in vivo. Consistent with bypassing eIF2B, these conditions also suppress the lethal effect of overexpressing the mammalian tumor suppressor PKR, an eIF2alpha kinase. The effects described are further enhanced in the presence of a mutation in the G protein (gamma) subunit of eIF2, gcd11-K250R, which mimics the function of eIF2B in vitro. Interestingly, the same conditions that bypass eIF2B also overcome the requirement for the normally essential eIF2alpha structural gene (SUI2). Our results suggest that the eIF2betagamma complex is capable of carrying out the essential function(s) of eIF2 in the absence of eIF2alpha and eIF2B and are consistent with the idea that the latter function primarily to regulate the level of eIF2.GTP.Met-tRNA(i)(Met) ternary complexes in vivo.
Collapse
Affiliation(s)
- F L Erickson
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, TX 75083-0688, USA
| | | | | | | |
Collapse
|
26
|
Satoh S, Hijikata M, Handa H, Shimotohno K. Caspase-mediated cleavage of eukaryotic translation initiation factor subunit 2alpha. Biochem J 1999; 342 ( Pt 1):65-70. [PMID: 10432301 PMCID: PMC1220437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Eukaryotic translation initiation factor 2alpha (eIF-2alpha), a target molecule of the interferon-inducible double-stranded-RNA-dependent protein kinase (PKR), was cleaved in apoptotic Saos-2 cells on treatment with poly(I).poly(C) or tumour necrosis factor alpha. This cleavage occurred with a time course similar to that of poly(ADP-ribose) polymerase, a well-known caspase substrate. In addition, eIF-2alpha was cleaved by recombinant active caspase-3 in vitro. By site-directed mutagenesis, the cleavage site was mapped to an Ala-Glu-Val-Asp(300) downward arrowGly(301) sequence located in the C-terminal portion of eIF-2alpha. PKR phosphorylates eIF-2alpha on Ser(51), resulting in the suppression of protein synthesis. PKR-mediated translational suppression was repressed when the C-terminally cleaved product of eIF-2alpha was overexpressed in Saos-2 cells, even though PKR can phosphorylate this cleaved product. These results suggest that caspase-3 or related protease(s) can modulate the efficiency of protein synthesis by cleaving the alpha subunit of eIF-2, a key component in the initiation of translation.
Collapse
Affiliation(s)
- S Satoh
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | |
Collapse
|
27
|
Shi Y, Vattem KM, Sood R, An J, Liang J, Stramm L, Wek RC. Identification and characterization of pancreatic eukaryotic initiation factor 2 alpha-subunit kinase, PEK, involved in translational control. Mol Cell Biol 1998; 18:7499-509. [PMID: 9819435 PMCID: PMC109330 DOI: 10.1128/mcb.18.12.7499] [Citation(s) in RCA: 637] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/1998] [Accepted: 09/06/1998] [Indexed: 11/20/2022] Open
Abstract
In response to various environmental stresses, eukaryotic cells down-regulate protein synthesis by phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2alpha). In mammals, the phosphorylation was shown to be carried out by eIF-2alpha kinases PKR and HRI. We report the identification and characterization of a cDNA from rat pancreatic islet cells that encodes a new related kinase, which we term pancreatic eIF-2alpha kinase, or PEK. In addition to a catalytic domain with sequence and structural features conserved among eIF-2alpha kinases, PEK contains a distinctive amino-terminal region 550 residues in length. Using recombinant PEK produced in Escherichia coli or Sf-9 insect cells, we demonstrate that PEK is autophosphorylated on both serine and threonine residues and that the recombinant enzyme can specifically phosphorylate eIF-2alpha on serine-51. Northern blot analyses indicate that PEK mRNA is expressed in all tissues examined, with highest levels in pancreas cells. Consistent with our mRNA assays, PEK activity was predominantly detected in pancreas and pancreatic islet cells. The regulatory role of PEK in protein synthesis was demonstrated both in vitro and in vivo. The addition of recombinant PEK to reticulocyte lysates caused a dose-dependent inhibition of translation. In the Saccharomyces model system, PEK functionally substituted for the endogenous yeast eIF-2alpha kinase, GCN2, by a process requiring the serine-51 phosphorylation site in eIF-2alpha. We also identified PEK homologs from both Caenorhabditis elegans and the puffer fish Fugu rubripes, suggesting that this eIF-2alpha kinase plays an important role in translational control from nematodes to mammals.
Collapse
Affiliation(s)
- Y Shi
- Diabetes Research, Endocrine Division, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Anderson J, Phan L, Cuesta R, Carlson BA, Pak M, Asano K, Björk GR, Tamame M, Hinnebusch AG. The essential Gcd10p-Gcd14p nuclear complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev 1998; 12:3650-62. [PMID: 9851972 PMCID: PMC317256 DOI: 10.1101/gad.12.23.3650] [Citation(s) in RCA: 214] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/1998] [Accepted: 10/09/1998] [Indexed: 11/25/2022]
Abstract
Gcd10p and Gcd14p are essential proteins required for the initiation of protein synthesis and translational repression of GCN4 mRNA. The phenotypes of gcd10 mutants were suppressed by high-copy-number IMT genes, encoding initiator methionyl tRNA (tRNAiMet), or LHP1, encoding the yeast homolog of the human La autoantigen. The gcd10-504 mutation led to a reduction in steady-state levels of mature tRNAiMet, attributable to increased turnover rather than decreased synthesis of pre-tRNAiMet. Remarkably, the lethality of a GCD10 deletion was suppressed by high-copy-number IMT4, indicating that its role in expression of mature tRNAiMet is the essential function of Gcd10p. A gcd14-2 mutant also showed reduced amounts of mature tRNAiMet, but in addition, displayed a defect in pre-tRNAiMet processing. Gcd10p and Gcd14p were found to be subunits of a protein complex with prominent nuclear localization, suggesting a direct role in tRNAiMet maturation. The chromatographic behavior of elongator and initiator tRNAMet on a RPC-5 column indicated that both species are altered structurally in gcd10Delta cells, and analysis of base modifications revealed that 1-methyladenosine (m1A) is undetectable in gcd10Delta tRNA. Interestingly, gcd10 and gcd14 mutations had no effect on processing or accumulation of elongator tRNAMet, which also contains m1A at position 58, suggesting a unique requirement for this base modification in initiator maturation.
Collapse
Affiliation(s)
- J Anderson
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892 USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Aktas H, Flückiger R, Acosta JA, Savage JM, Palakurthi SS, Halperin JA. Depletion of intracellular Ca2+ stores, phosphorylation of eIF2alpha, and sustained inhibition of translation initiation mediate the anticancer effects of clotrimazole. Proc Natl Acad Sci U S A 1998; 95:8280-5. [PMID: 9653178 PMCID: PMC20967 DOI: 10.1073/pnas.95.14.8280] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Regulation of translation initiation plays a critical role in the control of cell growth and division in eukaryotic cells. Translation of many growth regulatory proteins including cyclins depends critically on translation initiation factors because their mRNAs are translated inefficiently. We report that clotrimazole, a potent antiproliferative agent both in vitro and in vivo, inhibits cell growth by interfering with translation initiation. In particular, clotrimazole causes a sustained depletion of intracellular Ca2+ stores, which results in activation of PKR, phosphorylation of eIF2alpha, and thereby in inhibition of protein synthesis at the level of translation initiation. Consequently, clotrimazole preferentially decreases the expression of the growth promoting proteins cyclin A, E and D1, resulting in inhibition of cyclin-dependent kinase activity and blockage of cell cycle in G1.
Collapse
Affiliation(s)
- H Aktas
- Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
30
|
Krishna VM, Janaki N, Ramaiah KV. Wheat germ initiation factor 2 (WG x eIF2) decreases the inhibition in protein synthesis and eIF2B activity of reticulocyte lysates mediated by eIF2alpha phosphorylation. Arch Biochem Biophys 1997; 346:28-36. [PMID: 9328281 DOI: 10.1006/abbi.1997.0263] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Phosphorylation of serine 51 residue in the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha) impairs the guanine nucleotide exchange (GNE) activity of eIF2B protein and thereby inhibits protein synthesis in mammalian systems, insects and yeast. It is not known if phosphorylation of plant eIF2 can inhibit an eIF2B-like activity. Interestingly purified wheat germ eIF2 (WG x eIF2) can exchange guanine nucleotides in vitro without the addition of any protein factor like eIF2B. It is not clear if this is due to a contaminant eIF2B-like activity associated with WG x eIF2 or because the affinity of WG x eIF2 for GDP and GTP is not markedly different. Our observations here indicate that the GNE activity of WG x eIF2 is not inhibited upon phosphorylation of the p41-42 doublet subunit in WG x eIF2 by reticulocyte eIF2alpha kinases, or in the presence of reticulocyte eIF2(alphaP) in which serine 51 residue is phosphorylated. Further, addition of WG x eIF2 reduces the inhibition in eIF2B activity, protein synthesis, and also the formation of 15S complex that occurs between reticulocyte eIF2(alphaP) and eIF2B protein in heme-deficient or poly(IC)-treated reticulocyte lysates, presumably by a mechanism of competition between wheat germ and reticulocyte eIF2 for phosphorylation. Unlike reticulocyte eIF2(alphaP), phosphorylated WG x eIF2 is unable to interact with reticulocyte eIF2B to form a 15S complex. The ability of WG x eIF2 to exchange guanine nucleotides independent of an eIF2B like protein and the inability of phosphorylated WG x eIF2 to interact with reticulocyte eIF2B suggests that WG x eIF2 is different from mammalian eIF2 and these differences may have occurred in evolution probably due to some changes in the amino acid sequences around the phosphorylation site in eIF2alpha.
Collapse
Affiliation(s)
- V M Krishna
- Department of Biochemistry, School of Life Sciences, University of Hyderabad, Andhra Pradesh, India
| | | | | |
Collapse
|
31
|
Kawagishi-Kobayashi M, Silverman JB, Ung TL, Dever TE. Regulation of the protein kinase PKR by the vaccinia virus pseudosubstrate inhibitor K3L is dependent on residues conserved between the K3L protein and the PKR substrate eIF2alpha. Mol Cell Biol 1997; 17:4146-58. [PMID: 9199350 PMCID: PMC232268 DOI: 10.1128/mcb.17.7.4146] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The mammalian double-stranded RNA-activated protein kinase PKR is a component of the cellular antiviral defense mechanism and phosphorylates Ser-51 on the alpha subunit of the translation factor eIF2 to inhibit protein synthesis. To identify the molecular determinants that specify substrate recognition by PKR, we performed a mutational analysis on the vaccinia virus K3L protein, a pseudosubstrate inhibitor of PKR. High-level expression of PKR is lethal in the yeast Saccharomyces cerevisiae because PKR phosphorylates eIF2alpha and inhibits protein synthesis. We show that coexpression of vaccinia virus K3L can suppress the growth-inhibitory effects of PKR in yeast, and using this system, we identified both loss-of-function and hyperactivating mutations in K3L. Truncation of, or point mutations within, the C-terminal portion of the K3L protein, homologous to residues 79 to 83 in eIF2alpha, abolished PKR inhibitory activity, whereas the hyperactivating mutation, K3L-H47R, increased the homology between the K3L protein and eIF2alpha adjacent to the phosphorylation site at Ser-51. Biochemical and yeast two-hybrid analyses revealed that the suppressor phenotype of the K3L mutations correlated with the affinity of the K3L protein for PKR and was inversely related to the level of eIF2alpha phosphorylation in the cell. These results support the idea that residues conserved between the pseudosubstrate K3L protein and the authentic substrate eIF2alpha play an important role in substrate recognition, and they suggest that PKR utilizes sequences both near and over 30 residues from the site of phosphorylation for substrate recognition. Finally, by reconstituting part of the mammalian antiviral defense mechanism in yeast, we have established a genetically useful system to study viral regulators of PKR.
Collapse
Affiliation(s)
- M Kawagishi-Kobayashi
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, Bethesda, Maryland 20892, USA
| | | | | | | |
Collapse
|
32
|
Pavitt GD, Yang W, Hinnebusch AG. Homologous segments in three subunits of the guanine nucleotide exchange factor eIF2B mediate translational regulation by phosphorylation of eIF2. Mol Cell Biol 1997; 17:1298-313. [PMID: 9032257 PMCID: PMC231855 DOI: 10.1128/mcb.17.3.1298] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
eIF2B is a five-subunit guanine nucleotide exchange factor that is negatively regulated by phosphorylation of the alpha subunit of its substrate, eIF2, leading to inhibition of translation initiation. To analyze this regulatory mechanism, we have characterized 29 novel mutations in the homologous eIF2B subunits encoded by GCD2, GCD7, and GCN3 that reduce or abolish inhibition of eIF2B activity by eIF2 phosphorylated on its alpha subunit [eIF2(alphaP)]. Most, if not all, of the mutations decrease sensitivity to eIF2(alphaP) without excluding GCN3, the nonessential subunit, from eIF2B; thus, all three proteins are critical for regulation of eIF2B by eIF2(alphaP). The mutations are clustered at both ends of the homologous region of each subunit, within two segments each of approximately 70 amino acids in length. Several mutations alter residues at equivalent positions in two or all three subunits. These results imply that structurally similar segments in GCD2, GCD7, and GCN3 perform related functions in eIF2B regulation. We propose that these segments form a single domain in eIF2B that makes multiple contacts with the alpha subunit of eIF2, around the phosphorylation site, allowing eIF2B to detect and respond to phosphoserine at residue 51. Most of the eIF2 is phosphorylated in certain mutants, suggesting that these substitutions allow eIF2B to accept phosphorylated eIF2 as a substrate for nucleotide exchange.
Collapse
Affiliation(s)
- G D Pavitt
- Laboratory of Eukaryotic Gene Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
33
|
Qian W, Zhu S, Sobolev AY, Wek RC. Expression of vaccinia virus K3L protein in yeast inhibits eukaryotic initiation factor-2 kinase GCN2 and the general amino acid control pathway. J Biol Chem 1996; 271:13202-7. [PMID: 8662715 DOI: 10.1074/jbc.271.22.13202] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Phosphorylation of the alpha subunit of eukaryotic initiation factor-2 (eIF-2) is a well characterized mechanism regulating protein synthesis. Viral and cellular proteins have been identified that regulate the activity of the eIF-2alpha kinases. The regulatory protein, K3L, from vaccinia virus is homologous to the amino terminus of eIF-2alpha and is thought to inhibit the activity of the double-stranded RNA-dependent kinase suppressing the antiviral mechanism mediated by this kinase. We investigated whether K3L can inhibit the activity of the yeast eIF-2alpha kinase GCN2. Expression of K3L protein in yeast reduced the level of eIF-2alpha phosphorylation by GCN2 and blocked the stimulation of the general amino acid control pathway in response to starvation conditions. Accompanying in vitro studies showed that recombinant K3L protein reduced GCN2 autophosphorylation and phosphorylation eIF-2alpha. In agreement with the hypothesis that K3L inhibits eIF-2alpha kinases by functioning as a pseudosubstrate, we observed that K3L directly interacted with the kinase catalytic domain of GCN2. Together, these results indicate that K3L is a specific inhibitor of eIF-2alpha kinases from mammals and yeast and suggest that the kinases contain common structural features important for recognition of their substrate eIF-2alpha.
Collapse
Affiliation(s)
- W Qian
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5122, USA
| | | | | | | |
Collapse
|
34
|
Dever TE, Yang W, Aström S, Byström AS, Hinnebusch AG. Modulation of tRNA(iMet), eIF-2, and eIF-2B expression shows that GCN4 translation is inversely coupled to the level of eIF-2.GTP.Met-tRNA(iMet) ternary complexes. Mol Cell Biol 1995; 15:6351-63. [PMID: 7565788 PMCID: PMC230887 DOI: 10.1128/mcb.15.11.6351] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To understand how phosphorylation of eukaryotic translation initiation factor (eIF)-2 alpha in Saccharomyces cerevisiae stimulates GCN4 mRNA translation while at the same time inhibiting general translation initiation, we examined the effects of altering the gene dosage of initiator tRNA(Met), eIF-2, and the guanine nucleotide exchange factor for eIF-2, eIF-2B. Overexpression of all three subunits of eIF-2 or all five subunits of eIF-2B suppressed the effects of eIF-2 alpha hyperphosphorylation on both GCN4-specific and general translation initiation. Consistent with eIF-2 functioning in translation as part of a ternary complex composed of eIF-2, GTP, and Met-tRNA(iMet), reduced gene dosage of initiator tRNA(Met) mimicked phosphorylation of eIF-2 alpha and stimulated GCN4 translation. In addition, overexpression of a combination of eIF-2 and tRNA(iMet) suppressed the growth-inhibitory effects of eIF-2 hyperphosphorylation more effectively than an increase in the level of either component of the ternary complex alone. These results provide in vivo evidence that phosphorylation of eIF-2 alpha reduces the activities of both eIF-2 and eIF-2B and that the eIF-2.GTP. Met-tRNA(iMet) ternary complex is the principal component limiting translation in cells when eIF-2 alpha is phosphorylated on serine 51. Analysis of eIF-2 alpha phosphorylation in the eIF-2-overexpressing strain also provides in vivo evidence that phosphorylated eIF-2 acts as a competitive inhibitor of eIF-2B rather than forming an excessively stable inactive complex. Finally, our results demonstrate that the concentration of eIF-2-GTP. Met-tRNA(iMet) ternary complexes is the cardinal parameter determining the site of reinitiation on GCN4 mRNA and support the idea that reinitiation at GCN4 is inversely related to the concentration of ternary complexes in the cell.
Collapse
Affiliation(s)
- T E Dever
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892-2785, USA
| | | | | | | | | |
Collapse
|
35
|
Garcia-Barrio MT, Naranda T, Vazquez de Aldana CR, Cuesta R, Hinnebusch AG, Hershey JW, Tamame M. GCD10, a translational repressor of GCN4, is the RNA-binding subunit of eukaryotic translation initiation factor-3. Genes Dev 1995; 9:1781-96. [PMID: 7542616 DOI: 10.1101/gad.9.14.1781] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
GCN4 mRNA is translated by a reinitiation mechanism involving four short upstream open reading frames (uORFs) in its leader sequence. Decreasing the activity of eukaryotic initiation factor-2 (eIF-2) by phosphorylation inhibits general translation in yeast but stimulates GCN4 expression by allowing ribosomes to scan past the uORFs and reinitiate at GCN4 instead. GCD10 was first identified genetically as a translational repressor of GCN4. We show here that GCD10 is an essential protein of 54.6 kD that is required in vivo for the initiation of total protein synthesis. GCD10 binds RNA in vitro and we present strong biochemical evidence that it is identical to the RNA-binding subunit of yeast initiation factor-3 (eIF-3). eIF-3 is a multisubunit complex that stimulates translation initiation in vitro at several different steps. We suggest that gcd10 mutations decrease the ability of eIF-3 to stimulate binding of eIF-2/GTP/Met-tRNA(iMet) ternary complexes to small ribosomal subunits in vivo. This would explain why mutations in eIF-3 mimic eIF-2 alpha phosphorylation in allowing ribosomes to bypass the uORFs and reinitiate at GCN4. Our results indicate that GCN4 expression provides a sensitive in vivo assay for the function of eIF-3 in initiation complex formation.
Collapse
Affiliation(s)
- M T Garcia-Barrio
- Instituto de Microbiologia-Bioquimica, Consejo Superior de Investigaciones Cientificas/Universidad de Salamanca, Facultad de Biologia, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Chefalo PJ, Yang JM, Ramaiah KV, Gehrke L, Chen JJ. Inhibition of protein synthesis in insect cells by baculovirus-expressed heme-regulated eIF-2 alpha kinase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47317-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
37
|
Casein kinase II mediates multiple phosphorylation of Saccharomyces cerevisiae eIF-2 alpha (encoded by SUI2), which is required for optimal eIF-2 function in S. cerevisiae. Mol Cell Biol 1994. [PMID: 8035796 DOI: 10.1128/mcb.14.8.5139] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previous studies have demonstrated that the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha), encoded by the SUI2 gene in the yeast Saccharomyces cerevisiae, is phosphorylated at Ser-51 by the GCN2 kinase in response to general amino acid control. Here we describe that yeast eIF-2 alpha is a constitutively phosphorylated protein species that is multiply phosphorylated by a GCN2-independent mechanism. 32Pi labeling and isoelectric focusing analysis of a SUI2+ delta gcn2 strain identifies eIF-2 alpha as radiolabeled and a single isoelectric protein species. Treatment of SUI2+ delta gcn2 strain extracts with phosphatase results in the identification of three additional isoelectric forms of eIF-2 alpha that correspond to the stepwise removal of three phosphates from the protein. Mutational analysis of SUI2 coupled with biochemical analysis of eIF-2 alpha maps the sites to the carboxyl region of SUI2 that correspond to Ser residues at amino acid positions 292, 294, and 301 that compose consensus casein kinase II sequences. 32Pi labeling or isoelectric focusing analysis of eIF-2 alpha from conditional casein kinase II mutants indicated that phosphorylation of eIF-2 alpha is abolished or dephosphorylated forms of eIF-2 alpha are detected when these strains are grown at the restrictive growth conditions. Furthermore, yeast casein kinase II phosphorylates recombinant wild-type eIF-2 alpha protein in vitro but does not phosphorylate recombinant eIF-2 alpha that contains Ser-to-Ala mutations at all three consensus casein kinase II sequences. These data strongly support the conclusion that casein kinase II directly phosphorylates eIF-2 alpha at one or all of these Ser amino acids in vivo. Although substitution of SUI2 genes mutated at these sites for the wild-type gene have no obvious effect on cell growth, one test that we have used appears to demonstrate that the inability to phosphorylate these sites has a physiological consequence on eIF-2 function in S. cerevisiae. Haploid strains constructed to contain Ser-to-Ala mutations at the consensus casein kinase II sequences in SUI2 in combination with a mutated allele of either the GCN2, GCN3, or GCD7 gene have synthetic growth defects. These genetic data appear to indicate that the modifications that we describe at the carboxyl end of the eIF-2 alpha protein are required for optimal eIF-2 function in S. cerevisiae.
Collapse
|
38
|
Feng L, Yoon H, Donahue TF. Casein kinase II mediates multiple phosphorylation of Saccharomyces cerevisiae eIF-2 alpha (encoded by SUI2), which is required for optimal eIF-2 function in S. cerevisiae. Mol Cell Biol 1994; 14:5139-53. [PMID: 8035796 PMCID: PMC359033 DOI: 10.1128/mcb.14.8.5139-5153.1994] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previous studies have demonstrated that the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha), encoded by the SUI2 gene in the yeast Saccharomyces cerevisiae, is phosphorylated at Ser-51 by the GCN2 kinase in response to general amino acid control. Here we describe that yeast eIF-2 alpha is a constitutively phosphorylated protein species that is multiply phosphorylated by a GCN2-independent mechanism. 32Pi labeling and isoelectric focusing analysis of a SUI2+ delta gcn2 strain identifies eIF-2 alpha as radiolabeled and a single isoelectric protein species. Treatment of SUI2+ delta gcn2 strain extracts with phosphatase results in the identification of three additional isoelectric forms of eIF-2 alpha that correspond to the stepwise removal of three phosphates from the protein. Mutational analysis of SUI2 coupled with biochemical analysis of eIF-2 alpha maps the sites to the carboxyl region of SUI2 that correspond to Ser residues at amino acid positions 292, 294, and 301 that compose consensus casein kinase II sequences. 32Pi labeling or isoelectric focusing analysis of eIF-2 alpha from conditional casein kinase II mutants indicated that phosphorylation of eIF-2 alpha is abolished or dephosphorylated forms of eIF-2 alpha are detected when these strains are grown at the restrictive growth conditions. Furthermore, yeast casein kinase II phosphorylates recombinant wild-type eIF-2 alpha protein in vitro but does not phosphorylate recombinant eIF-2 alpha that contains Ser-to-Ala mutations at all three consensus casein kinase II sequences. These data strongly support the conclusion that casein kinase II directly phosphorylates eIF-2 alpha at one or all of these Ser amino acids in vivo. Although substitution of SUI2 genes mutated at these sites for the wild-type gene have no obvious effect on cell growth, one test that we have used appears to demonstrate that the inability to phosphorylate these sites has a physiological consequence on eIF-2 function in S. cerevisiae. Haploid strains constructed to contain Ser-to-Ala mutations at the consensus casein kinase II sequences in SUI2 in combination with a mutated allele of either the GCN2, GCN3, or GCD7 gene have synthetic growth defects. These genetic data appear to indicate that the modifications that we describe at the carboxyl end of the eIF-2 alpha protein are required for optimal eIF-2 function in S. cerevisiae.
Collapse
Affiliation(s)
- L Feng
- Department of Biology, Indiana University, Bloomington 47405
| | | | | |
Collapse
|
39
|
Expression of mutant eukaryotic initiation factor 2 alpha subunit (eIF-2 alpha) reduces inhibition of guanine nucleotide exchange activity of eIF-2B mediated by eIF-2 alpha phosphorylation. Mol Cell Biol 1994. [PMID: 8007958 DOI: 10.1128/mcb.14.7.4546] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The inhibition of protein synthesis that occurs upon phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) at serine 51 correlates with reduced guanine nucleotide exchange activity of eIF-2B in vivo and inhibition of eIF-2B activity in vitro, although it is not known if phosphorylation is the cause of the reduced eIF-2B activity in vivo. To characterize the importance of eIF-2 alpha phosphorylation in the regulation of eIF-2B activity, we studied the overexpression of mutant eIF-2 alpha subunits in which serine 48 or 51 was replaced by an alanine (48A or 51A mutant). Previous studies demonstrated that the 51A mutant was resistant to phosphorylation, whereas the 48A mutant was a substrate for phosphorylation. Additionally, expression of either mutant partially protected Chinese hamster ovary (CHO) cells from the inhibition of protein synthesis in response to heat shock treatment (P. Murtha-Riel, M. V. Davies, J. B. Scherer, S. Y. Choi, J. W. B. Hershey, and R. J. Kaufman, J. Biol. Chem. 268:12946-12951, 1993). In this study, we show that eIF-2B activity was inhibited in parental CHO cell extracts upon addition of purified reticulocyte heme-regulated inhibitor (HRI), an eIF-2 alpha kinase that phosphorylates Ser-51. Preincubation with purified HRI also reduced the eIF-2B activity in extracts from cells overexpressing wild-type eIF-2 alpha. In contrast, the eIF-2B activity was not readily inhibited in extracts from cells overexpressing either the eIF-2 alpha 48A or 51A mutant. In addition, eIF-2B activity was decreased in extracts prepared from heat-shocked cells overexpressing wild-type eIF-2 alpha, whereas the decrease in eIF-2B activity was less in heat-shocked cells overexpressing either mutant 48A or mutant 51A. While the phosphorylation at serine 51 in eIF-2 alpha impairs the eIF-2B activity, we propose that serine 48 acts to maintain a high affinity between phosphorylated eIF-2 alpha and eIF-2B, thereby inactivating eIF-2B activity. These findings support the hypothesis that phosphorylation of eIF-2 alpha inhibits protein synthesis directly through reducing eIF-2B activity and emphasize the importance of both serine 48 and serine 51 in the interaction with eIF-2B and regulation of eIF-2B activity.
Collapse
|
40
|
Ramaiah KV, Davies MV, Chen JJ, Kaufman RJ. Expression of mutant eukaryotic initiation factor 2 alpha subunit (eIF-2 alpha) reduces inhibition of guanine nucleotide exchange activity of eIF-2B mediated by eIF-2 alpha phosphorylation. Mol Cell Biol 1994; 14:4546-53. [PMID: 8007958 PMCID: PMC358826 DOI: 10.1128/mcb.14.7.4546-4553.1994] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The inhibition of protein synthesis that occurs upon phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF-2 alpha) at serine 51 correlates with reduced guanine nucleotide exchange activity of eIF-2B in vivo and inhibition of eIF-2B activity in vitro, although it is not known if phosphorylation is the cause of the reduced eIF-2B activity in vivo. To characterize the importance of eIF-2 alpha phosphorylation in the regulation of eIF-2B activity, we studied the overexpression of mutant eIF-2 alpha subunits in which serine 48 or 51 was replaced by an alanine (48A or 51A mutant). Previous studies demonstrated that the 51A mutant was resistant to phosphorylation, whereas the 48A mutant was a substrate for phosphorylation. Additionally, expression of either mutant partially protected Chinese hamster ovary (CHO) cells from the inhibition of protein synthesis in response to heat shock treatment (P. Murtha-Riel, M. V. Davies, J. B. Scherer, S. Y. Choi, J. W. B. Hershey, and R. J. Kaufman, J. Biol. Chem. 268:12946-12951, 1993). In this study, we show that eIF-2B activity was inhibited in parental CHO cell extracts upon addition of purified reticulocyte heme-regulated inhibitor (HRI), an eIF-2 alpha kinase that phosphorylates Ser-51. Preincubation with purified HRI also reduced the eIF-2B activity in extracts from cells overexpressing wild-type eIF-2 alpha. In contrast, the eIF-2B activity was not readily inhibited in extracts from cells overexpressing either the eIF-2 alpha 48A or 51A mutant. In addition, eIF-2B activity was decreased in extracts prepared from heat-shocked cells overexpressing wild-type eIF-2 alpha, whereas the decrease in eIF-2B activity was less in heat-shocked cells overexpressing either mutant 48A or mutant 51A. While the phosphorylation at serine 51 in eIF-2 alpha impairs the eIF-2B activity, we propose that serine 48 acts to maintain a high affinity between phosphorylated eIF-2 alpha and eIF-2B, thereby inactivating eIF-2B activity. These findings support the hypothesis that phosphorylation of eIF-2 alpha inhibits protein synthesis directly through reducing eIF-2B activity and emphasize the importance of both serine 48 and serine 51 in the interaction with eIF-2B and regulation of eIF-2B activity.
Collapse
Affiliation(s)
- K V Ramaiah
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge 02139
| | | | | | | |
Collapse
|
41
|
Mutations in the GCD7 subunit of yeast guanine nucleotide exchange factor eIF-2B overcome the inhibitory effects of phosphorylated eIF-2 on translation initiation. Mol Cell Biol 1994. [PMID: 8164676 DOI: 10.1128/mcb.14.5.3208] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha) impairs translation initiation by inhibiting the guanine nucleotide exchange factor for eIF-2, known as eIF-2B. In Saccharomyces cerevisiae, phosphorylation of eIF-2 alpha by the protein kinase GCN2 specifically stimulates translation of GCN4 mRNA in addition to reducing general protein synthesis. We isolated mutations in several unlinked genes that suppress the growth-inhibitory effect of eIF-2 alpha phosphorylation catalyzed by mutationally activated forms of GCN2. These suppressor mutations, affecting eIF-2 alpha and the essential subunits of eIF-2B encoded by GCD7 and GCD2, do not reduce the level of eIF-2 alpha phosphorylation in cells expressing the activated GCN2c kinase. Four GCD7 suppressors were shown to reduce the derepression of GCN4 translation in cells containing wild-type GCN2 under starvation conditions or in GCN2c strains. A fifth GCD7 allele, constructed in vitro by combining two of the GCD7 suppressors mutations, completely impaired the derepression of GCN4 translation, a phenotype characteristic of deletions in GCN1, GCN2, or GCN3. This double GCD7 mutation also completely suppressed the lethal effect of expressing the mammalian eIF-2 alpha kinase dsRNA-PK in yeast cells, showing that the translational machinery had been rendered completely insensitive to phosphorylated eIF-2. None of the GCD7 mutations had any detrimental effect on cell growth under nonstarvation conditions, suggesting that recycling of eIF-2 occurs efficiently in the suppressor strains. We propose that GCD7 and GCD2 play important roles in the regulatory interaction between eIF-2 and eIF-2B and that the suppressor mutations we isolated in these genes decrease the susceptibility of eIF-2B to the inhibitory effects of phosphorylated eIF-2 without impairing the essential catalytic function of eIF-2B in translation initiation.
Collapse
|
42
|
Vazquez de Aldana CR, Hinnebusch AG. Mutations in the GCD7 subunit of yeast guanine nucleotide exchange factor eIF-2B overcome the inhibitory effects of phosphorylated eIF-2 on translation initiation. Mol Cell Biol 1994; 14:3208-22. [PMID: 8164676 PMCID: PMC358688 DOI: 10.1128/mcb.14.5.3208-3222.1994] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Phosphorylation of the alpha subunit of eukaryotic translation initiation factor 2 (eIF-2 alpha) impairs translation initiation by inhibiting the guanine nucleotide exchange factor for eIF-2, known as eIF-2B. In Saccharomyces cerevisiae, phosphorylation of eIF-2 alpha by the protein kinase GCN2 specifically stimulates translation of GCN4 mRNA in addition to reducing general protein synthesis. We isolated mutations in several unlinked genes that suppress the growth-inhibitory effect of eIF-2 alpha phosphorylation catalyzed by mutationally activated forms of GCN2. These suppressor mutations, affecting eIF-2 alpha and the essential subunits of eIF-2B encoded by GCD7 and GCD2, do not reduce the level of eIF-2 alpha phosphorylation in cells expressing the activated GCN2c kinase. Four GCD7 suppressors were shown to reduce the derepression of GCN4 translation in cells containing wild-type GCN2 under starvation conditions or in GCN2c strains. A fifth GCD7 allele, constructed in vitro by combining two of the GCD7 suppressors mutations, completely impaired the derepression of GCN4 translation, a phenotype characteristic of deletions in GCN1, GCN2, or GCN3. This double GCD7 mutation also completely suppressed the lethal effect of expressing the mammalian eIF-2 alpha kinase dsRNA-PK in yeast cells, showing that the translational machinery had been rendered completely insensitive to phosphorylated eIF-2. None of the GCD7 mutations had any detrimental effect on cell growth under nonstarvation conditions, suggesting that recycling of eIF-2 occurs efficiently in the suppressor strains. We propose that GCD7 and GCD2 play important roles in the regulatory interaction between eIF-2 and eIF-2B and that the suppressor mutations we isolated in these genes decrease the susceptibility of eIF-2B to the inhibitory effects of phosphorylated eIF-2 without impairing the essential catalytic function of eIF-2B in translation initiation.
Collapse
Affiliation(s)
- C R Vazquez de Aldana
- Section on Molecular Genetics of Lower Eukaryotes, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | |
Collapse
|
43
|
Clemens MJ. Regulation of eukaryotic protein synthesis by protein kinases that phosphorylate initiation factor eIF-2. Mol Biol Rep 1994; 19:201-10. [PMID: 7969108 DOI: 10.1007/bf00986962] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- M J Clemens
- Department of Cellular and Molecular Sciences, St George's Hospital Medical School, London, UK
| |
Collapse
|