1
|
Senousy MA, Shaker OG, Elmaasrawy AH, Ashour AM, Alsufyani SE, Arab HH, Ayeldeen G. Serum lncRNAs TUG1, H19, and NEAT1 and their target miR-29b/SLC3A1 axis as possible biomarkers of preeclampsia: Potential clinical insights. Noncoding RNA Res 2024; 9:995-1008. [PMID: 39026605 PMCID: PMC11254728 DOI: 10.1016/j.ncrna.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/26/2024] [Accepted: 06/07/2024] [Indexed: 07/20/2024] Open
Abstract
To date, the epigenetic signature of preeclampsia (PE) is not completely deciphered. Oxidative stress-responsive long non-coding RNAs (lncRNAs) are deregulated in preeclamptic placenta; however, their circulating profiles and diagnostic abilities are still unexplored. We investigated serum redox-sensitive lncRNAs TUG1, H19, and NEAT1, and their target miR-29b/cystine/neutral/dibasic amino acids transporter solute carrier family 3, member 1 (SLC3A1) as potential non-invasive biomarkers of PE risk, onset, and severity. We recruited 82 patients with PE and 78 healthy pregnant women. We classified PE patients into early-onset (EOPE) and late-onset (LOPE) subgroups at a cut-off 34 gestational weeks and into severe and mild PE subgroups by blood pressure and proteinuria criteria. Bioinformatics analysis was employed to select lncRNAs/microRNA/target gene interactions. Serum H19, NEAT1, and SLC3A1 mRNA expression were reduced, meanwhile miR-29b levels were elevated, whereas there was no significant difference in TUG1 levels between PE patients and healthy pregnancies. Serum H19 levels were lower, whereas miR-29b levels were higher in EOPE versus LOPE. Serum miR-29b and H19 levels were higher in severe versus mild PE. ROC analysis identified serum H19, NEAT1, miR-29b, and SLC3A1 as potential diagnostic markers, with H19 (AUC = 0.818, 95%CI = 0.744-0.894) and miR-29b (AUC = 0.82, 95%CI = 0.755-0.885) were superior discriminators. Only H19 and miR-29b discriminated EOPE and severe PE cases. In multivariate logistic analysis, miR-29b and H19 were associated with EOPE, using maternal age and gestational age as covariates, while miR-29b was associated with severe PE, using maternal age as covariate. Studied markers were correlated with clinical and ultrasound data in the overall PE group. Serum H19 and TUG1 were negatively correlated with albuminuria in EOPE and LOPE, respectively. NEAT1 and SLC3A1 were correlated with ultrasound data in EOPE. Likewise, TUG1, miR-29b, and SLC3A1 showed significant correlations with ultrasound data in LOPE. Conclusively, this study configures SLC3A1 expression as a novel potential serum biomarker of PE and advocates serum H19 and miR-29b as biomarkers of EOPE and miR-29b as a biomarker of PE severity.
Collapse
Affiliation(s)
- Mahmoud A. Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt
| | - Olfat G. Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed H.Z. Elmaasrawy
- Department of Obstetrics and Gynecology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Ahmed M. Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al Qura University, P.O. Box 13578, Makkah, 21955, Saudi Arabia
| | - Shuruq E. Alsufyani
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Hany H. Arab
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Ghada Ayeldeen
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
2
|
Abad Baucells C, Schönauer R, Halbritter J. The genetics of cystinuria - an update and critical reevaluation. Curr Opin Nephrol Hypertens 2024; 33:231-237. [PMID: 38240263 DOI: 10.1097/mnh.0000000000000949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
PURPOSE OF REVIEW We aimed to critically evaluate how the establishment of genotype-based treatment for cystinuria has been hampered due to the large number of variants of unknown significance (VUS) within the disease causing genes as well as challenges in accessing a large enough sample size for systematic analysis of endpoint parameters that truly reflect disease severity. This review further discusses how to overcome these hurdles with the establishment of a cystinuria-specific refinement of the current American College of Medical Genetics and Genomics (ACMG)-criteria of variant interpretation. RECENT FINDINGS Novel tools such as AlphaMissense combined with the establishment of a refined ACMG criterion will play a significant role in classifying VUS within the responsible disease genes SLC3A1 (rBAT) and SLC7A9 (BAT1). This will also be essential in elucidating the role of promising candidate genes, such as SLC7A13 (AGT1), which have been derived from murine model systems and still need further research to determine if they are involved in human cystinuria. SUMMARY Cystinuria was one of the first disorders to receive a gene-based classification, nonetheless, the clinically actionable implications of genetic diagnostics is still minor. This is due to poorly characterized genotype-phenotype correlations which results in a lack of individualized (genotype-) based management and metaphylaxis.
Collapse
Affiliation(s)
- Clàudia Abad Baucells
- Department of Nephrology and Medical Intensive Care, Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | | |
Collapse
|
3
|
Ma Z, Wang W, Zhang D, Zhang Y, Zhao Y, Li X, Zhao L, Lin C, Wang J, Zhou B, Cheng J, Xu D, Li W, Yang X, Huang Y, Cui P, Liu J, Zeng X, Zhai R, Zhang X. Ovine RAP1GAP and rBAT gene polymorphisms and their association with tail fat deposition in Hu sheep. Front Vet Sci 2022; 9:974513. [PMID: 36090178 PMCID: PMC9453205 DOI: 10.3389/fvets.2022.974513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Excessive fat deposition in the tail of sheep will affect its feed efficiency, which will increase the feeding cost. The purpose of this study was to identify the single nucleotide polymorphisms (SNPs) of RAP1GAP and rBAT genes by PCR amplification and Sanger sequencing, the SNPs were genotyped by KASP genotyping assays to evaluate their association with tail fat deposition traits. The results showed that two intronic mutations of g.13561 G > A and g.1460 T > C were found in RAP1GAP and rBAT, respectively. There were three genotypes of GG, AG, AA and CC, CT and TT at these two loci, respectively. Association analysis showed that g.13561 G > A of RAP1GAP was associated with tail width, tail fat weight and relative tail fat weight (P < 0.05). The g.1460 T > C of rBAT was associated with tail width and tail fat weight (P < 0.05). Different combinations of genotypes also differed significantly with tail fat deposition traits. In the tail fat tissue, the expression levels of RAP1GAP gene was significantly higher in small-tailed sheep than in big-tailed sheep, and the expression levels of rBAT gene was significantly higher in big-tailed sheep than in small-tailed sheep. In the liver, the expression levels of RAP1GAP and rBAT gene was significantly higher at 6 months than at 0 and 3 months. In conclusion, RAP1GAP and rBAT polymorphisms can be used as a candidate molecular marker to reduce tail fat deposition in sheep.
Collapse
Affiliation(s)
- Zongwu Ma
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Weimin Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Deyin Zhang
- The State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Yukun Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuan Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaolong Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Liming Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Changchun Lin
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jianghui Wang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bubo Zhou
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jiangbo Cheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Dan Xu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Wenxin Li
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaobin Yang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yongliang Huang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Panpan Cui
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Jia Liu
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiwen Zeng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Rui Zhai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Xiaoxue Zhang
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou, China
- *Correspondence: Xiaoxue Zhang
| |
Collapse
|
4
|
To VPTH, Masagounder K, Loewen ME. Critical transporters of methionine and methionine hydroxyl analogue supplements across the intestine: What we know so far and what can be learned to advance animal nutrition. Comp Biochem Physiol A Mol Integr Physiol 2021; 255:110908. [PMID: 33482339 DOI: 10.1016/j.cbpa.2021.110908] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/15/2020] [Accepted: 01/11/2021] [Indexed: 11/19/2022]
Abstract
DL-methionine (DL-Met) and its analogue DL-2-hydroxy-4-(methylthio) butanoic acid (DL-methionine hydroxyl analogue or DL-MHA) have been used as nutritional supplements in the diets of farmed raised animals. Knowledge of the intestinal transport mechanisms involved in these products is important for developing dietary strategies. This review provides updated information of the expression, function, and transport kinetics in the intestine of known Met-linked transporters along with putative MHA-linked transporters. As a neutral amino acid (AA), the transport of DL-Met is facilitated by multiple apical sodium-dependent/-independent high-/low-affinity transporters such as ASCT2, B0AT1 and rBAT/b0,+AT. The basolateral transport largely relies on the rate-limiting uniporter LAT4, while the presence of the basolateral antiporter y+LAT1 is probably necessary for exchanging intracellular cationic AAs and Met in the blood. In contrast, the intestinal transport kinetics of DL-MHA have been scarcely studied. DL-MHA transport is generally accepted to be mediated simply by the proton-dependent monocarboxylate transporter MCT1. However, in-depth mechanistic studies have indicated that DL-MHA transport is also achieved through apical sodium monocarboxylate transporters (SMCTs). In any case, reliance on either a proton or sodium gradient would thus require energy input for both Met and MHA transport. This expanding knowledge of the specific transporters involved now allows us to assess the effect of dietary ingredients on the expression and function of these transporters. Potentially, the resulting information could be furthered with selective breeding to reduce overall feed costs.
Collapse
Affiliation(s)
- Van Pham Thi Ha To
- Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Matthew E Loewen
- Veterinary Biomedical Science, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
5
|
Yan R, Li Y, Shi Y, Zhou J, Lei J, Huang J, Zhou Q. Cryo-EM structure of the human heteromeric amino acid transporter b 0,+AT-rBAT. SCIENCE ADVANCES 2020; 6:eaay6379. [PMID: 32494597 PMCID: PMC7159911 DOI: 10.1126/sciadv.aay6379] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/22/2020] [Indexed: 05/16/2023]
Abstract
Heteromeric amino acid transporters (HATs) catalyze the transmembrane movement of amino acids, comprising two subunits, a heavy chain and a light chain, linked by a disulfide bridge. The b0,+AT (SLC7A9) is a representative light chain of HATs, forming heterodimer with rBAT, a heavy chain which mediates the membrane trafficking of b0,+AT. The b0,+AT-rBAT complex is an obligatory exchanger, which mediates the influx of cystine and cationic amino acids and the efflux of neutral amino acids in kidney and small intestine. Here, we report the cryo-EM structure of the human b0,+AT-rBAT complex alone and in complex with arginine substrate at resolution of 2.7 and 2.3 Å, respectively. The overall structure of b0,+AT-rBAT exists as a dimer of heterodimer consistent with the previous study. A ligand molecule is bound to the substrate binding pocket, near which an occluded pocket is identified, to which we found that it is important for substrate transport.
Collapse
Affiliation(s)
- Renhong Yan
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yaning Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Shi
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jiayao Zhou
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Huang
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Qiang Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
6
|
Jiang Y, Cao Y, Wang Y, Li W, Liu X, Lv Y, Li X, Mi J. Cysteine transporter SLC3A1 promotes breast cancer tumorigenesis. Am J Cancer Res 2017; 7:1036-1046. [PMID: 28382174 PMCID: PMC5381264 DOI: 10.7150/thno.18005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 01/17/2017] [Indexed: 01/10/2023] Open
Abstract
Cysteine is an essential amino acid for infants, aged people as well as patients with metabolic disorders. Although the thiol group of cysteine side chain is active in oxidative reactions, the role of cysteine in cancer remains largely unknown. Here, we report that the expression level of the solute carrier family 3, member 1 (SLC3A1), the cysteine carrier, tightly correlated with clinical stages and patients' survival. Elevated SLC3A1 expression accelerated the cysteine uptake and the accumulation of reductive glutathione (GSH), leading to reduced reactive oxygen species (ROS). ROS increased the stability and activity of PP2Ac, resulting in decreased AKT activity. Hence, SLC3A1 activated the AKT signaling through inhibiting PP2A phosphatase activity. Consistently, overexpression of SLC3A1 enhanced tumorigenesis of breast cancer cells, whereas blocking SLC3A1 either with specific siRNA or SLC3A1 specific inhibitor sulfasalazine suppressed tumor growth and also abolished dietary NAC-promoted tumor growth. Collectively, our data demonstrate that SLC3A1 promotes cysteine uptake and determines cellular response to antioxidant N-acetylcysteine, suggesting SLC3A1 is a potential therapeutic target for breast cancer.
Collapse
|
7
|
Abstract
There is currently no effective treatment for multiorgan failure following shock other than supportive care. A better understanding of the pathogenesis of these sequelae to shock is required. The intestine plays a central role in multiorgan failure. It was previously suggested that bacteria and their toxins are responsible for the organ failure seen in circulatory shock, but clinical trials in septic patients have not confirmed this hypothesis. Instead, we review here evidence that the digestive enzymes, synthesized in the pancreas and discharged into the small intestine as requirement for normal digestion, may play a role in multiorgan failure. These powerful enzymes are nonspecific, highly concentrated, and fully activated in the lumen of the intestine. During normal digestion they are compartmentalized in the lumen of the intestine by the mucosal epithelial barrier. However, if this barrier becomes permeable, e.g. in an ischemic state, the digestive enzymes escape into the wall of the intestine. They digest tissues in the mucosa and generate small molecular weight cytotoxic fragments such as unbound free fatty acids. Digestive enzymes may also escape into the systemic circulation and activate other degrading proteases. These proteases have the ability to clip the ectodomain of surface receptors and compromise their function, for example cleaving the insulin receptor causing insulin resistance. The combination of digestive enzymes and cytotoxic fragments leaking into the central circulation causes cell and organ dysfunction, and ultimately may lead to complete organ failure and death. We summarize current evidence suggesting that enteral blockade of digestive enzymes inside the lumen of the intestine may serve to reduce acute cell and organ damage and improve survival in experimental shock.
Collapse
|
8
|
|
9
|
Palacín M, Fernaández E, Chillarón J, Zorzano A. The amino acid transport system bo,+and cystinuria. Mol Membr Biol 2009. [DOI: 10.1080/09687680010028771] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Pineda M, Font M, Bassi MT, Manzoni M, Borsani G, Marigo V, Fernández E, Río RMD, Purroy J, Zorzano A, Nunes V, Palacín M. The amino acid transporter asc-1 is not involved in cystinuria. Kidney Int 2004; 66:1453-64. [PMID: 15458438 DOI: 10.1111/j.1523-1755.2004.00908.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND The human amino acid transporter asc-1 (SLC7A10) exhibits substrate selectivity for small neutral amino acids, including cysteine, is expressed in kidney, is located close to the cystinuria B gene and presents sequence variants (e.g., E112D) in some cystinuria patients. We have cloned human asc-1, assessed its transport characteristics, localized its expression in kidney, searched for mutations in cystinuria patients, and tested the transport function of variant E112D. METHODS We used an EST-based homology cloning strategy. Transport characteristics of asc-1 were assessed by coexpression with 4F2hc in Xenopus oocytes and HeLa cells. Localization of asc-1 mRNA in kidney was assessed by in situ hybridization. Exons and intron-exon boundaries were polymerase chain reaction (PCR)-amplified from blood cell DNA and mutational screening was performed by single-stranded conformational polymorphism (SSCP). RESULTS Asc-1 reaches the plasma membrane in HeLa cells, unlike in oocytes, most probably by interaction with endogenous 4F2hc and presents similar transport characteristics to those in oocytes coexpressing asc-1/4F2hc. Asc-1 mediates a substantial efflux of alanine in a facilitated diffusion mode of transport. Expression of asc-1 mRNA localized to Henle's loop, distal tubules, and collecting ducts. Finally, SLC7A10 polymorphisms were identified in cystinuria probands and the SLC7A10 sequence variant E112D showed full transport activity. CONCLUSION The lack of expression of asc-1 in the proximal tubule indicates that it plays no role in the bulk of renal reabsorption of amino acids. No mutations causing cystinuria have been found in SLC7A10. The facilitated diffusion mode of transport and the expression in distal nephron suggest a role for asc-1 in osmotic adaptation.
Collapse
Affiliation(s)
- Marta Pineda
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Fjellstedt E, Harnevik L, Jeppsson JO, Tiselius HG, Söderkvist P, Denneberg T. Urinary excretion of total cystine and the dibasic amino acids arginine, lysine and ornithine in relation to genetic findings in patients with cystinuria treated with sulfhydryl compounds. ACTA ACUST UNITED AC 2003; 31:417-25. [PMID: 14586528 DOI: 10.1007/s00240-003-0366-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 08/06/2003] [Indexed: 11/28/2022]
Abstract
Advances in molecular genetics have brought a deeper understanding of cystinuria. This autosomal recessive disease, which is caused by a defective tubular reabsorption of cystine and the three dibasic amino acids arginine, lysine and ornithine, results in a lifelong risk of renal stone formation because of the low solubility of cystine in urine. Mutations detected within the two genes known to be associated with cystinuria, SLC3A1 (related to type I) and SLC7A9 (related to non-type I), cannot, however, in all cases explain the disease. Inasmuch as a high urinary concentration of cystine is the basis of stone formation in these patients, our aim was to measure urinary total cystine, arginine, lysine and ornithine, in patients currently lacking a full genetic explanation for their disease. Thirty-three patients with cystinuria who were on long-term treatment with tiopronin or D-penicillamine were divided into two groups. Group 1 comprised eight patients who carried mutation in one of the SLC3A1 alleles and two patients who completely lacked mutations both in the SLC3A1 and the SLC7A9 genes, that is genetic findings discordant with the increased urinary excretion of cystine and the dibasic amino acids in these patients. Group 2 comprised 23 patients homozygous for mutations within SLC3A1, that is genetic findings in accordance with the excretion pattern of classic type I cystinuria. When the two groups were compared, Group 1 had a significantly higher total urinary excretion of cystine ( p<0.01) as well as of arginine, lysine and ornithine ( p<0.05) than Group 2. Also, when the two patients without mutations were excluded from the calculations, there still was a significant difference in the urinary excretion of total cystine ( p<0.05). This suggests that the two patients without any detected mutations in the two known cystine transport genes also contributed to the difference. These unexpected findings indicate that an additional gene or genes participate in the urinary cystine reabsorption in the cystinuric patients who currently are without a full genetic explanation for their disease.
Collapse
Affiliation(s)
- Erik Fjellstedt
- Department of Nephrology and Transplantation, Malmö University Hospital, 205 02 Malmö, Sweden.
| | | | | | | | | | | |
Collapse
|
12
|
Palacín M, Kanai Y. The ancillary proteins of HATs: SLC3 family of amino acid transporters. Pflugers Arch 2003; 447:490-4. [PMID: 14770309 DOI: 10.1007/s00424-003-1062-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Accepted: 03/28/2003] [Indexed: 11/30/2022]
Abstract
The heteromeric amino acid transporters (HATs) are composed of a light and a heavy subunit linked by a disulfide bridge. The heavy subunits are the SLC3 members (rBAT and 4F2hc), whereas the light subunits are members of the SLC7 family of amino acid transporters. SLC3 proteins are type II membrane glycoproteins (i.e., one single transmembrane domain and the C-terminus located outside the cell) with a bulky extracellular domain that shows homology with alpha-glucosidases. rBAT heterodimerizes with b(0,+)AT (SLC7A9) constituting the amino acid transport b(0,+), the main system responsible for the apical reabsorption of cystine in kidney. The defect in this system causes cystinuria, the most common primary inherited aminoaciduria. 4F2hc subserves various amino acid transport systems by dimerization with different SLC7 proteins. The main role of SLC3 proteins is to help routing of the holotransporter to the plasma membrane. A working model for the biogenesis of HATs based on recent data on the rBAT/b(0,+)AT heterodimeric complex is presented. 4F2hc is a multifunctional protein, and in addition to its role in amino acid transport, it may be involved in other cellular functions. Studies on two SLC7 members (Asc-2 and AGT1) demonstrate heterodimerization with unknown heavy subunits.
Collapse
Affiliation(s)
- Manuel Palacín
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona and Parc Cientìfic de Barcelona, Avda. Diagonal 645, 08028, Barcelona, Spain.
| | | |
Collapse
|
13
|
Chillarón J, Roca R, Valencia A, Zorzano A, Palacín M. Heteromeric amino acid transporters: biochemistry, genetics, and physiology. Am J Physiol Renal Physiol 2001; 281:F995-1018. [PMID: 11704550 DOI: 10.1152/ajprenal.2001.281.6.f995] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The heteromeric amino acid transporters (HATs) are composed of two polypeptides: a heavy subunit (HSHAT) and a light subunit (LSHAT) linked by a disulfide bridge. HSHATs are N-glycosylated type II membrane glycoproteins, whereas LSHATs are nonglycosylated polytopic membrane proteins. The HSHATs have been known since 1992, and the LSHATs have been described in the last three years. HATs represent several of the classic mammalian amino acid transport systems (e.g., L isoforms, y(+)L isoforms, asc, x(c)(-), and b(0,+)). Members of the HAT family are the molecular bases of inherited primary aminoacidurias cystinuria and lysinuric protein intolerance. In addition to the role in amino acid transport, one HSHAT [the heavy subunit of the cell-surface antigen 4F2 (also named CD98)] is involved in other cell functions that might be related to integrin activation. This review covers the biochemistry, human genetics, and cell physiology of HATs, including the multifunctional character of CD98.
Collapse
Affiliation(s)
- J Chillarón
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona E-08028, Spain
| | | | | | | | | |
Collapse
|
14
|
Wagner CA, Lang F, Bröer S. Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol 2001; 281:C1077-93. [PMID: 11546643 DOI: 10.1152/ajpcell.2001.281.4.c1077] [Citation(s) in RCA: 258] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterodimeric amino acid transporters are comprised of two subunits, a polytopic membrane protein (light chain) and an associated type II membrane protein (heavy chain). The heavy chain rbAT (related to b(0,+) amino acid transporter) associates with the light chain b(0,+)AT (b(0,+) amino acid transporter) to form the amino acid transport system b(0,+), whereas the homologous heavy chain 4F2hc interacts with several light chains to form system L (with LAT1 and LAT2), system y(+)L (with y(+)LAT1 and y(+)LAT2), system x (with xAT), or system asc (with asc1). The association of light chains with the two heavy chains is not unambiguous. rbAT may interact with LAT2 and y(+)LAT1 and vice versa; 4F2hc may interact with b(0,+)AT when overexpressed. 4F2hc is necessary for trafficking of the light chain to the plasma membrane, whereas the light chains are thought to determine the transport characteristics of the respective heterodimer. In contrast to 4F2hc, mutations in rbAT suggest that rbAT itself takes part in the transport besides serving for the trafficking of the light chain to the cell surface. Heavy and light subunits are linked together by a disulfide bridge. The disulfide bridge, however, is not necessary for the trafficking of rbAT or 4F2 heterodimers to the membrane or for the functioning of the transporter. However, there is experimental evidence that the disulfide bridge in the 4F2hc/LAT1 heterodimer plays a role in the regulation of a cation channel. These results highlight complex interactions between the different subunits of heterodimeric amino acid transporters and suggest that despite high grades of homology, the interactions between rbAT and 4F2hc and their respective partners may be different.
Collapse
Affiliation(s)
- C A Wagner
- Department of Cellular and Molecular Physiology, School of Medicine, Yale University, New Haven, Connecticut 06520, USA.
| | | | | |
Collapse
|
15
|
Palacín M, Borsani G, Sebastio G. The molecular bases of cystinuria and lysinuric protein intolerance. Curr Opin Genet Dev 2001; 11:328-35. [PMID: 11377971 DOI: 10.1016/s0959-437x(00)00198-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystinuria and lysinuric protein intolerance are inherited aminoacidurias caused by defective amino-acid transport activities linked to a family of heteromeric amino-acid transporters (HATs). HATs comprise two subunits: co-expression of subunits 4F2hc and y(+)LAT-1 induces the efflux of dibasic amino acids from cells, whereas co-expression of subunits rBAT and b(o,+)AT induces the renal reabsorption and intestinal absorption of cystine and dibasic amino acids at the brush border of epithelial cells. Recently, the role of b(o,+)AT (SLC7A9) in cystinuria (non Type I) and the role of y(+)LAT-1 (SLC7A7) in lysinuric protein intolerance have been demonstrated.
Collapse
Affiliation(s)
- M Palacín
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645, E-08028, Barcelona, Spain.
| | | | | |
Collapse
|
16
|
Valdés R, Ortega MA, Casado FJ, Felipe A, Gil A, Sánchez-Pozo A, Pastor-Anglada M. Nutritional regulation of nucleoside transporter expression in rat small intestine. Gastroenterology 2000; 119:1623-30. [PMID: 11113083 DOI: 10.1053/gast.2000.20183] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Concentrative nucleoside transporters CNT1 (pyrimidine preferring) and CNT2 (purine preferring) may be involved in the uptake of nucleoside-derived drugs used in antiviral and chemical therapies. The possibility that nucleoside carrier isoform expression is modulated by nutrient availability has been studied. METHODS CNT1 and CNT2 tissue distribution was determined by Western blot analysis. The effect of 48-hour starvation on CNT expression was then studied. Nucleoside transporter expression and uptake activity were measured in jejunal brush border plasma membrane vesicles from fed and starved rats. The expression of nucleoside transporters was later determined in a second model of nutrient deficiency: rats fed a purified diet with or without nucleotides for 10 days. RESULTS CNT1 and CNT2 nucleoside transporters were expressed in a wider variety of tissues than expected from messenger RNA distribution analysis. CNT1 was sensitive to nutrient availability in small intestine and, accordingly, jejunal brush border membrane vesicles from 48-hour-fasted rats showed increased expression of CNT1 and enhanced Na(+)-dependent thymidine and gemcitabine uptake. This effect was mimicked by feeding semipurified diets lacking nucleotides. CONCLUSIONS Substrate availability modulates nucleoside transporter expression (CNT1) in rat jejunum in vivo.
Collapse
Affiliation(s)
- R Valdés
- Departament de Bioquímica i Biologia Molecular, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
17
|
Palacín M, Bertran J, Zorzano A. Heteromeric amino acid transporters explain inherited aminoacidurias. Curr Opin Nephrol Hypertens 2000; 9:547-53. [PMID: 10990376 DOI: 10.1097/00041552-200009000-00015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the past 5 years, the first genes responsible for aminoacidurias caused by defects in renal reabsorption transport mechanisms have been identified. These diseases are type I and non-type I cystinuria and lysinuric protein intolerance. This knowledge came from the molecular characterization of the first heteromeric amino acid transporters in mammals. In 1992, rBAT and 4F2hc (genes SLC3A1 and SLC3A2, respectively, in the nomenclature of the Human Genome Organization) were identified as putative heavy subunits of mammalian amino acid transporters. In 1994, it was demonstrated that mutations in SLC3A1 cause type I cystinuria. Very recently, several light subunits of the heteromeric amino acid transporters have been identified. In 1999, a putative light subunit of rBAT (the SLC7A9 gene; complementary DNA and protein termed amino acid transporter) and a light subunit of 4F2hc (the SLC7A7 gene; cDNA and protein termed y+LAT-1) were shown to be the non-type I cystinuria and lysinuric protein intolerance genes, respectively. In this review, the characteristics of these heteromeric amino acid transporters and their role in these inherited aminoacidurias is described.
Collapse
Affiliation(s)
- M Palacín
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain.
| | | | | |
Collapse
|
18
|
Ishiia H, Sasaki Y, Goshima Y, Kanai Y, Endou H, Ayusawa D, Ono H, Miyamae T, Misu Y. Involvement of rBAT in Na(+)-dependent and -independent transport of the neurotransmitter candidate L-DOPA in Xenopus laevis oocytes injected with rabbit small intestinal epithelium poly A(+) RNA. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1466:61-70. [PMID: 10825431 DOI: 10.1016/s0005-2736(00)00171-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Although L-3,4-dihydroxyphenylalanine (L-DOPA) is claimed to be a neurotransmitter in the central nervous system (CNS), receptor or transporter molecules for L-DOPA have not been determined. In an attempt to identify a transporter for L-DOPA, we examined whether or not an active and high affinity L-DOPA transport system is expressed in Xenopus laevis oocytes injected with poly A(+) RNA prepared from several tissues. Among the poly A(+) RNAs tested, rabbit intestinal epithelium poly A(+) RNA gave the highest transport activity for L-[(14)C]DOPA in the oocytes. The uptake was approximately five times higher than that of water-injected oocytes, and was partially Na(+)-dependent. L-Tyrosine, L-phenylalanine, L-leucine and L-lysine inhibited this transport activity, whereas D-DOPA, dopamine, glutamate and L-DOPA cyclohexylester, an L-DOPA antagonist did not affect this transport. Coinjection of an antisense cRNA, as well as oligonucleotide complementary to rabbit rBAT (NBAT) cDNA almost completely inhibited the uptake of L-[(14)C]DOPA in the oocytes. On the other hand, an antisense cRNA of rabbit 4F2hc barely affected this L-[(14)C]DOPA uptake activity. rBAT was thus responsible for the L-[(14)C]DOPA uptake activity expressed in X. laevis oocytes injected with poly A(+) RNA from rabbit intestinal epithelium. As rBAT is localized at the target regions of L-DOPA in the CNS, rBAT might be one of the components involved in L-DOPAergic neurotransmission.
Collapse
Affiliation(s)
- H Ishiia
- Department of Pharmacology, Yokohama City University of Medicine, Yokohama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Rossier G, Meier C, Bauch C, Summa V, Sordat B, Verrey F, Kühn LC. LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem 1999; 274:34948-54. [PMID: 10574970 DOI: 10.1074/jbc.274.49.34948] [Citation(s) in RCA: 274] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycoprotein-associated amino acid transporters (gpaAT) are permease-related proteins that require heterodimerization to express their function. So far, four vertebrate gpaATs have been shown to associate with 4F2hc/CD98 for functional expression, whereas one gpaAT specifically associates with rBAT. In this study, we characterized a novel gpaAT, LAT2, for which mouse and human cDNAs were identified by expressed sequence tag data base searches. The encoded ortholog proteins are 531 and 535 amino acids long and 92% identical. They share 52 and 48% residues with the gpaATs LAT1 and y(+)LAT1, respectively. When mouse LAT2 and human 4F2hc cRNAs were co-injected into Xenopus oocytes, disulfide-linked heterodimers were formed, and an L-type amino acid uptake was induced, which differed slightly from that produced by LAT1-4F2hc: the apparent affinity for L-phenylalanine was higher, and L-alanine was transported at physiological concentrations. In the presence of an external amino acid substrate, LAT2-4F2hc also mediated amino acid efflux. LAT2 mRNA is expressed mainly in kidney and intestine, whereas LAT1 mRNA is expressed widely. Immunofluorescence experiments showed colocalization of 4F2hc and LAT2 at the basolateral membrane of kidney proximal tubules and small intestine epithelia. In conclusion, LAT2 forms with LAT1 a subfamily of L-type gpaATs. We propose that LAT1 is involved in cellular amino acid uptake, whereas LAT2 plays a role in epithelial amino acid (re)absorption.
Collapse
Affiliation(s)
- G Rossier
- Swiss Institute for Experimental Cancer Research, CH-1066 Epalinges s/Lausanne, Switzerland
| | | | | | | | | | | | | |
Collapse
|
21
|
Rajan DP, Kekuda R, Huang W, Wang H, Devoe LD, Leibach FH, Prasad PD, Ganapathy V. Cloning and expression of a b(0,+)-like amino acid transporter functioning as a heterodimer with 4F2hc instead of rBAT. A new candidate gene for cystinuria. J Biol Chem 1999; 274:29005-10. [PMID: 10506149 DOI: 10.1074/jbc.274.41.29005] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have cloned a transporter protein from rabbit small intestine, which, when coexpressed with the 4F2 heavy chain (4F2hc) in mammalian cells, induces a b(0,+)-like amino acid transport activity. This protein (4F2-lc6 for the sixth member of the 4F2 light chain family) consists of 487 amino acids and has 12 putative transmembrane domains. At the level of amino acid sequence, 4F2-lc6 shows significant homology (44% identity) to the other five known members of the 4F2 light chain family, namely LAT1 (4F2-lc1), y(+)LAT1 (4F2-lc2), y(+)LAT2 (4F2-lc3), xCT (4F2-lc4), and LAT2 (4F2-lc5). The 4F2hc/4F2-lc6 complex-mediated transport process is Na(+)-independent and exhibits high affinity for neutral and cationic amino acids and cystine. These characteristics are similar to those of the b(0,+)-like amino acid transport activity previously shown to be associated with rBAT (protein related to b(0,+) amino acid transport system). However, the newly cloned 4F2-lc6 does not interact with rBAT. This is the first report of the existence of a b(0,+)-like amino acid transport process that is independent of rBAT. 4F2-lc6 is expressed predominantly in the small intestine and kidney. Based on the characteristics of the transport process mediated by the 4F2hc/4F2-lc6 complex and the expression pattern of 4F2-lc6 in mammalian tissues, we suggest that 4F2-lc6 is a new candidate gene for cystinuria.
Collapse
Affiliation(s)
- D P Rajan
- Department of Biochemistry, Medical College of Georgia, Augusta, Georgia 30912, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Chairoungdua A, Segawa H, Kim JY, Miyamoto K, Haga H, Fukui Y, Mizoguchi K, Ito H, Takeda E, Endou H, Kanai Y. Identification of an amino acid transporter associated with the cystinuria-related type II membrane glycoprotein. J Biol Chem 1999; 274:28845-8. [PMID: 10506124 DOI: 10.1074/jbc.274.41.28845] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We identified an amino acid transporter that is associated with the cystinuria-related type II membrane glycoprotein, rBAT (related to b(0,+) amino acid transporter). The transporter designated BAT1 (b(0, +)-type amino acid transporter 1) from rat kidney was found to be structurally related to recently identified amino acid transporters for system L, system y(+)L, and system x(-)C, which are linked, via a disulfide bond, to the other type II membrane glycoprotein, 4F2hc (4F2 heavy chain). In the nonreducing condition, a 125-kDa band, which seems to correspond to the heterodimeric complex of BAT1 and rBAT, was detected in rat kidney with anti-BAT1 antibody. The band was shifted to 41 kDa in the reducing condition, confirming that BAT1 and rBAT are linked via a disulfide bond. The BAT1 and rBAT proteins were shown to be colocalized in the apical membrane of the renal proximal tubules where massive cystine transport had been proposed. When expressed in COS-7 cells with rBAT, but not with 4F2hc, BAT1 exhibited a Na(+)-independent transport of cystine as well as basic and neutral amino acids with the properties of system b(0,+). The results from the present investigation were used to establish a family of amino acid transporters associated with type II membrane glycoproteins.
Collapse
Affiliation(s)
- A Chairoungdua
- Department of Pharmacology, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Peter GJ, Davies A, Watt PW, Birrell J, Taylor PM. Interactions between the thiol-group reagent N-ethylmaleimide and neutral and basic amino acid transporter-related amino acid transport. Biochem J 1999; 343 Pt 1:169-76. [PMID: 10493926 PMCID: PMC1220538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
The neutral and basic amino acid transport protein (NBAT) expressed in renal and jejunal brush-border membranes is involved in amino acid and cystine absorption. NBAT mutations result in Type 1 cystinuria. A C-terminal myc-tagged NBAT (NBATmyc) retains the amino acid transport and protein-protein interaction properties of NBAT when expressed in Xenopus oocytes. Neutral amino acid (Ala, Phe)-cationic amino acid (Arg) heteroexchanges related to NBATmyc expression in oocytes are inactivated by treatment with the thiol-group reagent N-ethylmaleimide (NEM), although significant Arg-Arg and Ala-Ala homoexchanges persist. Inactivation of heteroexchange activity by NEM is accompanied by loss of >85% of alanine and cystine uptake, with smaller (<50%) inhibition of arginine and phenylalanine uptake. NEM-sensitive cystine uptake and arginine-alanine heteroexchange (system b(0,+) activity) are not expressed by an NBAT truncation mutant (NBATmyc-Sph1) lacking the 13 C-terminal amino acid residues, but the mutant expresses NEM-resistant transport activity (system y(+)L-like) equivalent to that of full-length NBATmyc. The deleted region of NBATmyc-Sph1 contains two cysteine residues (671/683) which may be the targets of NEM action. The synthetic amino acid 2-trifluoromethylhistidine (TFMH) stimulated alanine efflux at pH 7.5 and arginine at pH 5.5, but not vice versa, establishing the existence of distinct pathways for cationic and neutral amino acid homoexchange (TFMH is zwitterionic at pH 7.5 and cationic at pH 5.5). We suggest that NBAT expresses a combination of system b(0,+) and y(+)L-like activities, possibly by interacting with different light-chain subunits endogenous to oocytes (as does the homologous 4F2hc protein). The C-terminus of NBAT may also have an additional, direct role in the mechanism of System b(0,+) transport (the major transport activity that is defective in Type 1 cystinuria).
Collapse
Affiliation(s)
- G J Peter
- Department of Anatomy and Physiology, University of Dundee, Dundee DD1 4HN, Scotland, U.K
| | | | | | | | | |
Collapse
|
24
|
Feliubadaló L, Font M, Purroy J, Rousaud F, Estivill X, Nunes V, Golomb E, Centola M, Aksentijevich I, Kreiss Y, Goldman B, Pras M, Kastner DL, Pras E, Gasparini P, Bisceglia L, Beccia E, Gallucci M, de Sanctis L, Ponzone A, Rizzoni GF, Zelante L, Bassi MT, George AL, Manzoni M, De Grandi A, Riboni M, Endsley JK, Ballabio A, Borsani G, Reig N, Fernández E, Estévez R, Pineda M, Torrents D, Camps M, Lloberas J, Zorzano A, Palacín M. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat Genet 1999; 23:52-7. [PMID: 10471498 DOI: 10.1038/12652] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cystinuria (MIM 220100) is a common recessive disorder of renal reabsorption of cystine and dibasic amino acids. Mutations in SLC3A1, encoding rBAT, cause cystinuria type I (ref. 1), but not other types of cystinuria (ref. 2). A gene whose mutation causes non-type I cystinuria has been mapped by linkage analysis to 19q12-13.1 (Refs 3,4). We have identified a new transcript, encoding a protein (bo, +AT, for bo,+ amino acid transporter) belonging to a family of light subunits of amino acid transporters, expressed in kidney, liver, small intestine and placenta, and localized its gene (SLC7A9) to the non-type I cystinuria 19q locus. Co-transfection of bo,+AT and rBAT brings the latter to the plasma membrane, and results in the uptake of L-arginine in COS cells. We have found SLC7A9 mutations in Libyan-Jews, North American, Italian and Spanish non-type I cystinuria patients. The Libyan Jewish patients are homozygous for a founder missense mutation (V170M) that abolishes b o,+AT amino-acid uptake activity when co-transfected with rBAT in COS cells. We identified four missense mutations (G105R, A182T, G195R and G295R) and two frameshift (520insT and 596delTG) mutations in other patients. Our data establish that mutations in SLC7A9 cause non-type I cystinuria, and suggest that bo,+AT is the light subunit of rBAT.
Collapse
Affiliation(s)
- L Feliubadaló
- Centre de Genètica Mèdica i Molecular (IRO), Hospital Duran i Reynals, Autovía de Castelldefels Km 2.7, L'Hospitalet de Llobregat, Barcelona, E-08907, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pickel VM, Pohorille A, Chan J, Tate SS, Nirenberg MJ. Regional and subcellular distribution of a neutral and basic amino acid transporter in forebrain neurons containing nitric oxide synthase. J Comp Neurol 1999; 404:459-72. [PMID: 9987991 DOI: 10.1002/(sici)1096-9861(19990222)404:4<459::aid-cne4>3.0.co;2-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The neutral and basic amino acid transporter (NBAT) facilitates sodium-independent transport of L-amino acids in renal and intestinal epithelial cells and has been postulated to play a similar role in neurons. In previous studies, NBAT has been detected within enteric and brainstem autonomic neurons in a distribution similar to that of constitutive nitric oxide synthase (cNOS). Furthermore, L-arginine, the required precursor for nitric oxide synthesis, is an excellent NBAT substrate. Together, these findings suggest that NBAT may play a role in the regulation of nitric oxide synthesis, through the control of precursor availability. To gain insight into the potential physiological role of NBAT in central neurons, we used an antipeptide antiserum to examine the light and electron microscopic immunocytochemical localization of NBAT in the rat forebrain and to compare this distribution with that of cNOS. Immunolabeling for NBAT was detected within perikarya and dendrite-like processes that were most numerous in the frontal and cingulate cortex, the ventral striatum, the central amygdala, and the bed nucleus of the stria terminalis. Labeled varicose axonal processes were distributed most densely in the agranular insular cortex and the paraventricular nuclei of the thalamus and hypothalamus (PVH). Electron microscopy showed that immunogold labeling for NBAT was distributed along plasmalemmal and vacuolar membranes within somata, dendrites, and axonal profiles. Many of the NBAT-containing somata and dendrites contained detectable cNOS. Our results suggest that expression of NBAT may provide specific populations of cNOS-containing forebrain neurons with a unique mechanism for regulating somatodendritic synthesis of nitric oxide.
Collapse
Affiliation(s)
- V M Pickel
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, New York 10021, USA.
| | | | | | | | | |
Collapse
|
26
|
Pfeiffer R, Rossier G, Spindler B, Meier C, Kühn L, Verrey F. Amino acid transport of y+L-type by heterodimers of 4F2hc/CD98 and members of the glycoprotein-associated amino acid transporter family. EMBO J 1999; 18:49-57. [PMID: 9878049 PMCID: PMC1171101 DOI: 10.1093/emboj/18.1.49] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Amino acid transport across cellular membranes is mediated by multiple transporters with overlapping specificities. We recently have identified the vertebrate proteins which mediate Na+-independent exchange of large neutral amino acids corresponding to transport system L. This transporter consists of a novel amino acid permease-related protein (LAT1 or AmAT-L-lc) which for surface expression and function requires formation of disulfide-linked heterodimers with the glycosylated heavy chain of the h4F2/CD98 surface antigen. We show that h4F2hc also associates with other mammalian light chains, e.g. y+LAT1 from mouse and human which are approximately 48% identical with LAT1 and thus belong to the same family of glycoprotein-associated amino acid transporters. The novel heterodimers form exchangers which mediate the cellular efflux of cationic amino acids and the Na+-dependent uptake of large neutral amino acids. These transport characteristics and kinetic and pharmacological fingerprints identify them as y+L-type transport systems. The mRNA encoding my+LAT1 is detectable in most adult tissues and expressed at high levels in kidney cortex and intestine. This suggests that the y+LAT1-4F2hc heterodimer, besides participating in amino acid uptake/secretion in many cell types, is the basolateral amino acid exchanger involved in transepithelial reabsorption of cationic amino acids; hence, its defect might be the cause of the human genetic disease lysinuric protein intolerance.
Collapse
Affiliation(s)
- R Pfeiffer
- Institute of Physiology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
27
|
Deora AB, Ghosh RN, Tate SS. Progressive C-terminal deletions of the renal cystine transporter, NBAT, reveal a novel bimodal pattern of functional expression. J Biol Chem 1998; 273:32980-7. [PMID: 9830050 DOI: 10.1074/jbc.273.49.32980] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nearly identical proteins (denoted NAA-Tr, rBAT, D2, NBAT), cloned from mammalian kidneys, induce a largely sodium-independent high-affinity transport system for cystine, basic amino acids, and some neutral amino acids in Xenopus oocytes (system b0,+-like). Mutations in the human NBAT gene have been found in several type I cystinurics. In kidney, NBAT is associated with a second, smaller protein (approximately 45 kDa), and this heterodimer has been proposed to be the minimal functional unit of the renal cystine transporter (Wang, Y., and Tate, S. S. (1995) FEBS Lett. 368, 389-392). To delineate regions minimally required for functional expression in oocytes, we constructed a series of C-terminal truncated mutants of rat kidney NBAT (wild-type (WT), 683 amino acids). Expression of these mutants in oocytes yielded an unusual bimodal pattern for the induction of amino acid transport activity. Thus, initial C-terminal truncations aborted elicitation of transport activity. The next mutant in the series, Delta588-683, exhibited most of the transport-inducing potential inherent in the WT/NBAT. Further deletions again attenuated transport activity. Although both the WT/NBAT and the truncated mutant, Delta588-683, induce qualitatively similar transport systems, the two forms of the protein exhibit contrasting sensitivities toward a point mutation in which the cysteine residue at position 111 was mutated to serine. This mutation did not greatly affect induction of transport by the WT/NBAT; however, the Delta588-683 mutant was inactivated by this mutation. Our data further suggest that cysteine 111 is probably the site of disulfide linkage with an approximately 45-kDa oocyte protein producing a complex equivalent to that seen in kidney membranes.
Collapse
Affiliation(s)
- A B Deora
- Department of Biochemistry, Cornell University Medical College, New York, New York 10021, USA
| | | | | |
Collapse
|
28
|
Pfeiffer R, Spindler B, Loffing J, Skelly PJ, Shoemaker CB, Verrey F. Functional heterodimeric amino acid transporters lacking cysteine residues involved in disulfide bond. FEBS Lett 1998; 439:157-62. [PMID: 9849898 DOI: 10.1016/s0014-5793(98)01359-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The protein mediating system L amino acid transport, AmAT-L, is a disulfide-linked heterodimer of a permease-related light chain (AmAT-L-lc) and the type II glycoprotein 4F2hc/ CD98. The Schistosoma mansoni protein SPRM1 also heterodimerizes with h4F2hc, inducing amino acid transport with different specificity. In this study, we show that the disulfide bond is formed by heavy chain C109 with a Cys residue located in the second putative extracellular loop of the multi-transmembrane domain light chain (C164 and C137 for XAmAT-L-lc and SPRM1, respectively). The non-covalent interaction of Cys-mutant subunits is not sufficient to allow coimmunoprecipitation, but cell surface expression of the light chains is maintained to a large extent. The non-covalently linked transporters display the same transport characteristics as disulfide bound heterodimers, but the maximal transport rates are reduced by 30-80%.
Collapse
Affiliation(s)
- R Pfeiffer
- Institute of Physiology, University of Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|
29
|
Palacín M, Estévez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 1998; 78:969-1054. [PMID: 9790568 DOI: 10.1152/physrev.1998.78.4.969] [Citation(s) in RCA: 593] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Molecular biology entered the field of mammalian amino acid transporters in 1990-1991 with the cloning of the first GABA and cationic amino acid transporters. Since then, cDNA have been isolated for more than 20 mammalian amino acid transporters. All of them belong to four protein families. Here we describe the tissue expression, transport characteristics, structure-function relationship, and the putative physiological roles of these transporters. Wherever possible, the ascription of these transporters to known amino acid transport systems is suggested. Significant contributions have been made to the molecular biology of amino acid transport in mammals in the last 3 years, such as the construction of knockouts for the CAT-1 cationic amino acid transporter and the EAAT2 and EAAT3 glutamate transporters, as well as a growing number of studies aimed to elucidate the structure-function relationship of the amino acid transporter. In addition, the first gene (rBAT) responsible for an inherited disease of amino acid transport (cystinuria) has been identified. Identifying the molecular structure of amino acid transport systems of high physiological relevance (e.g., system A, L, N, and x(c)- and of the genes responsible for other aminoacidurias as well as revealing the key molecular mechanisms of the amino acid transporters are the main challenges of the future in this field.
Collapse
Affiliation(s)
- M Palacín
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
30
|
Estévez R, Camps M, Rojas AM, Testar X, Devés R, Hediger MA, Zorzano A, Palacín M. The amino acid transport system y+L/4F2hc is a heteromultimeric complex. FASEB J 1998; 12:1319-29. [PMID: 9761775 DOI: 10.1096/fasebj.12.13.1319] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
4F2hc is an almost ubiquitous transmembrane protein in mammalian cells; upon expression in Xenopus laevis oocytes, it induces amino acid transport with characteristics of system y+L. Indirect evidence fostered speculation that function requires the association of 4F2hc with another protein endogenous to oocytes and native tissues. We show that expression of system y+L-like amino acid transport activity by 4F2hc in oocytes is limited by an endogenous factor and that direct covalent modification of external cysteine residue(s) of an oocyte membrane protein blocks system y+L/4F2hc transport activity, based on the following. 1) Induction of system y+L-like activity saturates at very low doses of human 4F2hc cRNA (0.1 ng/oocyte). This saturation occurs with very low expression of 4F2hc at the oocyte surface, and further increased expression of the protein at the cell surface does not result in higher induction of system y+L-like activity. 2) Human 4F2hc contains only two cysteine residues (C109 and C330). We mutated these residues, singly and in combination, to serine (C109S; CS1, C330S; CS2 and C109S-C330S, Cys-less). Mutation CS2 had no effect on the expressed system y+L-like transport activity, whereas C109S-containing mutants (CS1 and Cys-less) retained only partial y+L-like transport activity (30 to 50% of wild type). 3) Hg2+, the organic mercury compounds pCMB, and the membrane-impermeant pCMBS almost completely inactivated system y+L-like induced by human 4F2hc wild type and all the mutants studied. This was reversed by ss-mercaptoethanol, indicating that external cysteine residue(s) are the target of this inactivation. 4) Sensitivity to Hg2+ inactivation is increased by pretreatment of oocytes with ss-mercaptoethanol or in the C109S-containing mutants (CS1 and Cys-less). The increased Hg2+ reactivity of C109S-containing mutants supports the possibility that C109 may be linked by a disulfide bond to the Hg2+-targeted cysteine residue of the associated protein. These results indicate that 4F2hc is intimately associated with a membrane oocyte protein for the expression of system y+L amino acid transport activity. To our knowledge, this is the first direct evidence for a heteromultimeric protein structure of an organic solute carrier in mammals.
Collapse
Affiliation(s)
- R Estévez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona-08028,
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Palacín M, Estévez R, Zorzano A. Cystinuria calls for heteromultimeric amino acid transporters. Curr Opin Cell Biol 1998; 10:455-61. [PMID: 9719865 DOI: 10.1016/s0955-0674(98)80058-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The proteins rBAT (related to bo,+ amino acid transporter) and 4F2hc (the heavy chain of the surface antigen 4F2) are homologous proteins that induce amino acid transport in Xenopus oocytes. The role of rBAT in amino acid transport is substantiated by the fact that mutations in the gene encoding it cause cystinuria, a heritable disease characterised by high concentrations of cystine in the urine. Structural and functional evidence supports the hypothesis that both rBAT and 4F2hc proteins form part of heterodimeric amino acid transporters. There is new evidence that the functional unit of system y+L amino acid transporter is a disulfide bridge-dependent complex of 4F2hc with a Xenopus oocyte plasma membrane protein.
Collapse
Affiliation(s)
- M Palacín
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain.
| | | | | |
Collapse
|
32
|
Urdaneta E, Idoate I, Larralde J. Drug-nutrient interactions: inhibition of amino acid intestinal absorption by fluoxetine. Br J Nutr 1998; 79:439-46. [PMID: 9682663 DOI: 10.1079/bjn19980074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Fluoxetine is one of the most widely used antidepressants and nowadays it is also being used to manage obesity problems. In our laboratory we demonstrated that the drug inhibited sugar absorption (Monteiro et al. 1993). The aim of the present work was to determine the effect of fluoxetine on intestinal leucine absorption. Using a procedure of successive absorptions in vivo the drug diminished amino acid absorption by 30% (P < 0.001). Experiments in vitro in isolated jejunum also revealed a reduction in leucine uptake of 37% (P < 0.001). In both cases fluoxetine only affected mediated transport without altering diffusion. In a preparation enriched in basolateral membrane, fluoxetine inhibited the Na+,K(+)-ATPase (EC 3.6.1.37) activity (55%; P < 0.001) in a non-competitive manner with an inhibition constant (Ki) value of 0.92 mM. Leucine uptake by brush-border membrane vesicles was diminished by the drug (a reduction of 48% was observed at 30s, P < 0.001); only the apical Na(+)-dependent transport system of the amino acid was modified and the inhibition was non-competitive. Leucine uptake in the presence of lysine indicated that transporter B was involved. These results suggest that fluoxetine reduces leucine absorption by its action on the basolateral and apical membrane of the enterocyte; the nutritional status of the patients under drug treatment may be affected as neutral amino acid absorption is decreased.
Collapse
Affiliation(s)
- E Urdaneta
- Departamento de Fisiología y Nutrición, Universidad de Navarra, Pamplona, Spain
| | | | | |
Collapse
|
33
|
Devés R, Boyd CA. Transporters for cationic amino acids in animal cells: discovery, structure, and function. Physiol Rev 1998; 78:487-545. [PMID: 9562037 DOI: 10.1152/physrev.1998.78.2.487] [Citation(s) in RCA: 354] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The structure and function of the four cationic amino acid transporters identified in animal cells are discussed. The systems differ in specificity, cation dependence, and physiological role. One of them, system y+, is selective for cationic amino acids, whereas the others (B[0,+], b[0,+], and y+ L) also accept neutral amino acids. In recent years, cDNA clones related to these activities have been isolated. Thus two families of proteins have been identified: 1) CAT or cationic amino acid transporters and 2) BAT or broad-scope transport proteins. In the CAT family, three genes encode for four different isoforms [CAT-1, CAT-2A, CAT-2(B) and CAT-3]; these are approximately 70-kDa proteins with multiple transmembrane segments (12-14), and despite their structural similarity, they differ in tissue distribution, kinetics, and regulatory properties. System y+ is the expression of the activity of CAT transporters. The BAT family includes two isoforms (rBAT and 4F2hc); these are 59- to 78-kDa proteins with one to four membrane-spanning segments, and it has been proposed that these proteins act as transport regulators. The expression of rBAT and 4F2hc induces system b[0,+] and system y+ L activity in Xenopus laevis oocytes, respectively. The roles of these transporters in nutrition, endocrinology, nitric oxide biology, and immunology, as well as in the genetic diseases cystinuria and lysinuric protein intolerance, are reviewed. Experimental strategies, which can be used in the kinetic characterization of coexpressed transporters, are also discussed.
Collapse
Affiliation(s)
- R Devés
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Universidad de Chile, Santiago
| | | |
Collapse
|
34
|
Yao SY, Muzyka WR, Elliott JF, Cheeseman CI, Young JD. Cloning and functional expression of a cDNA from rat jejunal epithelium encoding a protein (4F2hc) with system y+L amino acid transport activity. Biochem J 1998; 330 ( Pt 2):745-52. [PMID: 9480885 PMCID: PMC1219200 DOI: 10.1042/bj3300745] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Two different protein families, designated CAT (cationic amino acid transporter) and BAT (broad-specificity amino acid transporter) mediate the plasma membrane transport of cationic amino acids in animal cells. CAT transporters have 12-14 transmembrane domains and are selective for cationic amino acids. BAT proteins, in contrast, have one to four transmembrane domains and induce the transport of both cationic and zwitterionic amino acids when expressed in Xenopus oocytes. Mutations in the human BAT gene cause type I cystinuria, a disease affecting the ability of intestinal and renal brush border membranes to transport cationic amino acids and cystine. We have used functional expression cloning in oocytes to isolate a BAT-related cDNA from rat jejunal epithelium. The cDNA encodes the rat 4F2 heavy chain (4F2hc) cell-surface antigen, a 527-residue (60 kDa) protein that is 26% identical in amino acid sequence with rat renal BAT (also known as NBAT/D2). Expression of rat jejunal 4F2hc in oocytes induced the lysine-inhibitable Na+-dependent influx of leucine and the leucine-inhibitable Na+-independent influx of lysine. Lysine efflux was stimulated by extracellular (Na+ plus leucine). These characteristics identify the expressed amino acid transport activity as system y+L, a transporter that has been implicated in basal membrane transport of cationic amino acids in intestine, kidney and placenta.
Collapse
Affiliation(s)
- S Y Yao
- Membrane Transport Research Group, Department of Physiology, Medical Sciences Building, University of Alberta, Edmonton, Alberta, Canada T6G 2H7
| | | | | | | | | |
Collapse
|
35
|
Segawa H, Miyamoto K, Ogura Y, Haga H, Morita K, Katai K, Tatsumi S, Nii T, Taketani Y, Takeda E. Cloning, functional expression and dietary regulation of the mouse neutral and basic amino acid transporter (NBAT). Biochem J 1997; 328 ( Pt 2):657-64. [PMID: 9371728 PMCID: PMC1218968 DOI: 10.1042/bj3280657] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The Na+-independent dibasic and neutral amino acid transporter NBAT is among the least hydrophobic of mammalian amino acid transporters. The transporter contains one to four transmembrane domains and induces amino acid transport activity via a b0,+-like system when expressed in Xenopus oocytes. However, the physiological role of NBAT remains unclear. Complementary DNA clones encoding mouse NBAT have now been isolated. The expression of mouse NBAT in Xenopus oocytes also induced an obligatory amino acid exchange activity similar to that of the b0,+-like system. The amount of NBAT mRNA in mouse kidney increased during postnatal development, consistent with the increase in renal cystine and dibasic transport activity. Dietary aspartate induced a marked increase in cystine transport via the b0,+ system in mouse ileum. A high-aspartate diet also increased the amount of NBAT mRNA in mouse ileum. In the ileum of mice fed on the aspartate diet, the extent of cystine transport was further increased by preloading brush border membrane vesicles with lysine. Hybrid depletion of NBAT mRNA from ileal polyadenylated RNA revealed that the increase in cystine transport activity induced by the high-aspartate diet, as measured in Xenopus oocytes, was attributable to NBAT. These results demonstrate that mouse NBAT has an important role in cystine transport.
Collapse
Affiliation(s)
- H Segawa
- Department of Clinical Nutrition, School of Medicine, Tokushima University, Kuramoto-Cho 3, Tokushima 770, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Chillarón J, Estévez R, Samarzija I, Waldegger S, Testar X, Lang F, Zorzano A, Busch A, Palacín M. An intracellular trafficking defect in type I cystinuria rBAT mutants M467T and M467K. J Biol Chem 1997; 272:9543-9. [PMID: 9083097 DOI: 10.1074/jbc.272.14.9543] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The human rBAT protein elicits sodium-independent, high affinity obligatory exchange of cystine, dibasic amino acids, and some neutral amino acids in Xenopus oocytes (Chillarón, J., Estévez, R., Mora, C., Wagner, C. A., Suessbrich, H., Lang, F., Gelpí, J. L., Testar, X., Busch, A. E., Zorzano, A., and Palacín, M. (1996) J. Biol. Chem. 271, 17761-17770). Mutations in rBAT have been found to cause cystinuria (Calonge, M. J., Gasparini, P., Chillarón, J., Chillón, M., Galluci, M., Rousaud, F., Zelante, L., Testar, X., Dallapiccola, B., Di Silverio, F., Barceló, P., Estivill, X., Zorzano, A., Nunes, V., and Palacín, M. (1994) Nat. Genet. 6, 420-426). We have performed functional studies with the most common point mutation, M467T, and its relative, M467K, using the oocyte system. The Km and the voltage dependence for transport of the different substrates were the same in both M467T and wild type-injected oocytes. However, the time course of transport was delayed in the M467T mutant: maximal activity was accomplished 3-4 days later than in the wild type. This delay was cRNA dose-dependent: at cRNA levels below 0.5 ng the M467T failed to achieve the wild type transport level. The M467K mutant displayed a normal Km, but the Vmax was between 5 and 35% of the wild type. The amount of rBAT protein was similar in normal and mutant-injected oocytes. In contrast to the wild type, the mutant proteins remained endoglycosidase H-sensitive, suggesting a longer residence time in the endoplasmic reticulum. We quantified the amount of rBAT protein in the plasma membrane by surface labeling with biotin 2 and 6 days after injection. Most of the M467T and M467K protein was located in an intracellular compartment. The converse situation was found in the wild type. Despite the low amount of M467T protein reaching the plasma membrane, the transport activity at 6 days was the same as in the wild type-injected oocytes. The increase in plasma membrane rBAT protein between 2 and 6 days was completely dissociated from the rise in transport activity. These data indicate impaired maturation and transport to the plasma membrane of the M467T and M467K mutant, and suggest that rBAT alone is unable to support the transport function.
Collapse
Affiliation(s)
- J Chillarón
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universitat de Barcelona, Avda. Diagonal 645, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Bisceglia L, Calonge MJ, Totaro A, Feliubadaló L, Melchionda S, García J, Testar X, Gallucci M, Ponzone A, Zelante L, Zorzano A, Estivill X, Gasparini P, Nunes V, Palacín M. Localization, by linkage analysis, of the cystinuria type III gene to chromosome 19q13.1. Am J Hum Genet 1997; 60:611-6. [PMID: 9042921 PMCID: PMC1712527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes (I, II, and III) have been described. An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. Mutational and linkage analysis demonstrated the presence of genetic heterogeneity in which the SLC3A1 gene is responsible for type I cystinuria but not for type II or type III. In this study, we report the identification of the cystinuria type III locus on the long arm of chromosome 19 (19q13.1), obtained after a genomewide search. Pairwise linkage analysis in a series of type III or type II families previously excluded from linkage to the cystinuria type I locus (SLC3A1 gene) revealed a significant maximum LOD score (zeta max) of 13.11 at a maximum recombination fraction (theta max) of .00, with marker D19S225. Multipoint linkage analysis performed with the use of additional markers from the region placed the cystinuria type III locus between D19S414 and D19S220. Preliminary data on type II families also seem to place the disease locus for this rare type of cystinuria at 19q13.1 (significant zeta max = 3.11 at theta max of .00, with marker D19S225).
Collapse
Affiliation(s)
- L Bisceglia
- Servizio di Genetica Medica, IRCCS-Ospedale CSS San Giovanni Rotondo
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Wartenfeld R, Golomb E, Katz G, Bale SJ, Goldman B, Pras M, Kastner DL, Pras E. Molecular analysis of cystinuria in Libyan Jews: exclusion of the SLC3A1 gene and mapping of a new locus on 19q. Am J Hum Genet 1997; 60:617-24. [PMID: 9042922 PMCID: PMC1712492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cystinuria is a hereditary disorder of amino acid transport and is manifested by the development of kidney stones. In some patients the disease is caused by mutations in the SLC3A1 gene, which is located on the short arm of chromosome 2 and encodes a renal/intestinal transporter for cystine and the dibasic amino acids. In Israel cystinuria is especially common among Jews of Libyan origin. After excluding SLC3A1 as the disease-causing gene in Libyan Jewish patients, we performed a genomewide search that shows that the Libyan Jewish cystinuria gene maps to the long arm of chromosome 19. Significant linkage was obtained for seven chromosome 19 markers. A maximal LOD score of 9.22 was obtained with the marker D19S882. Multipoint data and recombination analysis placed the gene in an 8-cM interval between the markers D19S409 and D19S208. Significant linkage disequilibrium was observed for alleles of four markers, and a specific haplotype comprising the markers D19S225, D19S208, D19S220, and D19S422 was found in 11 of 17 carrier chromosomes, versus 1 of 58 Libyan Jewish noncarrier chromosomes.
Collapse
Affiliation(s)
- R Wartenfeld
- Department of Medicine C, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Peter GJ, Davidson IG, Ahmed A, McIlroy L, Forrester AR, Taylor PM. Multiple components of arginine and phenylalanine transport induced in neutral and basic amino acid transporter-cRNA-injected Xenopus oocytes. Biochem J 1996; 318 ( Pt 3):915-22. [PMID: 8836138 PMCID: PMC1217705 DOI: 10.1042/bj3180915] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The induced uptakes of L-[3H]phenylalanine and L-[3H]arginine in oocytes injected with clonal NBAT (neutral and basic amino acid transporter) cRNA show differential inactivation by pretreatment with N-ethylmaleimide (NEM), revealing at least two distinct transport processes. NEM-resistant arginine transport is inhibited by leucine and phenylalanine but not by alanine or valine; mutual competitive inhibition of NEM-resistant uptake of arginine and phenylalanine indicates that the two amino acids share a single transporter. NEM-sensitive arginine transport is inhibited by leucine, phenylalanine, alanine and valine. At least two NEM-sensitive transporters may be expressed because we have been unable to confirm mutual competitive inhibition between arginine and phenylalanine transport. The NEM-resistant transport mechanism appears to involve distinct but overlapping binding sites for cationic and zwitterionic substrates. NBAT is known to form oligomeric protein complexes in cell membranes, and its functional roles when expressed in Xenopus oocytes may include interaction with oocyte proteins, leading to increased native amino acid transport activities; these resemble NBAT-expressed activities in terms of NEM-sensitivity and apparent substrate range (including an unusual inhibition by beta-phenylalanine.
Collapse
Affiliation(s)
- G J Peter
- Department of Anatomy and Physiology, University of Dundee, Scotland, U.K
| | | | | | | | | | | |
Collapse
|
40
|
Chillarón J, Estévez R, Mora C, Wagner CA, Suessbrich H, Lang F, Gelpí JL, Testar X, Busch AE, Zorzano A, Palacín M. Obligatory amino acid exchange via systems bo,+-like and y+L-like. A tertiary active transport mechanism for renal reabsorption of cystine and dibasic amino acids. J Biol Chem 1996; 271:17761-70. [PMID: 8663357 DOI: 10.1074/jbc.271.30.17761] [Citation(s) in RCA: 129] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Mutations in the rBAT gene cause type I cystinuria, a common inherited aminoaciduria of cystine and dibasic amino acids due to their defective renal and intestinal reabsorption (Calonge, M. J., Gasparini, P., Chillarón, J., Chillón, M., Gallucci, M., Rousaud, F., Zelante, L., Testar, X., Dallapiccola, B., Di Silverio, F., Barceló, P., Estivill, X., Zorzano, A., Nunes, V., and Palacín, M. (1994) Nat. Genet. 6, 420-426; Calonge, M. J., Volipini, V., Bisceglia, L., Rousaud, F., De Sanctis, L., Beccia, E., Zelante, L., Testar, X., Zorzano, A., Estivill, X., Gasparini, P., Nunes, V., and Palacín, M.(1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9667-9671). One important question that remains to be clarified is how the apparently non-concentrative system bo,+-like, associated with rBAT expression, participates in the active renal reabsorption of these amino acids. Several studies have demonstrated exchange of amino acids induced by rBAT in Xenopus oocytes. Here we offer evidence that system bo,+-like is an obligatory amino acid exchanger in oocytes and in the "renal proximal tubular" cell line OK. System bo, +-like showed a 1:1 stoichiometry of exchange, and the hetero-exchange dibasic (inward) with neutral (outward) amino acids were favored in oocytes. Obligatory exchange of amino acids via system bo,+-like fully explained the amino acid-induced current in rBAT-injected oocytes. Exchange via system bo,+-like is coupled enough to ensure a specific accumulation of substrates until the complete replacement of the internal oocyte substrates. Due to structural and functional analogies of the cell surface antigen 4F2hc to rBAT, we tested for amino acid exchange via system y+L-like. 4F2hc-injected oocytes accumulated substrates to a level higher than CAT1-injected oocytes (i.e. oocytes expressing system y+) and showed exchange of amino acids with the substrate specificity of system y+L and L-leucine-induced outward currents in the absence of extracellular sodium. In contrast to L-arginine, system y+L-like did not mediate measurable L-leucine efflux from the oocyte. We propose a role of systems bo,+-like and y+L-like in the renal reabsorption of cystine and dibasic amino acids that is based on their active tertiary transport mechanism and on the apical and basolateral localization of rBAT and 4F2hc, respectively, in the epithelial cells of the proximal tubule of the nephron.
Collapse
Affiliation(s)
- J Chillarón
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda, Diagonal 645, Barcelona 08028, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Tate SS. Evidence suggesting that the minimal functional unit of a renal cystine transporter is a heterodimer and its implications in cystinuria. Amino Acids 1996; 11:209-24. [PMID: 24178688 DOI: 10.1007/bf00813861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/1996] [Accepted: 03/15/1996] [Indexed: 11/26/2022]
Abstract
Cystinuria, one of the most common genetic disorders, is characterized by excessive excretion of cystine and basic amino acids in urine. The low solubility of cystine results in formation of kidney stones which can eventually lead to renal failure. Three types of cystinurias have been described. All involve defects in a high-affinity transport system for cystine in the brush border membranes of kidney and intestinal epithelial cells. The molecular properties of proteins involved in epithelial cystine transport are incompletely understood. A protein (NBAT, neutral and basic amino acid transporter), initially cloned by us from rat kidney and shown to be localized in the renal and intestinal brush border membranes, has been implicated in this transport, and mutations in human NBAT gene have been found in several cystinurics, making it a prime candidate for a cystinuria gene. However, mutations in NBAT were found only in Type I cystinurics and not in Types II and III suggesting that defects in other, as yet uncharacterized, genes may also be involved. NBAT has an unusual (for an amino acid transporter) membrane topology. We proposed that the protein contains four membrane-spanning domains, a model disputed by other investigators. We subsequently obtained experimental data consistent with a four membrane-spanning domain model. Furthermore, recently we showed that kidney and intestinal NBAT (85kDa) is associated with another brush border membrane protein (about 50kDa) and have proposed that the heterodimer represents the minimal functional unit of the high-affinity cystine transporter in these membranes. These findings raise the tantalizing possibilities that defects in the NBAT-associated protein might account for cystinurias in individuals with normal NBAT gene (such as the Types II and III cystinurics).
Collapse
Affiliation(s)
- S S Tate
- Department of Biochemistry, Cornell University Medical College, 1300 York Avenue, 10021, New York, New York, USA
| |
Collapse
|
42
|
Palacín M, Mora C, Chillarón J, Calonge MJ, Estévez R, Torrents D, Testar X, Zorzano A, Nunes V, Purroy J, Estivill X, Gasparini P, Bisceglia L, Zelante L. The molecular basis of cystinuria: the role of the rBAT gene. Amino Acids 1996; 11:225-46. [PMID: 24178689 DOI: 10.1007/bf00813862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/1996] [Accepted: 02/26/1996] [Indexed: 09/29/2022]
Abstract
The cDNAs of mammalian amino acid transporters already identified could be grouped into four families. One of these protein families is composed of the protein rBAT and the heavy chain of the cell surface antigen 4F2 (4F2hc). The cRNAs of rBAT and 4F2hc induce amino acid transport activity via systems b(0,+) -like and y(+)L -like inXenopus oocytes respectively. Surprisingly, neither rBAT nor 4F2hc is very hydrophobic, and they seem to be unable to form a pore in the plasma membrane. This prompted the hypothesis that rBAT and 4F2hc are subunits or modulators of the corresponding amino acid transporters. The association of rBAT with a light subunit of ~40kDa has been suggested, and such an association has been demonstrated for 4F2hc.The b(0,+)-like system expressed in oocytes by rBAT cRNA transports L-cystine, L-dibasic and L-neutral amino acids with high-affinity. This transport system shows exchange of amino acids through the plasma membrane ofXenopus oocytes, suggesting a tertiary active transport mechanism. The rBAT gene is mainly expressed in the outer stripe of the outer medulla of the kidney and in the mucosa of the small intestine. The protein localizes to the microvilli of the proximal straight tubules (S3 segment) of the nephron and the mucosa of the small intestine. All this suggested the participation of rBAT in a high-affinity reabsorption system of cystine and dibasic amino acids in kidney and intestine, and indicated rBAT (named SLC3A1 in Gene Data Bank) as a good candidate gene for cystinuria. This is an inherited aminoaciduria due to defective renal and intestinal reabsorption of cystine and dibasic amino acids. The poor solubility of cystine causes the formation of renal cystine calculi. Mutational analysis of the rBAT gene of patients with cystinuria is revealing a growing number (~20) of cystinuria-specific mutations, including missense, nonsense, deletions and insertions. Mutations M467T (substitution of methionine 467 residue for threonine) and R270X (stop codon at arginine residue 270) represent approximately half of the cystinuric chromosomes where mutations have been found. Mutation M467T reduces transport activity of rBAT in oocytes. All this demonstrates that mutations in the rBAT gene cause cystinuria.Three types of cystinuria (types, I, II and III) have been described on the basis of the genetic, biochemical and clinical manifestations of the disease. Type I cystinuria has a complete recessive inheritance; type I heterozygotes are totally silent. In contrast, type II and III heterozygotes show, respectively, high or moderate hyperaminoaciduria of cystine and dibasic amino acids. Type III homozygotes show moderate, if any, alteration of intestinal absorption of cystine and dibasic amino acids; type II homozygotes clearly show defective intestinal absorption of these amino acids. To date, all the rBAT cystinuria-specific mutations we have found are associated with type I cystinuria (~70% of the chromosomes studied) but not to types II or III. This strongly suggests genetic heterogeneity for cystinuria. Genetic linkage analysis with markers of the genomic region of rBAT in chromosome 2 (G band 2p16.3) and intragenic markers of rBAT have demonstrated genetic heterogeneity for cystinuria; the rBAT gene is linked to type I cystinuria, but not to type III. Biochemical, genetic and clinical studies are needed to identify the additional cystinuria genes; a low-affinity cystine reabsortion system and the putative light subunit of rBAT are additional candidate genes for cystinuria.
Collapse
Affiliation(s)
- M Palacín
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Avda. Diagonal 645 6th floor, E-08028, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mora C, Chillarón J, Calonge MJ, Forgo J, Testar X, Nunes V, Murer H, Zorzano A, Palacín M. The rBAT gene is responsible for L-cystine uptake via the b0,(+)-like amino acid transport system in a "renal proximal tubular" cell line (OK cells). J Biol Chem 1996; 271:10569-76. [PMID: 8631857 DOI: 10.1074/jbc.271.18.10569] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Several studies have shown that the cRNA of human, rabbit, or rat rBAT induces in Xenopus oocytes sodium-independent, high affinity uptake of L-cystine via a system b0,(+)-like amino acid exchanger. We have shown that mutations in rBAT cause type I cystinuria (Calonge, M. J., Gasparini, P., Chillarón, J., Chillón, M., Gallucci, M., Rousaud, F., Zelante, L., Testar, X., Dallapiccola, B., Di Silverio, F., Barceló, P., Estivill, X., Zorzano, A., Nunes, V., and Palacín, M. (1994) Nat. Genet. 6, 420-425; Calonge, M. J., Volipini, V., Bisceglia, L., Rousaud, F., De Sanctis, L., Beccia, E., Zelante, L., Testar, X., Zorzano, A., Estivill, X., Gasparini, P., Nunes, V., and Palacín, M. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 9667-9671). Apart from oocytes, no other expression system has been used for transfection of functional rBAT activity. Furthermore, the b0,(+)-like transport activity has not been clearly described in the kidney or intestine. Here, we report that a "proximal tubular-like" cell line derived from opossum kidney (OK cells) expresses an rBAT transcript. Poly(A)+ RNA from OK cells induced by system b0,(+)-like transport activity in oocytes. This was hybrid-depleted by human rBAT antisense oligonucleotides. A polymerase chain reaction-amplified cDNA fragment (approximately 700 base pairs) from OK cell RNA corresponds to an rBAT protein fragment 65-69% identical to those from human, rabbit and rat kidneys. We have also examined transport of l-cystine in OK cells and found characteristics very similar to the amino acid exchanger activity induced by rBAT cRNA in oocytes. Uptake of L-cystine was of high affinity, sodium-independent and shared with L-arginine and L-leucine. It was trans-stimulated by amino acids with the same specificity as rBAT-induced transport activity in oocytes. Furthermore, it was localized to the apical pole of confluent OK cells. To demonstrate that the rBAT protein is functionally related to this transport activity, we have transfected OK cells with human rBAT antisense and sense sequences. Transfection with rBAT antisense, but not with rBAT sense, resulted in the specific reduction of rBAT mRNA expression and b0,(+)-like transport activity. These results demonstrate that rBAT is functionally related to the L-cystine uptake via system b0,(+)-like in the apical pole of the renal OK cell line.
Collapse
Affiliation(s)
- C Mora
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Calonge MJ, Volpini V, Bisceglia L, Rousaud F, de Sanctis L, Beccia E, Zelante L, Testar X, Zorzano A, Estivill X. Genetic heterogeneity in cystinuria: the SLC3A1 gene is linked to type I but not to type III cystinuria. Proc Natl Acad Sci U S A 1995; 92:9667-71. [PMID: 7568194 PMCID: PMC40863 DOI: 10.1073/pnas.92.21.9667] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Cystinuria is an autosomal recessive amino-aciduria where three urinary phenotypes have been described (I, II, and III). An amino acid transporter gene, SLC3A1 (formerly rBAT), was found to be responsible for this disorder. To assess whether mutations in SLC3A1 are involved in different cystinuria phenotypes, linkage with this gene and its nearest marker (D2S119) was analyzed in 22 families with type I and/or type III cystinuria. Linkage with heterogeneity was proved (alpha = 0.45; P < 0.008). Type I/I families showed homogeneous linkage to SLC3A1 (Zmax > 3.0 at theta = 0.00; alpha = 1), whereas types I/III and III/III were not linked. Our data suggest that type I cystinuria is due to mutations in the SLC3A1 gene, whereas another locus is responsible for type III. This result establishes genetic heterogeneity for cystinuria, classically considered as a multiallelic monogenic disease.
Collapse
Affiliation(s)
- M J Calonge
- Departament de Genètica Molecular, Hospital Duran i Reynals, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gasparini P, Calonge MJ, Bisceglia L, Purroy J, Dianzani I, Notarangelo A, Rousaud F, Gallucci M, Testar X, Ponzone A. Molecular genetics of cystinuria: identification of four new mutations and seven polymorphisms, and evidence for genetic heterogeneity. Am J Hum Genet 1995; 57:781-8. [PMID: 7573036 PMCID: PMC1801520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A cystinuria disease gene (rBAT) has been recently identified, and some mutations causing the disease have been described. The frequency of these mutations has been investigated in a large sample of 51 Italian and Spanish cystinuric patients. In addition, to identify new mutated alleles, genomic DNA has been analyzed by an accurate and sensitive method able to detect nucleotide changes. Because of the lack of information available on the genomic structure of rBAT gene, the study was carried out using the sequence data so far obtained by us. More than 70% of the entire coding sequence and 8 intron-exon boundaries have been analyzed. Four new mutations and seven intragenic polymorphisms have been detected. All mutations so far identified in rBAT belong only to cystinuria type I alleles, accounting for approximately 44% of all type I cystinuric chromosomes. Mutation M467T is the most common mutated allele in the Italian and Spanish populations. After analysis of 70% of the rBAT coding region, we have detected normal sequences in cystinuria type II and type III chromosomes. The presence of rBAT mutated alleles only in type I chromosomes of homozygous (type I/I) and heterozygous (type I/III) patients provides evidence for genetic heterogeneity where rBAT would be responsible only for type I cystinuria and suggests a complementation mechanism to explain the intermediate type I/type III phenotype.
Collapse
Affiliation(s)
- P Gasparini
- Servizio di Genetica Medica, IRCCS-Ospedale CSS San Giovanni Rotondo, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nirenberg MJ, Tate SS, Mosckovitz R, Udenfriend S, Pickel VM. Immunocytochemical localization of the renal neutral and basic amino acid transporter in rat adrenal gland, brainstem, and spinal cord. J Comp Neurol 1995; 356:505-22. [PMID: 7560263 DOI: 10.1002/cne.903560403] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A neutral and basic amino acid transporter (NBAT) cloned from rat kidney was recently localized to enteroendocrine cells and enteric neurons. We used an antibody directed against a synthetic peptide representing a putative extracellular domain of NBAT to determine whether this transporter was also present in other endocrine and neural tissues, including rat adrenal gland, brainstem, and spinal cord. Abundant, highly granular labeling for NBAT was observed in the cytoplasm of chromaffin and ganglion cells in the adrenal medulla. A small population of intensely labeled varicose processes was also seen in both the cortex and the medulla of the adrenal gland. More numerous, intensely labeled varicose processes were detected in brainstem and spinal cord nuclei, including the locus coeruleus, rostral ventrolateral medulla, nuclei of the solitary tract, dorsal motor nucleus of the vagus, and intermediolateral cell column of the thoracic spinal cord. Significant perikaryal labeling for NBAT was only detected in brainstem and spinal cord following intraventricular colchicine treatment, which increased the number, distribution, and intensity of NBAT-immunolabeled cells. These NBAT-immunoreactive perikarya were most numerous in the locus coeruleus, rostral ventrolateral medulla, nuclei of the solitary tract, and raphe nuclei. Ultrastructural examination of the nuclei of the solitary tract of normal rats showed that NBAT was localized predominantly to axon terminals. Within these labeled terminals, NBAT was associated with large dense core vesicles and discrete segments of plasma membrane. The observed localization of NBAT suggests that this renal specific amino acid transporter subserves a role as a vesicular or plasmalemmal transporter in monoamine-containing cells, including chromaffin cells and autonomic neurons.
Collapse
Affiliation(s)
- M J Nirenberg
- Department of Neurology, Cornell University Medical College, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|
47
|
Ahmed A, Peter GJ, Taylor PM, Harper AA, Rennie MJ. Sodium-independent currents of opposite polarity evoked by neutral and cationic amino acids in neutral and basic amino acid transporter cRNA-injected oocytes. J Biol Chem 1995; 270:8482-6. [PMID: 7721744 DOI: 10.1074/jbc.270.15.8482] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
To elucidate the electrical events associated with the movement of amino acids by the neutral and basic amino acid transporter (NBAT)-encoded protein (Yan, N., Mosckovitz, R., Gerber, L.D., Mathew, S., Murty, V.V. V.S., Tate, S.S., and Udenfriend, S. (1994) Proc. Natl. Acad. Sci. USA 91, 7548-7552), we have investigated the membrane potential and current changes associated with the increased transport of amino acids across the cell membrane of NBAT cRNA-injected Xenopus laevis oocytes. Superfusion of 0.05 mM L-phenylalanine, in current-clamped NBAT-injected oocytes, caused a hyperpolarization (8.5 +/- 0.9 mV), but superfusion of L-arginine caused a depolarization (18.3 +/- 1.3 mV). In voltage-clamped (-60 mV) oocytes, superfusion of L-phenylalanine evoked a sodium- and chloride-independent, saturable (Km = 0.34 +/- 0.02 mM, Imax = 31.3 +/- 0.5 nA), outward current. This outward current was reduced in the presence of high external [K] and was barium-sensitive. Outward currents were also evoked by L-leucine, L-glutamine, L-alanine, D-phenylalanine, and L-beta-phenylalanine. Superfusion of L-arginine evoked a saturable (Km = 0.09 +/- 0.02 mM, Imax = -29.2 +/- 1.3 nA) inward current; L-lysine and D-arginine also evoked inward currents. L-Glutamate and beta-alanine failed to evoke any currents. Effluxes of L-[3H]phenylalanine and L-[3H]arginine were trans-stimulated in the presence of either amino acid. Flux-current comparisons indicated amino acid:charge movement stoichiometry of 1:1 for both neutral and cationic amino acids. These findings indicate that the amino acid transport activity(ies) expressed in NBAT cRNA-injected oocytes is electrogenic by a mechanism including the outward movement of a net positive charge (potassium ion or cationic amino acid) in exchange for uptake of a neutral amino acid.
Collapse
Affiliation(s)
- A Ahmed
- Department of Anatomy and Physiology, University of Dundee, Scotland
| | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- J F Desjeux
- INSERM U.290, Hôpital Saint-Lazare, Paris, France
| |
Collapse
|
49
|
Coady MJ, Jalal F, Chen X, Lemay G, Berteloot A, Lapointe JY. Electrogenic amino acid exchange via the rBAT transporter. FEBS Lett 1994; 356:174-8. [PMID: 7805832 DOI: 10.1016/0014-5793(94)01262-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A cDNA clone was isolated from rabbit renal cortex using DNA-mediated expression cloning, which caused alanine-dependent outward currents when expressed in Xenopus oocytes. The cDNA encodes rBAT, a Na-independent amino acid transporter previously cloned elsewhere. Exposure of cDNA-injected oocytes to neutral amino acids led to voltage-dependent outward currents, but inward currents were seen upon exposure to basic amino acids. Assuming one charge/alanine, the outward current represented 38% of the rate of uptake of radiolabelled alanine, and was significantly reduced by prolonged preincubation of oocytes in 5 mM alanine. The currents were shown to be due to countertransport of basic amino acids for external amino acids using the cut-open oocyte system. This transport represents a major mode of action of this protein, and may help in defining a physiological role for rBAT in the apical membrane of renal and intestinal cells.
Collapse
Affiliation(s)
- M J Coady
- Groupe de recherche en transport membranaire, Université de Montréal, Que., Canada
| | | | | | | | | | | |
Collapse
|
50
|
Yan N, Mosckovitz R, Gerber LD, Mathew S, Murty VV, Tate SS, Udenfriend S. Characterization of the promoter region of the gene for the rat neutral and basic amino acid transporter and chromosomal localization of the human gene. Proc Natl Acad Sci U S A 1994; 91:7548-52. [PMID: 8052618 PMCID: PMC44439 DOI: 10.1073/pnas.91.16.7548] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The promoter region of the rat kidney neutral and basic amino acid transporter (NBAT) gene has been isolated and sequenced. The major transcription initiation site was mapped by primer extension. The entire promoter region and a set of 5' deletions within it were expressed at a high level in LLC-PK1 cells using the luciferase indicator gene. Positive and negative regulatory elements in the promoter region were observed. A human genomic clone of the transporter was also obtained and was used to localize the NBAT gene at the p21 region of chromosome 2.
Collapse
Affiliation(s)
- N Yan
- Roche Institute of Molecular Biology, Roche Research Center, Nutley, NJ 07110
| | | | | | | | | | | | | |
Collapse
|