1
|
Wu H, Gong YY, Huntriss J, Routledge MN. Transcriptome profiling and DNA methylation analysis of human hepatocyte cell line HHL-16 in response to aflatoxin B1. Chem Biol Interact 2025; 416:111531. [PMID: 40288432 DOI: 10.1016/j.cbi.2025.111531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/27/2025] [Accepted: 04/25/2025] [Indexed: 04/29/2025]
Abstract
Dietary exposure to aflatoxin B1 (AFB1) can cause acute aflatoxicosis and liver cancer, and is associated with immune suppression and growth impairment, but the molecular mechanisms of the health effects are not fully understood. A non-neoplastic human hepatocyte cell line 16 (HHL-16) was utilized to understand the effects of AFB1 on transcriptome and DNA methylation changes, identifying molecular pathways underlying toxicity and health effects. RNA sequencing and bioinformatic analysis (RNA-Seq) was applied to find the genes and pathways affected by AFB1. Bisulfite pyrosequencing was used to assess DNA methylation levels of CpG sites around promoter regions of gene of interest. RNA-sequencing revealed 280 significantly up-regulated and 296 significantly down-regulated genes in HHL-16 cells after 20 μg/ml AFB1 treatment for 24 h. KEGG pathway enrichment analysis indicated that differentially expressed genes (DEGs) were significantly enriched in the following pathways: cytokine-cytokine receptor interaction, NF-kappa B signalling pathway, TNF signalling pathway, IL-17 signalling pathway, amoebiasis, MAPK signalling pathway, and lipid and atherosclerosis. Further DNA methylation analysis found that there was significant hypomethylation at one CpG site of CCL20 after 20 μg/ml AFB1 treatment on HHL-16 cells for 24 h. In conclusion, AFB1 modulates the expression of genes related to the pathways that play important roles in inflammatory response, growth, and cancers, and demonstrates the effects of AFB1 on DNA methylation.
Collapse
Affiliation(s)
- Hang Wu
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK; School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - John Huntriss
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Michael N Routledge
- Leicester Medical School, University of Leicester, Leicester, LE1 7RH, UK; School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
2
|
Cao HH, Molina S, Sumner S, Rushing BR. An untargeted metabolomic analysis of acute AFB1 treatment in liver, breast, and lung cells. PLoS One 2025; 20:e0313159. [PMID: 39883710 PMCID: PMC11781672 DOI: 10.1371/journal.pone.0313159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/18/2024] [Indexed: 02/01/2025] Open
Abstract
Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown. A better understanding of how AFB1 disrupts metabolism would provide insight into how this mycotoxin leads to carcinogenesis, growth impairment, and/or immunomodulation, and may reveal potential targets for pharmacological or nutritional interventions to protect against these effects. The current study evaluated the metabolomic effects of various doses (2.5 μM, 5 μM, 10uM) of AFB1 treatment to HepG2 (liver), MDA-MB-231 (breast), and A549 (lung) cells. Treated and control cells' metabolomic profiles were evaluated via ultra-high performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS). Univariate and multivariate analyses revealed significant alterations in metabolite concentrations from each dose of AFB1 treatment in each cell type. Pathway analysis was then used to understand broader biochemical functions affected by AFB1 treatment in each cell type. HepG2 cell pathway analyses revealed significant pathway perturbations in lipid metabolism, carnitine synthesis, catecholamine biosynthesis, purine metabolism, and spermidine and spermine biosynthesis. Analysis of A549 cells found a greater emphasis of perturbations on various amino acids along with lipid synthesis-related pathways, and catecholamine biosynthesis. Finally, analysis of treated MDA-MB-231 cells found spermidine and spermine biosynthesis, carnitine synthesis, plasma membrane-related pathways (phosphatidylcholine synthesis and alpha linolenic acid and linoleic acid metabolism), and various amino acid metabolism pathways to be most affected. These highlighted pathways should be targeted in future investigations to evaluate their potential in mitigating or preventing the development of negative health effects associated with AFB1 exposure.
Collapse
Affiliation(s)
- Heidi H. Cao
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Sabrina Molina
- Nutrition Research Institute, University of North Carolina Chapel Hill, Kannapolis, NC, United States of America
| | - Susan Sumner
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Nutrition Research Institute, University of North Carolina Chapel Hill, Kannapolis, NC, United States of America
| | - Blake R. Rushing
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Nutrition Research Institute, University of North Carolina Chapel Hill, Kannapolis, NC, United States of America
| |
Collapse
|
3
|
Subagia R, Schweiger W, Kunz-Vekiru E, Wolfsberger D, Schatzmayr G, Ribitsch D, Guebitz GM. Detoxification of aflatoxin B1 by a Bacillus subtilis spore coat protein through formation of the main metabolites AFQ1 and epi-AFQ1. Front Microbiol 2024; 15:1406707. [PMID: 39430102 PMCID: PMC11486672 DOI: 10.3389/fmicb.2024.1406707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/23/2024] [Indexed: 10/22/2024] Open
Abstract
A variety of important agricultural crops host fungi from the Aspergillus genus can produce cancerogenic secondary metabolites such as aflatoxins. Consequently, novel strategies for detoxification and their removal from food and feed chains are required. Here, detoxification of Aflatoxin B1 (AFB1) by the Bacillus subtilis multi-copper oxidase CotA (BsCotA) was investigated. This laccase was recombinantly produced in E. coli while codon optimization led to duplication of the amount of active protein obtained. CuCl2 was added to the cultivation medium leading to a 25-fold increase of V max corresponding to improved incorporation of Cu2+ into the enzyme protein which is essential for the catalytic reaction. To avoid potential cytotoxicity of Cu2+, cultivation was performed at microaerobic conditions indeed leading to 100x more functional protein when compared to standard aerobic conditions. This was indicated by an increase of V max from 0.30 ± 0.02 to 33.56 ± 2.02 U/mg. Degradation kinetics of AFB1 using HPLC with fluorescence detection (HPLC-FLD) analysis indicated a theoretical substrate saturation above solubility in water. At a relatively high concentration of 500 μg/L, AFB1 was decomposed at 10.75 μg/Lh (0.17 nmol*min-1*mg-1) at a dosage of 0.2 μM BsCotA. AFQ1 and epi-AFQ1 were identified as the initial oxidation products according to mass spectrometry (i.e., HPLC-MS, HPLC-QTOF). None of these molecules were substrates for laccase but both decomposed in buffer. However, decomposition does not seem to be due to hydration of the vinyl ether in the terminal furan ring. Genotoxicity of the formed AFB1 was assessed in several dilutions based on the de-repression of the bacterial SOS response to DNA damage indicating about 80-times reduction in toxicity when compared to AFQ1. The results of this study indicate that BsCotA has high potential for the biological detoxification of aflatoxin B1.
Collapse
Affiliation(s)
- Raditya Subagia
- Department of Agrobiotechnology (IFA-Tulln), Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfgang Schweiger
- dsm-firmenich, Animal Nutrition and Health R&D Center Tulln, Tulln, Austria
| | | | | | - Gerd Schatzmayr
- Department of Agrobiotechnology (IFA-Tulln), Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Doris Ribitsch
- Department of Agrobiotechnology (IFA-Tulln), Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Georg M. Guebitz
- Department of Agrobiotechnology (IFA-Tulln), Institute of Environmental Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
4
|
Amina R, Habiba R, Abouddihaj B. Camel urine as a potential source of bioactive molecules showing their efficacy against pathogens: A systematic review. Saudi J Biol Sci 2024; 31:103966. [PMID: 38495380 PMCID: PMC10940778 DOI: 10.1016/j.sjbs.2024.103966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/19/2024] Open
Abstract
Camels are highly suited for severe desert conditions and able to provide most of the natural products like urine, which has been used as alternative medicine to treat diverse infections and disorders. There is, however, a shortage and paucity of scientific reviews highlighting the antifungal, antibacterial and antiviral effects of camel urine. By better understanding its antimicrobial characteristics, our overarching aim is to provide an exhaustive overview of this valuable natural product by synthesizing and summarizing data on the efficacy of this biofluid and also describing the potential substances exhibiting antimicrobial properties. We searched three databases in order to point out relevant articles (Web of Science, Scopus and Google Scholar) until December 2022. Research articles of interest evaluating the antimicrobial effects of camel urine were selected. Overall, camel urine furnished promising antibacterial activities against gram-positive bacteria, namely Staphylococcus aureus (30 mm), Bacillus cereus (22 mm), Bacillus subtilis (25 mm) and Micrococcus luteus (21 mm), as well as gram-negative bacteria, especially Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Enterobacter cloacae, and Salmonella spp., without forgetting its efficiency on Mycobacterium tuberculosis as well. The excretion also showed its potency against H1N1 virus, vesicular stomatitis virus and middle east respiratory syndrome coronavirus. Similarly, the camel urine featured strong antifungal activity against Candida albicans, Aspergillus niger, Aspergillus flavus and dermatophytes with a minimal inhibitory concentration of 0.625 μg/ml against Trichophyton violaceum, 2.5 μg/ml against Microsporum canis and 1.25 μg/ml against Trichophyton rubrum and Trichophyton mentagrophytes. This comprehensive review will be valuable for researchers interested in investigating the potential of camel urine in the development of novel broad-spectrum key molecules targeting a wide range of drug-resistant pathogenic microorganisms.
Collapse
Affiliation(s)
- Ressmi Amina
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Life Sciences Department, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal 23023, Morocco
| | - Raqraq Habiba
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Life Sciences Department, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal 23023, Morocco
| | - Barguigua Abouddihaj
- Laboratory of Biotechnology and Sustainable Development of Natural Resources, Life Sciences Department, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni Mellal 23023, Morocco
| |
Collapse
|
5
|
Latham RL, Boyle JT, Barbano A, Loveman WG, Brown NA. Diverse mycotoxin threats to safe food and feed cereals. Essays Biochem 2023; 67:797-809. [PMID: 37313591 PMCID: PMC10500202 DOI: 10.1042/ebc20220221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/15/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
Toxigenic fungi, including Aspergillus and Fusarium species, contaminate our major cereal crops with an array of harmful mycotoxins, which threaten the health of humans and farmed animals. Despite our best efforts to prevent crop diseases, or postharvest spoilage, our cereals are consistently contaminated with aflatoxins and deoxynivalenol, and while established monitoring systems effectively prevent acute exposure, Aspergillus and Fusarium mycotoxins still threaten our food security. This is through the understudied impacts of: (i) our chronic exposure to these mycotoxins, (ii) the underestimated dietary intake of masked mycotoxins, and (iii) the synergistic threat of cocontaminations by multiple mycotoxins. Mycotoxins also have profound economic consequences for cereal and farmed-animal producers, plus their associated food and feed industries, which results in higher food prices for consumers. Climate change and altering agronomic practices are predicted to exacerbate the extent and intensity of mycotoxin contaminations of cereals. Collectively, this review of the diverse threats from Aspergillus and Fusarium mycotoxins highlights the need for renewed and concerted efforts to understand, and mitigate, the increased risks they pose to our food and feed cereals.
Collapse
Affiliation(s)
- Rosie L Latham
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, U.K
- Department of Life Sciences, University of Bath, Bath, U.K
| | - Jeremy T Boyle
- Department of Life Sciences, University of Bath, Bath, U.K
| | - Anna Barbano
- Department of Life Sciences, University of Bath, Bath, U.K
| | | | - Neil A Brown
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, U.K
- Department of Life Sciences, University of Bath, Bath, U.K
| |
Collapse
|
6
|
Choudhary HB, Mandlik SK, Mandlik DS. Role of p53 suppression in the pathogenesis of hepatocellular carcinoma. World J Gastrointest Pathophysiol 2023; 14:46-70. [PMID: 37304923 PMCID: PMC10251250 DOI: 10.4291/wjgp.v14.i3.46] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/01/2023] Open
Abstract
In the world, hepatocellular carcinoma (HCC) is among the top 10 most prevalent malignancies. HCC formation has indeed been linked to numerous etiological factors, including alcohol usage, hepatitis viruses and liver cirrhosis. Among the most prevalent defects in a wide range of tumours, notably HCC, is the silencing of the p53 tumour suppressor gene. The control of the cell cycle and the preservation of gene function are both critically important functions of p53. In order to pinpoint the core mechanisms of HCC and find more efficient treatments, molecular research employing HCC tissues has been the main focus. Stimulated p53 triggers necessary reactions that achieve cell cycle arrest, genetic stability, DNA repair and the elimination of DNA-damaged cells’ responses to biological stressors (like oncogenes or DNA damage). To the contrary hand, the oncogene protein of the murine double minute 2 (MDM2) is a significant biological inhibitor of p53. MDM2 causes p53 protein degradation, which in turn adversely controls p53 function. Despite carrying wt-p53, the majority of HCCs show abnormalities in the p53-expressed apoptotic pathway. High p53 in-vivo expression might have two clinical impacts on HCC: (1) Increased levels of exogenous p53 protein cause tumour cells to undergo apoptosis by preventing cell growth through a number of biological pathways; and (2) Exogenous p53 makes HCC susceptible to various anticancer drugs. This review describes the functions and primary mechanisms of p53 in pathological mechanism, chemoresistance and therapeutic mechanisms of HCC.
Collapse
Affiliation(s)
- Heena B Choudhary
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Satish K Mandlik
- Department of Pharmaceutics, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| | - Deepa S Mandlik
- Department of Pharmacology, BVDU, Poona College of Pharmacy, Pune 411038, Maharashtra, India
| |
Collapse
|
7
|
Tavolari S, Brandi G. Mutational Landscape of Cholangiocarcinoma According to Different Etiologies: A Review. Cells 2023; 12:cells12091216. [PMID: 37174616 PMCID: PMC10177226 DOI: 10.3390/cells12091216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Recent next-generation sequencing (NGS) studies on large cohorts of cholangiocarcinoma (CCA) patients have clearly revealed the extreme intra- and inter-tumoral molecular heterogeneity that characterizes this malignancy. The lack of a stereotyped molecular signature in CCA makes the identification of actionable therapeutic targets challenging, making it mandatory to have a better understanding of the origin of such heterogeneity in order to improve the clinical outcome of these patients. Compelling evidence has shown that the CCA genomic landscape significantly differs according to anatomical subtypes and the underlying etiology, highlighting the importance of conducting molecular studies in different populations of CCA patients. Currently, some risk factors have been recognized in CCA development, while others are emerging from recent epidemiological studies. Nevertheless, the role of each etiologic factor in driving CCA genetic heterogeneity still remains unclear, and available studies are limited. In an attempt to shed more light on this issue, here we review the current literature data on the mutational spectrum of this disease according to different etiologies.
Collapse
Affiliation(s)
- Simona Tavolari
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| | - Giovanni Brandi
- Medical Oncology Unit, IRCCS Azienda Ospedaliero-Universitaria of Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
8
|
Hartmann P, Schnabl B. Fungal infections and the fungal microbiome in hepatobiliary disorders. J Hepatol 2023; 78:836-851. [PMID: 36565724 PMCID: PMC10033447 DOI: 10.1016/j.jhep.2022.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022]
Abstract
Liver and biliary diseases affect more than a billion people worldwide, with high associated morbidity and mortality. The impact of the intestinal bacterial microbiome on liver diseases has been well established. However, the fungal microbiome, or mycobiome, has been overlooked for a long time. Recently, several studies have shed light on the role of the mycobiome in the development and progression of hepatobiliary diseases. In particular, the fungal genus Candida has been found to be involved in the pathogenesis of multiple hepatobiliary conditions. Herein, we compare colonisation and infection, describe mycobiome findings in the healthy state and across the various hepatobiliary conditions, and point toward communalities. We detail how quantitation of immune responses to fungal antigens can be employed to predict disease severity, e.g. using antibodies to Saccharomyces cerevisiae or specific anti-Candida albicans antibodies. We also show how fungal products (e.g. beta-glucans, candidalysin) activate the host's immune system to exacerbate liver and biliary diseases. Finally, we describe how the gut mycobiome can be modulated to ameliorate hepatobiliary conditions.
Collapse
Affiliation(s)
- Phillipp Hartmann
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Pediatrics, University of California San Diego, La Jolla, CA, USA; Division of Gastroenterology, Hepatology & Nutrition, Rady Children's Hospital San Diego, San Diego, CA, USA
| | - Bernd Schnabl
- Department of Medicine, University of California San Diego, La Jolla, CA, USA; Department of Medicine, VA San Diego Healthcare System, San Diego, CA, USA.
| |
Collapse
|
9
|
Alonso-Garrido M, Lozano M, Riffo-Campos AL, Font G, Vila-Donat P, Manyes L. Assessment of single-nucleotide variant discovery protocols in RNA-seq data from human cells exposed to mycotoxins. Toxicol Mech Methods 2023; 33:215-221. [PMID: 36016515 DOI: 10.1080/15376516.2022.2117673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Food and feed contamination by nonlegislated mycotoxins beauvericin (BEA) and enniatin B (ENB) is a worldwide health concern in the present. The principal objective of this work is to assess some of the existing protocols to discover the single nucleotide variants (SNVs) in transcriptomic data obtained by RNA-seq from Jurkat cells in vitro samples individually exposed to BEA and ENB at three concentration levels (1.5, 3 and 5 µM). Moreover, previous transcriptomic results will be compared with new findings obtained using a different protocol. SNVs rs201003509 in BEA exposed cells and the rs36045790 in ENB were found in the differentially expressed genes in all doses compared to controls by means of the Genome Analysis Toolkit (GATK) Best Practices workflow. SNV-RNA-seq complementary pipeline did not show any SNV. Concerning gene expression, discrepant results were found for 1.5 µM BEA exposed cells compared with previous findings. However, 354 overlapped differentially expressed genes (DEGs) were identified in the three ENB concentrations used, with 147 matches with respect to the 245 DEGs found in the previous results. In conclusion, the two discovery SNVs protocols based on variant calling from RNA-seq used in this work displayed very different results and there were SNVs found manually not identified by any pipeline. Additionally, the new gene expression analysis reported comparable but non identical DEGs to the previous transcriptomic results obtained from these RNA-seq data.
Collapse
Affiliation(s)
- M Alonso-Garrido
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - M Lozano
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain.,Epidemiology and Environmental Health Joint Research Unit, FISABIO - Universitat Jaume I - Universitat de València, València, Spain
| | - A L Riffo-Campos
- Millennium Nucleus on Sociomedicine (SocioMed) and Vicerrectoría Académica, Universidad de La Frontera, Temuco, Chile.,Department of Computer Science, ETSE, University of Valencia, Valencia, Spain
| | - G Font
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - P Vila-Donat
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| | - L Manyes
- Laboratory of Food Chemistry and Toxicology, Faculty of Pharmacy, University of Valencia, Burjassot, Spain
| |
Collapse
|
10
|
Hepatocellular Carcinoma: Current Therapeutic Algorithm for Localized and Advanced Disease. JOURNAL OF ONCOLOGY 2022; 2022:3817724. [PMID: 36624801 PMCID: PMC9825221 DOI: 10.1155/2022/3817724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/02/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer in patients with liver cirrhosis of various etiologies. In recent years, there has been an advance in the knowledge of molecular mechanisms and a better staging definition of patients which has allowed the development of new therapies that have entered the therapeutic workup of these patients. Deep information on molecular drivers of HCC contributed to the development of targeted therapies with remarkable benefits. The novel strategies of targeting immune evasion using immune checkpoint inhibitors and CAR-T and TCR-T therapeutics have also shown promising results. For advanced diseases, the therapeutic algorithm has been recently updated, thanks to the efficacy of combining immunotherapy and antiangiogenic therapy in the first-line setting, and new drugs, both as single-agents or combinations, are currently under investigation.
Collapse
|
11
|
Karamkhani M, Asilian-Mahabadi H, Daraei B, Seidkhani-Nahal A, Noori-Zadeh A. Route exposure and adverse effects monitoring of Aflatoxin B1 in the workers of wet waste management, the role of body redox system modulation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114305. [PMID: 36403302 DOI: 10.1016/j.ecoenv.2022.114305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Exposure to dust, containing different fungi metabolites such as aflatoxins is a risk factor for developing liver and kidney health abnormalities. Occupational evaluation of the aflatoxin's exposure-induced health abnormalities should include the monitoring of bioaerosols in the workplace and personal air, and applying of appropriate blood biomarkers to assess Aflatoxin B1 (AFB1) detrimental effects on a worker's health. However, to the best of our knowledge, these appropriate methods, especially determining the associated-adverse effects on health, following exposure, haven't been well documented in the literature at the wet waste handling sites. In the current study, the AFB1 quantity in the area, personal, and settled dust in wet household waste handling samples and AFB1-Albumin levels in the serum of workers in comparison with the control group were determined using high-pressure liquid chromatography with a fluorescent detector (HPLC-FLD) methods. Moreover, the adverse effects of AFB1 on the liver and kidney biochemical profiles of the exposed workers and its relation to antioxidant capacity in the household wet waste sorting were recorded in a consolidated investigation. The results demonstrated that the average airborne dust concentration and its associated AFB1 content were significantly higher in wet waste management sections as compared to the control place, corresponding to the serum AFB1-Albumin levels of workers. Furthermore, AFB1-induced changes in the serum biochemicals evaluating liver and kidney function tests and antioxidant profiles of workers in wet waste handling sections were indicative of their function abnormalities. The results imply AFB1-induced adverse effects on the liver and kidney functions may be mediated through the body redox system modulation.
Collapse
Affiliation(s)
- Morvarid Karamkhani
- Department of Occupational Health, Faculty of Health, Ilam University of Medical Sciences, Ilam 693917714, Iran.
| | - Hassan Asilian-Mahabadi
- Department of Occupational Health, Faculty of Medical Sciences, Tarbiat Modares University, P.O. Box. 14115-331, Tehran, Iran.
| | - Bahram Daraei
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, P.O. Box. 6153-14155, Velenjak St., Shahid Chamran Highway, Tehran, Iran.
| | - Ali Seidkhani-Nahal
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Ilam University of Medical Sciences, Ilam 693917714, Iran.
| | - Ali Noori-Zadeh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Ilam University of Medical Sciences, Ilam 693917714, Iran.
| |
Collapse
|
12
|
The Effect of Aflatoxin B1 on Tumor-Related Genes and Phenotypic Characters of MCF7 and MCF10A Cells. Int J Mol Sci 2022; 23:ijms231911856. [PMID: 36233156 PMCID: PMC9570345 DOI: 10.3390/ijms231911856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/21/2022] Open
Abstract
The fungal toxin aflatoxin B1 (AB1) and its reactive intermediate, aflatoxin B1-8, 9 epoxide, could cause liver cancer by inducing DNA adducts. AB1 exposure can induce changes in the expression of several cancer-related genes. In this study, the effect of AB1 exposure on breast cancer MCF7 and normal breast MCF10A cell lines at the phenotypic and epigenetic levels was investigated to evaluate its potential in increasing the risk of breast cancer development. We hypothesized that, even at low concentrations, AB1 can cause changes in the expression of important genes involved in four pathways, i.e., p53, cancer, cell cycle, and apoptosis. The transcriptomic levels of BRCA1, BRCA2, p53, HER1, HER2, cMyc, BCL2, MCL1, CCND1, WNT3A, MAPK1, MAPK3, DAPK1, Casp8, and Casp9 were determined in MCF7 and MCF10A cells. Our results illustrate that treating both cells with AB1 induced cytotoxicity and apoptosis with reduction in cell viability in a concentration-dependent manner. Additionally, AB1 reduced reactive oxygen species levels. Phenotypically, AB1 caused cell-cycle arrest at G1, hypertrophy, and increased cell migration rates. There were changes in the expression levels of several tumor-related genes, which are known to contribute to activating cancer pathways. The effects of AB1 on the phenotype and epigenetics of both MCF7 and MCF10A cells associated with cancer development observed in this study suggest that AB1 is a potential risk factor for developing breast cancer.
Collapse
|
13
|
Dey DK, Kang JI, Bajpai VK, Kim K, Lee H, Sonwal S, Simal-Gandara J, Xiao J, Ali S, Huh YS, Han YK, Shukla S. Mycotoxins in food and feed: toxicity, preventive challenges, and advanced detection techniques for associated diseases. Crit Rev Food Sci Nutr 2022; 63:8489-8510. [PMID: 35445609 DOI: 10.1080/10408398.2022.2059650] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Mycotoxins are produced primarily as secondary fungal metabolites. Mycotoxins are toxic in nature and naturally produced by various species of fungi, which usually contaminate food and feed ingredients. The growth of these harmful fungi depends on several environmental factors, such as pH, humidity, and temperature; therefore, the mycotoxin distribution also varies among global geographical areas. Various rules and regulations regarding mycotoxins are imposed by the government bodies of each country, which are responsible for addressing global food and health security concerns. Despite this legislation, the incidence of mycotoxin contamination is continuously increasing. In this review, we discuss the geographical regulatory guidelines and recommendations that are implemented around the world to control mycotoxin contamination of food and feed products. Researchers and inventors from various parts of the world have reported several innovations for controlling mycotoxin-associated health consequences. Unfortunately, most of these techniques are restricted to laboratory scales and cannot reach users. Consequently, to date, no single device has been commercialized that can detect all mycotoxins that are naturally available in the environment. Therefore, in this study, we describe severe health hazards that are associated with mycotoxin exposure, their molecular signaling pathways and processes of toxicity, and their genotoxic and cytotoxic effects toward humans and animals. We also discuss recent developments in the construction of a sensitive and specific device that effectively implements mycotoxin identification and detection methods. In addition, our study comprehensively examines the recent advancements in the field for mitigating the health consequences and links them with the molecular and signaling pathways that are activated upon mycotoxin exposure.
Collapse
Affiliation(s)
- Debasish Kumar Dey
- Department of Biotechnology, Daegu University, Gyeongsan, Republic of Korea
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Ji In Kang
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongwon, Republic of Korea
| | - Vivek K Bajpai
- Department of Energy and Materials Engineering, Dongguk University, Seoul, Republic of Korea
| | - Kwanwoo Kim
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Hoomin Lee
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Sonam Sonwal
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Jesus Simal-Gandara
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Jianbo Xiao
- Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, Republic of Korea
| | - Yun Suk Huh
- Department of Biological Engineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, Republic of Korea
| | - Yong-Kyu Han
- Department of Energy and Materials Engineering, Dongguk University, Seoul, Republic of Korea
| | - Shruti Shukla
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, India
| |
Collapse
|
14
|
Gramantieri L, Gnudi F, Vasuri F, Mandrioli D, Fornari F, Tovoli F, Suzzi F, Vornoli A, D’Errico A, Piscaglia F, Giovannini C. Aflatoxin B1 DNA-Adducts in Hepatocellular Carcinoma from a Low Exposure Area. Nutrients 2022; 14:1652. [PMID: 35458213 PMCID: PMC9024438 DOI: 10.3390/nu14081652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/07/2023] Open
Abstract
Aflatoxin B1 (AFB1) is a class 1 carcinogen with an ascertained role in the development of hepatocellular carcinoma (HCC) in high exposure areas. Instead, this study aimed to assay whether chronic/intermittent, low-dose AFB1 consumption might occur in low-exposure geographical areas, ultimately accumulating in the liver and possibly contributing to liver cancer. AFB1-DNA adducts were assayed by immunostaining in liver tissues from three Italian series of twenty cirrhosis without HCC, 131 HCC, and 45 cholangiocarcinoma, and in an AFB1-induced HCC rat model. CD68, TP53 immunostaining, and TP53 RFLP analysis of R249S transversion were used to characterize cell populations displaying AFB1-DNA adducts. Twenty-five HCCs displayed AFB1-adducts both in neoplastic hepatocytes and in cells infiltrating the tumor and non-tumor tissues. Nuclear immunostaining was observed in a few cases, while most cases showed cytoplasmic immunostaining, especially in CD68-positive tumor-infiltrating cells, suggestive for phagocytosis of dead hepatocytes. Similar patterns were observed in AFB1-induced rat HCC, though with higher intensity. Cholangiocarcinoma and cirrhosis without HCC did not displayAFB1-adducts, except for one case. Despite not providing a causal relationship with HCC, these findings still suggest paying attention to detection and control measures for aflatoxins to ensure food safety in low exposure areas.
Collapse
Affiliation(s)
- Laura Gramantieri
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.T.); (F.P.)
| | - Federica Gnudi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (F.G.); (D.M.); (A.V.)
| | - Francesco Vasuri
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.V.); (A.D.)
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (F.G.); (D.M.); (A.V.)
| | - Francesca Fornari
- Department for Life Quality Studies, University of Bologna, 40126 Rimini, Italy;
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy;
| | - Francesco Tovoli
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.T.); (F.P.)
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (F.G.); (D.M.); (A.V.)
| | - Fabrizia Suzzi
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy;
| | - Andrea Vornoli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Via Saliceto 3, 40010 Bentivoglio, Italy; (F.G.); (D.M.); (A.V.)
| | - Antonia D’Errico
- Pathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.V.); (A.D.)
- Department of Experimental, Diagnostic and Specialty Medicine, University di Bologna, 40138 Bologna, Italy
| | - Fabio Piscaglia
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (F.T.); (F.P.)
- Department of Medical and Surgical Science, University of Bologna, 40138 Bologna, Italy
| | - Catia Giovannini
- Center for Applied Biomedical Research (CRBA), University of Bologna, 40138 Bologna, Italy;
- Department of Experimental, Diagnostic and Specialty Medicine, University di Bologna, 40138 Bologna, Italy
| |
Collapse
|
15
|
Moon Y, Korcsmáros T, Nagappan A, Ray N. MicroRNA target-based network predicts androgen receptor-linked mycotoxin stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113130. [PMID: 34968797 DOI: 10.1016/j.ecoenv.2021.113130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/15/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Stress-responsive microRNAs (miRNAs) contribute to the regulation of cellular homeostasis or pathological processes, including carcinogenesis, by reprogramming target gene expression following human exposure to environmental or dietary xenobiotics. Herein, we predicted the targets of carcinogenic mycotoxin-responsive miRNAs and analyzed their association with disease and functionality. miRNA target-derived prediction indicated potent associations of oncogenic mycotoxin exposure with metabolism- or hormone-related diseases, including sex hormone-linked cancers. Mechanistically, the signaling network evaluation suggested androgen receptor (AR)-linked signaling as a common pivotal cluster associated with metabolism- or hormone-related tumorigenesis in response to aflatoxin B1 and ochratoxin A co-exposure. Particularly, high levels of AR and AR-linked genes for the retinol and xenobiotic metabolic enzymes were positively associated with attenuated disease biomarkers and good prognosis in patients with liver or kidney cancers. Moreover, AR-linked signaling was protective against OTA-induced genetic insults in human hepatocytes whereas it was positively involved in AFB1-induced genotoxic actions. Collectively, miRNA target network-based predictions provide novel clinical insights into the progression or intervention against malignant adverse outcomes of human exposure to environmental oncogenic insults.
Collapse
Affiliation(s)
- Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea; Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan 50612, Republic of Korea.
| | - Tamás Korcsmáros
- Earlham Institute, Norwich NR4 7UZ, UK; Quadram Institute Bioscience, Norwich NR4 7UZ, UK
| | - Arulkumar Nagappan
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| | - Navin Ray
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences and Biomedical Research Institute, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
16
|
Gomez-Quiroz LE, Roman S. Influence of genetic and environmental risk factors in the development of hepatocellular carcinoma in Mexico. Ann Hepatol 2022; 27 Suppl 1:100649. [PMID: 34902602 DOI: 10.1016/j.aohep.2021.100649] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/20/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023]
Abstract
The latest studies on the epidemiology of diverse types of cancers have located in the scene the relevance of liver tumors, particularly hepatocellular carcinoma (HCC). HCC is a life-threatening malignancy triggered by chronic exposure to hepatitis B and C viruses, excessive alcohol intake, hepatic lipid droplet accumulation, and aflatoxins that lead to persistent liver damage. The occurrence of such etiological risk factors deeply marks the variability in the incidence of HCC worldwide reflected by geography, ethnicity, age, and lifestyle factors influenced by cultural aspects. New perspectives on the primary risk factors and their potential gene-environment interactions (GxE) have been well-addressed in some cancers; however, it continues to be a partially characterized issue in liver malignancies. In this review, the epidemiology of the risk factors for HCC are described enhancing the GxE interactions identified in Mexico, which could mark the risk of this liver malignancy among the population and the measures needed to revert them. Updated healthcare policies focusing on preventive care should be tailored based on the genetic and environmental risk factors, which may influence the effect of the etiological agents of HCC. Robust regional investigations related to epidemiological, clinical, and basic studies are warranted to understand this health problem complying with the rules of ethnic, genetic, environmental, and social diversity.
Collapse
Affiliation(s)
- Luis E Gomez-Quiroz
- Área de Medicina Experimental y Traslacional, Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City, Mexico
| | - Sonia Roman
- Department of Genomic Medicine in Hepatology, Civil Hospital of Guadalajara, "Fray Antonio Alcalde," Guadalajara, Jalisco, Mexico; Health Sciences Center, University of Guadalajara, Guadalajara, Jalisco, Mexico.
| |
Collapse
|
17
|
Begum N, Harzandi A, Lee S, Uhlen M, Moyes DL, Shoaie S. Host-mycobiome metabolic interactions in health and disease. Gut Microbes 2022; 14:2121576. [PMID: 36151873 PMCID: PMC9519009 DOI: 10.1080/19490976.2022.2121576] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 02/04/2023] Open
Abstract
Fungal communities (mycobiome) have an important role in sustaining the resilience of complex microbial communities and maintenance of homeostasis. The mycobiome remains relatively unexplored compared to the bacteriome despite increasing evidence highlighting their contribution to host-microbiome interactions in health and disease. Despite being a small proportion of the total species, fungi constitute a large proportion of the biomass within the human microbiome and thus serve as a potential target for metabolic reprogramming in pathogenesis and disease mechanism. Metabolites produced by fungi shape host niches, induce immune tolerance and changes in their levels prelude changes associated with metabolic diseases and cancer. Given the complexity of microbial interactions, studying the metabolic interplay of the mycobiome with both host and microbiome is a demanding but crucial task. However, genome-scale modelling and synthetic biology can provide an integrative platform that allows elucidation of the multifaceted interactions between mycobiome, microbiome and host. The inferences gained from understanding mycobiome interplay with other organisms can delineate the key role of the mycobiome in pathophysiology and reveal its role in human disease.
Collapse
Affiliation(s)
- Neelu Begum
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Azadeh Harzandi
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Sunjae Lee
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Mathias Uhlen
- Science for Life Laboratory, KTH–Royal Institute of Technology, Stockholm, Sweden
| | - David L. Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London, UK
- Science for Life Laboratory, KTH–Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
18
|
Romualdo GR, Leroy K, Costa CJS, Prata GB, Vanderborght B, da Silva TC, Barbisan LF, Andraus W, Devisscher L, Câmara NOS, Vinken M, Cogliati B. In Vivo and In Vitro Models of Hepatocellular Carcinoma: Current Strategies for Translational Modeling. Cancers (Basel) 2021; 13:5583. [PMID: 34771745 PMCID: PMC8582701 DOI: 10.3390/cancers13215583] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the third leading cause of cancer-related death globally. HCC is a complex multistep disease and usually emerges in the setting of chronic liver diseases. The molecular pathogenesis of HCC varies according to the etiology, mainly caused by chronic hepatitis B and C virus infections, chronic alcohol consumption, aflatoxin-contaminated food, and non-alcoholic fatty liver disease associated with metabolic syndrome or diabetes mellitus. The establishment of HCC models has become essential for both basic and translational research to improve our understanding of the pathophysiology and unravel new molecular drivers of this disease. The ideal model should recapitulate key events observed during hepatocarcinogenesis and HCC progression in view of establishing effective diagnostic and therapeutic strategies to be translated into clinical practice. Despite considerable efforts currently devoted to liver cancer research, only a few anti-HCC drugs are available, and patient prognosis and survival are still poor. The present paper provides a state-of-the-art overview of in vivo and in vitro models used for translational modeling of HCC with a specific focus on their key molecular hallmarks.
Collapse
Affiliation(s)
- Guilherme Ribeiro Romualdo
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Kaat Leroy
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Cícero Júlio Silva Costa
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Gabriel Bacil Prata
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
- Department of Pathology, Botucatu Medical School, São Paulo State University (UNESP), Botucatu 18618-687, Brazil
| | - Bart Vanderborght
- Gut-Liver Immunopharmacology Unit, Basic and Applied Medical Sciences, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Tereza Cristina da Silva
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| | - Luís Fernando Barbisan
- Department of Structural and Functional Biology, Biosciences Institute, São Paulo State University (UNESP), Botucatu 18618-689, Brazil; (G.B.P.); (L.F.B.)
| | - Wellington Andraus
- Department of Gastroenterology, Clinics Hospital, School of Medicine, University of São Paulo (HC-FMUSP), São Paulo 05403-000, Brazil;
| | - Lindsey Devisscher
- Hepatology Research Unit, Internal Medicine and Paediatrics, Liver Research Center Ghent, Faculty of Medicine and Health Sciences, Ghent University, 9000 Ghent, Belgium;
| | - Niels Olsen Saraiva Câmara
- Department of Immunology, Institute of Biomedical Sciences IV, University of São Paulo (USP), São Paulo 05508-000, Brazil;
| | - Mathieu Vinken
- Department of Pharmaceutical and Pharmacological Sciences, Vrije Universiteit Brussel, 1090 Brussels, Belgium; (K.L.); (M.V.)
| | - Bruno Cogliati
- Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo (USP), São Paulo 05508-270, Brazil; (G.R.R.); (C.J.S.C.); (T.C.d.S.)
| |
Collapse
|
19
|
Geurts MH, de Poel E, Pleguezuelos-Manzano C, Oka R, Carrillo L, Andersson-Rolf A, Boretto M, Brunsveld JE, van Boxtel R, Beekman JM, Clevers H. Evaluating CRISPR-based prime editing for cancer modeling and CFTR repair in organoids. Life Sci Alliance 2021; 4:e202000940. [PMID: 34373320 PMCID: PMC8356249 DOI: 10.26508/lsa.202000940] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 07/13/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Prime editing is a recently reported genome editing tool using a nickase-cas9 fused to a reverse transcriptase that directly synthesizes the desired edit at the target site. Here, we explore the use of prime editing in human organoids. Common TP53 mutations can be correctly modeled in human adult stem cell-derived colonic organoids with efficiencies up to 25% and up to 97% in hepatocyte organoids. Next, we functionally repaired the cystic fibrosis CFTR-F508del mutation and compared prime editing to CRISPR/Cas9-mediated homology-directed repair and adenine base editing on the CFTR-R785* mutation. Whole-genome sequencing of prime editing-repaired organoids revealed no detectable off-target effects. Despite encountering varying editing efficiencies and undesired mutations at the target site, these results underline the broad applicability of prime editing for modeling oncogenic mutations and showcase the potential clinical application of this technique, pending further optimization.
Collapse
Affiliation(s)
- Maarten H Geurts
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Eyleen de Poel
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, the Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Cayetano Pleguezuelos-Manzano
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Rurika Oka
- Oncode Institute,Princes Maxima Center, Utrecht, The Netherlands
| | - Léo Carrillo
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Amanda Andersson-Rolf
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Matteo Boretto
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| | - Jesse E Brunsveld
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, the Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Ruben van Boxtel
- Oncode Institute,Princes Maxima Center, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Respiratory Medicine, Wilhelmina Children's Hospital, University Medical Center, Utrecht University, Utrecht, the Netherlands
- Regenerative Medicine Utrecht, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, the Netherlands
- Oncode Institute, Hubrecht Institute, Utrecht, the Netherlands
| |
Collapse
|
20
|
Ghantous A, Novoloaca A, Bouaoun L, Cuenin C, Cros MP, Xu Y, Hernandez-Vargas H, Darboe MK, Prentice AM, Moore SE, Gong YY, Herceg Z, Routledge MN. Aflatoxin Exposure during Early Life Is Associated with Differential DNA Methylation in Two-Year-Old Gambian Children. Int J Mol Sci 2021; 22:8967. [PMID: 34445674 PMCID: PMC8396526 DOI: 10.3390/ijms22168967] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 07/29/2021] [Indexed: 11/17/2022] Open
Abstract
Background: DNA methylation is an epigenetic control mechanism that may be altered by environmental exposures. We have previously reported that in utero exposure to the mycotoxin and liver carcinogen aflatoxin B1 from the maternal diet, as measured using biomarkers in the mothers' blood, was associated with differential DNA methylation in white blood cells of 6-month-old infants from The Gambia. Methods: Here we examined aflatoxin B1-associated differential DNA methylation in white blood cells of 24-month-old children from the same population (n = 244), in relation to the child's dietary exposure assessed using aflatoxin albumin biomarkers in blood samples collected at 6, 12 and 18 months of age. HM450 BeadChip arrays were used to assess DNA methylation, with data compared to aflatoxin albumin adduct levels using two approaches; a continuous model comparing aflatoxin adducts measured in samples collected at 18 months to DNA methylation at 24 months, and a categorical time-dose model that took into account aflatoxin adduct levels at 6, 12 and 18 months, for comparison to DNA methylation at 24 months. Results: Geometric mean (95% confidence intervals) for aflatoxin albumin levels were 3.78 (3.29, 4.34) at 6 months, 25.1 (21.67, 29.13) at 12 months and 49.48 (43.34, 56.49) at 18 months of age. A number of differentially methylated CpG positions and regions were associated with aflatoxin exposure, some of which affected gene expression. Pathway analysis highlighted effects on genes involved with with inflammatory, signalling and growth pathways. Conclusions: This study provides further evidence that exposure to aflatoxin in early childhood may impact on DNA methylation.
Collapse
Affiliation(s)
- Akram Ghantous
- International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372 Lyon, France; (A.G.); (A.N.); (L.B.); (C.C.); (M.-P.C.); (H.H.-V.); (Z.H.)
| | - Alexei Novoloaca
- International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372 Lyon, France; (A.G.); (A.N.); (L.B.); (C.C.); (M.-P.C.); (H.H.-V.); (Z.H.)
| | - Liacine Bouaoun
- International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372 Lyon, France; (A.G.); (A.N.); (L.B.); (C.C.); (M.-P.C.); (H.H.-V.); (Z.H.)
| | - Cyrille Cuenin
- International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372 Lyon, France; (A.G.); (A.N.); (L.B.); (C.C.); (M.-P.C.); (H.H.-V.); (Z.H.)
| | - Marie-Pierre Cros
- International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372 Lyon, France; (A.G.); (A.N.); (L.B.); (C.C.); (M.-P.C.); (H.H.-V.); (Z.H.)
| | - Ya Xu
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun-Yat Sen University, Guangzhou 510006, China
| | - Hector Hernandez-Vargas
- International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372 Lyon, France; (A.G.); (A.N.); (L.B.); (C.C.); (M.-P.C.); (H.H.-V.); (Z.H.)
- Cancer Research Centre of Lyon (CRCL), Université de Lyon, 69008 Lyon, France
| | - Momodou K. Darboe
- MRC Unit the Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul P.O. Box 273, The Gambia; (M.K.D.); (A.M.P.); (S.E.M.)
| | - Andrew M. Prentice
- MRC Unit the Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul P.O. Box 273, The Gambia; (M.K.D.); (A.M.P.); (S.E.M.)
| | - Sophie E. Moore
- MRC Unit the Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, Banjul P.O. Box 273, The Gambia; (M.K.D.); (A.M.P.); (S.E.M.)
- Department of Women and Children’s Health, King’s College London, St Thomas’ Hospital, London SE1 7EH, UK
| | - Yun Yun Gong
- School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK;
| | - Zdenko Herceg
- International Agency for Research on Cancer, 150, Cours Albert Thomas, 69372 Lyon, France; (A.G.); (A.N.); (L.B.); (C.C.); (M.-P.C.); (H.H.-V.); (Z.H.)
| | - Michael N. Routledge
- School of Medicine, University of Leeds, Leeds LS2 9JT, UK;
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
21
|
Cheng YC, Wu TS, Huang YT, Chang Y, Yang JJ, Yu FY, Liu BH. Aflatoxin B1 interferes with embryonic liver development: Involvement of p53 signaling and apoptosis in zebrafish. Toxicology 2021; 458:152844. [PMID: 34214637 DOI: 10.1016/j.tox.2021.152844] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 12/17/2022]
Abstract
Aflatoxin B1 (AFB1), a naturally occurring mycotoxin, is present in human placenta and cord blood. AFB1 at concentrations found in contaminated food commodities (0.25 and 0.5 μM) did not alter the spontaneous movement, heart rate, hatchability, or morphology of embryonic zebrafish. However, around 86 % of 0.25 μM AFB1-treated embryos had livers of reduced size, and AFB1 disrupted the hepatocyte structures, according to histological analysis. Additionally, AFB1 treatment that begins at any stage before 72 h post-fertilization (hpf) effectively reduced the size of embryonic livers. In hepatic areas, AFB1 suppressed the expression of Hhex and Prox1, which are two critical transcriptional factors for initiating hepatoblast specification. KEGG analysis based on transcriptome profiling indicated that p53 signaling and apoptosis are the only observed pathways in AFB1-treated embryos. AFB1 at 0.5 μM significantly activated the expression of tp53, mdm2, puma, noxa, pidd1, and gadd45aa genes that are related to the p53 pathway and also that of baxa, casp 8 and casp 3a in the apoptotic process. TUNEL staining demonstrated that AFB1 triggered the apoptosis of embryonic hepatocytes in a dose-dependent manner. These results indicate that the deficiency of both hhex and prox1 as well as hepatocyte apoptosis via the p53-Puma/Noxa-Bax axis may contribute to the embryonic liver shrinkage that is caused by AFB1.
Collapse
Affiliation(s)
- Ya-Chih Cheng
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ting-Shuan Wu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ying-Tzu Huang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yung Chang
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jiann-Jou Yang
- Department of Biomedical Sciences, Chung Shan Medical University, Taiwan
| | - Feng-Yih Yu
- Department of Biomedical Sciences, Chung Shan Medical University, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan.
| | - Biing-Hui Liu
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
22
|
Awuchi CG, Ondari EN, Ogbonna CU, Upadhyay AK, Baran K, Okpala COR, Korzeniowska M, Guiné RPF. Mycotoxins Affecting Animals, Foods, Humans, and Plants: Types, Occurrence, Toxicities, Action Mechanisms, Prevention, and Detoxification Strategies-A Revisit. Foods 2021; 10:1279. [PMID: 34205122 PMCID: PMC8228748 DOI: 10.3390/foods10061279] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 01/05/2023] Open
Abstract
Mycotoxins are produced by fungi and are known to be toxic to humans and animals. Common mycotoxins include aflatoxins, ochratoxins, zearalenone, patulin, sterigmatocystin, citrinin, ergot alkaloids, deoxynivalenol, fumonisins, trichothecenes, Alternaria toxins, tremorgenic mycotoxins, fusarins, 3-nitropropionic acid, cyclochlorotine, sporidesmin, etc. These mycotoxins can pose several health risks to both animals and humans, including death. As several mycotoxins simultaneously occur in nature, especially in foods and feeds, the detoxification and/or total removal of mycotoxins remains challenging. Moreover, given that the volume of scientific literature regarding mycotoxins is steadily on the rise, there is need for continuous synthesis of the body of knowledge. To supplement existing information, knowledge of mycotoxins affecting animals, foods, humans, and plants, with more focus on types, toxicity, and prevention measures, including strategies employed in detoxification and removal, were revisited in this work. Our synthesis revealed that mycotoxin decontamination, control, and detoxification strategies cut across pre-and post-harvest preventive measures. In particular, pre-harvest measures can include good agricultural practices, fertilization/irrigation, crop rotation, using resistant varieties of crops, avoiding insect damage, early harvesting, maintaining adequate humidity, and removing debris from the preceding harvests. On the other hand, post-harvest measures can include processing, chemical, biological, and physical measures. Additionally, chemical-based methods and other emerging strategies for mycotoxin detoxification can involve the usage of chitosan, ozone, nanoparticles, and plant extracts.
Collapse
Affiliation(s)
- Chinaza Godswill Awuchi
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda;
- School of Natural and Applied Sciences, Kampala International University, Kampala P.O. Box 20000, Uganda
| | - Erick Nyakundi Ondari
- Department of Biochemistry, Kampala International University, Bushenyi P.O. Box 20000, Uganda;
| | - Chukwuka U. Ogbonna
- Department of Biochemistry, Federal University of Agriculture Abeokuta, Abeokuta P.M.B. 2240, Ogun State, Nigeria;
| | - Anjani K. Upadhyay
- School of Biotechnology, KIIT University, Bhubaneswar 751019, Odisha, India;
| | - Katarzyna Baran
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Charles Odilichukwu R. Okpala
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Małgorzata Korzeniowska
- Faculty of Biotechnology and Food Sciences, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland; (K.B.); (M.K.)
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|
23
|
Hojnik N, Modic M, Walsh JL, Žigon D, Javornik U, Plavec J, Žegura B, Filipič M, Cvelbar U. Unravelling the pathways of air plasma induced aflatoxin B 1 degradation and detoxification. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123593. [PMID: 33264852 DOI: 10.1016/j.jhazmat.2020.123593] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 06/12/2023]
Abstract
Aflatoxins are considered to be a critical dietary risk factor for humans, with aflatoxin B1 (AFB1) identified by the WHO as one of the most potent natural group 1 carcinogen. Despite this, more than half of the world's population is chronically exposed, resulting in up to 170,000 annual cases of human hepatocellular carcinoma cancer. Here we report an easily implemented approach using non-equilibrium plasma for targeted degradation of AFB1. Apart from reaching the 100 % decontamination in less than 120 s of treatment, this is the first study that combines hypersensitive analytical methods such as high-resolution mass spectroscopy (HRMS) and nuclear magnetic resonance spectroscopy (NMR) to provide a detailed description of CAP mediated AFB1 degradation. We identify rapid scission of the vinyl bond between 8- and 9-position on the terminal furan ring of AFB1 as being of paramount importance for the suppression of toxic potential, which is confirmed by the examination of both cytotoxicity and genotoxicity. The plasma reactive species mediated degradation pathways are elucidated, and it is demonstrated that the approach not only renders AFB1 harmless but does so in order of magnitude less time than UV irradiation as one of the other non-thermal methods currently under investigation.
Collapse
Affiliation(s)
- Nataša Hojnik
- Jozef Stefan Institute, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia; Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | | | - James L Walsh
- Department of Electrical Engineering and Electronics, University of Liverpool, Liverpool, United Kingdom
| | | | - Uroš Javornik
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Janez Plavec
- Slovenian NMR Centre, National Institute of Chemistry, Hajdrihova 19, SI-1001, Ljubljana, Slovenia
| | - Bojana Žegura
- Department of Genetic Toxicology and Cancer Biology National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Metka Filipič
- Department of Genetic Toxicology and Cancer Biology National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Uroš Cvelbar
- Jozef Stefan Institute, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Ljubljana, Slovenia.
| |
Collapse
|
24
|
Totsuka Y, Watanabe M, Lin Y. New horizons of DNA adductome for exploring environmental causes of cancer. Cancer Sci 2021; 112:7-15. [PMID: 32978845 PMCID: PMC7780056 DOI: 10.1111/cas.14666] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 12/31/2022] Open
Abstract
Chemical carcinogenesis is focused on the formation of DNA adducts, a form of DNA damage caused by covalent binding of a chemical moiety to DNA. The detection of carcinogen-DNA adducts in human tissues, along with demonstration of mutagenicity/carcinogenicity in experimental systems, and validation of adducts as biomarkers of environmental exposure and indicators of cancer risk in molecular epidemiological studies suggests a pivotal role of DNA adducts in cancer development. However, accurate measurement of DNA adducts in varied biological samples is challenging. Advances in mass spectrometry have prompted the development of DNA adductome analysis, an emerging method that simultaneously screens for multiple DNA adducts and provides relevant structural information. In this review, we summarize the basic principle and applications of DNA adductome analysis that would contribute to the elucidation of the environmental causes of cancer. Based on parallel developments in several fields, including next-generation sequencing, we describe a new approach used to explore cancer etiology, which integrates analyses of DNA adductome data and mutational signatures derived from whole-genome/exome sequencing.
Collapse
Affiliation(s)
- Yukari Totsuka
- Department of Cancer Model DevelopmentNational Cancer Center Research InstituteTokyoJapan
| | | | - Yingsong Lin
- Department of Public HealthAichi Medical University School of MedicineNagakuteJapan
| |
Collapse
|
25
|
Chidambaranathan-Reghupaty S, Fisher PB, Sarkar D. Hepatocellular carcinoma (HCC): Epidemiology, etiology and molecular classification. Adv Cancer Res 2020; 149:1-61. [PMID: 33579421 PMCID: PMC8796122 DOI: 10.1016/bs.acr.2020.10.001] [Citation(s) in RCA: 505] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hepatocellular carcinoma (HCC), the primary malignancy of hepatocytes, is a diagnosis with bleak outcome. According to National Cancer Institute's SEER database, the average five-year survival rate of HCC patients in the US is 19.6% but can be as low as 2.5% for advanced, metastatic disease. When diagnosed at early stages, it is treatable with locoregional treatments including surgical resection, Radio-Frequency Ablation, Trans-Arterial Chemoembolization or liver transplantation. However, HCC is usually diagnosed at advanced stages when the tumor is unresectable, making these treatments ineffective. In such instances, systemic therapy with tyrosine kinase inhibitors (TKIs) becomes the only viable option, even though it benefits only 30% of patients, provides only a modest (~3months) increase in overall survival and causes drug resistance within 6months. HCC, like many other cancers, is highly heterogeneous making a one-size fits all option problematic. The selection of liver transplantation, locoregional treatment, TKIs or immune checkpoint inhibitors as a treatment strategy depends on the disease stage and underlying condition(s). Additionally, patients with similar disease phenotype can have different molecular etiology making treatment responses different. Stratification of patients at the molecular level would facilitate development of the most effective treatment option. With the increase in efficiency and affordability of "omics"-level analysis, considerable effort has been expended in classifying HCC at the molecular, metabolic and immunologic levels. This review examines the results of these efforts and the ways they can be leveraged to develop targeted treatment options for HCC.
Collapse
Affiliation(s)
- Saranya Chidambaranathan-Reghupaty
- C. Kenneth and Dianne Wright Center for Clinical and Translational Research, Virginia Commonwealth University, Richmond, VA, United States
| | - Paul B Fisher
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
26
|
Taranu I, Hermenean A, Bulgaru C, Pistol GC, Ciceu A, Grosu IA, Marin DE. Diet containing grape seed meal by-product counteracts AFB1 toxicity in liver of pig after weaning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 203:110899. [PMID: 32678747 DOI: 10.1016/j.ecoenv.2020.110899] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/11/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
Liver is the earliest target for AFB1 toxicity in both human and animals. In the last decade, plant derived by-products have been used in animal feed to reduce AFB1 induced toxicity. In the present study we investigated whether the presence of 8% grape seed meal by-product is able to counteract the hepatotoxic effects produced by AFB1 in liver of pig after weaning exposed to the toxin through the contaminated feed for 28 days. Twenty four weaned cross-bred TOPIGS-40 piglets with an average body weight of 9.13±0.03 were allocated to the following experimentally treatments: control diet without AFB1 (normal compound feed for weaned pigs); contaminated diet with 320 mg kg-1 AFB1; GSM diet (compound feed plus 8% grape seed meal) and AFB1+GSM diet (320 mg kg-1 AFB1 contaminated feed plus 8% grape seed meal). Pigs fed AFB1 diet had altered performance, body weight decreasing with 25.1% (b.w.: 17.17 kg for AFB1 vs 22.92 kg for control). Exposure of piglets to AFB1 contaminated diet caused liver oxidative stress as well as liver histological damage, manly characterized by inflammatory infiltrate, fibrosis and parenchyma cells vacuolation when compared to control and GSM meal group. 94.12% of the total analysed genes (34) related to inflammation and immune response was up-regulated. The addition of GSM into the AFB1 diet diminished the gene overexpression and ameliorate histological liver injuries and oxidative stress. The protective effect of GSM diet in diminishing the AFB1 harmful effect was mediated through the decreasing of gene and protein expression of MAPKs and NF-κB signalling overexpressed by AFB1 diet. The inclusion of grape seed by-products in the diet of pigs after weaning might be used as a novel nutritional intervention to reduce aflatoxin toxicity.
Collapse
Affiliation(s)
- Ionelia Taranu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania.
| | - Anca Hermenean
- Aurel Ardelean Institute of Life Sciences, Vasile Goldis Western University of Arad, Arad, Romania
| | - Cristina Bulgaru
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Gina Cecilia Pistol
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Alina Ciceu
- Department of Biochemistry and Molecular Biology, University of Bucharest, Bucharest, Romania
| | - Iulian Alexandru Grosu
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| | - Daniela Eliza Marin
- Laboratory of Animal Biology, National Institute for Research and Development for Biology and Animal Nutrition, Calea Bucuresti No. 1, Balotesti, Ilfov, 077015, Romania
| |
Collapse
|
27
|
Nakayama J, Gong Z. Transgenic zebrafish for modeling hepatocellular carcinoma. MedComm (Beijing) 2020; 1:140-156. [PMID: 34766114 PMCID: PMC8491243 DOI: 10.1002/mco2.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Liver cancer is the third leading cause of cancer‐related deaths throughout the world, and more than 0.6 million people die from liver cancer annually. Therefore, novel therapeutic strategies to eliminate malignant cells from liver cancer patients are urgently needed. Recent advances in high‐throughput genomic technologies have identified de novo candidates for oncogenes and pharmacological targets. However, testing and understanding the mechanism of oncogenic transformation as well as probing the kinetics and therapeutic responses of spontaneous tumors in an intact microenvironment require in vivo examination using genetically modified animal models. The zebrafish (Danio rerio) has attracted increasing attention as a new model for studying cancer biology since the organs in the model are strikingly similar to human organs and the model can be genetically modified in a short time and at a low cost. This review summarizes the current knowledge of epidemiological data and genetic alterations in hepatocellular carcinoma (HCC), zebrafish models of HCC, and potential therapeutic strategies for targeting HCC based on knowledge from the models.
Collapse
Affiliation(s)
- Joji Nakayama
- Department of Biological Sciences National University of Singapore Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences National University of Singapore Singapore
| |
Collapse
|
28
|
Wang H, Chen L, Zhou T, Zhang Z, Zeng C. Nicotine Promotes WRL68 Cells Proliferation Due to the Mutant p53 Gain-of-Function by Activating CDK6-p53-RS-PIN1-STAT1 Signaling Pathway. Chem Res Toxicol 2020; 33:2361-2373. [PMID: 32820905 DOI: 10.1021/acs.chemrestox.0c00119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is an important organ with many tasks, such as dealing with drugs, alcohol and other toxins to remove them from the body. Nicotine is the more abundant component in cigarette smoking, which is first metabolized in liver and increases the risk of developing hepatocellular carcinoma (HCC). Also, genotoxic potential of nicotine has been extensively studied in vitro. However, the carcinogenic action of nicotine on the HCC needs to be elucidated. The current study demonstrated that chronic exposure to nicotine significantly promotes human normal fetal hepatic cell line (WRL68 cells) proliferation in a time- and concentration-dependent manner resulting from G0/G1-S-phase transition. Also remarkably, nicotine induced the level of p53 mutation at Ser249 (p53-RS). Note as well that the level of STAT1 protein was increased along with p53-RS owing to the prolonged half-life of STAT1. Furthermore, it is suggested that CDK6-dependent binding between phosphorylation of p53-RS at Ser249 and PIN1 by nicotine treatment leads to the nucleus translocation, followed by interacting with STAT1 and subsequent activation of STAT1 via the improvement of its stability, which is involved in cellular growth and colony formation after nicotine treatment. Simply put, these findings indicated that nicotine induces mutant p53 gain-of function (GOF), activating CDK6-p53-RS-PIN1-STAT1 signaling pathway and promoting cell proliferation, which could contribute to HCC for smokers.
Collapse
Affiliation(s)
- Huai Wang
- School of Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China
| | - Lu Chen
- Wuhan Taisheng Biological Technology Co., Ltd., No. 10 West Yezhihu Road, Wuhan, Hubei 430074, P. R. of China
| | - Tong Zhou
- School of Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China
| | - Zhongwei Zhang
- School of Public Health, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China.,Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, No. 461 Ba Yi Avenue, Nanchang, Jiangxi 330006, P. R. of China
| | - Canwei Zeng
- Wuhan Taisheng Biological Technology Co., Ltd., No. 10 West Yezhihu Road, Wuhan, Hubei 430074, P. R. of China
| |
Collapse
|
29
|
Pietschmann J, Spiegel H, Krause HJ, Schillberg S, Schröper F. Sensitive Aflatoxin B1 Detection Using Nanoparticle-Based Competitive Magnetic Immunodetection. Toxins (Basel) 2020; 12:toxins12050337. [PMID: 32443933 PMCID: PMC7290995 DOI: 10.3390/toxins12050337] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/12/2020] [Accepted: 05/20/2020] [Indexed: 01/04/2023] Open
Abstract
Food and crop contaminations with mycotoxins are a severe health risk for consumers and cause high economic losses worldwide. Currently, different chromatographic- and immuno-based methods are used to detect mycotoxins within different sample matrices. There is a need for novel, highly sensitive detection technologies that avoid time-consuming procedures and expensive laboratory equipment but still provide sufficient sensitivity to achieve the mandated detection limit for mycotoxin content. Here we describe a novel, highly sensitive, and portable aflatoxin B1 detection approach using competitive magnetic immunodetection (cMID). As a reference method, a competitive ELISA optimized by checkerboard titration was established. For the novel cMID procedure, immunofiltration columns, coated with aflatoxin B1-BSA conjugate were used for competitive enrichment of biotinylated aflatoxin B1-specific antibodies. Subsequently, magnetic particles functionalized with streptavidin can be applied to magnetically label retained antibodies. By means of frequency mixing technology, particles were detected and quantified corresponding to the aflatoxin content in the sample. After the optimization of assay conditions, we successfully demonstrated the new competitive magnetic detection approach with a comparable detection limit of 1.1 ng aflatoxin B1 per mL sample to the cELISA reference method. Our results indicate that the cMID is a promising method reducing the risks of processing contaminated commodities.
Collapse
Affiliation(s)
- Jan Pietschmann
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany; (J.P.); (H.S.); (S.S.)
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany; (J.P.); (H.S.); (S.S.)
| | - Hans-Joachim Krause
- Institute of Biological Information Processing, Bioelectronics IBI-3, Forschungszentrum Jülich, 52428 Jülich, Germany; h.-
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany; (J.P.); (H.S.); (S.S.)
| | - Florian Schröper
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstraße 6, 52074 Aachen, Germany; (J.P.); (H.S.); (S.S.)
- Correspondence:
| |
Collapse
|
30
|
Yun BH, Guo J, Bellamri M, Turesky RJ. DNA adducts: Formation, biological effects, and new biospecimens for mass spectrometric measurements in humans. MASS SPECTROMETRY REVIEWS 2020; 39:55-82. [PMID: 29889312 PMCID: PMC6289887 DOI: 10.1002/mas.21570] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 04/25/2018] [Indexed: 05/18/2023]
Abstract
Hazardous chemicals in the environment and diet or their electrophilic metabolites can form adducts with genomic DNA, which can lead to mutations and the initiation of cancer. In addition, reactive intermediates can be generated in the body through oxidative stress and damage the genome. The identification and measurement of DNA adducts are required for understanding exposure and the causal role of a genotoxic chemical in cancer risk. Over the past three decades, 32 P-postlabeling, immunoassays, gas chromatography/mass spectrometry, and liquid chromatography/mass spectrometry (LC/MS) methods have been established to assess exposures to chemicals through measurements of DNA adducts. It is now possible to measure some DNA adducts in human biopsy samples, by LC/MS, with as little as several milligrams of tissue. In this review article, we highlight the formation and biological effects of DNA adducts, and highlight our advances in human biomonitoring by mass spectrometric analysis of formalin-fixed paraffin-embedded tissues, untapped biospecimens for carcinogen DNA adduct biomarker research.
Collapse
Affiliation(s)
- Byeong Hwa Yun
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Jingshu Guo
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Medjda Bellamri
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| | - Robert J. Turesky
- Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, 2231 6 St. SE, Minneapolis, Minnesota, 55455, United States
| |
Collapse
|
31
|
Çavuşoğlu K, Yalçin E. Antioxidant-oxidant balance and vital parameter alterations in an eukaryotic system induced by aflatoxin B 2 exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:37275-37281. [PMID: 31748996 DOI: 10.1007/s11356-019-06860-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
This study was performed to evaluate the toxic effects of aflatoxin B2 (AFB2) on antioxidant-oxidant balance and vital parameters such as physiological, cytogenetic, and anatomical alterations in Allium cepa L. root tip cells. Toxic effects of AFB2 on vital parameters were investigated by using the changes in weight gain, germination percentage, chromosomal aberrations (CAs), mitotic index (MI), micronucleus frequency (MN), and anatomical structure. Malondialdehyde (MDA) and reduced glutathion (GSH) levels and superoxide dismutase (SOD) and catalase (CAT) activities in root cells were investigated as antioxidant-oxidant parameters. For this aim, A. cepa bulbs were seperated into five groups as negative control, positive control, and AFB2 treatment groups. In results, while the rate of germination percentage, weight gain, and MI rates decreased, MN and CA frequency increased in AFB2-treated groups compared with the negative control. Most common CAs observed in AFB2-treated groups were fragment and chromosome bridges. It was determined that in 160 μg L-1 AFB2-treated group there was a 70.8% increase in MDA and a 78.1% decrease in GSH level compared with the negative control group and these changes indicate oxidative damage. In 160 μg L-1 AFB2 treatment group, SOD and CAT activities decreased importantly due to inhibition. In anatomical examinations, it was determined that AFB2 treatment caused some anatomical damages in A. cepa root cells such as necrosis, cell deformation, and thickening in cell wall. This study showed that AFB2, which has the least data among aflatoxins, causes serious in vivo toxic effects in A. cepa root cells.
Collapse
Affiliation(s)
- Kültiğin Çavuşoğlu
- Department of Biology, Faculty of Science and Art, Giresun University, Güre Location, 28100, Giresun, Turkey.
| | - Emine Yalçin
- Department of Biology, Faculty of Science and Art, Giresun University, Güre Location, 28100, Giresun, Turkey
| |
Collapse
|
32
|
Diaz GJ, Murcia HW. An unusually high production of hepatic aflatoxin B 1-dihydrodiol, the possible explanation for the high susceptibility of ducks to aflatoxin B 1. Sci Rep 2019; 9:8010. [PMID: 31142777 PMCID: PMC6541588 DOI: 10.1038/s41598-019-44515-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/17/2019] [Indexed: 11/09/2022] Open
Abstract
A study was conducted to determine the enzymatic kinetic parameters Vmax, KM, and intrinsic clearance (CLint) for the hepatic in vitro production of aflatoxin B1-dihydrodiol (AFB1-dhd) from aflatoxin B1 (AFB1) in four commercial poultry species, ranging in sensitivity to AFB1 from highest (ducks) to lowest (chickens). Significant but small differences were seen for Vmax, while large significant differences were observed for KM. However, the largest inter-species differences were observed for the CLint parameter, with ducks being extraordinarily efficient in converting AFB1 into AFB1-dhd. Since AFB1-dhd is considered the metabolite responsible for the acute toxic effects of AFB1, the high hepatic production of AFB1-dhd from AFB1 in ducks is the possible biochemical explanation for the extraordinary high sensitivity of this poultry species to the adverse effects of AFB1.
Collapse
Affiliation(s)
- Gonzalo J Diaz
- Laboratorio de Toxicología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, D.C., 111321, Colombia
| | - Hansen W Murcia
- Laboratorio de Toxicología, Facultad de Medicina Veterinaria y de Zootecnia, Universidad Nacional de Colombia, Bogotá, D.C., 111321, Colombia.
| |
Collapse
|
33
|
Wang H, Liao P, Zeng SX, Lu H. It takes a team: a gain-of-function story of p53-R249S. J Mol Cell Biol 2019; 11:277-283. [PMID: 30608603 PMCID: PMC6487778 DOI: 10.1093/jmcb/mjy086] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/03/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
Gain-of-function (GOF), the most malicious oncogenic activity of a cancer-promoting protein, is well illustrated to three hotspot p53 mutations at R248, R175, and R273 with distinct molecular mechanisms. Yet, less is known about another hotspot p53 mutant, R249S (p53-R249S). p53-R249S is the sole hotspot mutation in hepatocellular carcinoma (HCC) that is highly associated with chronic hepatitis B virus (HBV) infection and dietary exposure to aflatoxin B1 (AFB1). Its GOF is suggested by the facts that this mutant is associated with earlier onset of HCC and poorer prognosis of cancer patients and that its overexpression drives HCC proliferation and tumorigenesis. By contrast, simply knocking in this mutant in normal mice did not show apparent GOF activity. Hence, the GOF activity for p53-R249S and its underlying mechanisms have been elusive until recent findings offered some new insights. This review will discuss these findings as well as their clinical significance and implications for the development of a strategy to target multiple molecules as a therapy for p53-R249S-harboring HCC.
Collapse
Affiliation(s)
- Huai Wang
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
- School of Public Health, Nanchang University, Nanchang, China
- Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang University, Nanchang, China
| | - Peng Liao
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Shelya X Zeng
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| | - Hua Lu
- Department of Biochemistry and Molecular Biology, Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, USA
| |
Collapse
|
34
|
Rushing BR, Selim MI. Aflatoxin B1: A review on metabolism, toxicity, occurrence in food, occupational exposure, and detoxification methods. Food Chem Toxicol 2019; 124:81-100. [DOI: 10.1016/j.fct.2018.11.047] [Citation(s) in RCA: 554] [Impact Index Per Article: 92.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/30/2022]
|
35
|
Ferreira RG, Cardoso MV, de Souza Furtado KM, Espíndola KMM, Amorim RP, Monteiro MC. Epigenetic alterations caused by aflatoxin b1: a public health risk in the induction of hepatocellular carcinoma. Transl Res 2019; 204:51-71. [PMID: 30304666 DOI: 10.1016/j.trsl.2018.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/27/2018] [Accepted: 09/02/2018] [Indexed: 02/07/2023]
Abstract
Aflatoxin B1 (AFB1) is currently the most commonly studied mycotoxin due to its great toxicity, its distribution in a wide variety of foods such as grains and cereals and its involvement in the development of + (hepatocellular carcinoma; HCC). HCC is one of the main types of liver cancer, and has become a serious public health problem, due to its high incidence mainly in Southeast Asia and Africa. Studies show that AFB1 acts in synergy with other risk factors such as hepatitis B and C virus leading to the development of HCC through genetic and epigenetic modifications. The genetic modifications begin in the liver through the biomorphic AFB1, the AFB1-exo-8.9-Epoxy active, which interacts with DNA to form adducts of AFB1-DNA. These adducts induce mutation in codon 249, mediated by a transversion of G-T in the p53 tumor suppressor gene, causing HCC. Thus, this review provides an overview of the evidence for AFB1-induced epigenetic alterations and the potential mechanisms involved in the development of HCC, focusing on a critical analysis of the importance of severe legislation in the detection of aflatoxins.
Collapse
Affiliation(s)
- Roseane Guimarães Ferreira
- Neurosciences and Cell Biology Post-Graduation Program, Biological Sciences Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil.
| | - Magda Vieira Cardoso
- Pharmaceutical Science Post-Graduation Program, Health Science Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil.
| | | | | | | | - Marta Chagas Monteiro
- Neurosciences and Cell Biology Post-Graduation Program, Pharmaceutical Science Post-Graduation Program, Health Science Institute, Federal University of Pará/UFPA, Belém, Pará, Brazil.
| |
Collapse
|
36
|
Aflatoxin B₁⁻Formamidopyrimidine DNA Adducts: Relationships between Structures, Free Energies, and Melting Temperatures. Molecules 2019; 24:molecules24010150. [PMID: 30609733 PMCID: PMC6337653 DOI: 10.3390/molecules24010150] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 12/21/2018] [Accepted: 12/26/2018] [Indexed: 12/02/2022] Open
Abstract
Thermal stabilities of DNA duplexes containing Gua (g), α- (a) or β-anomer of formamidopyrimidine-N7-9-hydroxy-aflatoxin B1 (b) differ markedly (Tm: a<g<b), but the underlying molecular origin of this experimentally observed phenomenon is yet to be identified and determined. Here, by employing explicit-solvent molecular dynamics simulations coupled with free-energy calculations using a combined linear-interaction-energy/linear-response-approximation approach, we explain the quantitative differences in Tm in terms of three structural features (bulkiness, order, and compactness) and three energetical contributions (non-polar, electrostatic, and preorganized-electrostatic), and thus advance the current understanding of the relationships between structures, free energies, and thermal stabilities of DNA double helices.
Collapse
|
37
|
Li H, Guan K, Zuo Z, Wang F, Peng X, Fang J, Cui H, Zhou Y, Ouyang P, Su G, Chen Z. Effects of aflatoxin B 1 on the cell cycle distribution of splenocytes in chickens. J Toxicol Pathol 2019; 32:27-36. [PMID: 30739993 PMCID: PMC6361662 DOI: 10.1293/tox.2018-0015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 08/06/2018] [Indexed: 12/31/2022] Open
Abstract
The purpose of the present study was to evaluate effects of aflatoxin B1 (AFB1) on the cell cycle and proliferation of splenic cells in chickens. A total of 144 one-day-old Cobb male chickens were randomly divided into 2 equal groups of 72 each and were fed on diets as follows: a control diet and a 0.6 mg/kg AFB1 diet for 21 days. The AFB1 diet reduced body weight, absolute weight and relative weight of the spleen in broilers. Histopathological lesions in AFB1 groups were characterized as slight congestion in red pulp and lymphocytic depletion in white pulp. Compared with the control group, the expression levels of ataxia-telangiectasia mutated (ATM), cyclin E1, cyclin-dependent kinases 6 (CDK6), CDK2, p53, p21 and cyclin B3 mRNA were significantly increased, while the mRNA expression levels of cyclin D1, cdc2 (CDK1), p16, p15 were significantly decreased in the AFB1 groups. Significantly decreased proliferating cell nuclear antigen (PCNA) expression and arrested G0G1 phases of the cell cycle were also seen in the AFB1 groups. In conclusion, dietary AFB1 could induce cell cycle blockage at G0G1 phase and impair the immune function of the spleen. Cyclin D1/CDK6 complex, which inhibits the activin/nodal signaling pathway, might play a significant role in the cell cycle arrest induced by AFB1.
Collapse
Affiliation(s)
- Hang Li
- Key Laboratory of Animal Diseases and Environmental Hazards
of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, No.
211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Ke Guan
- Key Laboratory of Animal Diseases and Environmental Hazards
of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, No.
211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Zhicai Zuo
- Key Laboratory of Animal Diseases and Environmental Hazards
of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, No.
211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Fengyuan Wang
- Key Laboratory of Animal Diseases and Environmental Hazards
of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, No.
211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Xi Peng
- College of Life Sciences, China West Normal University, No.
1 Shida Road, Shunqing District, Nanchong, Sichuan 637002, P.R. China
| | - Jing Fang
- Key Laboratory of Animal Diseases and Environmental Hazards
of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, No.
211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Hengmin Cui
- Key Laboratory of Animal Diseases and Environmental Hazards
of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, No.
211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R. China
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Yi Zhou
- Life science department, Sichuan Agricultural University, No.
211 Huimin Road, Wenjiang District, Ya’an, Sichuan 625014, P.R. China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Gang Su
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural
University, No. 211 Huimin Road, Wenjiang District, Chengdu, Sichuan 611130, P.R.
China
| |
Collapse
|
38
|
Engin AB, Engin A. DNA damage checkpoint response to aflatoxin B1. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 65:90-96. [PMID: 30594067 DOI: 10.1016/j.etap.2018.12.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/20/2018] [Accepted: 12/07/2018] [Indexed: 05/28/2023]
Abstract
Although most countries regulate the aflatoxin levels in food by legislations, high amounts of aflatoxin B1 (AFB1)-DNA adducts can still be detected in normal and tumorous tissue obtained from cancer patients. AFB1 cannot directly interact with DNA unless it is biotransformed to AFB1-8, 9-epoxide via cytochrome p450 enzymes. This metabolite spontaneously and irreversibly attaches to guanine residues to generate highly mutagenic DNA adducts. AFB1-induced mutation of ATM kinase results in the deterioration of the cell cycle checkpoint activation at the G2/M checkpoint site. Genomic instability and increased cancer risk due to A-T mutation is the result of diminished repair of DNA double strand breaks. The major point mutation caused by AFB1 is G-to-T transversion that is related with the high frequency of p53 mutation. Majority of AFB1 associated hepatocellular cancer cases carry TP53 mutant DNA, which is an indicator of AFB1 exposure, as well as hepatocellular cancer risk.
Collapse
Affiliation(s)
- Ayse Basak Engin
- Gazi University, Faculty of Pharmacy, Department of Toxicology, Ankara, Turkey.
| | - Atilla Engin
- Gazi University, Faculty of Medicine, Department of General Surgery, Ankara, Turkey
| |
Collapse
|
39
|
Giacomelli AO, Yang X, Lintner RE, McFarland JM, Duby M, Kim J, Howard TP, Takeda DY, Ly SH, Kim E, Gannon HS, Hurhula B, Sharpe T, Goodale A, Fritchman B, Steelman S, Vazquez F, Tsherniak A, Aguirre AJ, Doench JG, Piccioni F, Roberts CWM, Meyerson M, Getz G, Johannessen CM, Root DE, Hahn WC. Mutational processes shape the landscape of TP53 mutations in human cancer. Nat Genet 2018; 50:1381-1387. [PMID: 30224644 PMCID: PMC6168352 DOI: 10.1038/s41588-018-0204-y] [Citation(s) in RCA: 360] [Impact Index Per Article: 51.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 07/26/2018] [Indexed: 12/11/2022]
Abstract
Unlike most tumor suppressor genes, the most common genetic alterations in TP53 are missense mutations1,2. Mutant p53 protein is often abundantly expressed in cancers, and specific allelic variants exhibit dominant-negative or gain-of-function activities in experimental models3–8. To gain a systematic view of p53 function, we interrogated loss-of-function screens conducted in hundreds of human cancer cell lines and performed TP53 saturation mutagenesis screens in an isogenic pair of TP53-wild-type and -null cell lines. We found that loss or dominant-negative inhibition of p53 function reliably enhanced cellular fitness. By integrating these data with the COSMIC mutational signatures database9,10, we developed a statistical model that describes the TP53 mutational spectrum as a function of the baseline probability of acquiring each mutation and the fitness advantage conferred by attenuation of p53 activity. Collectively, these observations show that widely-acting and tissue-specific mutational processes combine with phenotypic selection to dictate the frequencies of recurrent TP53 mutations.
Collapse
Affiliation(s)
- Andrew O Giacomelli
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Xiaoping Yang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Marc Duby
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jaegil Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thomas P Howard
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - David Y Takeda
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Seav Huong Ly
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Eejung Kim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hugh S Gannon
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Brian Hurhula
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ted Sharpe
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amy Goodale
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Francisca Vazquez
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Andrew J Aguirre
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Charles W M Roberts
- Dana-Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Matthew Meyerson
- Dana-Farber Cancer Institute, Boston, MA, USA.,Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Gad Getz
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.,Harvard Medical School, Boston, MA, USA.,Massachusetts General Hospital Center for Cancer Research, Boston, MA, USA.,Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William C Hahn
- Dana-Farber Cancer Institute, Boston, MA, USA. .,Broad Institute of MIT and Harvard, Cambridge, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA.
| |
Collapse
|
40
|
Wang X, Muhammad I, Sun X, Han M, Hamid S, Zhang X. Protective role of curcumin in ameliorating AFB 1-induced apoptosis via mitochondrial pathway in liver cells. Mol Biol Rep 2018; 45:881-891. [PMID: 29974318 DOI: 10.1007/s11033-018-4234-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/29/2018] [Indexed: 12/01/2022]
Abstract
It is well documented that liver is the primary target organ of aflatoxin B1 (AFB1) and curcumin proved to be effective against AFB1-induced liver injury. In the present study, we investigated the preventive effects of curcumin against AFB1-induced apoptosis through the molecular regulation of p53, caspase-3, Bax, caspase-9, Bcl-2 and cytochrome-C associated with mitochondrial pathway. Liver antioxidant levels were measured. The hallmarks of apoptosis were analysed by methyl green-pyronin-Y staining, transmission electron microscopy, RT-PCR and western blot. Results revealed that dietary curcumin ameliorated AFB1-induced oxidative stress in a dose-dependent manner. Methyl green-pyronin-Y staining and transmission electron microscopy showed that AFB1 induced apoptosis and caused abnormal changes in liver cells morphology such as condensation of chromatin material, reduces cell volume and damaged mitochondria. Moreover, mRNA and protein expression results manifested that apoptosis associated genes showed up-regulation in AFB1 fed group. However, the supplementation of dietary curcumin (dose-dependently) alleviated the increased expression of the apoptosis associated genes at mRNA and protein level, and restored the hepatocytes normal morphology. The study provides an insight and a better understanding of the preventive mechanism of curcumin against AFB1-induced apoptosis in hepatocytes and provide scientific basis for the therapeutic uses of curcumin.
Collapse
Affiliation(s)
- Xinghe Wang
- Laboratory of Veterinary Pathology, Faculty of Basic Veterinary Science, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, People's Republic of China
| | - Ishfaq Muhammad
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China
| | - Xiaoqi Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China
| | - Meiyu Han
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China
| | - Sattar Hamid
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, People's Republic of China.
- Department of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin, 150030, Heilongjiang, People's Republic of China.
| |
Collapse
|
41
|
Muhammad I, Wang H, Sun X, Wang X, Han M, Lu Z, Cheng P, Hussain MA, Zhang X. Dual Role of Dietary Curcumin Through Attenuating AFB 1-Induced Oxidative Stress and Liver Injury via Modulating Liver Phase-I and Phase-II Enzymes Involved in AFB 1 Bioactivation and Detoxification. Front Pharmacol 2018; 9:554. [PMID: 29887802 PMCID: PMC5981209 DOI: 10.3389/fphar.2018.00554] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
It is well understood that liver cytochrome p450 enzymes are responsible for AFB1 bioactivation, while phase-II enzymes regulated by the transcription factor nuclear factor-erythroid-2-related factor 2 (Nrf2) are involved in detoxification of AFB1. In this study, we explored the potential of curcumin to prevent AFB1-induced liver injury by modulating liver phase-I and phase-II enzymes along with Nrf2 involved in AFB1 bioactivation and detoxification. Arbor Acres broiler were divided into four groups including control group (G1; fed only basal feed), curcumin alone-treated group (G2; 450 mg/kg feed), AFB1-fed group (G3; 5 mg/kg feed), and curcumin plus AFB1 group (G4; 5 mg AFB1+450 mg curcumin/kg feed). After 28 days, liver and blood samples were collected for different analyses. Histological and phenotypic results revealed that AFB1-induced liver injury was partially ameliorated by curcumin supplementation. Compared to AFB1 alone-treated group, serum biochemical parameters and liver antioxidant status showed that curcumin supplementation significantly prevented AFB1-induced liver injury. RT-PCR and western blot results revealed that curcumin inhibited CYP enzymes-mediated bioactivation of AFB1 at mRNA and protein level. Transcription factor Nrf2, its downstream genes such as GSTA3, and GSTM2 mRNA, and protein expression level significantly upregulated via dietary curcumin. In addition, GSTs enzyme activity was enhanced with dietary curcumin which plays a crucial role in AFB1-detoxification. Conclusively, the study provided a scientific basis for the use of curcumin in broiler's diet and contributed to explore the multi-target preventive actions of curcumin against AFB1-induced liver injury through the modulation of phase-I and phase-II enzymes, and its potent anti-oxidative effects.
Collapse
Affiliation(s)
- Ishfaq Muhammad
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - He Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiaoqi Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xinghe Wang
- Laboratory of Veterinary Pathology, Faculty of Basic Veterinary Science, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang, China
| | - Meiyu Han
- Changchun Dirui Medical Company Ltd., Changchun, China
| | - Ziyin Lu
- College of Life Science Engineering, Shenyang Institute of Technology, Fushun, China
| | - Ping Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | | | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| |
Collapse
|
42
|
Malla S, Kadimisetty K, Jiang D, Choudhary D, Rusling JF. Pathways of Metabolite-Related Damage to a Synthetic p53 Gene Exon 7 Oligonucleotide Using Magnetic Enzyme Bioreactor Beads and LC-MS/MS Sequencing. Biochemistry 2018; 57:3883-3893. [PMID: 29750510 DOI: 10.1021/acs.biochem.8b00271] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Reactive metabolites of environmental chemicals and drugs can cause site specific damage to the p53 tumor suppressor gene in a major pathway for genotoxicity. We report here a high-throughput, cell-free, 96-well plate magnetic bead-enzyme system interfaced with LC-MS/MS sequencing for bioactivating test chemicals and identifying resulting adduction sites on genes. Bioactivated aflatoxin B1 was reacted with a 32 bp exon 7 fragment of the p53 gene using eight microsomal cytochrome (cyt) P450 enzymes from different organs coated on magnetic beads. All cyt P450s converted aflatoxin B1 to aflatoxin B1-8,9-epoxide that adducts guanine (G) in codon 249, with subsequent depurination to give abasic sites and then strand breaks. This is the first demonstration in a cell-free medium that the aflatoxin B1 metabolite selectively causes abasic site formation and strand breaks at codon 249 of the p53 probe, corresponding to the chemical pathway and mutations of p53 in human liver cells and tumors. Molecular modeling supports the view that binding of aflatoxin B1-8,9-epoxide to G in codon 249 precedes the SN2 adduction reaction. Among a range of metabolic enzymes characteristic of different organs, human liver microsomes and cyt P450 3A5 supersomes showed the highest bioactivation rate for p53 exon 7 damage. This method of identifying metabolite-related gene damage sites may facilitate predictions of organ specific cancers for test chemicals via correlations with mutation sites.
Collapse
Affiliation(s)
- Spundana Malla
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Karteek Kadimisetty
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Di Jiang
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States
| | - Dharamainder Choudhary
- Department of Surgery and Neag Cancer Center , UConn Health , Farmington , Connecticut 06032 , United States
| | - James F Rusling
- Department of Chemistry , University of Connecticut , Storrs , Connecticut 06269 , United States.,Department of Surgery and Neag Cancer Center , UConn Health , Farmington , Connecticut 06032 , United States.,Institute of Material Science , University of Connecticut , Storrs , Connecticut 06269 , United States.,School of Chemistry , National University of Ireland at Galway , Galway , Ireland
| |
Collapse
|
43
|
Wang H, Muhammad I, Li W, Sun X, Cheng P, Zhang X. Sensitivity of Arbor Acres broilers and chemoprevention of aflatoxin B 1-induced liver injury by curcumin, a natural potent inducer of phase-II enzymes and Nrf2. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 59:94-104. [PMID: 29550706 DOI: 10.1016/j.etap.2018.03.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 02/10/2018] [Accepted: 03/04/2018] [Indexed: 06/08/2023]
Abstract
In this study, we scrutinized the effects of curcumin and AFB1 supplemented diet alone or in combination on phase-ӀӀ enzymes. Histopathological examination showed that after 28 days, AFB1 (5.0 mg/kg diet) induced liver injury in broilers, but curcumin supplementation partially ameliorated liver injury in a dose-dependent manner. RT-PCR data revealed that AFB1 significantly (p < 0.01) down-regulated Nrf2 and its downstream genes mRNA expression level. Moreover, Western blot analysis showed that Nrf2, GSTM2, and GSTA3 protein expression level was markedly (p < 0.01) reduced in AFB1-fed group. However, curcumin supplementation ameliorated AFB1-induced liver injury via enhancing phase-ӀӀ enzymes expressions and activity. HPLC results showed that curcumin increased AFB1-GSH conjugation in-vitro in liver cytosol. Surprisingly, similar trends were noted in mRNA, protein expression level of Nrf2 and its downstream genes at day 35, one week after the withdrawal of AFB1 and curcumin from the diet, showing the preventive effects of curcumin.
Collapse
Affiliation(s)
- He Wang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - Ishfaq Muhammad
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - Wei Li
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - Xiaoqi Sun
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - Ping Cheng
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China
| | - Xiuying Zhang
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development. Faculty of Basic Veterinary Science, College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin, PR China.
| |
Collapse
|
44
|
Abstract
A large number of chemicals and several physical agents, such as UV light and γ-radiation, have been associated with the etiology of human cancer. Generation of DNA damage (also known as DNA adducts or lesions) induced by these agents is an important first step in the process of carcinogenesis. Evolutionary processes gave rise to DNA repair tools that are efficient in repairing damaged DNA; yet replication of damaged DNA may take place prior to repair, particularly when they are induced at a high frequency. Damaged DNA replication may lead to gene mutations, which in turn may give rise to altered proteins. Mutations in an oncogene, a tumor-suppressor gene, or a gene that controls the cell cycle can generate a clonal cell population with a distinct advantage in proliferation. Many such events, broadly divided into the stages of initiation, promotion, and progression, which may occur over a long period of time and transpire in the context of chronic exposure to carcinogens, can lead to the induction of human cancer. This is exemplified in the long-term use of tobacco being responsible for an increased risk of lung cancer. This mini-review attempts to summarize this wide area that centers on DNA damage as it relates to the development of human cancer.
Collapse
Affiliation(s)
- Ashis K Basu
- Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA.
| |
Collapse
|
45
|
Mughal MJ, Xi P, Yi Z, Jing F. Aflatoxin B1 invokes apoptosis via death receptor pathway in hepatocytes. Oncotarget 2018; 8:8239-8249. [PMID: 28030812 PMCID: PMC5352397 DOI: 10.18632/oncotarget.14158] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 11/24/2016] [Indexed: 11/25/2022] Open
Abstract
The fungal metabolites produced by Aspergillus flavus and Aspergillus parasiticus cause detrimental health effects on humans and animals. Particularly aflatoxin B1 (AFB1) is the most studied and a well-known global carcinogen, producing hepatotoxic, genotoxic and immunotoxic effects in multiple species. AFB1 is shown to provoke liver dysfunctioning by causing hepatocytes apoptosis and disturbing cellular enzymatic activities. In liver, AFB1 causes apoptosis via extrinsic mechanism because of high expression of death receptor pathway. The detailed mechanism of AFB1 induced hepatocytes apoptosis, via death receptor pathway still remains elusive. So the present study was conducted to explore apoptotic mechanism initiated by death receptors and associated genes in aflatoxin B1 induced liver apoptosis in chickens fed with AFB1 for 3 weeks. Results from the present study displayed histopathological and ultrastructural changes in liver such as hydropic degeneration, fatty vacuolar degeneration and proliferation of bile duct in hepatocytes in AFB1 group, along with imbalance between reactive oxygen species (ROS) and antioxidant defense system upon AFB1 ingestion. Moreover, AFB1 intoxicated chickens showed upregulation of death receptors FAS, TNFR1 and associated genes and downregulation of inhibitory apoptotic proteins XIAP and BCL-2. The results obtained from this novel and comprehensive study including histopathological, ultrastructural, flow cytometrical and death receptor pathway gene expression profiles, will facilitate better understanding of mechanisms and involvement of death receptor pathway in hepatocytes apoptosis induced by AFB1 and ultimately may be helpful in bringing down the toxigenic potential of AFB1.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Peng Xi
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Zhou Yi
- Life Science Department, Sichuan Agricultural University, Yaan, Sichuan, PR China
| | - Fang Jing
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| |
Collapse
|
46
|
Moore MM, Schoeny RS, Becker RA, White K, Pottenger LH. Development of an adverse outcome pathway for chemically induced hepatocellular carcinoma: case study of AFB1, a human carcinogen with a mutagenic mode of action. Crit Rev Toxicol 2018; 48:312-337. [PMID: 29431554 DOI: 10.1080/10408444.2017.1423462] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Adverse outcome pathways (AOPs) are frameworks starting with a molecular initiating event (MIE), followed by key events (KEs) linked by KE relationships (KERs), ultimately resulting in a specific adverse outcome. Relevant data for the pathway and each KE/KER are evaluated to assess biological plausibility, weight-of-evidence, and confidence. We aimed to describe an AOP relevant to chemicals directly inducing mutation in cancer critical gene(s), via the formation of chemical-specific pro-mutagenic DNA adduct(s), as an early critical step in tumor etiology. Such chemicals have mutagenic modes-of-action (MOA) for tumor induction. To assist with developing this AOP, Aflatoxin B1 (AFB1) was selected as a case study because it has a rich database and is considered to have a mutagenic MOA. AFB1 information was used to define specific KEs, KERs, and to inform development of a generic AOP for mutagen-induced hepatocellular carcinoma (HCC). In assessing the AFB1 information, it became clear that existing data are, in fact, not optimal and for some KEs/KERs, the definitive data are not available. In particular, while there is substantial information that AFB1 can induce mutations (based on a number of mutation assays), the definitive evidence - the ability to induce mutation in the cancer critical gene(s) in the tumor target tissue - is not available. Thus, it is necessary to consider the patterns of results in the weight-of-evidence for KEs and KERs. It was important to determine whether there was sufficient evidence that AFB1 can induce the necessary critical mutations early in the carcinogenic process, which was the case.
Collapse
Affiliation(s)
- Martha M Moore
- a Ramboll Environ US Corporation , Little Rock , AR , USA
| | | | | | | | | |
Collapse
|
47
|
Kim J, Park SH, Do KH, Kim D, Moon Y. Interference with mutagenic aflatoxin B1-induced checkpoints through antagonistic action of ochratoxin A in intestinal cancer cells: a molecular explanation on potential risk of crosstalk between carcinogens. Oncotarget 2018; 7:39627-39639. [PMID: 27119350 PMCID: PMC5129958 DOI: 10.18632/oncotarget.8914] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/05/2016] [Indexed: 12/16/2022] Open
Abstract
Foodborne aflatoxin B1 (AFB1) and ochratoxin A (OTA) cause genotoxic injury and subsequent tumor formation. As a biomarker of oncogenic stimulation by genotoxic mycotoxins, p53-triggered Mdm2 was assessed in intestinal cancer cells. AFB1 increased Mdm2 reporter expression in a dose-dependent manner. However, this was strongly antagonized by OTA treatment. As a positive transcription factor of Mdm2 expression, p53 levels were also increased by AFB1 alone and reduced by OTA. With marginal cell death responses, AFB1 induced p53-mediated S phase arrest and cell cycle-regulating target genes, which was completely suppressed by OTA. Although enterocyte-dominant CYP3A5 counteracted AFB1-induced DNA damage, expression of CYP3A5 was decreased by OTA or AFB1. Instead, OTA enhanced expression of another metabolic inactivating enzyme CYP3A4, attenuation of formation of AFB1-DNA adduct and p53-mediated cell cycle checking responses to the mutagens. Finally, the growth of intestinal cancer cells exposed to the mycotoxin mixture significantly exceeded the expected growth calculated from that of cells treated with each mycotoxin. Although AFB1-induced mutagen formation was decreased by OTA, interference with checkpoints through antagonistic action of OTA may contribute to the survival of tumor cells with deleterious mutations by genotoxic mycotoxins, potently increasing the risk of carcinogenesis.
Collapse
Affiliation(s)
- Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Seong-Hwan Park
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Kee Hun Do
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea
| | - Dongwook Kim
- National Institute of Animal Science, RDA, Wanju, South Korea
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Biomedical Sciences and Medical Research Institute, Pusan National University School of Medicine, Yangsan, South Korea.,Research Institute for Basic Sciences and Immunoregulatory Therapeutics Group in Brain Busan 21 Project, Pusan, South Korea
| |
Collapse
|
48
|
Cartlidge CR, U MRA, Alkhatib AMA, Taylor-Robinson SD. The utility of biomarkers in hepatocellular carcinoma: review of urine-based 1H-NMR studies - what the clinician needs to know. Int J Gen Med 2017; 10:431-442. [PMID: 29225478 PMCID: PMC5708191 DOI: 10.2147/ijgm.s150312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the fifth most common malignancy, the third most common cause of cancer death, and the most common primary liver cancer. Overall, there is a need for more reliable biomarkers for HCC, as those currently available lack sensitivity and specificity. For example, the current gold-standard biomarker, serum alpha-fetoprotein, has a sensitivity of roughly only 70%. Cancer cells have different characteristic metabolic signatures in biofluids, compared to healthy cells; therefore, metabolite analysis in blood or urine should lead to the detection of suitable candidates for the detection of HCC. With the advent of metabonomics, this has increased the potential for new biomarker discovery. In this article, we look at approaches used to identify biomarkers of HCC using proton nuclear magnetic resonance (1H-NMR) spectroscopy of urine samples. The various multivariate statistical analysis techniques used are explained, and the process of biomarker identification is discussed, with a view to simplifying the knowledge base for the average clinician.
Collapse
Affiliation(s)
| | - M R Abellona U
- Department of Surgery and Cancer, Division of Computational and Systems Medicine, Faculty of Medicine, Imperial College London, London, UK
| | - Alzhraa M A Alkhatib
- Department of Surgery and Cancer, Division of Computational and Systems Medicine, Faculty of Medicine, Imperial College London, London, UK
| | | |
Collapse
|
49
|
Mohajeri M, Behnam B, Cicero AFG, Sahebkar A. Protective effects of curcumin against aflatoxicosis: A comprehensive review. J Cell Physiol 2017; 233:3552-3577. [PMID: 29034472 DOI: 10.1002/jcp.26212] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 09/29/2017] [Indexed: 12/22/2022]
Abstract
Aflatoxicosis is a deleterious medical condition that results from aflatoxins (AFs) or ochratoxins (OTs). Contamination with these toxins exerts detrimental effects on the liver, kidneys, reproductive organs, and also on immunological and cardiovascular systems. Aflatoxicosis is closely associated with overproduction of reactive oxygen species (ROS) as key contributors to oxidative and nitrosative stress responses, and subsequent damages to lipids, proteins, RNA, and DNA. The main target organ for AF toxicity is the liver, where DNA adducts, degranulation of endoplasmic reticulum, increased hepatic lipid peroxide, GSH depletion, mitochondrial dysfunction, and reduction of enzymatic and non-enzymatic antioxidants are manifestations of aflatoxicosis. Curcuma longa L. (turmeric) is a medicinal plant widely utilized all over the world for culinary and phytomedical purposes. Considering the antioxidant characteristic of curcumin, the main active component of turmeric, this review is intended to critically summarize the available evidence supporting possible effectiveness of curcumin against aflatoxicosis. Curcumin can serve as a promising candidate for attenuation of the adverse consequences of aflatoxicosis, acting mainly through intrinsic antioxidant effects aroused from its structure, modulation of the immune system as reflected by interleukin-1β and transforming growth factor-β, and interfering with AF's biotransformation by cytochrome P450 isoenzymes CYP1A, CYP3A, CYP2A, CYP2B, and CYP2C.
Collapse
Affiliation(s)
- Mohammad Mohajeri
- Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Behzad Behnam
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.,Herbal and Traditional Medicines Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Arrigo F G Cicero
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
50
|
Weng MW, Lee HW, Choi B, Wang HT, Hu Y, Mehta M, Desai D, Amin S, Zheng Y, Tang MS. AFB1 hepatocarcinogenesis is via lipid peroxidation that inhibits DNA repair, sensitizes mutation susceptibility and induces aldehyde-DNA adducts at p53 mutational hotspot codon 249. Oncotarget 2017; 8:18213-18226. [PMID: 28212554 PMCID: PMC5392321 DOI: 10.18632/oncotarget.15313] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 12/01/2016] [Indexed: 12/27/2022] Open
Abstract
Aflatoxin B1 (AFB1) contamination in the food chain is a major cause of hepatocellular carcinoma (HCC). More than 60% of AFB1 related HCC carry p53 codon 249 mutations but the causal mechanism remains unclear. We found that 1) AFB1 induces two types of DNA adducts in human hepatocytes, AFB1-8,9-epoxide-deoxyguanosine (AFB1-E-dG) induced by AFB1-E and cyclic α-methyl-γ-hydroxy-1,N2-propano-dG (meth-OH-PdG) induced by lipid peroxidation generated acetaldehyde (Acet) and crotonaldehyde (Cro); 2) the level of meth-OH-PdG is >30 fold higher than the level of AFB1-E-dG; 3) AFB1, Acet, and Cro, but not AFB1-E, preferentially induce DNA damage at codon 249; 4) methylation at -CpG- sites enhances meth-OH-PdG formation at codon 249; and 5) repair of meth-OH-PdG at codon 249 is poor. AFB1, Acet, and Cro can also inhibit DNA repair and enhance hepatocyte mutational sensitivity. We propose that AFB1-induced lipid peroxidation generated aldehydes contribute greatly to hepatocarcinogenesis and that sequence specificity of meth-OH-PdG formation and repair shape the codon 249 mutational hotspot.
Collapse
Affiliation(s)
- Mao-Wen Weng
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Hyun-Wook Lee
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Bongkun Choi
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Hsiang-Tsui Wang
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Yu Hu
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Manju Mehta
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Dhimant Desai
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Shantu Amin
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - Yi Zheng
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| | - Moon-Shong Tang
- Departments of Environmental Medicine, Pathology and Medicine, New York University School of Medicine, Tuxedo, NY 10987, USA
| |
Collapse
|