1
|
Carvalho LDA, Alves VS, Coutinho-Silva R, Savio LEB. G protein-coupled purinergic P2Y receptors in infectious diseases. Pharmacol Ther 2025; 267:108796. [PMID: 39814144 DOI: 10.1016/j.pharmthera.2025.108796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/24/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025]
Abstract
The purinergic P2Y receptors comprise eight G-coupled receptor (GPCR) subtypes already identified (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12-14). P2Y receptor physiological agonists are extracellular purine and pyrimidine nucleotides such as ATP (Adenosine triphosphate), ADP (Adenosine diphosphate), UTP (Uridine triphosphate), UDP (Uridine diphosphate), and UDP-glucose. These receptors are expressed in almost all cells. P2Y receptors are found in immune cells, such as macrophages, neutrophils, mast cells, dendritic cells, and lymphocytes. P2Y receptors play essential roles in inflammation and are involved in several cell processes, including efferocytosis, phagocytosis, chemotaxis, degranulation, killing pathogens, cytokine production, and platelet aggregation. These processes underpin immune responses against pathogens. Therefore, here we discuss P2Y receptor pharmacology and mechanisms triggered by the activation of these receptors in virus, bacteria, and parasite infections. In addition, we highlight the therapeutical potential of P2Y receptors for developing new pharmacological strategies to modulate inflammation and disease outcomes in pathogen infections.
Collapse
Affiliation(s)
- Letícia de Almeida Carvalho
- Laboratório de Neuroimunologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinícius Santos Alves
- Laboratório de Neuroimunologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Luiz Eduardo Baggio Savio
- Laboratório de Neuroimunologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
2
|
von Kügelgen I. Pharmacological characterization of P2Y receptor subtypes - an update. Purinergic Signal 2024; 20:99-108. [PMID: 37697211 PMCID: PMC10997570 DOI: 10.1007/s11302-023-09963-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/14/2023] [Indexed: 09/13/2023] Open
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes (P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14). The widely expressed P2Y receptors play important roles in physiology and pathophysiology. This review summarizes the use of pharmacological tools to characterize the P2Y receptor subtypes involved in these responses. MRS2500 is a potent and selective antagonist acting at the P2Y1 receptor. AR-C118925 is useful for the selective antagonism of the P2Y2 receptor. PSB16133 blocks the P2Y4 receptor, MRS2578 is an antagonist at the P2Y6 receptor and NF157 as well as NF340 block the P2Y11 receptor. ADP-induced platelet aggregation is mediated by P2Y1 and P2Y12 receptors. A number of compounds or their active metabolites reduce ADP-induced platelet aggregation by blocking the P2Y12 receptor. These include the active metabolites of the thienopyridine compounds clopidogrel and prasugrel, the nucleoside analogue ticagrelor and the nucleotide analogue cangrelor. PSB0739 is also a potent antagonist at the P2Y12 receptor useful for both in vitro and in vivo studies. MRS2211 and MRS2603 inhibit P2Y13 mediated responses. PPTN is a very potent antagonist at the P2Y14 receptor.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
3
|
Khalafalla MG, Woods LT, Jasmer KJ, Forti KM, Camden JM, Jensen JL, Limesand KH, Galtung HK, Weisman GA. P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Front Pharmacol 2020; 11:222. [PMID: 32231563 PMCID: PMC7082426 DOI: 10.3389/fphar.2020.00222] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Although often overlooked in our daily lives, saliva performs a host of necessary physiological functions, including lubricating and protecting the oral cavity, facilitating taste sensation and digestion and maintaining tooth enamel. Therefore, salivary gland dysfunction and hyposalivation, often resulting from pathogenesis of the autoimmune disease Sjögren's syndrome or from radiotherapy of the head and neck region during cancer treatment, severely reduce the quality of life of afflicted patients and can lead to dental caries, periodontitis, digestive disorders, loss of taste and difficulty speaking. Since their initial discovery in the 1970s, P2 purinergic receptors for extracellular nucleotides, including ATP-gated ion channel P2X and G protein-coupled P2Y receptors, have been shown to mediate physiological processes in numerous tissues, including the salivary glands where P2 receptors represent a link between canonical and non-canonical saliva secretion. Additionally, extracellular nucleotides released during periods of cellular stress and inflammation act as a tissue alarmin to coordinate immunological and tissue repair responses through P2 receptor activation. Accordingly, P2 receptors have gained widespread clinical interest with agonists and antagonists either currently undergoing clinical trials or already approved for human use. Here, we review the contributions of P2 receptors to salivary gland function and describe their role in salivary gland dysfunction. We further consider their potential as therapeutic targets to promote physiological saliva flow, prevent salivary gland inflammation and enhance tissue regeneration.
Collapse
Affiliation(s)
- Mahmoud G. Khalafalla
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
- Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lucas T. Woods
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kimberly J. Jasmer
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Kevin Muñoz Forti
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Jean M. Camden
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| | - Janicke L. Jensen
- Institute of Clinical Dentistry, Section of Oral Surgery and Oral Medicine, University of Oslo, Oslo, Norway
| | - Kirsten H. Limesand
- Department of Nutritional Sciences, University of Arizona, Tucson, AZ, United States
| | - Hilde K. Galtung
- Institute of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Gary A. Weisman
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, United States
| |
Collapse
|
4
|
Filippin KJ, de Souza KFS, de Araujo Júnior RT, Torquato HFV, Dias DA, Parisotto EB, Ferreira AT, Paredes-Gamero EJ. Involvement of P2 receptors in hematopoiesis and hematopoietic disorders, and as pharmacological targets. Purinergic Signal 2020; 16:1-15. [PMID: 31863258 PMCID: PMC7166233 DOI: 10.1007/s11302-019-09684-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022] Open
Abstract
Several reports have shown the presence of P2 receptors in hematopoietic stem cells (HSCs). These receptors are activated by extracellular nucleotides released from different sources. In the hematopoietic niche, the release of purines and pyrimidines in the milieu by lytic and nonlytic mechanisms has been described. The expression of P2 receptors from HSCs until maturity is still intriguing scientists. Several reports have shown the participation of P2 receptors in events associated with modulation of the immune system, but their participation in other physiological processes is under investigation. The presence of P2 receptors in HSCs and their ability to modulate this population have awakened interest in exploring the involvement of P2 receptors in hematopoiesis and their participation in hematopoietic disorders. Among the P2 receptors, the receptor P2X7 is of particular interest, because of its different roles in hematopoietic cells (e.g., infection, inflammation, cell death and survival, leukemias and lymphomas), making the P2X7 receptor a promising pharmacological target. Additionally, the role of P2Y12 receptor in platelet activation has been well-documented and is the main example of the importance of the pharmacological modulation of P2 receptor activity. In this review, we focus on the role of P2 receptors in the hematopoietic system, addressing these receptors as potential pharmacological targets.
Collapse
Affiliation(s)
- Kelly Juliana Filippin
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Kamylla F S de Souza
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
| | | | - Heron Fernandes Vieira Torquato
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil
- Universidade Braz Cubas, Av. Francisco Rodrigues Filho 1233, Mogi das Cruzes, SP, 08773-380, Brazil
| | - Dhébora Albuquerque Dias
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Eduardo Benedetti Parisotto
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, SP, 04023-062, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| | - Edgar J Paredes-Gamero
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, MS, 79070-900, Brazil.
- Departamento de Bioquímica, Universidade Federal de São Paulo, R. Três de Maio 100, São Paulo, SP, 04044-020, Brazil.
- Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição (FACFAN), Laboratório de Biologia Molecular e Culturas Celulares, Av. Costa e Silva, s/n Bairro Universitário, Campo Grande, MS, CEP: 79070-900, Brazil.
| |
Collapse
|
5
|
Abstract
P2Y receptors (P2YRs) are a family of G protein-coupled receptors activated by extracellular nucleotides. Physiological P2YR agonists include purine and pyrimidine nucleoside di- and triphosphates, such as ATP, ADP, UTP, UDP, nucleotide sugars, and dinucleotides. Eight subtypes exist, P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, which represent current or potential future drug targets. Here we provide a comprehensive overview of ligands for the subgroup of the P2YR family that is activated by uracil nucleotides: P2Y2 (UTP, also ATP and dinucleotides), P2Y4 (UTP), P2Y6 (UDP), and P2Y14 (UDP, UDP-glucose, UDP-galactose). The physiological agonists are metabolically unstable due to their fast hydrolysis by ectonucleotidases. A number of agonists with increased potency, subtype-selectivity and/or enzymatic stability have been developed in recent years. Useful P2Y2R agonists include MRS2698 (6-01, highly selective) and PSB-1114 (6-05, increased metabolic stability). A potent and selective P2Y2R antagonist is AR-C118925 (10-01). For studies of the P2Y4R, MRS4062 (3-15) may be used as a selective agonist, while PSB-16133 (10-06) is a selective antagonist. Several potent P2Y6R agonists have been developed including 5-methoxyuridine 5'-O-((Rp)α-boranodiphosphate) (6-12), PSB-0474 (3-11), and MRS2693 (3-26). The isocyanate MRS2578 (10-08) is used as a selective P2Y6R antagonist, although its reactivity and low water-solubility are limiting. With MRS2905 (6-08), a potent and metabolically stable P2Y14R agonist is available, while PPTN (10-14) represents a potent and selective P2Y14R antagonist. The radioligand [3H]UDP can be used to label P2Y14Rs. In addition, several fluorescent probes have been developed. Uracil nucleotide-activated P2YRs show great potential as drug targets, especially in inflammation, cancer, cardiovascular and neurodegenerative diseases.
Collapse
|
6
|
Nishimura A, Sunggip C, Oda S, Numaga-Tomita T, Tsuda M, Nishida M. Purinergic P2Y receptors: Molecular diversity and implications for treatment of cardiovascular diseases. Pharmacol Ther 2017. [DOI: 10.1016/j.pharmthera.2017.06.010] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
7
|
Ribeiro-Filho AC, Buri MV, Barros CC, Dreyfuss JL, Nader HB, Justo GZ, Craveiro RB, Pesquero JB, Miranda A, Ferreira AT, Paredes-Gamero EJ. Functional and molecular evidence for heteromeric association of P2Y1 receptor with P2Y2 and P2Y4 receptors in mouse granulocytes. BMC Pharmacol Toxicol 2016; 17:29. [PMID: 27384918 PMCID: PMC4936188 DOI: 10.1186/s40360-016-0072-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 06/24/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND All hematopoietic cells express P2 receptors, however pharmacological characteristics such as expression and affinity in granulocytes are unknown. METHODS Pharmacological characteristics of P2 receptors were evaluated by Ca(2+) measurements using Fura-2 fluorophore. P2 receptors expression were analyzed by flow cytometry and RT-PCR. P2 interaction were shown by coimmunoprecipitation, western blotting and FRET. RESULTS Granulocytes were responsive to P2Y agonists, whereas P2X agonists were ineffective. Ca(2+) increase, elicited by ADP and UTP was dependent on intracellular stocks and sensitive to G-coupled receptor inhibition. Moreover, MRS2179, a specific antagonist of the P2Y1 receptor, abolished ADP response. Interestingly, ADP and UTP exhibited full heterologous desensitization, suggesting that these agonists interact with the same receptor. The heteromeric association between P2Y1 receptor and the P2Y2 and P2Y4 receptors was shown by immunoprecipitation and FRET analysis. CONCLUSION Clear evidence of heteromeric association of P2Y receptors was found during the evaluation of P2 receptors present in mice granulocytes, which could impact in the classical pharmacology of P2Y receptors in granulocytes.
Collapse
Affiliation(s)
- Antonio Carlos Ribeiro-Filho
- Centro Interdisciplinar de Investigação Bioquı́mica, Universidade de Mogi das Cruzes, Av. Dr Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, São Paulo, Brazil
| | - Marcus Vinicius Buri
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 - 9° andar - Prédio de Pesquisa II, R. Três de Maio 100, São Paulo, São Paulo, Brazil
| | - Carlos Castilho Barros
- Departamento de Nutrição, Universidade Federal de Pelotas, R. Gomes Carneiro, n°1, 96010-610, Pelotas, Rio Grande do Sul, Brazil
| | - Juliana Luporini Dreyfuss
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 - 9° andar - Prédio de Pesquisa II, R. Três de Maio 100, São Paulo, São Paulo, Brazil
| | - Helena Bonciani Nader
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 - 9° andar - Prédio de Pesquisa II, R. Três de Maio 100, São Paulo, São Paulo, Brazil
| | - Giselle Zenker Justo
- Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 - 9° andar - Prédio de Pesquisa II, R. Três de Maio 100, São Paulo, São Paulo, Brazil
| | - Rogério Bastos Craveiro
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, São Paulo, Brazil
| | - João Bosco Pesquero
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, São Paulo, Brazil
| | - Antonio Miranda
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, São Paulo, Brazil
| | - Alice Teixeira Ferreira
- Departamento de Biofísica, Universidade Federal de São Paulo, R. Botucatu 862, São Paulo, São Paulo, Brazil
| | - Edgar Julian Paredes-Gamero
- Centro Interdisciplinar de Investigação Bioquı́mica, Universidade de Mogi das Cruzes, Av. Dr Cândido Xavier de Almeida Souza, 200, Mogi das Cruzes, São Paulo, Brazil. .,Departamento de Bioquímica, Universidade Federal de São Paulo, Rua Pedro de Toledo, 669 - 9° andar - Prédio de Pesquisa II, R. Três de Maio 100, São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
Abstract
UNLABELLED P2 receptors activated by ATP are expressed in the skeletal system. However, the role of P2 receptors in osteoblast differentiation remains unclear. METHODS Participation of P2 receptors in differentiation was investigated in the preosteoblast MC3T3-M1 cell line. Preosteoblasts were stimulated for 7 or 14 days in the presence of osteogenic medium containing ATP and its analogs, and then alkaline phosphatase (ALP) activity, gene expression analyses, and protein expression were assessed. RESULTS We observed that ATP and its analogs promoted increased ALP activity after 7 days of treatment. In contrast, these agonists promoted reductions in ALP activity after 14 days. Some antagonists, such as PPADS (P2 antagonist), MRS2179 (P2Y1 antagonist), MRS2578 (P2Y6 antagonist), and AZ11645373 (P2X7 antagonist) reduced the increases in ALP activity after 7 days. However, only AZ11645373 inhibited the reduction in ALP activity after 14 days. The expression of the P2Y2, P2Y6, P2X4, and P2X7 receptors was observed. Furthermore, treatment with ATP modulated the expression of P2 receptors, increasing P2X4 expression and reducing P2Y6 and P2X7 expression. Similar results were observed after 14 days. In addition, ATP treatment for 7 days increased the expression of transcription factors associated with osteoblast differentiation, such as Runx2, SP7, and Dix5, whereas SP7 and Dix5 expression was reduced at 14 days. These results suggest that P2 receptor activation modulates the differentiation of osteoblasts and is dependent upon the stage of differentiation. These results also suggest that several P2 receptors are involved in this process.
Collapse
|
9
|
Ajit D, Woods LT, Camden JM, Thebeau CN, El-Sayed FG, Greeson GW, Erb L, Petris MJ, Miller DC, Sun GY, Weisman GA. Loss of P2Y₂ nucleotide receptors enhances early pathology in the TgCRND8 mouse model of Alzheimer's disease. Mol Neurobiol 2013; 49:1031-42. [PMID: 24193664 DOI: 10.1007/s12035-013-8577-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 10/21/2013] [Indexed: 11/26/2022]
Abstract
Neuroinflammation is a prominent feature in Alzheimer's disease (AD) and activation of the brain's innate immune system, particularly microglia, has been postulated to both retard and accelerate AD progression. Recent studies indicate that the G protein-coupled P2Y2 nucleotide receptor (P2Y2R) is an important regulator of innate immunity by assisting in the recruitment of monocytes to injured tissue, neutrophils to bacterial infections and eosinophils to allergen-infected lungs. In this study, we investigated the role of the P2Y2R in progression of an AD-like phenotype in the TgCRND8 mouse model that expresses Swedish and Indiana mutations in amyloid precursor protein (APP). Our results indicate that P2Y 2 R expression is upregulated in TgCRND8 mouse brain within 10 weeks of age and then decreases after 25 weeks of age, as compared to littermate controls expressing low levels of the P2Y 2 R. TgCRND8 mice with homozygous P2Y 2 R deletion survive less than 5 weeks, whereas mice with heterozygous P2Y 2 R deletion survive for 12 weeks, a time point when TgCRND8 mice are fully viable. Heterozygous P2Y 2 R deletion in TgCRND8 mice increased β-amyloid (Aβ) plaque load and soluble Aβ1-42 levels in the cerebral cortex and hippocampus, decreased the expression of the microglial marker CD11b in these brain regions and caused neurological deficits within 10 weeks of age, as compared to age-matched TgCRND8 mice. These findings suggest that the P2Y2R is important for the recruitment and activation of microglial cells in the TgCRND8 mouse brain and that the P2Y2R may regulate neuroprotective mechanisms through microglia-mediated clearance of Aβ that when lost can accelerate the onset of an AD-like phenotype in the TgCRND8 mouse.
Collapse
Affiliation(s)
- Deepa Ajit
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO, 65211-7310, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Weisman GA, Ajit D, Garrad R, Peterson TS, Woods LT, Thebeau C, Camden JM, Erb L. Neuroprotective roles of the P2Y(2) receptor. Purinergic Signal 2012; 8:559-78. [PMID: 22528682 DOI: 10.1007/s11302-012-9307-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/04/2011] [Indexed: 02/07/2023] Open
Abstract
Purinergic signaling plays a unique role in the brain by integrating neuronal and glial cellular circuits. The metabotropic P1 adenosine receptors and P2Y nucleotide receptors and ionotropic P2X receptors control numerous physiological functions of neuronal and glial cells and have been implicated in a wide variety of neuropathologies. Emerging research suggests that purinergic receptor interactions between cells of the central nervous system (CNS) have relevance in the prevention and attenuation of neurodegenerative diseases resulting from chronic inflammation. CNS responses to chronic inflammation are largely dependent on interactions between different cell types (i.e., neurons and glia) and activation of signaling molecules including P2X and P2Y receptors. Whereas numerous P2 receptors contribute to functions of the CNS, the P2Y(2) receptor is believed to play an important role in neuroprotection under inflammatory conditions. While acute inflammation is necessary for tissue repair due to injury, chronic inflammation contributes to neurodegeneration in Alzheimer's disease and occurs when glial cells undergo prolonged activation resulting in extended release of proinflammatory cytokines and nucleotides. This review describes cell-specific and tissue-integrated functions of P2 receptors in the CNS with an emphasis on P2Y(2) receptor signaling pathways in neurons, glia, and endothelium and their role in neuroprotection.
Collapse
Affiliation(s)
- Gary A Weisman
- Department of Biochemistry, University of Missouri, 540E Life Sciences Center, 1201 Rollins Road, Columbia, MO 65211-7310, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Molecular pharmacology, physiology, and structure of the P2Y receptors. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2011; 61:373-415. [PMID: 21586365 DOI: 10.1016/b978-0-12-385526-8.00012-6] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The P2Y receptors are a widely expressed group of eight nucleotide-activated G protein-coupled receptors (GPCRs). The P2Y(1)(ADP), P2Y(2)(ATP/UTP), P2Y(4)(UTP), P2Y(6)(UDP), and P2Y(11)(ATP) receptors activate G(q) and therefore robustly promote inositol lipid signaling responses. The P2Y(12)(ADP), P2Y(13)(ADP), and P2Y(14)(UDP/UDP-glucose) receptors activate G(i) leading to inhibition of adenylyl cyclase and to Gβγ-mediated activation of a range of effector proteins including phosphoinositide 3-kinase-γ, inward rectifying K(+) (GIRK) channels, phospholipase C-β2 and -β3, and G protein-receptor kinases 2 and 3. A broad range of physiological responses occur downstream of activation of these receptors ranging from Cl(-) secretion by epithelia to aggregation of platelets to neurotransmission. Useful structural models of the P2Y receptors have evolved from extensive genetic analyses coupled with molecular modeling based on three-dimensional structures obtained for rhodopsin and several other GPCRs. Selective ligands have been synthesized for most of the P2Y receptors with the most prominent successes attained with highly selective agonist and antagonist molecules for the ADP-activated P2Y(1) and P2Y(12) receptors. The widely prescribed drug, clopidogrel, which results in irreversible blockade of the platelet P2Y(12) receptor, is the most important therapeutic agent that targets a P2Y receptor.
Collapse
|
12
|
|
13
|
Alvarenga EC, Rodrigues R, Caricati-Neto A, Silva-Filho FC, Paredes-Gamero EJ, Ferreira AT. Low-intensity pulsed ultrasound-dependent osteoblast proliferation occurs by via activation of the P2Y receptor: role of the P2Y1 receptor. Bone 2010; 46:355-62. [PMID: 19781676 DOI: 10.1016/j.bone.2009.09.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 09/10/2009] [Accepted: 09/17/2009] [Indexed: 12/13/2022]
Abstract
Low-intensity pulsed ultrasound (LIPUS) is commonly used in the treatment of fractures and nonunion-promoting acceleration of healing fractures. In this report, we investigated the implication of the P2 receptors in osteoblast proliferation induced with LIPUS treatment. We observed that ADP, ATP, UTP, and UDP promote osteoblast increase and an increase of intracellular Ca(2+), through activation of P2Y receptors. Osteoblasts' expression of the P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11), P2Y(12), and P2Y(13) receptors was confirmed. In addition, the participation of the P2Y(1) receptor in osteoblast increase and the ADP-dependent increase of Ca(2+) concentration were shown. Furthermore, release of ATP/purines was induced by LIPUS treatment. Finally, LIPUS-dependent osteoblast increase was abolished in the presence of the Ca(2+) chelator (BAPTA), the inositol 1,4,5-trisphosphate receptor antagonist (2-APB), and the selective P2Y(1) receptor antagonist (MRS2179). In conclusion, LIPUS treatment induces osteoblastogenesis via the release of purines, such as ATP, activating P2Y receptors, mainly the P2Y(1) receptor.
Collapse
Affiliation(s)
- Erika Costa Alvarenga
- Departamento de Biofísica, Universidade Federal de São Paulo, Rua Botucatu, São Paulo, SP, Brazil.
| | | | | | | | | | | |
Collapse
|
14
|
Sanabria P, Ross E, Ramirez E, Colon K, Hernandez M, Maldonado HM, Silva WI, Jimenez-Rivera CA, Gonzalez FA. P2Y2 receptor desensitization on single endothelial cells. ACTA ACUST UNITED AC 2008; 15:43-51. [PMID: 18568944 DOI: 10.1080/10623320802092294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Receptor desensitization, or decreased responsiveness of a receptor to agonist stimulation, represents a regulatory process with the potential to have a significant impact on cell behavior. P2Y(2), a G-protein-coupled receptor activated by extracellular nucleotides, undergoes desensitization at many tissues, including the vascular endothelium. Endothelial cells from a variety of vascular beds are normally exposed to extracellular nucleotides released from damaged cells and activated platelets. The purpose of the present study was to compare P2Y(2) receptor desensitization observed in endothelial cells derived from bovine retina, a model of microvascular endothelium, and human umbilical vein endothelial cells (HUVECs), a model of a large blood vessel endothelium. P2Y(2) receptor desensitization was monitored by following changes in UTP-stimulated intracellular free Ca(2 +) in single cells using fura-2 microfluorometry. Both endothelial cell models exhibited desensitization of the P2Y(2) receptor after stimulation with UTP. However, the cells differed in the rate, dependence on agonist concentration, and percentage of maximal desensitization. These results suggest differential mechanisms of P2Y(2) receptor desensitization and favors heterogeneity in extracellular nucleotide activity in endothelial cells according to its vascular bed origin.
Collapse
Affiliation(s)
- Priscila Sanabria
- Department of Physiology, Universidad Central del Caribe, Bayamon, Puerto Rico
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Development of selective agonists and antagonists of P2Y receptors. Purinergic Signal 2008; 5:75-89. [PMID: 18600475 PMCID: PMC2721770 DOI: 10.1007/s11302-008-9106-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2008] [Accepted: 04/10/2008] [Indexed: 12/19/2022] Open
Abstract
Although elucidation of the medicinal chemistry of agonists and antagonists of the P2Y receptors has lagged behind that of many other members of group A G protein-coupled receptors, detailed qualitative and quantitative structure–activity relationships (SARs) were recently constructed for several of the subtypes. Agonists selective for P2Y1, P2Y2, and P2Y6 receptors and nucleotide antagonists selective for P2Y1 and P2Y12 receptors are now known. Selective nonnucleotide antagonists were reported for P2Y1, P2Y2, P2Y6, P2Y11, P2Y12, and P2Y13 receptors. At the P2Y1 and P2Y12 receptors, nucleotide agonists (5′-diphosphate derivatives) were converted into antagonists of nanomolar affinity by altering the phosphate moieties, with a focus particularly on the ribose conformation and substitution pattern. Nucleotide analogues with conformationally constrained ribose-like rings were introduced as selective receptor probes for P2Y1 and P2Y6 receptors. Screening chemically diverse compound libraries has begun to yield new lead compounds for the development of P2Y receptor antagonists, such as competitive P2Y12 receptor antagonists with antithrombotic activity. Selective agonists for the P2Y4, P2Y11, and P2Y13 receptors and selective antagonists for P2Y4 and P2Y14 receptors have not yet been identified. The P2Y14 receptor appears to be the most restrictive of the class with respect to modification of the nucleobase, ribose, and phosphate moieties. The continuing process of ligand design for the P2Y receptors will aid in the identification of new clinical targets.
Collapse
|
16
|
Agboh KC, Powell AJ, Evans RJ. Characterisation of ATP analogues to cross-link and label P2X receptors. Neuropharmacology 2008; 56:230-6. [PMID: 18599093 PMCID: PMC2613953 DOI: 10.1016/j.neuropharm.2008.05.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 05/09/2008] [Accepted: 05/21/2008] [Indexed: 11/29/2022]
Abstract
P2X receptors are a distinct family of ATP-gated ion channels with a number of physiological roles ranging from smooth muscle contractility to the regulation of blood clotting. In this study we determined whether the UV light-reactive ATP analogues 2-azido ATP, ATP azidoanilide (ATP-AA) and 2′,3′-O-(4-benzoylbenzoyl)-ATP (BzATP) can be used to label the ATP binding site of P2X1 receptors. These analogues were agonists, and in patch clamp studies evoked inward currents from HEK293 cells stably expressing the P2X1 receptor. Following irradiation in the presence of these compounds subsequent responses to an EC50 concentration of ATP were reduced by >65%. These effects were partially reversed by co-application of ATP or suramin with the photo-reactive ATP analogue at the time of irradiation. In autoradiographic studies radiolabelled 2-azido [γ32P] ATP and ATP-AA-[γ32P] cross-linked to P2X1 receptors and this binding was reduced by co-incubation with ATP. These studies demonstrate that photo-reactive ATP analogues can be used to label P2X receptor and may prove useful in elucidating the ATP binding site at this novel class of ATP binding proteins.
Collapse
Affiliation(s)
- Kelvin C Agboh
- Department of Cell Physiology and Pharmacology, University of Leicester, P.O. Box 138, University Road, Leicester LE1 9HN, UK
| | | | | |
Collapse
|
17
|
Wei W, Ryu JK, Choi HB, McLarnon JG. Expression and function of the P2X(7) receptor in rat C6 glioma cells. Cancer Lett 2007; 260:79-87. [PMID: 18039556 DOI: 10.1016/j.canlet.2007.10.025] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 10/03/2007] [Accepted: 10/17/2007] [Indexed: 11/15/2022]
Abstract
Our results demonstrate the first findings of expression and function of the purinergic P2X7 receptor (P2X7R) in rat C6 glioma cells. P2X7R mRNA and protein were present in unstimulated C6 cells and were up-regulated by cell exposure to the P2X7R agonist, 2',3'-(benzoyl-4-benzoyl)-ATP (BzATP). Activation of P2X7R in C6 in response to BzATP led to increased mobilization of intracellular calcium [Ca2+]i and formation of large pores. Chronic exposure of C6 cells to BzATP enhanced the expression of pro-inflammatory factors including MCP-1, IL-8 and VEGF. In a scratch-wound migration assay, the P2X7R was shown to regulate cell mobility. The overall results suggest that P2X7R activation in C6 is linked with increased pro-inflammatory factors and tumor cell migration.
Collapse
Affiliation(s)
- Wei Wei
- Department of Anesthesiology, Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
18
|
Lustig KD, Weisman GA, Turner JT, Garrad R, Shiau AK, Erb L. P2U purinoceptors: cDNA cloning, signal transduction mechanisms and structure-function analysis. CIBA FOUNDATION SYMPOSIUM 2007; 198:193-204; discussion 204-7. [PMID: 8879826 DOI: 10.1002/9780470514900.ch11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The cloning of a P2U purinoceptor cDNA has made it possible to use molecular biological approaches to investigate P2U purinoceptor function. Expression of recombinant P2U purinoceptors in mammalian cells lacking endogenous P2U purinoceptors has enabled us to characterize the receptor protein and its downstream effectors, and has allowed a partial analysis of the role of certain amino acid residues in ligand binding. These approaches have placed the pharmacological classification of the P2U purinoceptor on a firm molecular footing and have generated model systems that can be used to investigate receptor-ligand binding, regulation and signal transduction.
Collapse
Affiliation(s)
- K D Lustig
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
19
|
Meshki J, Tuluc F, Bredetean O, Garcia A, Kunapuli SP. Signaling pathways downstream of P2 receptors in human neutrophils. Purinergic Signal 2006; 2:537-44. [PMID: 18404491 PMCID: PMC2254476 DOI: 10.1007/s11302-006-9007-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2005] [Accepted: 03/10/2006] [Indexed: 11/28/2022] Open
Abstract
Extracellular nucleotides stimulate human neutrophils by activating the purinergic P2Y(2) receptor. However, it is not completely understood which types of G proteins are activated downstream of this P2 receptor subtype. We investigated the G-protein coupling to P2Y(2) receptors and several subsequent signaling events. Treatment of neutrophils with pertussis toxin (PTX), a Gi protein inhibitor, caused only approximately 75% loss of nucleotide-induced Ca(2+) mobilization indicating that nucleotides cause Ca(2+) mobilization both through Gi-dependent and Gi-independent pathways. However, the PLC inhibitor U73122 almost completely inhibited Ca(2+) mobilization in both nucleotide- and fMLP-stimulated neutrophils, strongly supporting the view that both the PTX-sensitive and the PTX-insensitive mechanism of Ca(2+) increase require activation of PLC. We investigated the dependence of ERK phosphorylation on the Gi pathway. Treatment of neutrophils with PTX caused almost complete inhibition of ERK phosphorylation in nucleotide or fMLP activated neutrophils. U73122 caused inhibition of nucleotide- or fMLP-stimulated ERK phosphorylation, suggesting that although pertussis toxin-insensitive pathways cause measurable Ca(2+) mobilization, they are not sufficient for causing ERK phosphorylation. Since PLC activation leads to intracellular Ca(2+) increase and PKC activation, we investigated if these intracellular events are necessary for ERK phosphorylation. Exposure of cells to the Ca(2+) chelator BAPTA had no effect on nucleotide- or fMLP-induced ERK phosphorylation. However, the PKC inhibitor GF109203X was able to almost completely inhibit nucleotide- or fMLP-induced ERK phosphorylation. We conclude that the P2Y(2) receptor can cause Ca(2+) mobilization through a PTX-insensitive but PLC-dependent pathway and ERK phosphorylation is highly dependent on activation of the Gi proteins.
Collapse
Affiliation(s)
- John Meshki
- Department of Physiology, Temple University Medical School, 3420 N. Broad Street, Philadelphia, PA, 19140, USA
| | | | | | | | | |
Collapse
|
20
|
Okada Y, Taniguchi T, Morishima S, Suzuki F, Akagi Y, Muramatsu I. Characteristics of acid extrusion from Chinese hamster ovary cells expressing different prostaglandin EP receptors. Life Sci 2006; 78:2454-62. [PMID: 16300797 DOI: 10.1016/j.lfs.2005.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Accepted: 10/03/2005] [Indexed: 11/29/2022]
Abstract
Acid extrusion responses to prostaglandin E2 were investigated in Chinese hamster ovary (CHO) cells heterologously expressing human EP1, EP2, and EP3I receptors (hEP1, hEP2 and hEP3I) by using a microphysiometer that detected small pH changes in the extracellular microenvironment. In the cells expressing hEP1, which is known to increase intracellular Ca2+, prostaglandin E2 (1 and 10 nM) slowly accelerated acid extrusion, but at higher concentrations an initial transient phase (approximately 5 times greater than the basal acidification) overlapped the slowly developing phase. In contrast, the cells expressing hEP2, which evokes cAMP production, showed dual responses to prostaglandin E2: an initial reduction followed by an acceleration of acid extrusion. In the cells expressing hEP3I, which is known to produce both a decrease in cAMP and a modest increase in intracellular Ca2+, acid extrusion was gradually accelerated by prostaglandin E2 and reached a plateau at around 2 min. Elimination of extracellular Ca2+ diminished the responses to prostaglandin E2 in hEP1 cells, but had little effect on the responses in hEP2 and hEP3I cells. Forskolin mimicked the dual effects of prostaglandin E2 observed in the hEP2 cells. Pretreatment with pertussis toxin inhibited the response to prostaglandin E2 in hEP3I cells, but the responses in hEP1 and hEP2 cells were not affected. Na+/H+ exchanger (NHE) inhibitors (EIPA and HOE642) suppressed all the responses induced by prostaglandin E2 in hEP1, hEP2, and hEP3I cells. These results suggest that EP receptor subtypes regulate acid extrusion mainly via NHE-1 through distinct signal transduction pathways in CHO cells.
Collapse
Affiliation(s)
- Yuichi Okada
- Division of Pharmacology, Department of Biochemistry and Bioinformative Sciences, School of Medicine, University of Fukui, Matsuoka, Fukui, 910-1193, Japan
| | | | | | | | | | | |
Collapse
|
21
|
Flores RV, Hernández-Pérez MG, Aquino E, Garrad RC, Weisman GA, Gonzalez FA. Agonist-induced phosphorylation and desensitization of the P2Y2 nucleotide receptor. Mol Cell Biochem 2006; 280:35-45. [PMID: 16311903 PMCID: PMC1633720 DOI: 10.1007/s11010-005-8050-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 05/27/2005] [Indexed: 11/29/2022]
Abstract
Purification of HA-tagged P2Y2 receptors from transfected human 1321N1 astrocytoma cells yielded a protein with a molecular size determined by SDS-PAGE to be in the range of 57-76 kDa, which is typical of membrane glycoproteins with heterogeneous complex glycosylation. The protein phosphatase inhibitor, okadaic acid, attenuated the recovery of receptor activity from the agonist-induced desensitized state, suggesting a role for P2Y2 receptor phosphorylation in desensitization. Isolation of HA-tagged P2Y2 nucleotide receptors from metabolically [32P]-labelled cells indicated a (3.8 +/- 0.2)-fold increase in the [32P]-content of the receptor after 15 min of treatment with 100 microM UTP, as compared to immunoprecipitated receptors from untreated control cells. Receptor sequestration studies indicated that approximately 40% of the surface receptors were internalized after a 15-min stimulation with 100 microM UTP. Point mutation of three potential GRK and PKC phosphorylation sites in the third intracellular loop and C-terminal tail of the P2Y2 receptor (namely, S243A, T344A, and S356A) extinguished agonist-induced receptor phosphorylation, caused a marked reduction in the efficacy of UTP to desensitize P2Y2 receptor signalling to intracellular calcium mobilization, and impaired agonist-induced receptor internalization. Activation of PKC isoforms with phorbol 12-myristate 13-acetate that caused heterologous receptor desensitization did not increase the level of P2Y2 receptor phosphorylation. Our results indicate a role for receptor phosphorylation by phorbol-insensitive protein kinases in agonist-induced desensitization of the P2Y2 nucleotide receptor.
Collapse
Affiliation(s)
| | | | - Edna Aquino
- Departments of Chemistry, Río Piedras Campus, and
| | - Richard C. Garrad
- Department of Biomedical Sciences, Southwest Missouri State
University, Springfield, MO; and
| | - Gary A. Weisman
- Department of Biochemistry, University of Missouri-Columbia,
MO
| | - Fernando A. Gonzalez
- Departments of Chemistry, Río Piedras Campus, and
- Biochemistry, Medical Sciences Campus, University of Puerto
Rico, San Juan, PR
- * To whom correspondence should be addressed: Dr.
Fernando A. Gonzalez, Department of Chemistry, University of Puerto Rico,
Río Piedras Campus, P.O. Box 23346, San Juan, PR 00931-3346, Tel
(787) 764-0000 ext 2437, FAX (787) 758-5612, e-mail:
| |
Collapse
|
22
|
von Kügelgen I. Pharmacological profiles of cloned mammalian P2Y-receptor subtypes. Pharmacol Ther 2005; 110:415-32. [PMID: 16257449 DOI: 10.1016/j.pharmthera.2005.08.014] [Citation(s) in RCA: 425] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 08/23/2005] [Indexed: 11/29/2022]
Abstract
Membrane-bound P2-receptors mediate the actions of extracellular nucleotides in cell-to-cell signalling. P2X-receptors are ligand-gated ion channels, whereas P2Y-receptors belong to the superfamily of G-protein-coupled receptors (GPCRs). So far, the P2Y family is composed out of 8 human subtypes that have been cloned and functionally defined; species orthologues have been found in many vertebrates. P2Y1-, P2Y2-, P2Y4-, P2Y6-, and P2Y11-receptors all couple to stimulation of phospholipase C. The P2Y11-receptor mediates in addition a stimulation of adenylate cyclase. In contrast, activation of the P2Y12-, P2Y13-, and P2Y14-receptors causes an inhibition of adenylate cyclase activity. The expression of P2Y1-receptors is widespread. The receptor is involved in blood platelet aggregation, vasodilatation and neuromodulation. It is activated by ADP and ADP analogues including 2-methylthio-ADP (2-MeSADP). 2'-Deoxy-N6-methyladenosine-3',5'-bisphosphate (MRS2179) and 2-chloro-N6-methyl-(N)-methanocarba-2'-deoxyadenosine 3',5'-bisphosphate (MRS2279) are potent and selective antagonists. P2Y2 transcripts are abundantly distributed. One important example for its functional role is the control of chloride ion fluxes in airway epithelia. The P2Y2-receptor is activated by UTP and ATP and blocked by suramin. The P2Y2-agonist diquafosol is used for the treatment of the dry eye disease. P2Y4-receptors are expressed in the placenta and in epithelia. The human P2Y4-receptor has a strong preference for UTP as agonist, whereas the rat P2Y4-receptor is activated about equally by UTP and ATP. The P2Y4-receptor is not blocked by suramin. The P2Y6-receptor has a widespread distribution including heart, blood vessels, and brain. The receptor prefers UDP as agonist and is selectively blocked by 1,2-di-(4-isothiocyanatophenyl)ethane (MRS2567). The P2Y11-receptor may play a role in the differentiation of immunocytes. The human P2Y11-receptor is activated by ATP as naturally occurring agonist and it is blocked by suramin and reactive blue 2 (RB2). The P2Y12-receptor plays a crucial role in platelet aggregation as well as in inhibition of neuronal cells. It is activated by ADP and very potently by 2-methylthio-ADP. Nucleotide antagonists including N6-(2-methylthioethyl)-2-(3,3,3-trifluoropropylthio)-beta,gamma-dichloromethylene-ATP (=cangrelor; AR-C69931MX), the nucleoside analogue AZD6140, as well as active metabolites of the thienopyridine compounds clopidogrel and prasugrel block the receptor. These P2Y12-antagonists are used in pharmacotherapy to inhibit platelet aggregation. The P2Y13-receptor is expressed in immunocytes and neuronal cells and is again activated by ADP and 2-methylthio-ADP. The 2-chloro-5-nitro pyridoxal-phosphate analogue 6-(2'-chloro-5'-nitro-azophenyl)-pyridoxal-alpha5-phosphate (MRS2211) is a selective antagonist. mRNA encoding for the human P2Y14-receptor is found in many tissues. However, a physiological role of the receptor has not yet been established. UDP-glucose and related analogues act as agonists; antagonists are not known. Finally, UDP has been reported to act on receptors for cysteinyl leukotrienes as an additional agonist--indicating a dual agonist specificity of these receptors.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology, University of Bonn, Reuterstrasse 2b, D-53113 Bonn, Germany.
| |
Collapse
|
23
|
Kaczmarek E, Erb L, Koziak K, Jarzyna R, Wink MR, Guckelberger O, Blusztajn JK, Trinkaus-Randall V, Weisman GA, Robson SC. Modulation of endothelial cell migration by extracellular nucleotides: involvement of focal adhesion kinase and phosphatidylinositol 3-kinase-mediated pathways. Thromb Haemost 2005; 93:735-42. [PMID: 15841322 PMCID: PMC2830093 DOI: 10.1160/th04-09-0576] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular nucleotides bind to type-2 purinergic/pyrimidinergic (P2) receptors that mediate various responses, such as cell activation, proliferation and apoptosis, implicated in inflammatory processes. The role of P2 receptors and their associated signal transduction pathways in endothelial cell responses has not been fully investigated. Here, it is shown that stimulation of human umbilical vein endothelial cells (HUVEC) with extracellular ATP or UTP increased intracellular free calcium ion concentrations ([Ca(2+)](i)), induced phosphorylation of focal adhesion kinase (FAK), p130(cas) and paxillin, and caused cytoskeletal rearrangements with consequent cell migration. Furthermore, UTP increased migration of HUVEC in a phosphatidylinositol 3-kinase (PI3-K)-dependent manner. BAPTA or thapsigargin inhibited the extracellular nucleotide-induced increase in [Ca(2+)](i), a response crucial for both FAK phosphorylation and cell migration. Furthermore, long-term exposure of HUVEC to ATP and UTP, agonists of the G protein-coupled P2Y2 and P2Y4 receptor subtypes, caused upregulation of alpha(v) integrin expression, a cell adhesion molecule known to directly interact with P2Y2 receptors. Our results suggest that extracellular nucleotides modulate signaling pathways in HUVEC influencing cell functions, such as cytoskeletal changes, cellular adhesion and motility, typically associated with integrin-activation and the action of growth factors. We propose that P2Y2 and possibly P2Y4 receptors mediate those responses that are important in vascular inflammation, atherosclerosis and angiogenesis.
Collapse
Affiliation(s)
- Elzbieta Kaczmarek
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kaczmarek E, Erb L, Koziak K, Jarzyna R, Wink MR, Guckelberger O, Blusztajn JK, Trinkaus-Randall V, Weisman GA, Robson SC. Modulation of endothelial cell migration by extracellular nucleotides: involvement of focal adhesion kinase and phosphatidylinositol 3-kinase-mediated pathways. Thromb Haemost 2005. [PMID: 15841322 PMCID: PMC2830093 DOI: 10.1267/thro05040735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2023]
Abstract
Extracellular nucleotides bind to type-2 purinergic/pyrimidinergic (P2) receptors that mediate various responses, such as cell activation, proliferation and apoptosis, implicated in inflammatory processes. The role of P2 receptors and their associated signal transduction pathways in endothelial cell responses has not been fully investigated. Here, it is shown that stimulation of human umbilical vein endothelial cells (HUVEC) with extracellular ATP or UTP increased intracellular free calcium ion concentrations ([Ca(2+)](i)), induced phosphorylation of focal adhesion kinase (FAK), p130(cas) and paxillin, and caused cytoskeletal rearrangements with consequent cell migration. Furthermore, UTP increased migration of HUVEC in a phosphatidylinositol 3-kinase (PI3-K)-dependent manner. BAPTA or thapsigargin inhibited the extracellular nucleotide-induced increase in [Ca(2+)](i), a response crucial for both FAK phosphorylation and cell migration. Furthermore, long-term exposure of HUVEC to ATP and UTP, agonists of the G protein-coupled P2Y2 and P2Y4 receptor subtypes, caused upregulation of alpha(v) integrin expression, a cell adhesion molecule known to directly interact with P2Y2 receptors. Our results suggest that extracellular nucleotides modulate signaling pathways in HUVEC influencing cell functions, such as cytoskeletal changes, cellular adhesion and motility, typically associated with integrin-activation and the action of growth factors. We propose that P2Y2 and possibly P2Y4 receptors mediate those responses that are important in vascular inflammation, atherosclerosis and angiogenesis.
Collapse
Affiliation(s)
- Elzbieta Kaczmarek
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA 02215, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Wildman SS, Hooper KM, Turner CM, Sham JSK, Lakatta EG, King BF, Unwin RJ, Sutters M. The isolated polycystin-1 cytoplasmic COOH terminus prolongs ATP-stimulated Cl- conductance through increased Ca2+ entry. Am J Physiol Renal Physiol 2003; 285:F1168-78. [PMID: 12888616 DOI: 10.1152/ajprenal.00171.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The precise steps leading from mutation of the polycystic kidney disease (PKD1) gene to the autosomal dominant polycystic kidney disease (ADPKD) phenotype remain to be established. Fluid accumulation is a requirement for cyst expansion in ADPKD, suggesting that abnormal fluid secretion into the cyst lumen might play a role in disease. In this study, we sought to establish a link between polycystin-1 (the PKD1 gene product) and ATP-stimulated Cl- secretion in renal tubule cells. To do this, we performed a whole cell patch-clamp analysis of the effects of expression of the isolated cytoplasmic COOH-terminus of polycystin-1 in stably transfected mouse cortical collecting duct cells. The truncated polycystin-1 fusion protein prolonged the duration of ATP-stimulated Cl- conductance and intracellular Ca2+ responses. Both effects were dependent on extracellular Ca2+. It was determined that expression of the truncated polycystin-1 fusion protein introduced, or activated, an ATP-induced Ca2+ entry pathway that was undetectable in transfection control cell lines. Our findings are concordant with increasing evidence for a role of polycystin-1 in cell Ca2+ homeostasis and indicate that dysregulated Ca2+ entry might promote Cl- secretion and cyst expansion in ADPKD.
Collapse
Affiliation(s)
- Scott S Wildman
- Laboratory of Cardiological Sciences, Gerontology Research Center, Division of Renal Medicine, Johns Hopkins Bayview Medical Center, 4940 Eastern Avenue, Baltimore, MD 21224, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Meshki J, Tuluc F, Bredetean O, Ding Z, Kunapuli SP. Molecular mechanism of nucleotide-induced primary granule release in human neutrophils: role for the P2Y2 receptor. Am J Physiol Cell Physiol 2003; 286:C264-71. [PMID: 14613890 DOI: 10.1152/ajpcell.00287.2003] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nucleotides are released during vascular injury from activated platelets and broken cells, which could stimulate human neutrophils. In this study, we characterized the P2Y receptors and investigated the functional effects of extracellular nucleotides on human neutrophils. Pharmacological characterization using selective agonists and pertussis toxin revealed that human neutrophils express only functional P2Y2 receptors. However, P2Y2 receptor agonists ATP or uridine triphosphate (UTP) caused intracellular Ca2+ increases in isolated human neutrophils with an EC50 of 1 microM but failed to cause release of primary granules from human neutrophils. ATP and UTP were equally potent in causing elastase release from human neutrophils in the presence of exogenous soluble fibrinogen, whereas ADP and UDP were without effect. We investigated whether nucleotides depend on generated arachidonic acid metabolites to cause degranulation. However, phenidone and MK-886, inhibitors of the 5-lipoxygenase pathway, failed to block nucleotide-induced intracellular calcium mobilization and elastase release. ATP and UTP caused activation of p38 MAPK and ERK1/2 in human neutrophils. In addition, the inhibitors of the MAPK pathway, SB-203580 and U-0126, inhibited nucleotide-induced elastase release. We conclude that fibrinogen is required for nucleotide-induced primary granule release from human neutrophils through the P2Y2 receptor without a role for arachidonic acid metabolites. Both ERK1/2 and p38 MAPK play an important role in nucleotide-induced primary granule release from human neutrophils.
Collapse
Affiliation(s)
- John Meshki
- Department of Physiology, Temple University Medical School, 3420 N. Broad St., Philadelphia, PA, 19140, USA
| | | | | | | | | |
Collapse
|
27
|
Kumari R, Goh G, Ng LL, Boarder MR. ATP and UTP responses of cultured rat aortic smooth muscle cells revisited: dominance of P2Y2 receptors. Br J Pharmacol 2003; 140:1169-76. [PMID: 14597595 PMCID: PMC1574131 DOI: 10.1038/sj.bjp.0705526] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. It has previously been shown that ATP and UTP stimulate P2Y receptors in vascular smooth muscle cells (VSMCs), but the nature of these receptors, in particular the contribution of P2Y2 and P2Y4 subtypes, has not been firmly established. Here we undertake a further pharmacological analysis of [3H]inositol polyphosphate responses to nucleotides in cultured rat VSMCs. 2. ATP generated a response that was partial compared to UTP, as reported earlier. 3. In the presence of a creatine phosphokinase (CPK) system for regenerating nucleoside triphosphates, the response to ATP was increased, the response to UTP was unchanged, and the difference between UTP and ATP concentration-response curves disappeared. Chromatographic analysis showed that ATP was degraded slightly faster than UTP. 4. The response to UDP was always smaller than that to UTP, but with a shallow slope and a high potency component. In the presence of hexokinase (which prevents the accumulation of ATP/UTP from ADP/UDP), the maximum response to UDP was reduced and the high-potency component of the curve was retained. By contrast, the response to ADP was weaker throughout in the presence of hexokinase. 5. ATP gamma S was an effective agonist with a similar EC50 to UTP, but with a lower maximum. ITP was a weak agonist compared with UTP. 6. Suramin was an effective antagonist of the response to UTP (pA2=4.48), but not when ATP was the agonist. However, suramin was an effective antagonist (pA2=4.45) when stimulation with ATP was in the presence of the CPK regenerating system. 7. Taken together with the results of others, these findings indicate that the response of cultured rat VSMCs to UTP and to ATP is predominantly at the P2Y2 receptor, and that there is also a response to UDP at the P2Y6 receptor.
Collapse
Affiliation(s)
- Rajendra Kumari
- Cell Signalling Laboratory, Leicester School of Pharmacy, De Montfort University, The Hawthorn Building, The Gateway, Leicester LE1 9BH
| | - Gareth Goh
- Cell Signalling Laboratory, Leicester School of Pharmacy, De Montfort University, The Hawthorn Building, The Gateway, Leicester LE1 9BH
| | - Leong L Ng
- Department of Medicine, Leicester University, Leicester
| | - Michael R Boarder
- Cell Signalling Laboratory, Leicester School of Pharmacy, De Montfort University, The Hawthorn Building, The Gateway, Leicester LE1 9BH
- Author for correspondence:
| |
Collapse
|
28
|
Wildman SS, Unwin RJ, King BF. Extended pharmacological profiles of rat P2Y2 and rat P2Y4 receptors and their sensitivity to extracellular H+ and Zn2+ ions. Br J Pharmacol 2003; 140:1177-86. [PMID: 14581177 PMCID: PMC1574132 DOI: 10.1038/sj.bjp.0705544] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Two molecularly distinct rat P2Y receptors activated equally by adenosine-5'-triphosphate (ATP) and uridine-5'-triphosphate (UTP) (rP2Y2 and rP2Y4 receptors) were expressed in Xenopus oocytes and studied extensively to find ways to pharmacologically distinguish one from the other. 2. Both P2Y subtypes were activated fully by a number of nucleotides. Tested nucleotides were equipotent at rP2Y4 (ATP=UTP=CTP=GTP=ITP), but not at rP2Y2 (ATP=UTP>CTP>GTP>ITP). For dinucleotides (ApnA, n=2-6), rP2Y4 was only fully activated by Ap4A, which was as potent as ATP. All tested dinucleotides, except for Ap2A, fully activated rP2Y2, but none were as potent as ATP. ATP gamma S and BzATP fully activated rP2Y2, whereas ATP gamma S was a weak agonist and BzATP was inactive (as an agonist) at rP2Y4 receptors. 3. Each P2Y subtype showed different sensitivities to known P2 receptor antagonists. For rP2Y2, the potency order was suramin>>PPADS= RB-2>TNP-ATP and suramin was a competitive antagonist (pA2, 5.40). For rP2Y4, the order was RB-2>>suramin>PPADS> TNP-ATP and RB-2 was a competitive antagonist (pA2, 6.43). Also, BzATP was an antagonist at rP2Y4 receptors. 4. Extracellular acidification (from pH 8.0 to pH 5.5) enhanced the potency of ATP and UTP by 8-10-fold at rP2Y4 but did not affect agonist responses at rP2Y2 receptors. 5. Extracellular Zn2+ ions (0.1-300 microM) coapplied with ATP inhibited agonist responses at rP2Y4 but not at rP2Y2 receptors. 6. These two P2Y receptors differ significantly in terms of agonist and antagonist profiles, and the modulatory activities of extracellular H+ and Zn2+ ions. These pharmacological differences will help to distinguish between rP2Y2 and rP2Y4 receptors, in vivo.
Collapse
Affiliation(s)
- Scott S Wildman
- Department of Physiology (Centre for Nephrology), Royal Free Campus, Royal Free and University College Medical School, University College London (UCL), Rowland Hill Street, Hampstead, London NW3 2PF, U.K
| | - Robert J Unwin
- Department of Physiology (Centre for Nephrology), Royal Free Campus, Royal Free and University College Medical School, University College London (UCL), Rowland Hill Street, Hampstead, London NW3 2PF, U.K
| | - Brian F King
- Department of Physiology (Centre for Nephrology), Royal Free Campus, Royal Free and University College Medical School, University College London (UCL), Rowland Hill Street, Hampstead, London NW3 2PF, U.K
- Author for correspondence: or
| |
Collapse
|
29
|
Okada Y, Taniguchi T, Akagi Y, Muramatsu I. Two-phase response of acid extrusion triggered by purinoceptor in Chinese hamster ovary cells. Eur J Pharmacol 2002; 455:19-25. [PMID: 12433590 DOI: 10.1016/s0014-2999(02)02556-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The functional characteristics of purinoceptors in Chinese hamster ovary (CHO) cells were investigated using a microphysiometer which detects small metabolic changes to living cells in real-time as variations of pH in the extracellular microenvironment. Uridine 5'-triphosphate (UTP) increased the extracellular acidification rate biphasically, namely a transient and a steady response were observed. The transient phase reached a peak (four- to fivefold the basal extracellular acidification rate in amplitude) within 20 s and was followed by the steady phase which was sustained for more than 1 min at an amplitude less than twofold the basal extracellular acidification rate. Both phases showed a concentration-dependent increase in response to UTP. However, there was a significant difference in the pEC(50) value for UTP between the transient (4.8) and steady phases (6.1). Like UTP, ATP increased the extracellular acidification rate, but alpha,beta-methyleneATP (alpha,beta-MeATP), 2-methylthioATP (2-MeSATP), ADP, UDP and adenosine did not. This result suggests that the acid is extruded through a P2Y(2) or P2Y(2)-like purinoceptor. 5-(N-ethyl-N-isopropyl) amiloride (EIPA) and 4-isopropyl-3-methylsulphonylbenzoyl-guanidine methanesulphonate (HOE642) suppressed both phases of the UTP-stimulated extracellular acidification rate response with high affinity (pIC(50): approximately 7.0). This result suggests that the Na(+)/H(+) exchanger 1 (NHE-1) predominantly mediates the UTP-induced acid extrusion response in CHO cells. Elimination of extracellular Ca(2+) or treatment with thapsigargin diminished both phases of the UTP-stimulated extracellular acidification rate. In addition, N-(6-aminohexyl)-5-chloro-1-naphthalene-sulfonamide hydrochloride (W-7) also abrogated the two phases. These results are consistent with the involvement of NHE-1 which is activated via Ca(2+)/calmodulin. Persistent exposure to UTP reduced both extracellular acidification rate phases, causing desensitization of the P2Y purinoceptor. This desensitization did not affect the acid extrusion response mediated by the alpha(1)-adrenoceptor.
Collapse
Affiliation(s)
- Yuichi Okada
- Department of Pharmacology, School of Medicine, Fukui Medical University, Matsuoka, Fukui 910-1193, Japan
| | | | | | | |
Collapse
|
30
|
Yamamoto T, Suzuki Y. Role of luminal ATP in regulating electrogenic Na(+) absorption in guinea pig distal colon. Am J Physiol Gastrointest Liver Physiol 2002; 283:G300-8. [PMID: 12121876 DOI: 10.1152/ajpgi.00541.2001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Extracellular ATP regulates a variety of functions in epithelial tissues by activating the membrane P2-receptor. The purpose of this study was to investigate the autocrine/paracrine regulation by luminal ATP of electrogenic amiloride-sensitive Na(+) absorption in the distal colon from guinea pigs treated with aldosterone by measuring the amiloride-sensitive short-circuit current (I(sc)) and (22)Na(+) flux in vitro with the Ussing chamber technique. ATP added to the luminal side inhibited the amiloride-sensitive I(sc) and (22)Na(+) absorption to a similar degree. The concentration dependence of the inhibitory effect of ATP on amiloride-sensitive I(sc) had an IC(50) value of 20-30 microM, with the maximum inhibition being approximately 50%. The effects of different nucleotides and of a nucleoside were also studied, the order of potency being ATP = UTP > ADP > adenosine. The effects of ATP were slightly, but significantly, reduced in the presence of suramin in the luminal solution. The inhibitory effect of luminal ATP was more potent in the absence of both Mg2+ and Ca2+ from the luminal solution. Pretreatment of the tissue with ionomycin or thapsigargin in the absence of serosal Ca2+ did not affect the percent inhibition of amiloride-sensitive I(sc) induced by ATP. Mechanical perturbation with a hypotonic luminal solution caused a reduction in amiloride-sensitive I(sc), this effect being prevented by the presence of hexokinase, an ATP-scavenging enzyme. These results suggest that ATP released into the luminal side by hypotonic stimulation could exert an inhibitory effect on the electrogenic Na(+) absorption. This effect was probably mediated by a P2Y(2) receptor on the apical membrane of colonic epithelial cells, and a change in the intracellular Ca2+ concentration may not be necessary for this process.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Laboratory of Physiology, School of Food and Nutritional Sciences, University of Shizuoka, Japan
| | | |
Collapse
|
31
|
Abogadie FC, Bron R, Marsh SJ, Drew LJ, Haley JE, Buckley NJ, Brown DA, Delmas P. Adenovirus-mediated G(alpha)(q)-protein antisense transfer in neurons replicates G(alpha)(q) gene knockout strategies. Neuropharmacology 2002; 42:950-7. [PMID: 12069905 DOI: 10.1016/s0028-3908(02)00044-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Antisense approaches are increasingly used to dissect signaling pathways linking cell surface receptors to intracellular effectors. Here we used a recombinant adenovirus to deliver G-protein alpha(q) antisense into rat superior cervical ganglion (SCG) neurons and neuronal cell lines to dissect G(alpha)(q)-mediated signaling pathways in these cells. This approach was compared with other G(alpha)(q) gene knockdown strategies, namely, antisense plasmid and knockout mice. Infection with adenovirus expressing G(alpha)(q) antisense (G(alpha)(q)AS AdV) selectively decreased immunoreactivity for the G(alpha)(q) protein. Expression of other G(alpha) protein subunits, such as G(alpha)(oA/B,) was unaltered. Consistent with this, modulation of Ca(2+) currents by the G(alpha)(q)-coupled M(1) muscarinic receptor was severely impaired in neurons infected with G(alpha)(q)AS AdV whereas modulation via the G(alpha)(oA)-coupled M(4) muscarinic receptor was unchanged. In agreement, activation of phospholipase C and consequent mobilization of intracellular Ca(2+) by UTP receptors was lost in NG108-15 cells infected with G(alpha)(q)AS AdV but not in cells infected with the control GFP-expressing adenovirus. Results obtained with this recombinant AdV strategy qualitatively and quantitatively replicated results obtained using SCG neurons microinjected with G(alpha)(q) antisense plasmids or SCG neurons from G(alpha)(q) knockout mice. This combined antisense/recombinant adenoviral approach can therefore be useful for dissecting signal transduction mechanisms in SCG and other neurons.
Collapse
Affiliation(s)
- F C Abogadie
- Wellcome Laboratory for Molecular Pharmacology, University College London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Sak K, Webb TE. A retrospective of recombinant P2Y receptor subtypes and their pharmacology. Arch Biochem Biophys 2002; 397:131-136. [PMID: 11747319 DOI: 10.1006/abbi.2001.2616] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Since the first cloning of P2Y receptor sequences in 1993 it has become apparent that this family of G-protein-coupled receptors is omnipresent. At least 25 individual sequences entered in the GenBank sequence database encode P2Y receptors from a variety of species ranging from the little skate Raja erinacea to man. In man, six receptor subtypes have been cloned and found to be functionally active (P2Y(1), P2Y(2), P2Y(4), P2Y(6), P2Y(11), and P2Y(12)). In this article a review of the P2Y receptor subtypes is presented considering both their sequences and the pharmacological profiles of the encoded receptors expressed in heterologous expression systems.
Collapse
Affiliation(s)
- Katrin Sak
- Hematology-Oncology Clinic, Tartu University, Ulikooli 18, Tartu 50090, Estonia
| | | |
Collapse
|
33
|
Mizuno K, Okamoto H, Horio T. Heightened ability of monocytes from sarcoidosis patients to form multi-nucleated giant cells in vitro by supernatants of concanavalin A-stimulated mononuclear cells. Clin Exp Immunol 2001; 126:151-6. [PMID: 11678912 PMCID: PMC1906180 DOI: 10.1046/j.1365-2249.2001.01655.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The main immunocompetent cells in sarcoidal lesions are epithelioid cells and multi-nucleated giant cells (MGC), both of which are derived from monocyte-macrophage lineage cells. To understand further the relevance of monocytes in sarcoidosis, we examined in vitro MGC formation using monocytes from sarcoidosis patients, patients with other granulomatous diseases (OGD) and healthy control subjects. The supernatant of concanavalin A-stimulated peripheral blood mononuclear cells (conditioned medium) generated Langhans type-MGC and foreign body type-MGC from monocytes. Conditioned medium from any three groups had the same ability to form MGC from normal monocytes. On the other hand, MGC were more highly formed using monocytes from sarcoidosis patients than from other groups. When macrophages induced by treatment of monocytes with macrophage colony-stimulating factor (M-CSF) were used, the rate of MGC formation in sarcoidosis patients was about threefold or fourfold as much as that in OGD patients or healthy controls, respectively. Oxidized ATP inhibited MGC formation in all groups. The susceptibility of monocytes cultured in conditioned medium for 24 h to 2'- and 3'-o-(4-benzoyl-benzoyl)ATP-mediated cytolysis was significantly higher in sarcoidosis patients than other groups. These findings suggest that the ability of monocytes to form MGC through P2x7 receptors is enhanced in sarcoidosis patients.
Collapse
Affiliation(s)
- K Mizuno
- Department of Dermatology, Kansai Medical University, Moriguchi, Osaka, Japan
| | | | | |
Collapse
|
34
|
Zündorf G, Schäfer R, Vöhringer C, Halbfinger E, Fischer B, Reiser G. Novel modified adenosine 5'-triphosphate analogues pharmacologically characterized in human embryonic kidney 293 cells highly expressing rat brain P2Y(1) receptor: Biotinylated analogue potentially suitable for specific P2Y(1) receptor isolation. Biochem Pharmacol 2001; 61:1259-69. [PMID: 11322930 DOI: 10.1016/s0006-2952(01)00593-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Rat brain P2Y(1) (rP2Y(1)) receptor-transfected human embryonic kidney cells (HEK 293) were recently shown to have enhanced reactivity to both ATP and ADP (Vöhringer C, Schäfer R, Reiser G. Biochem Pharmacol 2000;59:791-800). Here, we demonstrated the usefulness of this cell line as a system for further studying novel adenine nucleotide analogues (Halbfinger et al. J Med Chem 1999;42:5325-37) and for the biochemical characterization of the P2Y(1) receptor. By measurement of intracellular Ca(2+) release, for 2-butylthio-, 2-butylamino-, and 2-butyloxy-ATP (2-BuS-, 2-BuNH-, 2-BuO-ATP), EC(50) values of 1.3, 5, and 60 nM were determined, markedly lower than the value for ATP (130 nM). The EC(50) for 2-BuSADP was 1.1 nM. The corresponding 8-substituted ATP analogues showed a substantially lower potency than ATP (ATP > 8-BuSATP > 8-BuNHATP approximately 8-BuOATP). AMP induced intracellular Ca(2+) release with a very low potency; 2- and 8-substitutions on AMP caused no significant potency shift, except for 2-BuSAMP (EC(50) = 180 nM). Another new P2Y receptor probe, 2-[(6-biotinylamido)-hexylthio]ATP, was 22-fold more potent than ATP (EC(50) = 6 nM), revealing that even more bulky substituents linked to the C-2 position bind with high affinity at the P2Y(1) receptor. This biotinylated probe was successfully used for the enrichment of the P2Y(1) receptor tagged with green fluorescent protein from a crude membrane fraction. This one-step enrichment provides a substantial advance for P2Y(1) receptor purification. Thus, human embryonic kidney 293 cells stably transfected with the rP2Y(1) receptor represent a powerful model system for pharmacological characterization of the P2Y(1) receptor, circumventing problems associated with natural systems. They provide a means for the development of P2Y(1) ligands of high potency and a good source for obtaining purified P2Y(1) receptor.
Collapse
Affiliation(s)
- G Zündorf
- Institut für Neurobiochemie, Otto-von-Guericke-Universität, Medizinische Fakultät, Leipziger Strasse 44, D-39120, Magdeburg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Erb L, Liu J, Ockerhausen J, Kong Q, Garrad RC, Griffin K, Neal C, Krugh B, Santiago-Pérez LI, González FA, Gresham HD, Turner JT, Weisman GA. An RGD sequence in the P2Y(2) receptor interacts with alpha(V)beta(3) integrins and is required for G(o)-mediated signal transduction. J Cell Biol 2001; 153:491-501. [PMID: 11331301 PMCID: PMC2190579 DOI: 10.1083/jcb.153.3.491] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The P2Y(2) nucleotide receptor (P2Y(2)R) contains the integrin-binding domain arginine-glycine-aspartic acid (RGD) in its first extracellular loop, raising the possibility that this G protein-coupled receptor interacts directly with an integrin. Binding of a peptide corresponding to the first extracellular loop of the P2Y(2)R to K562 erythroleukemia cells was inhibited by antibodies against alpha(V)beta(3)/beta(5) integrins and the integrin-associated thrombospondin receptor, CD47. Immunofluorescence of cells transfected with epitope-tagged P2Y(2)Rs indicated that alpha(V) integrins colocalized 10-fold better with the wild-type P2Y(2)R than with a mutant P2Y(2)R in which the RGD sequence was replaced with RGE. Compared with the wild-type P2Y(2)R, the RGE mutant required 1,000-fold higher agonist concentrations to phosphorylate focal adhesion kinase, activate extracellular signal-regulated kinases, and initiate the PLC-dependent mobilization of intracellular Ca(2+). Furthermore, an anti-alpha(V) integrin antibody partially inhibited these signaling events mediated by the wild-type P2Y(2)R. Pertussis toxin, an inhibitor of G(i/o) proteins, partially inhibited Ca(2+) mobilization mediated by the wild-type P2Y(2)R, but not by the RGE mutant, suggesting that the RGD sequence is required for P2Y(2)R-mediated activation of G(o), but not G(q). Since CD47 has been shown to associate directly with G(i/o) family proteins, these results suggest that interactions between P2Y(2)Rs, integrins, and CD47 may be important for coupling the P2Y(2)R to G(o).
Collapse
MESH Headings
- Amino Acid Sequence
- Antigens, CD/metabolism
- CD47 Antigen
- Calcium/metabolism
- Carrier Proteins/metabolism
- Focal Adhesion Kinase 1
- Focal Adhesion Protein-Tyrosine Kinases
- GTP-Binding Protein alpha Subunits, Gi-Go
- Heterotrimeric GTP-Binding Proteins/metabolism
- Humans
- Integrins/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Oligopeptides/metabolism
- Phosphorylation
- Point Mutation
- Protein Binding
- Protein-Tyrosine Kinases
- Receptors, Purinergic P2/isolation & purification
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2Y1
- Receptors, Purinergic P2Y2
- Receptors, Vitronectin/genetics
- Receptors, Vitronectin/isolation & purification
- Receptors, Vitronectin/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
Collapse
Affiliation(s)
- L Erb
- Department of Biochemistry, University of Missouri-Columbia, Columbia, Missouri 65212, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Connolly GP. Methyl orange antagonizes uridine 5' triphosphate and not alpha,beta-methylene-adenosine 5' triphosphate-evoked depolarization of rat superior cervical ganglia. JOURNAL OF AUTONOMIC PHARMACOLOGY 2001; 21:1-5. [PMID: 11422572 DOI: 10.1046/j.1365-2680.2001.00174.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Compared with the effects of adenosine 5' triphosphate (ATP) on the nervous system, the actions of pyrimidine nucleosides and their 5'-nucleotides, such as uridine 5' triphosphate (UTP), have received less attention. In part, this is because there is a need for a selective antagonist for responses mediated by UTP-activated receptors. The objective of this study was to discover such an antagonist. 2. Superior cervical ganglia isolated from male rats were superfused with a physiological salt solution. Responses to alpha,beta-methylene-ATP (alpha,beta-Me-ATP), potassium, adenosine and UTP were determined before and in the presence of 1-300 microM methyl orange. 3. Methyl orange at 1-100 microM did not alter resting potential or depolarizing responses to alpha,beta-Me-ATP, potassium, or adenosine-evoked hyperpolarizations, but at 10 and 100 microM methyl orange significantly antagonized UTP-evoked depolarizations (P < 0.05). 4. Although the antagonistic effects of methyl orange were not dramatic, this is the first report of a putative pyrimidinoceptor antagonist. These observations also support the idea of distinct receptors for UTP and ATP on rat superior cervical ganglia.
Collapse
Affiliation(s)
- G P Connolly
- Purine NeuroScience Laboratory, Chemical Pathology, Guy's, King's and St Thomas' Medical School, King's College London, London SE1 9RT, UK
| |
Collapse
|
37
|
Thomas EJ, Gabriel SE, Makhlina M, Hardy SP, Lethem MI. Expression of nucleotide-regulated Cl(-) currents in CF and normal mouse tracheal epithelial cell lines. Am J Physiol Cell Physiol 2000; 279:C1578-86. [PMID: 11029305 DOI: 10.1152/ajpcell.2000.279.5.c1578] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The dominant route for Cl(-) secretion in mouse tracheal epithelium is via Cl(-) channels different from the cystic fibrosis (CF) transmembrane conductance regulator (CFTR), the channel that is defective in CF. It has been proposed that the use of purinergic agonists to activate these alternative channels in human airways may be beneficial in CF. In the present study, two conditionally immortal epithelial cell lines were established from the tracheae of mice possessing the tsA58 T antigen gene, one of which [MTE18-(-/-)] was homozygous for a knockout of CFTR and the other [MTE7b-(+/-)] heterozygous for CFTR expression. In Ussing chamber studies, amiloride (10(-4) M) and a cocktail of cAMP-activating agents (forskolin, IBMX, and dibutyryl cAMP) resulted in small changes in the short-circuit current (I(sc)) and resistance of both cell lines, with larger increases in I(sc) being elicited by ionomycin (10(-6) M). Both cell lines expressed P(2)Y(2) receptors and responded to the purinergic agonists ATP, UTP, and 5'-adenylylimidodiphosphate (10(-4) M) with an increase in I(sc). This response could be inhibited by DIDS and was abolished in the presence of Cl(-)-free Ringer solution. Reducing the mucosal Cl(-) concentration increased the response to UTP of both cell lines, with a significantly greater increase in MTE18-(-/-) cells. Pretreatment of these cells with thapsigargin caused a direct increase in I(sc) and inhibited the response to UTP. These data suggest that both cell lines express purinergic-regulated Cl(-) currents and may prove valuable tools in studying the properties of this pathway.
Collapse
Affiliation(s)
- E J Thomas
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton BN2 4GJ, United Kingdom
| | | | | | | | | |
Collapse
|
38
|
Communi D, Janssens R, Suarez-Huerta N, Robaye B, Boeynaems JM. Advances in signalling by extracellular nucleotides. the role and transduction mechanisms of P2Y receptors. Cell Signal 2000; 12:351-60. [PMID: 10889463 DOI: 10.1016/s0898-6568(00)00083-8] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nucleotides are ubiquitous intercellular messengers whose actions are mediated by specific receptors. Since the first clonings in 1993, it is known that nucleotide receptors belong to two families: the ionotropic P2X receptors and the metabotropic P2Y receptors. Five human P2Y receptor subtypes have been cloned so far and a sixth one must still be isolated. In this review we will show that they differ by their preference for adenine versus uracil nucleotides and triphospho versus diphospho nucleotides, as well as by their transduction mechanisms and cell expression.
Collapse
Affiliation(s)
- D Communi
- Institute of Interdisciplinary Research, School of Medicine, Free University of Brussels, Brussels, Belgium
| | | | | | | | | |
Collapse
|
39
|
Turner JT, Landon LA, Gibbons SJ, Talamo BR. Salivary gland P2 nucleotide receptors. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 2000; 10:210-24. [PMID: 10759423 DOI: 10.1177/10454411990100020701] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The effects of ATP on salivary glands have been recognized since 1982. Functional and pharmacological studies of the P2 nucleotide receptors that mediate the effects of ATP and other extracellular nucleotides have been supported by the cloning of receptor cDNAs, by the expression of the receptor proteins, and by the identification in salivary gland cells of multiple P2 receptor subtypes. Currently, there is evidence obtained from pharmacological and molecular biology approaches for the expression in salivary gland of two P2X ligand-gated ion channels, P2Z/P2X7 and P2X4, and two P2Y G protein-coupled receptors, P2Y1 and P2Y2. Activation of each of these receptor subtypes increases intracellular Ca2+, a second messenger with a key role in the regulation of salivary gland secretion. Through Ca2+ regulation and other mechanisms, P2 receptors appear to regulate salivary cell volume, ion and protein secretion, and increased permeability to small molecules that may be involved in cytotoxicity. Some localization of the various salivary P2 receptor subtypes to specific cells and membrane subdomains has been reported, along with evidence for the co-expression of multiple P2 receptor subtypes within specific salivary acinar or duct cells. However, additional studies in vivo and with intact organ preparations are required to define clearly the roles the various P2 receptor subtypes play in salivary gland physiology and pathology. Opportunities for eventual utilization of these receptors as pharmacotherapeutic targets in diseases involving salivary gland dysfunction appear promising.
Collapse
Affiliation(s)
- J T Turner
- Department of Pharmacology, University of Missouri-Columbia School of Medicine, 65212, USA
| | | | | | | |
Collapse
|
40
|
Velázquez B, Garrad RC, Weisman GA, González FA. Differential agonist-induced desensitization of P2Y2 nucleotide receptors by ATP and UTP. Mol Cell Biochem 2000; 206:75-89. [PMID: 10839197 DOI: 10.1023/a:1007091127392] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The equal potency and efficacy of the agonists, ATP and UTP, pharmacologically distinguish the P2Y2 receptor from other nucleotide receptors. Investigation of the desensitization of the P2Y2 receptors is complicated by the simultaneous expression of different P2 nucleotide receptor subtypes. The co-expression of multiple P2 receptor subtypes in mammalian cells may have led to contradictory reports on the efficacy of the natural agonists of the P2Y2 receptor to induce desensitization. We decided to investigate the desensitization of human and murine isoforms of the P2Y2 receptor, and to rigorously examine their signaling and desensitization properties. For these purposes, we used 1321N1 astrocytoma cells stably transfected with the human or murine P2Y2 receptor cDNA, as well as human A431 cells that endogenously express the receptor. The mobilization of intracellular calcium by extracellular nucleotides was used as a functional assay for the P2Y2 receptors. While ATP and UTP activated the murine and human P2Y2 receptors with similar potencies (EC50 values were 1.5-5.8 microM), ATP was approximately 10-fold less potent (IC50 = 9.1-21.2 microM) than UTP (IC50 = 0.7-2.9 microM) inducing homologous receptor desensitization in the cell systems examined. Individual cell analyses of the rate and dose dependency of agonist-induced desensitization demonstrated that the murine receptor was slightly more resistant to desensitization than its human counterpart. To our knowledge, this is the first individual cell study that has compared the cellular heterogeneity of the desensitized states of recombinant and endogenously expressed receptors. This comparison demonstrated that the recombinant system conserved the cellular regulatory elements needed to attenuate receptor signaling by desensitization.
Collapse
Affiliation(s)
- B Velázquez
- Department of Chemistry, University of Puerto Rico, San Juan 00931-3346, USA
| | | | | | | |
Collapse
|
41
|
Weisman GA, Garrad RC, Erb LJ, Santos-Berrios C, Gonzalez FA. P2Y receptors in the nervous system: molecular studies of a P2Y2 receptor subtype from NG108-15 neuroblastoma x glioma hybrid cells. PROGRESS IN BRAIN RESEARCH 1999; 120:33-43. [PMID: 10550986 DOI: 10.1016/s0079-6123(08)63544-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- G A Weisman
- Department of Biochemistry, University of Missouri-Columbia 65212, USA.
| | | | | | | | | |
Collapse
|
42
|
Gallagher CJ, Salter MW. Nucleotide receptor signalling in spinal cord astrocytes: findings and functional implications. PROGRESS IN BRAIN RESEARCH 1999; 120:311-22. [PMID: 10551007 DOI: 10.1016/s0079-6123(08)63565-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Affiliation(s)
- C J Gallagher
- Hospital for Sick Children, University of Toronto, Ont., Canada
| | | |
Collapse
|
43
|
Janssens R, Paindavoine P, Parmentier M, Boeynaems JM. Human P2Y2 receptor polymorphism: identification and pharmacological characterization of two allelic variants. Br J Pharmacol 1999; 127:709-16. [PMID: 10401562 PMCID: PMC1566073 DOI: 10.1038/sj.bjp.0702619] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. In the process of cloning the human P2Y2 receptor in order to establish 1321N1 cell lines expressing this receptor, we detected a gene polymorphism characterized by an arginine 334 to cysteine 334 transition. 2. The frequency distribution of the polymorphism was studied in a European population. We observed that 66% of the tested persons are homozygotes R/R, 29% are heterozygotes R/C and 5% are homozygotes C/C. The frequency of the R allele was 0.8 versus 0.2 for the C allele. 3. We stably expressed each form of the human P2Y2 receptor into 1321N1 cells and isolated clones by limiting dilution. The effects of nucleotides and antagonists on inositol trisphosphate accumulation and cyclic AMP formation were compared between the two cell lines. 4. The time-courses of inositol trisphosphate accumulation as well as concentration-response curves characterizing the effects of UTP, ATP, AP4A and ATP gamma S were mostly similar, except for slight kinetic differences (slower time-course with the 334C form). 5. The sensitivity to pertussis toxin of inositol trisphosphates accumulation was critically dependent on the agonist concentration and stimulation duration, suggesting the involvement of a Gi.0 protein during the early stimulation by low nucleotide concentrations. No inhibition of cyclic AMP accumulation could be detected. These properties were observed with both polymorphic receptors.
Collapse
Affiliation(s)
- R Janssens
- Institute of Interdisciplinary Research, School of Medicine, Université Libre de Bruxelles, Belgium.
| | | | | | | |
Collapse
|
44
|
Clarke LL, Harline MC, Otero MA, Glover GG, Garrad RC, Krugh B, Walker NM, González FA, Turner JT, Weisman GA. Desensitization of P2Y2 receptor-activated transepithelial anion secretion. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C777-87. [PMID: 10199807 DOI: 10.1152/ajpcell.1999.276.4.c777] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Desensitization of P2Y2 receptor-activated anion secretion may limit the usefulness of extracellular nucleotides in secretagogue therapy of epithelial diseases, e.g., cystic fibrosis (CF). To investigate the desensitization process for endogenous P2Y2 receptors, freshly excised or cultured murine gallbladder epithelia (MGEP) were mounted in Ussing chambers to measure short-circuit current (Isc), an index of electrogenic anion secretion. Luminal treatment with nucleotide receptor agonists increased the Isc with a potency profile of ATP = UTP > 2-methylthioATP >> alpha,beta-methylene-ATP. RT-PCR revealed the expression of P2Y2 receptor mRNA in the MGEP cells. The desensitization of anion secretion required a 10-min preincubation with the P2Y2 receptor agonist UTP and increased in a concentration-dependent manner (IC50 approximately 10(-6) M). Approximately 40% of the anion secretory response was unaffected by maximal desensitizing concentrations of UTP. Recovery from UTP-induced desensitization was rapid (<10 min) at preincubation concentrations less than the EC50 (1.9 x 10(-6) M) but required progressively longer time periods at greater concentrations. UTP-induced total inositol phosphate production and intracellular Ca2+ mobilization desensitized with a concentration dependence similar to that of anion secretion. In contrast, maximal anion secretion induced by Ca2+ ionophore ionomycin was unaffected by preincubation with a desensitizing concentration of UTP. It was concluded that 1) desensitization of transepithelial anion secretion stimulated by the P2Y2 receptor agonist UTP is time and concentration dependent; 2) recovery from desensitization is prolonged (>90 min) at UTP concentrations >10(-5) M; and 3) UTP-induced desensitization occurs before the operation of the anion secretory mechanism.
Collapse
Affiliation(s)
- L L Clarke
- Dalton Cardiovascular Research Center and Department of Veterinary Biomedical Sciences, University of Missouri-Columbia, Columbia, Missouri 65211, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Uzlaner N, Priel Z. Interplay between the NO pathway and elevated [Ca2+]i enhances ciliary activity in rabbit trachea. J Physiol 1999; 516 ( Pt 1):179-90. [PMID: 10066932 PMCID: PMC2269217 DOI: 10.1111/j.1469-7793.1999.179aa.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
1. Average intracellular calcium concentration ([Ca2+]i) and ciliary beat frequency (CBF) were simultaneously measured in rabbit airway ciliated cells in order to elucidate the molecular events that lead to ciliary activation by purinergic stimulation. 2. Extracellular ATP and extracellular UTP caused a rapid increase in both [Ca2+]i and CBF. These effects were practically abolished by a phospholipase C inhibitor (U-73122) or by suramin. 3. The effects of extracellular ATP were not altered: when protein kinase C (PKC) was inhibited by either GF 109203X or chelerythrine chloride, or when protein kinase A (PKA) was inhibited by RP-adenosine 3', 5'-cyclic monophosphothioate triethylamine (Rp-cAMPS). 4. Activation of PKC by phorbol 12-myristate, 13-acetate (TPA) had little effect on CBF or on [Ca2+]i, while activation of PKA by forskolin or by dibutyryl-cAMP led to a small rise in CBF without affecting [Ca2+]i. 5. Direct activation of protein kinase G (PKG) with dibutyryl-cGMP had a negligible effect on CBF when [Ca2+]i was at basal level. However, dibutyryl-cGMP strongly elevated CBF when [Ca2+]i was elevated either by extracellular ATP or by ionomycin. 6. The findings suggest that the initial rise in [Ca2+]i induced by extracellular ATP activates the NO pathway, thus leading to PKG activation. In the continuous presence of elevated [Ca2+]i the stimulated PKG then induces a robust enhancement in CBF. In parallel, activated PKG plays a central role in Ca2+ influx via a still unidentified mechanism, and thus, through positive feedback, maintains CBF close to its maximal level in the continuous presence of ATP.
Collapse
Affiliation(s)
- N Uzlaner
- Department of Chemistry, Ben-Gurion University of the Negev, PO Box 653, Beer-Sheva 84105, Israel
| | | |
Collapse
|
46
|
P2Y2 nucleotide receptors expressed heterologously in sympathetic neurons inhibit both N-type Ca2+ and M-type K+ currents. J Neurosci 1998. [PMID: 9651200 DOI: 10.1523/jneurosci.18-14-05170.1998] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The P2Y2 receptor is a uridine/adenosine triphosphate (UTP/ATP)-sensitive G-protein-linked nucleotide receptor that previously has been reported to stimulate the phosphoinositide signaling pathway. Messenger RNA for this receptor has been detected in brain tissue. We have investigated the coupling of the molecularly defined rat P2Y2 receptor to neuronal N-type Ca2+ channels and to M-type K+ channels by heterologous expression in rat superior cervical sympathetic (SCG) neurons. After the injection of P2Y2 cRNA, UTP inhibited the currents carried by both types of ion channel. As previously reported [Filippov AK, Webb TE, Barnard EA, Brown DA (1997) Inhibition by heterologously expressed P2Y2 nuerones. Br J Pharmacol 121:849-851], UTP inhibited the Ca2+ current (ICa(N)) by up to 64%, with an IC50 of approximately 0.5 microM. We now find that UTP also inhibited the K+M current (IK(M)) by up to 61%, with an IC50 of approximately 1.5 microM. UTP had no effect on either current in neurons not injected with P2Y2 cRNA. Structure-activity relations for the inhibition of ICa(N) and IK(M) in P2Y2 cRNA-injected neurons were similar, with UTP >/= ATP > ITP >> GTP,UDP. However, coupling to these two channels involved different G-proteins: pretreatment with Pertussis toxin (PTX) did not affect UTP-induced inhibition of IK(M) but reduced inhibition of ICa(N) by approximately 60% and abolished the voltage-dependent component of this inhibition. In unclamped neurons, UTP greatly facilitated depolarization-induced action potential discharges. Thus, the single P2Y2 receptor can couple to at least two G-proteins to inhibit both Ca2+N and K+M channels with near-equal facility. This implies that the P2Y2 receptor may induce a broad range of effector responses in the nervous system.
Collapse
|
47
|
Filippov AK, Webb TE, Barnard EA, Brown DA. P2Y2 nucleotide receptors expressed heterologously in sympathetic neurons inhibit both N-type Ca2+ and M-type K+ currents. J Neurosci 1998; 18:5170-9. [PMID: 9651200 PMCID: PMC6793489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/1998] [Revised: 04/23/1998] [Accepted: 04/28/1998] [Indexed: 02/08/2023] Open
Abstract
The P2Y2 receptor is a uridine/adenosine triphosphate (UTP/ATP)-sensitive G-protein-linked nucleotide receptor that previously has been reported to stimulate the phosphoinositide signaling pathway. Messenger RNA for this receptor has been detected in brain tissue. We have investigated the coupling of the molecularly defined rat P2Y2 receptor to neuronal N-type Ca2+ channels and to M-type K+ channels by heterologous expression in rat superior cervical sympathetic (SCG) neurons. After the injection of P2Y2 cRNA, UTP inhibited the currents carried by both types of ion channel. As previously reported [Filippov AK, Webb TE, Barnard EA, Brown DA (1997) Inhibition by heterologously expressed P2Y2 nuerones. Br J Pharmacol 121:849-851], UTP inhibited the Ca2+ current (ICa(N)) by up to 64%, with an IC50 of approximately 0.5 microM. We now find that UTP also inhibited the K+M current (IK(M)) by up to 61%, with an IC50 of approximately 1.5 microM. UTP had no effect on either current in neurons not injected with P2Y2 cRNA. Structure-activity relations for the inhibition of ICa(N) and IK(M) in P2Y2 cRNA-injected neurons were similar, with UTP >/= ATP > ITP >> GTP,UDP. However, coupling to these two channels involved different G-proteins: pretreatment with Pertussis toxin (PTX) did not affect UTP-induced inhibition of IK(M) but reduced inhibition of ICa(N) by approximately 60% and abolished the voltage-dependent component of this inhibition. In unclamped neurons, UTP greatly facilitated depolarization-induced action potential discharges. Thus, the single P2Y2 receptor can couple to at least two G-proteins to inhibit both Ca2+N and K+M channels with near-equal facility. This implies that the P2Y2 receptor may induce a broad range of effector responses in the nervous system.
Collapse
Affiliation(s)
- A K Filippov
- Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | |
Collapse
|
48
|
Loredo GA, Benton HP. ATP and UTP activate calcium-mobilizing P2U-like receptors and act synergistically with interleukin-1 to stimulate prostaglandin E2 release from human rheumatoid synovial cells. ARTHRITIS AND RHEUMATISM 1998; 41:246-55. [PMID: 9485082 DOI: 10.1002/1529-0131(199802)41:2<246::aid-art8>3.0.co;2-i] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE To pharmacologically and functionally characterize calcium-mobilizing purine receptors on adherent human rheumatoid synovial cells. METHODS Fura-2-loaded synovial cells were screened for changes in cytosolic calcium concentration after the addition of purine receptor agonists. Release of interleukin-1 (IL-1) and prostaglandin E2 (PGE2) was assessed by enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay, respectively. The effect of IL-1 prestimulation on purine-mediated PGE2 release was determined. RESULTS ATP (1-100 microM) and UTP (1-100 microM), but not 2-methylthio-ATP or adenosine, stimulated mobilization of calcium from intracellular stores in synovial cells. ATP and UTP stimulated a small, but significant, increase in PG release from resting synoviocytes and a dramatic increase in PG release from synoviocytes prestimulated with recombinant human IL-1alpha. Neither ATP nor UTP stimulated synoviocyte release of IL-1 as measured by specific ELISA. The effects of ATP and UTP on PG secretion were mimicked by phorbol 12-myristate 13-acetate and thapsigargin, and blocked by BAPTA buffering of cytosolic calcium. CONCLUSION Adherent human rheumatoid synovial cells mobilize intracellular calcium via a P2U-like purine receptor. P2U receptor agonists stimulate PGE2 release from synoviocytes, an effect that is greatly enhanced by IL-1alpha prestimulation and blocked by intracellular calcium buffering.
Collapse
Affiliation(s)
- G A Loredo
- University of California, Davis 95616, USA
| | | |
Collapse
|
49
|
Soltoff SP, Avraham H, Avraham S, Cantley LC. Activation of P2Y2 receptors by UTP and ATP stimulates mitogen-activated kinase activity through a pathway that involves related adhesion focal tyrosine kinase and protein kinase C. J Biol Chem 1998; 273:2653-60. [PMID: 9446569 DOI: 10.1074/jbc.273.5.2653] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We examined downstream signaling events that followed the exposure of PC12 cells to extracellular ATP and UTP, and we compared the effects of these P2 receptor agonists with those of growth factors and other stimuli. Based on early findings, we focused particular attention on the mitogen-activated protein (MAP) kinase pathway. ATP and/or UTP produced increases in tyrosine phosphorylation of multiple proteins, including p42 MAP (ERK2) kinase, related adhesion focal tyrosine kinase (RAFTK) (PYK2, CAKbeta), focal adhesion kinase (FAK), Shc, and protein kinase Cdelta (PKCdelta). MAP (ERK2) kinase activity (quantified by substrate phosphorylation) was increased by UTP, ATP, phorbol 12-myristate 13-acetate, ionomycin, and growth factors. UTP and ATP were equipotent (EC50 approximately 25 microM) in stimulating MAP kinase activity, suggesting that these effects were mediated via the Gi-linked P2Y2 (P2U) receptor. Consistent with this, the UTP- and ATP-promoted activation of MAP kinase was diminished in pertussis toxin-treated cells. Treatment of cells with pertussis toxin also reduced both the UTP-dependent increases in intracellular calcium ion concentration ([Ca2+]i) and the tyrosine phosphorylation of RAFTK. Similarly, when [Ca2+]i elevation was prevented using BAPTA and EGTA, the activation of MAP kinase by UTP and ionomycin was blocked, and the tyrosine phosphorylation of RAFTK was reduced. The UTP-promoted increase in MAP kinase activity was partially reduced in cells in which PKC was down-regulated, suggesting that both PKC-dependent and PKC-independent pathways were involved. PKCdelta, which increases MAP kinase activity in some systems, became tyrosine-phosphorylated within 15 s of exposure of cells to ATP or UTP; but epidermal growth factor, nerve growth factor, and insulin had little effect. UTP also promoted the association of Shc with Grb2. These results suggest that the P2Y2 receptor-initiated activation of MAP kinase was dependent on the elevation of [Ca2+]i, involved the recruitment of Shc and Grb2, and was mediated by RAFTK and PKC.
Collapse
Affiliation(s)
- S P Soltoff
- Division of Signal Transduction,Beth Israel Deaconess Medical Center, Boston, Massachusetts 02215, USA.
| | | | | | | |
Collapse
|
50
|
Nobles M, Abbott NJ. Decline of the calcium response on successive stimulation of a rat brain endothelial cell P2U purinoceptor. ACTA PHYSIOLOGICA SCANDINAVICA 1998; 162:69-76. [PMID: 9492904 DOI: 10.1046/j.1365-201x.1998.0282f.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A microfluorimetric method using Fura-2 as calcium indicator was used to study the mechanism of desensitization of the calcium response evoked by activation of a brain endothelial cell P2U receptor. The study was mainly carried out on an immortalized rat brain endothelial cell line (RBE4), with some additional experiments on primary cultured rat brain microvascular endothelial cells. As previously described (Nobles et al. 1995), ATP (100 microM, 20 s) caused a transient increase in intracellular calcium levels ([Ca2+]i). This effect was dependent on the rate of filling of intracellular calcium stores, since a large inhibition of the ATP-mediated response was seen in the presence of cyclopiazonic acid, an inhibitor of the store Ca(2+)-ATPase. Application of repeated pulses of extracellular ATP led to a desensitization of the response, as measured by a decline in the release of intracellular calcium (Nobles et al. 1995). This desensitization was partially reversed after 300 s of incubation in agonist-free medium. Extracellular phosphorylation of the purinergic receptor appeared not to be involved in the desensitization process, since a similar rate of desensitization was obtained with the non-hydrolysable ATP analogue ATP gammaS. Oxidation of the purinergic receptor cannot account for the desensitization, since the decline of the ATP-mediated response was unchanged in the presence of 3 mM dithiothreitol. In the presence of ATP together with UTP, two equally potent activators of the P2U receptor, the desensitization was less than in the presence of only one of the agonists. The desensitization was greater when ATP was applied for longer (150 s) periods. Although these results do not exclude the participation of post-receptor events in the desensitization process, they suggest that desensitization is governed at least in part by agonist-receptor interaction.
Collapse
Affiliation(s)
- M Nobles
- King's College London, Physiology Group, Biomedical Sciences Division, Strand, UK
| | | |
Collapse
|