1
|
Yamashita H, Matsumoto T, Kawashima K, Abdulla Daanaa HS, Yang Z, Akashi H. Dinucleotide preferences underlie apparent codon preference reversals in the Drosophila melanogaster lineage. Proc Natl Acad Sci U S A 2025; 122:e2419696122. [PMID: 40402244 DOI: 10.1073/pnas.2419696122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/21/2025] [Indexed: 05/23/2025] Open
Abstract
We employ fine-scale population genetic analyses to reveal dynamics among interacting forces that act at synonymous sites and introns among closely related Drosophila species. Synonymous codon usage bias has proven to be well suited for population genetic inference. Under major codon preference (MCP), translationally superior "major" codons confer fitness benefits relative to their less efficiently and/or accurately decoded synonymous counterparts. Our codon family and lineage-specific analyses expand on previous findings in the Drosophila simulans lineage; patterns in naturally occurring polymorphism demonstrate fixation biases toward GC-ending codons that are consistent in direction, but heterogeneous in magnitude, among synonymous families. These forces are generally stronger than fixation biases in intron sequences. In contrast, population genetic analyses reveal unexpected evidence of codon preference reversals in the Drosophila melanogaster lineage. Codon family-specific polymorphism patterns support reduced efficacy of natural selection in most synonymous families but indicate reversals of favored states in the four codon families encoded by NAY. Accelerated synonymous fixations in favor of NAT and greater differences for both allele frequencies and fixation rates among X-linked, relative to autosomal, loci bolster support for fitness effect reversals. The specificity of preference reversals to codons whose cognate tRNAs undergo wobble position queuosine modification is intriguing. However, our analyses reveal prevalent dinucleotide preferences for ApT over ApC that act in opposition to GC-favoring forces in both coding and intron regions. We present evidence that changes in the relative efficacy of translational selection and dinucleotide preference underlie apparent codon preference reversals.
Collapse
Affiliation(s)
- Haruka Yamashita
- Laboratory of Evolutionary Genetics, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Tomotaka Matsumoto
- Laboratory of Evolutionary Genetics, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Kent Kawashima
- Laboratory of Evolutionary Genetics, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Hassan Sibroe Abdulla Daanaa
- Laboratory of Evolutionary Genetics, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Ziheng Yang
- Department of Genetics, Evolution and Environment, University College London, London WC1E 6BT, United Kingdom
| | - Hiroshi Akashi
- Laboratory of Evolutionary Genetics, Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
2
|
Lewin L, Eyre-Walker A. Estimates of the Mutation Rate per Year Can Explain Why the Molecular Clock Depends on Generation Time. Mol Biol Evol 2025; 42:msaf069. [PMID: 40131319 PMCID: PMC11969216 DOI: 10.1093/molbev/msaf069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/19/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025] Open
Abstract
Rates of molecular evolution are known to vary across species, often deviating from the classical expectation of a strict molecular clock. In many cases, the rate of molecular evolution has been found to correlate to generation time, an effect that could be explained if species with shorter generation times have higher mutation rates per year. We investigate this hypothesis using direct estimates of the mutation rate for 133 eukaryotic species from diverse taxonomic groups. Using a phylogenetic comparative approach, we find a strong negative correlation between mutation rate per year and generation time, consistent across all phylogenetic groups. Our results provide a simple explanation for why generation time plays a pivotal role in driving rates of molecular evolution across eukaryotes.
Collapse
Affiliation(s)
- Loveday Lewin
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | - Adam Eyre-Walker
- School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| |
Collapse
|
3
|
Popovic I, Bergeron LA, Bozec YM, Waldvogel AM, Howitt SM, Damjanovic K, Patel F, Cabrera MG, Wörheide G, Uthicke S, Riginos C. High germline mutation rates, but not extreme population outbreaks, influence genetic diversity in a keystone coral predator. PLoS Genet 2024; 20:e1011129. [PMID: 38346089 PMCID: PMC10861045 DOI: 10.1371/journal.pgen.1011129] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
Lewontin's paradox, the observation that levels of genetic diversity (π) do not scale linearly with census population size (Nc) variation, is an evolutionary conundrum. The most extreme mismatches between π and Nc are found for highly abundant marine invertebrates. Yet, the influences of new mutations on π relative to extrinsic processes such as Nc fluctuations are unknown. Here, we provide the first germline mutation rate (μ) estimate for a marine invertebrate in corallivorous crown-of-thorns sea stars (Acanthaster cf. solaris). We use high-coverage whole-genome sequencing of 14 parent-offspring trios alongside empirical estimates of Nc in Australia's Great Barrier Reef to jointly examine the determinants of π in populations undergoing extreme Nc fluctuations. The A. cf. solaris mean μ was 9.13 x 10-09 mutations per-site per-generation (95% CI: 6.51 x 10-09 to 1.18 x 10-08), exceeding estimates for other invertebrates and showing greater concordance with vertebrate mutation rates. Lower-than-expected Ne (~70,000-180,000) and low Ne/Nc values (0.0047-0.048) indicated weak influences of population outbreaks on long-term π. Our findings are consistent with elevated μ evolving in response to reduced Ne and generation time length, with important implications for explaining high mutational loads and the determinants of genetic diversity in marine invertebrate taxa.
Collapse
Affiliation(s)
- Iva Popovic
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| | - Lucie A. Bergeron
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Yves-Marie Bozec
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Samantha M. Howitt
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| | | | - Frances Patel
- Australian Institute of Marine Science, Townsville, Australia
| | | | - Gert Wörheide
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, Munich, Germany
- GeoBio-Center, Ludwig-Maximilians-Universität München, Munich, Germany
- Staatliche Naturwissenschaftliche Sammlungen Bayerns (SNSB)–Bayerische Staatssammlung für Paläontologie und Geologie, Munich, Germany
| | - Sven Uthicke
- Australian Institute of Marine Science, Townsville, Australia
| | - Cynthia Riginos
- School of the Environment, The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
4
|
Bergeron LA, Besenbacher S, Zheng J, Li P, Bertelsen MF, Quintard B, Hoffman JI, Li Z, St Leger J, Shao C, Stiller J, Gilbert MTP, Schierup MH, Zhang G. Evolution of the germline mutation rate across vertebrates. Nature 2023; 615:285-291. [PMID: 36859541 PMCID: PMC9995274 DOI: 10.1038/s41586-023-05752-y] [Citation(s) in RCA: 128] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/23/2023] [Indexed: 03/03/2023]
Abstract
The germline mutation rate determines the pace of genome evolution and is an evolving parameter itself1. However, little is known about what determines its evolution, as most studies of mutation rates have focused on single species with different methodologies2. Here we quantify germline mutation rates across vertebrates by sequencing and comparing the high-coverage genomes of 151 parent-offspring trios from 68 species of mammals, fishes, birds and reptiles. We show that the per-generation mutation rate varies among species by a factor of 40, with mutation rates being higher for males than for females in mammals and birds, but not in reptiles and fishes. The generation time, age at maturity and species-level fecundity are the key life-history traits affecting this variation among species. Furthermore, species with higher long-term effective population sizes tend to have lower mutation rates per generation, providing support for the drift barrier hypothesis3. The exceptionally high yearly mutation rates of domesticated animals, which have been continually selected on fecundity traits including shorter generation times, further support the importance of generation time in the evolution of mutation rates. Overall, our comparative analysis of pedigree-based mutation rates provides ecological insights on the mutation rate evolution in vertebrates.
Collapse
Affiliation(s)
- Lucie A Bergeron
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | - Søren Besenbacher
- Department of Molecular Medicine, Aarhus University, Aarhus, Denmark
| | - Jiao Zheng
- BGI-Shenzhen, Shenzhen, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, China
| | | | | | | | - Joseph I Hoffman
- Department of Animal Behaviour, Bielefeld University, Bielefeld, Germany
- British Antarctic Survey, High Cross, Cambridge, UK
| | - Zhipeng Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Judy St Leger
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, USA
| | - Changwei Shao
- Key Lab of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Josefin Stiller
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, The GLOBE Institute, University of Copenhagen, Copenhagen, Denmark
- University Museum, NTNU, Trondheim, Norway
| | | | - Guojie Zhang
- Villum Centre for Biodiversity Genomics, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Copenhagen, Denmark.
- Centre for Evolutionary & Organismal Biology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China.
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
5
|
Barrett M, Fischer B. Challenges in farmed insect welfare: Beyond the question of sentience. Anim Welf 2023; 32:e4. [PMID: 38487436 PMCID: PMC10936363 DOI: 10.1017/awf.2022.5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 01/27/2023]
Abstract
The global Insects as Food and Feed (IAFF) industry currently farms over a trillion individual insects a year and is growing rapidly. Intensive animal production systems are known to cause a range of negative affective states in livestock; given the potential scale of the IAFF industry, it is urgent to consider the welfare of the industry's insect livestock. The majority of the literature on farmed insect welfare has focused on: (i) establishing that insect welfare ought to be of concern; or (ii) extending vertebrate welfare frameworks to insects. However, there are many overlooked challenges to studying insect welfare and applying that knowledge in IAFF industry contexts. Here, we briefly review five of these challenges. We end with practical recommendations for the future study of insect welfare.
Collapse
Affiliation(s)
- Meghan Barrett
- Department of Biology, California State University Dominguez Hills, Carson, CA90747, USA
| | - Bob Fischer
- Department of Philosophy, Texas State University, 601 University Dr, San Marcos, TX78666, USA
| |
Collapse
|
6
|
Xiong T, Li X, Yago M, Mallet J. Admixture of evolutionary rates across a butterfly hybrid zone. eLife 2022; 11:e78135. [PMID: 35703474 PMCID: PMC9246367 DOI: 10.7554/elife.78135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/14/2022] [Indexed: 12/26/2022] Open
Abstract
Hybridization is a major evolutionary force that can erode genetic differentiation between species, whereas reproductive isolation maintains such differentiation. In studying a hybrid zone between the swallowtail butterflies Papilio syfanius and Papilio maackii (Lepidoptera: Papilionidae), we made the unexpected discovery that genomic substitution rates are unequal between the parental species. This phenomenon creates a novel process in hybridization, where genomic regions most affected by gene flow evolve at similar rates between species, while genomic regions with strong reproductive isolation evolve at species-specific rates. Thus, hybridization mixes evolutionary rates in a way similar to its effect on genetic ancestry. Using coalescent theory, we show that the rate-mixing process provides distinct information about levels of gene flow across different parts of genomes, and the degree of rate-mixing can be predicted quantitatively from relative sequence divergence ([Formula: see text]) between the hybridizing species at equilibrium. Overall, we demonstrate that reproductive isolation maintains not only genomic differentiation, but also the rate at which differentiation accumulates. Thus, asymmetric rates of evolution provide an additional signature of loci involved in reproductive isolation.
Collapse
Affiliation(s)
- Tianzhu Xiong
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - Xueyan Li
- Kunming Institute of Zoology, Chinese Academy of SciencesKunmingChina
| | - Masaya Yago
- The University Museum, The University of TokyoTokyoJapan
| | - James Mallet
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| |
Collapse
|
7
|
Cavin L, Alvarez N. Why Coelacanths Are Almost “Living Fossils”? Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.896111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Luzuriaga-Neira AR, Alvarez-Ponce D. Rates of Protein Evolution across the Marsupial Phylogeny: Heterogeneity and Link to Life-History Traits. Genome Biol Evol 2022; 14:evab277. [PMID: 34894228 PMCID: PMC8759560 DOI: 10.1093/gbe/evab277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 11/15/2022] Open
Abstract
Despite the importance of effective population size (Ne) in evolutionary and conservation biology, it remains unclear what factors have an impact on this quantity. The Nearly Neutral Theory of Molecular Evolution predicts a faster accumulation of deleterious mutations (and thus a higher dN/dS ratio) in populations with small Ne; thus, measuring dN/dS ratios in different groups/species can provide insight into their Ne. Here, we used an exome data set of 1,550 loci from 45 species of marsupials representing 18 of the 22 extant families, to estimate dN/dS ratios across the different branches and families of the marsupial phylogeny. We found a considerable heterogeneity in dN/dS ratios among families and species, which suggests significant differences in their Ne. Furthermore, our multivariate analyses of several life-history traits showed that dN/dS ratios (and thus Ne) are affected by body weight, body length, and weaning age.
Collapse
|
9
|
Gu X. Random Penetrance of Mutations Among Individuals: A New Type of Genetic Drift in Molecular Evolution. PHENOMICS (CHAM, SWITZERLAND) 2021; 1:105-112. [PMID: 36939798 PMCID: PMC9590493 DOI: 10.1007/s43657-021-00013-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 06/18/2023]
Abstract
The determinative view of mutation penetrance is a fundamental assumption for the building of molecular evolutionary theory: individuals in the population with the same genotype have the same fitness effect. Since this view has been constantly challenged by experimental evidence, it is desirable to examine to what extent violation of this view could affect our understanding of molecular evolution. To this end, the author formulated a new theory of molecular evolution under a random model of penetrance: for any individual with the same mutational genotype, the coefficient of selection is a random variable. It follows that, in addition to the conventional N e-genetic drift (N e is the effective population size), the variance of penetrance among individuals (ε 2) represents a new type of genetic drift, coined by the ε 2-genetic drift. It has been demonstrated that these two genetic drifts together provided new insights on the nearly neutral evolution: the evolutionary rate is inversely related to the log-of-N e when the ε 2-genetic drift is nontrivial. This log-of-N e feature of ε 2-genetic drift did explain well why the d N /d S ratio (the nonsynonymous rate to the synonymous rate) in humans is only as twofold as that in mice, while the effective population size (N e) of mice is about two-magnitude larger than that of humans. It was estimated that, for the first time, the variance of random penetrance in mammalian genes was approximately ε 2 ≈ 5.89 × 10-3.
Collapse
Affiliation(s)
- Xun Gu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
10
|
Bergeron LA, Besenbacher S, Bakker J, Zheng J, Li P, Pacheco G, Sinding MHS, Kamilari M, Gilbert MTP, Schierup MH, Zhang G. The germline mutational process in rhesus macaque and its implications for phylogenetic dating. Gigascience 2021; 10:giab029. [PMID: 33954793 PMCID: PMC8099771 DOI: 10.1093/gigascience/giab029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Understanding the rate and pattern of germline mutations is of fundamental importance for understanding evolutionary processes. RESULTS Here we analyzed 19 parent-offspring trios of rhesus macaques (Macaca mulatta) at high sequencing coverage of ∼76× per individual and estimated a mean rate of 0.77 × 10-8de novo mutations per site per generation (95% CI: 0.69 × 10-8 to 0.85 × 10-8). By phasing 50% of the mutations to parental origins, we found that the mutation rate is positively correlated with the paternal age. The paternal lineage contributed a mean of 81% of the de novo mutations, with a trend of an increasing male contribution for older fathers. Approximately 3.5% of de novo mutations were shared between siblings, with no parental bias, suggesting that they arose from early development (postzygotic) stages. Finally, the divergence times between closely related primates calculated on the basis of the yearly mutation rate of rhesus macaque generally reconcile with divergence estimated with molecular clock methods, except for the Cercopithecoidea/Hominoidea molecular divergence dated at 58 Mya using our new estimate of the yearly mutation rate. CONCLUSIONS When compared to the traditional molecular clock methods, new estimated rates from pedigree samples can provide insights into the evolution of well-studied groups such as primates.
Collapse
Affiliation(s)
- Lucie A Bergeron
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - Søren Besenbacher
- Department of Molecular Medicine, Aarhus University, Brendstrupgårdsvej 21A, 8200 Aarhus N, Denmark
| | - Jaco Bakker
- Animal Science Department, Biomedical Primate Research Centre, Lange Kleiweg 161, 2288 GJ Rijswijk, Netherlands
| | - Jiao Zheng
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
- BGI Education Center, University of Chinese Academy of Sciences, Shenzhen 518083, Guangdong, China
| | - Panyi Li
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
| | - George Pacheco
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Oester Voldgade 5-7, 1350 Copenhagen K, Denmark
| | - Mikkel-Holger S Sinding
- Department of genetics, Trinity College Dublin, 2 college green, D02 VF25, Dublin, Ireland
- Greenland Institute of Natural Resources, Kivioq 2, 3900 Nuuk, Greenland
| | - Maria Kamilari
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
| | - M Thomas P Gilbert
- Section for Evolutionary Genomics, The GLOBE Institute, University of Copenhagen, Oester Voldgade 5-7, 1350 Copenhagen K, Denmark
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | - Mikkel H Schierup
- Bioinformatics Research Centre, Aarhus University, C.F.Møllers Allé 8, 8000, Aarhus C, Denmark
| | - Guojie Zhang
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen Ø, Denmark
- BGI-Shenzhen, Shenzhen 518083, Guangdong, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming 650223, China
| |
Collapse
|
11
|
Herrera-Álvarez S, Karlsson E, Ryder OA, Lindblad-Toh K, Crawford AJ. How to Make a Rodent Giant: Genomic Basis and Tradeoffs of Gigantism in the Capybara, the World's Largest Rodent. Mol Biol Evol 2021; 38:1715-1730. [PMID: 33169792 PMCID: PMC8097284 DOI: 10.1093/molbev/msaa285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Gigantism results when one lineage within a clade evolves extremely large body size relative to its small-bodied ancestors, a common phenomenon in animals. Theory predicts that the evolution of giants should be constrained by two tradeoffs. First, because body size is negatively correlated with population size, purifying selection is expected to be less efficient in species of large body size, leading to increased mutational load. Second, gigantism is achieved through generating a higher number of cells along with higher rates of cell proliferation, thus increasing the likelihood of cancer. To explore the genetic basis of gigantism in rodents and uncover genomic signatures of gigantism-related tradeoffs, we assembled a draft genome of the capybara (Hydrochoerus hydrochaeris), the world's largest living rodent. We found that the genome-wide ratio of nonsynonymous to synonymous mutations (ω) is elevated in the capybara relative to other rodents, likely caused by a generation-time effect and consistent with a nearly neutral model of molecular evolution. A genome-wide scan for adaptive protein evolution in the capybara highlighted several genes controlling postnatal bone growth regulation and musculoskeletal development, which are relevant to anatomical and developmental modifications for an increase in overall body size. Capybara-specific gene-family expansions included a putative novel anticancer adaptation that involves T-cell-mediated tumor suppression, offering a potential resolution to the increased cancer risk in this lineage. Our comparative genomic results uncovered the signature of an intragenomic conflict where the evolution of gigantism in the capybara involved selection on genes and pathways that are directly linked to cancer.
Collapse
Affiliation(s)
| | - Elinor Karlsson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Oliver A Ryder
- San Diego Zoo Institute for Conservation Research, San Diego Zoo Global, Escondido, CA, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Andrew J Crawford
- Department of Biological Sciences, Universidad de Los Andes, Bogotá, Colombia
| |
Collapse
|
12
|
May JA, Feng Z, Orton MG, Adamowicz SJ. The Effects of Ecological Traits on the Rate of Molecular Evolution in Ray-Finned Fishes: A Multivariable Approach. J Mol Evol 2020; 88:689-702. [PMID: 33009923 DOI: 10.1007/s00239-020-09967-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 09/22/2020] [Indexed: 11/25/2022]
Abstract
Myriad environmental and biological traits have been investigated for their roles in influencing the rate of molecular evolution across various taxonomic groups. However, most studies have focused on a single trait, while controlling for additional factors in an informal way, generally by excluding taxa. This study utilized a dataset of cytochrome c oxidase subunit I (COI) barcode sequences from over 7000 ray-finned fish species to test the effects of 27 traits on molecular evolutionary rates. Environmental traits such as temperature were considered, as were traits associated with effective population size including body size and age at maturity. It was hypothesized that these traits would demonstrate significant correlations with substitution rate in a multivariable analysis due to their associations with mutation and fixation rates, respectively. A bioinformatics pipeline was developed to assemble and analyze sequence data retrieved from the Barcode of Life Data System (BOLD) and trait data obtained from FishBase. For use in phylogenetic regression analyses, a maximum likelihood tree was constructed from the COI sequence data using a multi-gene backbone constraint tree covering 71% of the species. A variable selection method that included both single- and multivariable analyses was used to identify traits that contribute to rate heterogeneity estimated from different codon positions. Our analyses revealed that molecular rates associated most significantly with latitude, body size, and habitat type. Overall, this study presents a novel and systematic approach for integrative data assembly and variable selection methodology in a phylogenetic framework.
Collapse
Affiliation(s)
- Jacqueline A May
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada.
| | - Zeny Feng
- Department of Mathematics and Statistics, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Matthew G Orton
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| | - Sarah J Adamowicz
- Department of Integrative Biology and Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
13
|
Babarinde IA, Saitou N. The Dynamics, Causes, and Impacts of Mammalian Evolutionary Rates Revealed by the Analyses of Capybara Draft Genome Sequences. Genome Biol Evol 2020; 12:1444-1458. [PMID: 32835375 DOI: 10.1093/gbe/evaa157] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2020] [Indexed: 12/23/2022] Open
Abstract
Capybara (Hydrochoerus hydrochaeri) is the largest species among the extant rodents. The draft genome of capybara was sequenced with the estimated genome size of 2.6 Gb. Although capybara is about 60 times larger than guinea pig, comparative analyses revealed that the neutral evolutionary rates of the two species were not substantially different. However, analyses of 39 mammalian genomes revealed very heterogeneous evolutionary rates. The highest evolutionary rate, 8.5 times higher than the human rate, was found in the Cricetidae-Muridae common ancestor after the divergence of Spalacidae. Muridae, the family with the highest number of species among mammals, emerged after the rate acceleration. Factors responsible for the evolutionary rate heterogeneity were investigated through correlations between the evolutionary rate and longevity, gestation length, litter frequency, litter size, body weight, generation interval, age at maturity, and taxonomic order. The regression analysis of these factors showed that the model with three factors (taxonomic order, generation interval, and litter size) had the highest predictive power (R2 = 0.74). These three factors determine the number of meiosis per unit time. We also conducted transcriptome analysis and found that the evolutionary rate dynamics affects the evolution of gene expression patterns.
Collapse
Affiliation(s)
- Isaac Adeyemi Babarinde
- Department of Biological Sciences, Southern University of Science and Technology, Shenzhen, China.,Population Genetics Laboratory, National Institute of Genetics, Mishima, Japan
| | - Naruya Saitou
- Population Genetics Laboratory, National Institute of Genetics, Mishima, Japan.,School of Medicine, University of the Ryukyus, Okinawa, Japan.,Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima, Japan.,Department of Biological Sciences, Graduate School of Science, University of Tokyo, Japan
| |
Collapse
|
14
|
Gamage AM, Zhu F, Ahn M, Foo RJH, Hey YY, Low DHW, Mendenhall IH, Dutertre CA, Wang LF. Immunophenotyping monocytes, macrophages and granulocytes in the Pteropodid bat Eonycteris spelaea. Sci Rep 2020; 10:309. [PMID: 31941952 PMCID: PMC6962400 DOI: 10.1038/s41598-019-57212-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/12/2019] [Indexed: 02/07/2023] Open
Abstract
Bats are asymptomatic reservoir hosts for several highly pathogenic viruses. Understanding this enigmatic relationship between bats and emerging zoonotic viruses requires tools and approaches which enable the comparative study of bat immune cell populations and their functions. We show that bat genomes have a conservation of immune marker genes which delineate phagocyte populations in humans, while lacking key mouse surface markers such as Ly6C and Ly6G. Cross-reactive antibodies against CD44, CD11b, CD14, MHC II, and CD206 were multiplexed to characterize circulating monocytes, granulocytes, bone-marrow derived macrophages (BMDMs) and lung alveolar macrophages (AMs) in the cave nectar bat Eonycteris spelaea. Transcriptional profiling of bat monocytes and BMDMs identified additional markers – including MARCO, CD68, CD163, CD172α, and CD88 – which can be used to further characterize bat myeloid populations. Bat cells often resembled their human counterparts when comparing immune parameters that are divergent between humans and mice, such as the expression patterns of certain immune cell markers. A genome-wide comparison of immune-related genes also revealed a much closer phylogenetic relationship between bats and humans compared to rodents. Taken together, this study provides a set of tools and a comparative framework which will be important for unravelling viral disease tolerance mechanisms in bats.
Collapse
Affiliation(s)
- Akshamal M Gamage
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Feng Zhu
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Matae Ahn
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Randy Jee Hiang Foo
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ying Ying Hey
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Dolyce H W Low
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Ian H Mendenhall
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Charles-Antoine Dutertre
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Singapore Immunology Network (SIgN), Agency for Science Technology and Research (A*STAR), Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
15
|
Liu H, Zhang J. Yeast Spontaneous Mutation Rate and Spectrum Vary with Environment. Curr Biol 2019; 29:1584-1591.e3. [PMID: 31056389 DOI: 10.1016/j.cub.2019.03.054] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022]
Abstract
Mutation is the ultimate genetic source of evolution and biodiversity, but to what extent the environment impacts mutation rate and spectrum is poorly understood. Past studies discovered mutagenesis induced by antibiotic treatment or starvation, but its relevance and importance to long-term evolution is unclear because these severe stressors typically halt cell growth and/or cause substantial cell deaths. Here, we quantify the mutation rate and spectrum in Saccharomyces cerevisiae by whole-genome sequencing following mutation accumulation in each of seven environments with relatively rapid cell growths and minimal cell deaths. We find the point mutation rate per generation to differ by 3.6-fold among the seven environments, generally increasing in environments with slower cell growths. This trend renders the mutation rate per year more constant than that per generation across environments, which has implications for neutral evolution and the molecular clock. Additionally, we find substantial among-environment variations in mutation spectrum, such as the transition to transversion ratio and AT mutational bias. Other main mutation types, including small insertion or deletion, segmental duplication or deletion, and chromosome gain or loss also tend to occur more frequently in environments where yeast grows more slowly. In contrast to these findings from the nuclear genome, the yeast mitochondrial mutation rate rises with the growth rate, consistent with the metabolic rate hypothesis. Together, these observations indicate that environmental changes, which are ubiquitous in nature, influence not only natural selection, but also the amount and type of mutations available to selection, and suggest that ignoring the latter impact, as is currently practiced, may mislead evolutionary inferences.
Collapse
Affiliation(s)
- Haoxuan Liu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
16
|
Subramanian S. Influence of Effective Population Size on Genes under Varying Levels of Selection Pressure. Genome Biol Evol 2018; 10:756-762. [PMID: 29608718 PMCID: PMC5841380 DOI: 10.1093/gbe/evy047] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2018] [Indexed: 11/14/2022] Open
Abstract
The ratio of diversities at amino acid changing (nonsynonymous) and neutral (synonymous) sites (ω = πN/πS) is routinely used to measure the intensity of selection pressure. It is well known that this ratio is influenced by the effective population size (Ne) and selection coefficient (s). Here, we examined the effects of effective population size on ω by comparing protein-coding genes from Mus musculus castaneus and Mus musculus musculus-two mouse subspecies with different Ne. Our results revealed a positive relationship between the magnitude of selection intensity and the ω estimated for genes. For genes under high selective constraints, the ω estimated for the subspecies with small Ne (M. m. musculus) was three times higher than that observed for that with large Ne (M. m. castaneus). However, this difference was only 18% for genes under relaxed selective constraints. We showed that the observed relationship is qualitatively similar to the theoretical predictions. We also showed that, for highly expressed genes, the ω of M. m. musculus was 2.1 times higher than that of M.m. castaneus and this difference was only 27% for genes with low expression levels. These results suggest that the effect of effective population size is more pronounced in genes under high purifying selection. Hence the choice of genes is important when ω is used to infer the effective size of a population.
Collapse
Affiliation(s)
- Sankar Subramanian
- GeneCology Research Centre, The University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| |
Collapse
|
17
|
Saclier N, François CM, Konecny-Dupré L, Lartillot N, Guéguen L, Duret L, Malard F, Douady CJ, Lefébure T. Life History Traits Impact the Nuclear Rate of Substitution but Not the Mitochondrial Rate in Isopods. Mol Biol Evol 2018; 35:2900-2912. [DOI: 10.1093/molbev/msy184] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Nathanaëlle Saclier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Clémentine M François
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Lara Konecny-Dupré
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Nicolas Lartillot
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Laurent Guéguen
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Laurent Duret
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France
| | - Florian Malard
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| | - Christophe J Douady
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
- Institut Universitaire de France, Paris, France
| | - Tristan Lefébure
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS UMR 5023, ENTPE, Laboratoire d’Ecologie des Hydrosystèmes Naturels et Anthropisés, Villeurbanne, France
| |
Collapse
|
18
|
Abstract
The prevalence of purifying selection in the nature suggests that larger organisms bear a higher number of slightly deleterious mutations because of smaller populations and therefore weaker selection. In this work redistribution of purifying selection in favor of information genes, pathways and processes was found in primates compared with treeshrew and rodents on the ground of genome-wide analysis. The genes which are more favored in primates belong mainly to regulation of gene expression and development, in treeshrew and rodents, to metabolism, transport, energetics, reproduction and olfaction. The former occur predominantly in the nucleus, the latter, in the cytoplasm and membranes. Thus, although purifying selection is on average weaker in the primates, it is stronger concentrated on the "information technology" of life (regulation of gene expression and development). Increased accuracy of information processes probably allows escaping "error catastrophes" in spite of more complex organization, larger body size and higher longevity.
Collapse
|
19
|
Worsham MLD, Julius EP, Nice CC, Diaz PH, Huffman DG. Geographic isolation facilitates the evolution of reproductive isolation and morphological divergence. Ecol Evol 2017; 7:10278-10288. [PMID: 29238554 PMCID: PMC5723600 DOI: 10.1002/ece3.3474] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 07/17/2017] [Accepted: 08/31/2017] [Indexed: 11/07/2022] Open
Abstract
Geographic isolation is known to contribute to divergent evolution, resulting in unique phenotypes. Oftentimes morphologically distinct populations are found to be interfertile while reproductive isolation is found to exist within nominal morphological species revealing the existence of cryptic species. These disparities can be difficult to predict or explain especially when they do not reflect an inferred history of common ancestry which suggests that environmental factors affect the nature of ecological divergence. A series of laboratory experiments and observational studies were used to address what role biogeographic factors may play in the ecological divergence of Hyalella amphipods. It was found that geographic isolation plays a key role in the evolution of reproductive isolation and divergent morphology and that divergence cannot be explained by molecular genetic variation.
Collapse
Affiliation(s)
- McLean L. D. Worsham
- Department of BiologyTexas State UniversitySan MarcosTXUSA
- Department of ZoologyUniversity of HawaiiHonoluluHIUSA
| | - Eric P. Julius
- Department of BiologyTexas State UniversitySan MarcosTXUSA
| | - Chris C. Nice
- Department of BiologyTexas State UniversitySan MarcosTXUSA
| | - Peter H. Diaz
- U.S. Fish and Wildlife ServiceTexas Fish and Wildlife Conservation OfficeSan MarcosTXUSA
| | | |
Collapse
|
20
|
Cutrera AP, Mora MS. Selection on MHC in a Context of Historical Demographic Change in 2 Closely Distributed Species of Tuco-tucos (Ctenomys australis and C. talarum). J Hered 2017; 108:628-639. [PMID: 28605534 DOI: 10.1093/jhered/esx054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 06/07/2017] [Indexed: 11/12/2022] Open
Abstract
Selection necessarily acts within the same current and historical demographic framework as neutral evolutionary processes, and the outcome of the interplay between these forces may vary according to their relative strength. In this study, we compare the variation at a major histocompatibility complex (MHC) locus (DRB exon 2), typically subject to strong diversifying selection, and mitochondrial diversity (D-loop) across populations encompassing the entire distribution of 2 species of South American subterranean rodents: Ctenomys australis and C. talarum (tuco-tucos). Although these species are parapatric along most of their distribution, historically they have followed distinct demographic trajectories associated with sea level changes during the Quaternary. We surveyed 8 populations of C. australis and 15 of C. talarum, from which we analyzed 70 and 212 D-loop haplotypes and 91 and 346 DRB genotypes, respectively. Both species have gone through a recent demographic expansion; however, the signal of this process only encompasses the entire distribution of one of the species: C. australis. While balancing selection on MHC in C. talarum-enhanced DRB diversity at the local level compared to D-loop, although not promoting divergence among populations, in C. australis local diversifying selection may have driven higher population differentiation at DRB than at D-loop. Our findings reinforce the idea that the relative strength of selection acting on MHC genes varies spatially and temporally within and among species, even between species using the same macrohabitat and exposed to similar immune challenges.
Collapse
Affiliation(s)
- Ana Paula Cutrera
- Instituto de Investigaciones Marinas y Costeras, CONICET - Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata (7600), Argentina
| | - Matías Sebastián Mora
- Instituto de Investigaciones Marinas y Costeras, CONICET - Universidad Nacional de Mar del Plata, Funes 3350, Mar del Plata (7600), Argentina
| |
Collapse
|
21
|
Feng P, Zhou Q. Absence of Relationship between Mitochondrial DNA Evolutionary Rate and Longevity in Mammals except for CYTB. J MAMM EVOL 2017. [DOI: 10.1007/s10914-017-9399-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Hoekstra PH, Wieringa JJ, Smets E, Brandão RD, Lopes JDC, Erkens RHJ, Chatrou LW. Correlated evolutionary rates across genomic compartments in Annonaceae. Mol Phylogenet Evol 2017; 114:63-72. [PMID: 28578201 DOI: 10.1016/j.ympev.2017.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 05/29/2017] [Accepted: 05/29/2017] [Indexed: 11/28/2022]
Abstract
The molecular clock hypothesis is an important concept in biology. Deviations from a constant rate of nucleotide substitution have been found widely among lineages, genomes, genes and individual sites. Phylogenetic research can accommodate for these differences in applying specific models of evolution. Lineage-specific rate heterogeneity however can generate bi- or multimodal distributions of substitution rates across the branches of a tree and this may mislead phylogenetic inferences with currently available models. The plant family Annonaceae is an excellent case to study lineage-specific rate heterogeneity. The two major sister subfamilies, Annonoideae and Malmeoideae, have shown great discrepancies in branch lengths. We used high-throughput sequencing data of 72 genes, 99 spacers and 16 introns from 24 chloroplast genomes and nuclear ribosomal DNA of 23 species to study the molecular rate of evolution in Annonaceae. In all analyses, longer branch lengths and/or higher substitution rates were found for the Annonoideae compared to the Malmeoideae. The Annonaceae had wide variability in chloroplast length, ranging from minimal 175,684bp to 201,723 for Annonoideae and minimal 152,357 to 170,985bp in Malmeoideae, mostly reflecting variation in inverted-repeat length. The Annonoideae showed a higher GC-content in the conserved parts of the chloroplast genome and higher omega (dN/dS)-ratios than the Malmeoideae, which could indicate less stringent purifying selection, a pattern that has been found in groups with small population sizes. This study generates new insights into the processes causing lineage-specific rate heterogeneity, which could lead to improved phylogenetic methods.
Collapse
Affiliation(s)
- Paul H Hoekstra
- Naturalis Biodiversity Center, National Herbarium of the Netherlands, Darwinweg 2, 2300 RA Leiden, The Netherlands; Wageningen University & Research, Biosystematics Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Jan J Wieringa
- Naturalis Biodiversity Center, National Herbarium of the Netherlands, Darwinweg 2, 2300 RA Leiden, The Netherlands; Wageningen University & Research, Biosystematics Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| | - Erik Smets
- Naturalis Biodiversity Center, National Herbarium of the Netherlands, Darwinweg 2, 2300 RA Leiden, The Netherlands; Katholieke Universiteit Leuven, Ecology, Evolution and Biodiversity Conservation Section, Kasteelpark Arenberg 31, Box 2435, 3001 Leuven, Belgium.
| | - Rita D Brandão
- Maastricht University, Maastricht Science Programme, Kapoenstraat 2, 6211 KW Maastricht, The Netherlands.
| | - Jenifer de Carvalho Lopes
- Universidade de São Paulo, Instituto de Biociências, Departamento de Botânica, Rua do Matão 277, 05508-090 São Paulo, SP, Brazil.
| | - Roy H J Erkens
- Maastricht University, Maastricht Science Programme, Kapoenstraat 2, 6211 KW Maastricht, The Netherlands.
| | - Lars W Chatrou
- Wageningen University & Research, Biosystematics Group, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
| |
Collapse
|
23
|
Wilsenach J, Landi P, Hui C. Evolutionary fields can explain patterns of high-dimensional complexity in ecology. Phys Rev E 2017; 95:042401. [PMID: 28505840 DOI: 10.1103/physreve.95.042401] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Indexed: 11/07/2022]
Abstract
One of the properties that make ecological systems so unique is the range of complex behavioral patterns that can be exhibited by even the simplest communities with only a few species. Much of this complexity is commonly attributed to stochastic factors that have very high-degrees of freedom. Orthodox study of the evolution of these simple networks has generally been limited in its ability to explain complexity, since it restricts evolutionary adaptation to an inertia-free process with few degrees of freedom in which only gradual, moderately complex behaviors are possible. We propose a model inspired by particle-mediated field phenomena in classical physics in combination with fundamental concepts in adaptation, which suggests that small but high-dimensional chaotic dynamics near to the adaptive trait optimum could help explain complex properties shared by most ecological datasets, such as aperiodicity and pink, fractal noise spectra. By examining a simple predator-prey model and appealing to real ecological data, we show that this type of complexity could be easily confused for or confounded by stochasticity, especially when spurred on or amplified by stochastic factors that share variational and spectral properties with the underlying dynamics.
Collapse
Affiliation(s)
- James Wilsenach
- School of Informatics, Forrest Hill, University of Edinburgh, 5 Forest Road, EH1 2QL Edinburgh, United Kingdom
| | - Pietro Landi
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa
| | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa
| |
Collapse
|
24
|
Plastome-Wide Nucleotide Substitution Rates Reveal Accelerated Rates in Papilionoideae and Correlations with Genome Features Across Legume Subfamilies. J Mol Evol 2017; 84:187-203. [PMID: 28397003 DOI: 10.1007/s00239-017-9792-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 04/03/2017] [Indexed: 01/08/2023]
Abstract
This study represents the most comprehensive plastome-wide comparison of nucleotide substitution rates across the three subfamilies of Fabaceae: Caesalpinioideae, Mimosoideae, and Papilionoideae. Caesalpinioid and mimosoid legumes have large, unrearranged plastomes compared with papilionoids, which exhibit varying levels of rearrangement including the loss of the inverted repeat (IR) in the IR-lacking clade (IRLC). Using 71 genes common to 39 legume taxa representing all the three subfamilies, we show that papilionoids consistently have higher nucleotide substitution rates than caesalpinioids and mimosoids, and rates in the IRLC papilionoids are generally higher than those in the IR-containing papilionoids. Unsurprisingly, this pattern was significantly correlated with growth habit as most papilionoids are herbaceous, whereas caesalpinioids and mimosoids are largely woody. Both nonsynonymous (dN) and synonymous (dS) substitution rates were also correlated with several biological features including plastome size and plastomic rearrangements such as the number of inversions and indels. In agreement with previous reports, we found that genes in the IR exhibit between three and fourfold reductions in the substitution rates relative to genes within the large single-copy or small single-copy regions. Furthermore, former IR genes in IR-lacking taxa exhibit accelerated rates compared with genes contained in the IR.
Collapse
|
25
|
Simons YB, Sella G. The impact of recent population history on the deleterious mutation load in humans and close evolutionary relatives. Curr Opin Genet Dev 2016; 41:150-158. [PMID: 27744216 DOI: 10.1016/j.gde.2016.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/13/2016] [Accepted: 09/18/2016] [Indexed: 01/22/2023]
Abstract
Over the past decade, there has been both great interest and confusion about whether recent demographic events-notably the Out-of-Africa-bottleneck and recent population growth-have led to differences in mutation load among human populations. The confusion can be traced to the use of different summary statistics to measure load, which lead to apparently conflicting results. We argue, however, that when statistics more directly related to load are used, the results of different studies and data sets consistently reveal little or no difference in the load of non-synonymous mutations among human populations. Theory helps to understand why no such differences are seen, as well as to predict in what settings they are to be expected. In particular, as predicted by modeling, there is evidence for changes in the load of recessive loss of function mutations in founder and inbred human populations. Also as predicted, eastern subspecies of gorilla, Neanderthals and Denisovans, who are thought to have undergone reductions in population sizes that exceed the human Out-of-Africa bottleneck in duration and severity, show evidence for increased load of non-synonymous mutations (relative to western subspecies of gorillas and modern humans, respectively). A coherent picture is thus starting to emerge about the effects of demographic history on the mutation load in populations of humans and close evolutionary relatives.
Collapse
Affiliation(s)
- Yuval B Simons
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | - Guy Sella
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
26
|
Germline replications and somatic mutation accumulation are independent of vegetative life span in Arabidopsis. Proc Natl Acad Sci U S A 2016; 113:12226-12231. [PMID: 27729523 DOI: 10.1073/pnas.1609686113] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In plants, gametogenesis occurs late in development, and somatic mutations can therefore be transmitted to the next generation. Longer periods of growth are believed to result in an increase in the number of cell divisions before gametogenesis, with a concomitant increase in mutations arising due to replication errors. However, there is little experimental evidence addressing how many cell divisions occur before gametogenesis. Here, we measured loss of telomeric DNA and accumulation of replication errors in Arabidopsis with short and long life spans to determine the number of replications in lineages leading to gametes. Surprisingly, the number of cell divisions within the gamete lineage is nearly independent of both life span and vegetative growth. One consequence of the relatively stable number of replications per generation is that older plants may not pass along more somatically acquired mutations to their offspring. We confirmed this hypothesis by genomic sequencing of progeny from young and old plants. This independence can be achieved by hierarchical arrangement of cell divisions in plant meristems where vegetative growth is primarily accomplished by expansion of cells in rapidly dividing meristematic zones, which are only rarely refreshed by occasional divisions of more quiescent cells. We support this model by 5-ethynyl-2'-deoxyuridine retention experiments in shoot and root apical meristems. These results suggest that stem-cell organization has independently evolved in plants and animals to minimize mutations by limiting DNA replication.
Collapse
|
27
|
Braverman JM, Hamilton MB, Johnson BA. Patterns of Substitution Rate Variation at Many Nuclear Loci in Two Species Trios in the Brassicaceae Partitioned with ANOVA. J Mol Evol 2016; 83:97-109. [PMID: 27592229 DOI: 10.1007/s00239-016-9752-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/14/2016] [Indexed: 01/09/2023]
Abstract
There are marked variations among loci and among lineages in rates of nucleotide substitution. The generation time hypothesis (GTH) is a neutral explanation for substitution rate heterogeneity that has genomewide application, predicting that species with shorter generation times accumulate DNA sequence substitutions faster than species with longer generation times do since faster genome replication provides more opportunities for mutations to occur and reach fixation by genetic drift. Relatively few studies have rigorously evaluated the GTH in plants, and there are numerous alternative hypotheses for plant substitution rate variation. One major challenge has been finding pairs of closely related plant species with contrasting generation times and appropriate outgroup taxa that all also have DNA sequence data for numerous loci. To test for causes of rate variation, we obtained sequence data for 256 genes for Arabidopsis thaliana, normally reproducing every year, and the biennial Arabidopsis lyrata with three closely related outgroup taxa (Brassica rapa, Capsella grandiflora, and Neslia paniculata) as well as the biennial Brassica oleracea and the annual B. rapa lineage with the outgroup N. paniculata. A sign test indicated that more loci than expected by chance have faster rates of substitution on the branch leading to the annual than to the perennial for one three-species trio but not another. Tajima's 1D and 2D tests, and a likelihood ratio test that incorporated saturation correction, rejected rate homogeneity for up to 26 genes (up to 14 genes when correcting for multiple tests), consistently showing faster rates for the annual lineage in the Arabidopsis species trio. ANOVA showed significant rate heterogeneity between the Arabidopsis and Brassica species trios (about 6 % of rate variation) and among loci (about 26-32 % of rate variation). The lineage-by-locus interaction which would be caused by locus- and lineage-specific natural selection explained about 13 % of substitution rate variation in one ANOVA model using substitution rates from genes partitioned into odd and even codons but was not a significant effect without partitioned genes. Annual/perennial lineage and species trio by annual/perennial lineage each explained about 1 % of substitution rate variation.
Collapse
Affiliation(s)
- John M Braverman
- Department of Biology, Saint Joseph's University, Philadelphia, PA, USA.
| | | | - Brent A Johnson
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| |
Collapse
|
28
|
Amster G, Sella G. Life history effects on the molecular clock of autosomes and sex chromosomes. Proc Natl Acad Sci U S A 2016; 113:1588-93. [PMID: 26811451 PMCID: PMC4760823 DOI: 10.1073/pnas.1515798113] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
One of the foundational results in molecular evolution is that the rate at which neutral substitutions accumulate on a lineage equals the rate at which mutations arise. Traits that affect rates of mutation therefore also affect the phylogenetic "molecular clock." We consider the effects of sex-specific generation times and mutation rates in species with two sexes. In particular, we focus on the effects that the age of onset of male puberty and rates of spermatogenesis have likely had in hominids (great apes), considering a model that approximates features of the mutational process in mammals, birds, and some other vertebrates. As we show, this model can account for a number of seemingly disparate observations: notably, the puzzlingly low X-to-autosome ratios of substitution rates in humans and chimpanzees and differences in rates of autosomal substitutions among hominine lineages (i.e., humans, chimpanzees, and gorillas). The model further suggests how to translate pedigree-based estimates of human mutation rates into split times among extant hominoids (apes), given sex-specific life histories. In so doing, it largely bridges the gap reported between estimates of split times based on fossil and molecular evidence, in particular suggesting that the human-chimpanzee split may have occurred as recently as 6.6 Mya. The model also implies that the "generation time effect" should be stronger in short-lived species, explaining why the generation time has a major influence on yearly substitution rates in mammals but only a subtle one in human pedigrees.
Collapse
Affiliation(s)
- Guy Amster
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | - Guy Sella
- Department of Biological Sciences, Columbia University, New York, NY 10027
| |
Collapse
|
29
|
Silva FJ, Santos-Garcia D. Slow and Fast Evolving Endosymbiont Lineages: Positive Correlation between the Rates of Synonymous and Non-Synonymous Substitution. Front Microbiol 2015; 6:1279. [PMID: 26617602 PMCID: PMC4643148 DOI: 10.3389/fmicb.2015.01279] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 10/31/2015] [Indexed: 12/18/2022] Open
Abstract
The availability of complete genome sequences of bacterial endosymbionts with strict vertical transmission to the host progeny opens the possibility to estimate molecular evolutionary rates in different lineages and understand the main biological mechanisms influencing these rates. We have compared the rates of evolution for non-synonymous and synonymous substitutions in nine bacterial endosymbiont lineages, belonging to four clades (Baumannia, Blochmannia, Portiera, and Sulcia). The main results are the observation of a positive correlation between both rates with differences among lineages of up to three orders of magnitude and that the substitution rates decrease over long endosymbioses. To explain these results we propose three mechanisms. The first, variations in the efficiencies of DNA replication and DNA repair systems, is unable to explain most of the observed differences. The second, variations in the generation time among bacterial lineages, would be based on the accumulation of fewer DNA replication errors per unit time in organisms with longer generation times. The third, a potential control of the endosymbiont DNA replication and repair systems through the transfer of nuclear-encoded proteins, could explain the lower rates in long-term obligate endosymbionts. Because the preservation of the genomic integrity of the harbored obligate endosymbiont would be advantageous for the insect host, biological mechanisms producing a general reduction in the rates of nucleotide substitution per unit of time would be a target for natural selection.
Collapse
Affiliation(s)
- Francisco J Silva
- Institut Cavanilles de Biodiversitat i Biologia Evolutiva, Universitat de València València, Spain ; Unidad Mixta de Investigación en Genómica y Salud, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Salud Pública/Institut Cavanilles, Universitat de València València, Spain
| | | |
Collapse
|
30
|
Chemler JA, Tripathi A, Hansen DA, O'Neil-Johnson M, Williams RB, Starks C, Park SR, Sherman DH. Evolution of Efficient Modular Polyketide Synthases by Homologous Recombination. J Am Chem Soc 2015; 137:10603-9. [PMID: 26230368 DOI: 10.1021/jacs.5b04842] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The structural scaffolds of many complex natural products are produced by multifunctional type I polyketide synthase (PKS) enzymes that operate as biosynthetic assembly lines. The modular nature of these mega-enzymes presents an opportunity to construct custom biocatalysts built in a lego-like fashion by inserting, deleting, or exchanging native or foreign domains to produce targeted variants of natural polyketides. However, previously engineered PKS enzymes are often impaired resulting in limited production compared to native systems. Here, we show a versatile method for generating and identifying functional chimeric PKS enzymes for synthesizing custom macrolactones and macrolides. PKS genes from the pikromycin and erythromycin pathways were hybridized in Saccharomyces cerevisiae to generate hybrid libraries. We used a 96-well plate format for plasmid purification, transformations, sequencing, protein expression, in vitro reactions and analysis of metabolite formation. Active chimeric enzymes were identified with new functionality. Streptomyces venezuelae strains that expressed these PKS chimeras were capable of producing engineered macrolactones. Furthermore, a macrolactone generated from selected PKS chimeras was fully functionalized into a novel macrolide analogue. This method permits the engineering of PKS pathways as modular building blocks for the production of new antibiotic-like molecules.
Collapse
Affiliation(s)
| | | | | | - Mark O'Neil-Johnson
- Sequoia Sciences, Inc. , 1912 Innerbelt Business Center Drive, Saint Louis, Missouri 63114, United States
| | - Russell B Williams
- Sequoia Sciences, Inc. , 1912 Innerbelt Business Center Drive, Saint Louis, Missouri 63114, United States
| | - Courtney Starks
- Sequoia Sciences, Inc. , 1912 Innerbelt Business Center Drive, Saint Louis, Missouri 63114, United States
| | | | | |
Collapse
|
31
|
Hua X, Cowman P, Warren D, Bromham L. Longevity Is Linked to Mitochondrial Mutation Rates in Rockfish: A Test Using Poisson Regression. Mol Biol Evol 2015; 32:2633-45. [PMID: 26048547 DOI: 10.1093/molbev/msv137] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The mitochondrial theory of ageing proposes that the cumulative effect of biochemical damage in mitochondria causes mitochondrial mutations and plays a key role in ageing. Numerous studies have applied comparative approaches to test one of the predictions of the theory: That the rate of mitochondrial mutations is negatively correlated with longevity. Comparative studies face three challenges in detecting correlates of mutation rate: Covariation of mutation rates between species due to ancestry, covariation between life-history traits, and difficulty obtaining accurate estimates of mutation rate. We address these challenges using a novel Poisson regression method to examine the link between mutation rate and lifespan in rockfish (Sebastes). This method has better performance than traditional sister-species comparisons when sister species are too recently diverged to give reliable estimates of mutation rate. Rockfish are an ideal model system: They have long life spans with indeterminate growth and little evidence of senescence, which minimizes the confounding tradeoffs between lifespan and fecundity. We show that lifespan in rockfish is negatively correlated to rate of mitochondrial mutation, but not the rate of nuclear mutation. The life history of rockfish allows us to conclude that this relationship is unlikely to be driven by the tradeoffs between longevity and fecundity, or by the frequency of DNA replications in the germline. Instead, the relationship is compatible with the hypothesis that mutation rates are reduced by selection in long-lived taxa to reduce the chance of mitochondrial damage over its lifespan, consistent with the mitochondrial theory of ageing.
Collapse
Affiliation(s)
- Xia Hua
- Division of Evolution Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Peter Cowman
- Division of Evolution Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia Department of Ecology and Evolutionary Biology, Yale University
| | - Dan Warren
- Division of Evolution Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia Department of Biology, Macquarie University, North Ryde, NSW, Australia
| | - Lindell Bromham
- Division of Evolution Ecology and Genetics, Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
32
|
Bromham L, Hua X, Lanfear R, Cowman PF. Exploring the Relationships between Mutation Rates, Life History, Genome Size, Environment, and Species Richness in Flowering Plants. Am Nat 2015; 185:507-24. [PMID: 25811085 DOI: 10.1086/680052] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
A new view is emerging of the interplay between mutation at the genomic level, substitution at the population level, and diversification at the lineage level. Many studies have suggested that rate of molecular evolution is linked to rate of diversification, but few have evaluated competing hypotheses. By analyzing sequences from 130 families of angiosperms, we show that variation in the synonymous substitution rate is correlated among genes from the mitochondrial, chloroplast, and nuclear genomes and linked to differences in traits among families (average height and genome size). Within each genome, synonymous rates are correlated to nonsynonymous substitution rates, suggesting that increasing the mutation rate results in a faster rate of genome evolution. Substitution rates are correlated with species richness in protein-coding sequences from the chloroplast and nuclear genomes. These data suggest that species traits contribute to lineage-specific differences in the mutation rate that drive both synonymous and nonsynonymous rates of change across all three genomes, which in turn contribute to greater rates of divergence between populations, generating higher rates of diversification. These observations link mutation in individuals to population-level processes and to patterns of lineage divergence.
Collapse
Affiliation(s)
- Lindell Bromham
- Centre for Macroevolution and Macroecology, Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra, Australian Capital Territory 0200, Australia
| | | | | | | |
Collapse
|
33
|
Weller C, Wu M. A generation-time effect on the rate of molecular evolution in bacteria. Evolution 2015; 69:643-52. [PMID: 25564727 DOI: 10.1111/evo.12597] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/17/2014] [Indexed: 12/31/2022]
Abstract
Molecular evolutionary rate varies significantly among species and a strict global molecular clock has been rejected across the tree of life. Generation time is one primary life-history trait that influences the molecular evolutionary rate. Theory predicts that organisms with shorter generation times evolve faster because of the accumulation of more DNA replication errors per unit time. Although the generation-time effect has been demonstrated consistently in plants and animals, the evidence of its existence in bacteria is lacking. The bacterial phylum Firmicutes offers an excellent system for testing generation-time effect because some of its members can enter a dormant, nonreproductive endospore state in response to harsh environmental conditions. It follows that spore-forming bacteria would--with their longer generation times--evolve more slowly than their nonspore-forming relatives. It is therefore surprising that a previous study found no generation-time effect in Firmicutes. Using a phylogenetic comparative approach and leveraging on a large number of Firmicutes genomes, we found sporulation significantly reduces the genome-wide spontaneous DNA mutation rate and protein evolutionary rate. Contrary to the previous study, our results provide strong evidence that the evolutionary rates of bacteria, like those of plants and animals, are influenced by generation time.
Collapse
Affiliation(s)
- Cory Weller
- Department of Biology, University of Virginia, Charlottesville, Virginia, 22904
| | | |
Collapse
|
34
|
Alcala N, Vuilleumier S. Turnover and accumulation of genetic diversity across large time-scale cycles of isolation and connection of populations. Proc Biol Sci 2014; 281:20141369. [PMID: 25253456 PMCID: PMC4211446 DOI: 10.1098/rspb.2014.1369] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 08/27/2014] [Indexed: 01/25/2023] Open
Abstract
Major climatic and geological events but also population history (secondary contacts) have generated cycles of population isolation and connection of long and short periods. Recent empirical and theoretical studies suggest that fast evolutionary processes might be triggered by such events, as commonly illustrated in ecology by the adaptive radiation of cichlid fishes (isolation and reconnection of lakes and watersheds) and in epidemiology by the fast adaptation of the influenza virus (isolation and reconnection in hosts). We test whether cyclic population isolation and connection provide the raw material (standing genetic variation) for species evolution and diversification. Our analytical results demonstrate that population isolation and connection can provide, to populations, a high excess of genetic diversity compared with what is expected at equilibrium. This excess is either cyclic (high allele turnover) or cumulates with time depending on the duration of the isolation and the connection periods and the mutation rate. We show that diversification rates of animal clades are associated with specific periods of climatic cycles in the Quaternary. We finally discuss the importance of our results for macroevolutionary patterns and for the inference of population history from genomic data.
Collapse
Affiliation(s)
- Nicolas Alcala
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015 Lausanne, Switzerland
| | - Séverine Vuilleumier
- Department of Ecology and Evolution, University of Lausanne, Biophore, 1015 Lausanne, Switzerland Institute of Microbiology, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
35
|
Ségurel L, Wyman MJ, Przeworski M. Determinants of Mutation Rate Variation in the Human Germline. Annu Rev Genomics Hum Genet 2014; 15:47-70. [DOI: 10.1146/annurev-genom-031714-125740] [Citation(s) in RCA: 232] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Laure Ségurel
- Laboratoire Éco-Anthropologie et Ethnobiologie, UMR 7206, Muséum National d'Histoire Naturelle–Centre National de la Recherche Scientifique–Université Paris 7 Diderot, Paris 75231, France;
| | - Minyoung J. Wyman
- Department of Biological Sciences, Columbia University, New York, NY 10027;
| | - Molly Przeworski
- Department of Human Genetics and Howard Hughes Medical Institute, University of Chicago, Chicago, Illinois 60637;
| |
Collapse
|
36
|
Freedberg S, Debenport SJ. Weakened purifying selection leads to elevated mutation load under environmental sex determination. J Evol Biol 2014; 27:643-52. [PMID: 24506704 DOI: 10.1111/jeb.12335] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 11/28/2022]
Abstract
In many gonochoristic taxa, sex is influenced by developmental environment, a system that can lead to temporal fluctuations in offspring sex ratio. Demographic models suggest that only short-lived species with environmental sex determination (ESD) are negatively impacted by sex-ratio fluctuations, yet these models fail to account for the potential mutation load associated with reductions in genetically effective population sizes. In this study, we developed a series of individual-based simulation models that explore the fixation rates of mildly deleterious alleles under different sex-determining systems and examine the impacts of variation in lifespan and offspring sex ratio. Populations with ESD exhibited increases in fixation rates in both short- and long-lived populations, but substantial increases were limited to populations characterized by a combination of high sex-ratio variation and short lifespan. Fixation rates were negatively associated with effective population size, indicating that purifying selection operates less efficiently under ESD relative to genotypic sex determination. Reductions in effective population size could be attributed to both intragenerational forces (unequal sex ratio) and intergenerational forces (variable census population sizes). Levels of temporal sex-ratio variation calculated from wild populations of ESD species were capable of yielding large increases in fixation rates, although this relationship was strongly mediated by lifespan. Our results may help to explain the limited phylogenetic distribution of ESD in short-lived taxa.
Collapse
Affiliation(s)
- S Freedberg
- Department of Biology, St. Olaf College, Northfield, MN, USA
| | - S J Debenport
- Department of Plant Pathology, Ohio State University, Columbus, OH, USA
| |
Collapse
|
37
|
O’Connor TD, Mundy NI. Evolutionary Modeling of Genotype-Phenotype Associations, and Application to Primate Coding and Non-coding mtDNA Rate Variation. Evol Bioinform Online 2013; 9:301-16. [PMID: 23926418 PMCID: PMC3733722 DOI: 10.4137/ebo.s11600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Variation in substitution rates across a phylogeny can be indicative of shifts in the evolutionary dynamics of a protein or non-protein coding regions. One way to understand these signals is to seek the phenotypic correlates of rate variation. Here, we extended a previously published likelihood method designed to detect evolutionary associations between genotypic evolutionary rate and phenotype over a phylogeny. In simulation with two discrete categories of phenotype, the method has a low false-positive rate and detects greater than 80% of true-positives with a tree length of three or greater and a three-fold or greater change in substitution rate given the phenotype. In addition, we successfully extend the test from two to four phenotype categories and evaluated its performance. We then applied the method to two major hypotheses for rate variation in the mitochondrial genome of primates-longevity and generation time as well as body mass which is correlated with many aspects of life history-using three categories of phenotype through discretization of continuous values. Similar to previous results for mammals, we find that the majority of mitochondrial protein-coding genes show associations consistent with the longevity and body mass predictions and that the predominant signal of association comes from the third codon position. We also found a significant association between maximum lifespan and the evolutionary rate of the control region of the mtDNA. In contrast, 24 protein-coding genes from the nuclear genome do not show a consistent pattern of association, which is inconsistent with the generation time hypothesis. These results show the extended method can robustly identify genotype-phenotype associations up to at least four phenotypic categories, and demonstrate the successful application of the method to study factors affecting neutral evolutionary rate in protein-coding and non-coding loci.
Collapse
Affiliation(s)
- Timothy D. O’Connor
- Department of Genome Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Nicholas I. Mundy
- Department of Zoology, Downing Street, University of Cambridge, Cambridge CB2 3EJ, UK
| |
Collapse
|
38
|
Somel M, Wilson Sayres MA, Jordan G, Huerta-Sanchez E, Fumagalli M, Ferrer-Admetlla A, Nielsen R. A scan for human-specific relaxation of negative selection reveals unexpected polymorphism in proteasome genes. Mol Biol Evol 2013; 30:1808-15. [PMID: 23699470 PMCID: PMC3708504 DOI: 10.1093/molbev/mst098] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Environmental or genomic changes during evolution can relax negative selection pressure on specific loci, permitting high frequency polymorphisms at previously conserved sites. Here, we jointly analyze population genomic and comparative genomic data to search for functional processes showing relaxed negative selection specifically in the human lineage, whereas remaining evolutionarily conserved in other mammals. Consistent with previous studies, we find that olfactory receptor genes display such a signature of relaxation in humans. Intriguingly, proteasome genes also show a prominent signal of human-specific relaxation: multiple proteasome subunits, including four members of the catalytic core particle, contain high frequency nonsynonymous polymorphisms at sites conserved across mammals. Chimpanzee proteasome genes do not display a similar trend. Human proteasome genes also bear no evidence of recent positive or balancing selection. These results suggest human-specific relaxation of negative selection in proteasome subunits; the exact biological causes, however, remain unknown.
Collapse
Affiliation(s)
- Mehmet Somel
- Department of Integrative Biology, University of California, Berkeley, CA, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Exploring the correlations between sequence evolution rate and phenotypic divergence across the Mammalian tree provides insights into adaptive evolution. J Biosci 2013; 37:897-909. [PMID: 23107925 DOI: 10.1007/s12038-012-9254-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Sequence evolution behaves in a relatively consistent manner, leading to one of the fundamental paradigms in biology, the existence of a 'molecular clock'. The molecular clock can be distilled to the concept of accumulation of substitutions, through time yielding a stable rate from which we can estimate lineage divergence. Over the last 50 years, evolutionary biologists have obtained an in-depth understanding of this clock's nuances. It has been fine-tuned by taking into account the vast heterogeneity in rates across lineages and genes, leading to 'relaxed' molecular clock methods for timetree reconstruction. Sequence rate varies with life history traits including body size, generation time and metabolic rate, and we review recent studies on this topic. However, few studies have explicitly examined correlates between molecular evolution and morphological evolution. The patterns observed across diverse lineages suggest that rates of molecular and morphological evolution are largely decoupled. We discuss how identifying the molecular mechanisms behind rapid functional radiations are central to understanding evolution. The vast functional divergence within mammalian lineages that have relatively 'slow' sequence evolution refutes the hypotheses that pulses in diversification yielding major phenotypic change are the result of steady accumulation of substitutions. Patterns rather suggest phenotypic divergence is likely caused by regulatory alterations mediated through mechanisms such as insertions/deletions in functional regions. These can rapidly arise and sweep to fixation faster than predicted from a lineage's sequence neutral substitution rate, enabling species to leapfrog between phenotypic 'islands'. We suggest research directions that could illuminate mechanisms behind the functional diversity we see today.
Collapse
|
40
|
Significance of population size on the fixation of nonsynonymous mutations in genes under varying levels of selection pressure. Genetics 2013; 193:995-1002. [PMID: 23307899 DOI: 10.1534/genetics.112.147900] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Previous studies observed a higher ratio of divergences at nonsynonymous and synonymous sites (ω = dN/dS) in species with a small population size compared to that estimated for those with a large population size. Here we examined the theoretical relationship between ω, effective population size (Ne), and selection coefficient (s). Our analysis revealed that when purifying selection is high, ω of species with small Ne is much higher than that of species with large Ne. However the difference between the two ω reduces with the decline in selection pressure (s → 0). We examined this relationship using primate and rodent genes and found that the ω estimated for highly constrained genes of primates was up to 2.9 times higher than that obtained for their orthologous rodent genes. Conversely, for genes under weak purifying selection the ω of primates was only 17% higher than that of rodents. When tissue specificity was used as a proxy for selection pressure we found that the ω of broadly expressed genes of primates was up to 2.1-fold higher than that of their rodent counterparts and this difference was only 27% for tissue specific genes. Since most of the nonsynonymous mutations in constrained or broadly expressed genes are deleterious, fixation of these mutations is influenced by Ne. This results in a higher ω of these genes in primates compared to those from rodents. Conversely, the majority of nonsynonymous mutations in less-constrained or tissue-specific genes are neutral or nearly neutral and therefore fixation of them is largely independent of Ne, which leads to the similarity of ω in primates and rodents.
Collapse
|
41
|
Nabholz B, Uwimana N, Lartillot N. Reconstructing the phylogenetic history of long-term effective population size and life-history traits using patterns of amino acid replacement in mitochondrial genomes of mammals and birds. Genome Biol Evol 2013; 5:1273-90. [PMID: 23711670 PMCID: PMC3730341 DOI: 10.1093/gbe/evt083] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2013] [Indexed: 12/22/2022] Open
Abstract
The nearly neutral theory, which proposes that most mutations are deleterious or close to neutral, predicts that the ratio of nonsynonymous over synonymous substitution rates (dN/dS), and potentially also the ratio of radical over conservative amino acid replacement rates (Kr/Kc), are negatively correlated with effective population size. Previous empirical tests, using life-history traits (LHT) such as body-size or generation-time as proxies for population size, have been consistent with these predictions. This suggests that large-scale phylogenetic reconstructions of dN/dS or Kr/Kc might reveal interesting macroevolutionary patterns in the variation in effective population size among lineages. In this work, we further develop an integrative probabilistic framework for phylogenetic covariance analysis introduced previously, so as to estimate the correlation patterns between dN/dS, Kr/Kc, and three LHT, in mitochondrial genomes of birds and mammals. Kr/Kc displays stronger and more stable correlations with LHT than does dN/dS, which we interpret as a greater robustness of Kr/Kc, compared with dN/dS, the latter being confounded by the high saturation of the synonymous substitution rate in mitochondrial genomes. The correlation of Kr/Kc with LHT was robust when controlling for the potentially confounding effects of nucleotide compositional variation between taxa. The positive correlation of the mitochondrial Kr/Kc with LHT is compatible with previous reports, and with a nearly neutral interpretation, although alternative explanations are also possible. The Kr/Kc model was finally used for reconstructing life-history evolution in birds and mammals. This analysis suggests a fairly large-bodied ancestor in both groups. In birds, life-history evolution seems to have occurred mainly through size reduction in Neoavian birds, whereas in placental mammals, body mass evolution shows disparate trends across subclades. Altogether, our work represents a further step toward a more comprehensive phylogenetic reconstruction of the evolution of life-history and of the population-genetics environment.
Collapse
Affiliation(s)
- Benoit Nabholz
- Institut des Sciences de l’Evolution, UMR 5554 CNRS, Universite Montpellier II, France
| | - Nicole Uwimana
- Département de Biochimie, Centre Robert Cedergren, Université de Montréal, Québec, Canada
| | - Nicolas Lartillot
- Département de Biochimie, Centre Robert Cedergren, Université de Montréal, Québec, Canada
- Laboratoire d'Informatique, de Robotique et de Microélectronique de Montpellier, UMR 5506, CNRS-Université de Montpellier 2, France
| |
Collapse
|
42
|
Lourenço JM, Glémin S, Chiari Y, Galtier N. The determinants of the molecular substitution process in turtles. J Evol Biol 2012; 26:38-50. [PMID: 23176666 DOI: 10.1111/jeb.12031] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2012] [Revised: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 12/28/2022]
Abstract
Neutral rates of molecular evolution vary across species, and this variation has been shown to be related to biological traits. One of the first patterns to be observed in vertebrates has been an inverse relationship between body mass (BM) and substitution rates. The effects of three major life-history traits (LHT) that covary with BM - metabolic rate, generation time and longevity (LON) - have been invoked to explain this relationship. However, most of the theoretical and empirical evidence supporting this relationship comes from endothermic vertebrates, that is, mammals and birds, in which the environmental conditions, especially temperature, do not have a direct impact on cellular and molecular biology. We analysed the variations in mitochondrial and nuclear rates of synonymous substitution across 224 turtle species and examined their correlation with two LHT (LON and BM) and two environmental variables [latitude (LAT) and habitat]. Our analyses indicate that in turtles, neutral rates of molecular evolution are hardly correlated with LON or BM. Rather, both the mitochondrial and nuclear substitution rates are significantly correlated with LAT - faster evolution in the tropics - and especially so for aquatic species. These results question the generality of the relationships reported in mammals and birds and suggest that environmental factors might be the strongest determinants of the mutation rate in ectotherms.
Collapse
Affiliation(s)
- J M Lourenço
- Institut des Sciences de l'Evolution, Université Montpellier 2, Montpellier Cedex, France.
| | | | | | | |
Collapse
|
43
|
Lasso E, Dalling JW, Bermingham E. Strong spatial genetic structure in five tropical Piper species: should the Baker-Fedorov hypothesis be revived for tropical shrubs? Ecol Evol 2012; 1:502-16. [PMID: 22393518 PMCID: PMC3287332 DOI: 10.1002/ece3.40] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/19/2011] [Accepted: 08/24/2011] [Indexed: 11/10/2022] Open
Abstract
Fifty years ago, Baker and Fedorov proposed that the high species diversity of tropical forests could arise from the combined effects of inbreeding and genetic drift leading to population differentiation and eventually to sympatric speciation. Decades of research, however have failed to support the Baker-Fedorov hypothesis (BFH), and it has now been discarded in favor of a paradigm where most trees are self-incompatible or strongly outcrossing, and where long-distance pollen dispersal prevents population drift. Here, we propose that several hyper-diverse genera of tropical herbs and shrubs, including Piper (>1,000 species), may provide an exception. Species in this genus often have aggregated, high-density populations with self-compatible breeding systems; characteristics which the BFH would predict lead to high local genetic differentiation. We test this prediction for five Piper species on Barro Colorado Island, Panama, using Amplified Fragment Length Polymorphism (AFLP) markers. All species showed strong genetic structure at both fine- and large-spatial scales. Over short distances (200-750 m) populations showed significant genetic differentiation (Fst 0.11-0.46, P < 0.05), with values of spatial genetic structure that exceed those reported for other tropical tree species (Sp = 0.03-0.136). This genetic structure probably results from the combined effects of limited seed and pollen dispersal, clonal spread, and selfing. These processes are likely to have facilitated the diversification of populations in response to local natural selection or genetic drift and may explain the remarkable diversity of this rich genus.
Collapse
|
44
|
Huang CC, Hung KH, Wang WK, Ho CW, Huang CL, Hsu TW, Osada N, Hwang CC, Chiang TY. Evolutionary rates of commonly used nuclear and organelle markers of Arabidopsis relatives (Brassicaceae). Gene 2012; 499:194-201. [DOI: 10.1016/j.gene.2012.02.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/31/2012] [Accepted: 02/20/2012] [Indexed: 10/28/2022]
|
45
|
Santos JC. Fast molecular evolution associated with high active metabolic rates in poison frogs. Mol Biol Evol 2012; 29:2001-18. [PMID: 22337863 DOI: 10.1093/molbev/mss069] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Molecular evolution is simultaneously paced by mutation rate, genetic drift, and natural selection. Life history traits also affect the speed of accumulation of nucleotide changes. For instance, small body size, rapid generation time, production of reactive oxygen species (ROS), and high resting metabolic rate (RMR) are suggested to be associated with faster rates of molecular evolution. However, phylogenetic correlation analyses failed to support a relationship between RMR and molecular evolution in ectotherms. In addition, RMR might underestimate the metabolic budget (e.g., digestion, reproduction, or escaping predation). An alternative is to test other metabolic rates, such as active metabolic rate (AMR), and their association with molecular evolution. Here, I present comparative analyses of the associations between life history traits (i.e., AMR, RMR, body mass, and fecundity) with rates of molecular evolution of and mitochondrial loci from a large ectotherm clade, the poison frogs (Dendrobatidae). My results support a strong positive association between mass-specific AMR and rates of molecular evolution for both mitochondrial and nuclear loci. In addition, I found weaker and genome-specific covariates such as body mass and fecundity for mitochondrial and nuclear loci, respectively. No direct association was found between mass-specific RMR and rates of molecular evolution. Thus, I provide a mechanistic hypothesis of the link between AMRs and the rate of molecular evolution based on an increase in ROS within germ line cells during periodic bouts of hypoxia/hyperoxia related to aerobic exercise. Finally, I propose a multifactorial model that includes AMR as a predictor of the rate of molecular evolution in ectothermic lineages.
Collapse
Affiliation(s)
- Juan C Santos
- Section of Integrative Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
46
|
Bromham L. The genome as a life-history character: why rate of molecular evolution varies between mammal species. Philos Trans R Soc Lond B Biol Sci 2011; 366:2503-13. [PMID: 21807731 DOI: 10.1098/rstb.2011.0014] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
DNA sequences evolve at different rates in different species. This rate variation has been most closely examined in mammals, revealing a large number of characteristics that can shape the rate of molecular evolution. Many of these traits are part of the mammalian life-history continuum: species with small body size, rapid generation turnover, high fecundity and short lifespans tend to have faster rates of molecular evolution. In addition, rate of molecular evolution in mammals might be influenced by behaviour (such as mating system), ecological factors (such as range restriction) and evolutionary history (such as diversification rate). I discuss the evidence for these patterns of rate variation, and the possible explanations of these correlations. I also consider the impact of these systematic patterns of rate variation on the reliability of the molecular date estimates that have been used to suggest a Cretaceous radiation of modern mammals, before the final extinction of the dinosaurs.
Collapse
Affiliation(s)
- Lindell Bromham
- Centre for Macroevolution and Macroecology, Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Canberra.
| |
Collapse
|
47
|
Willows-Munro S, Matthee CA. Exploring the Diversity and Molecular Evolution of Shrews (Family Soricidae) using mtDNA CytochromebData. AFRICAN ZOOLOGY 2011. [DOI: 10.3377/004.046.0205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Brown RP, Yang Z. Rate variation and estimation of divergence times using strict and relaxed clocks. BMC Evol Biol 2011; 11:271. [PMID: 21943087 PMCID: PMC3205074 DOI: 10.1186/1471-2148-11-271] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 09/26/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Understanding causes of biological diversity may be greatly enhanced by knowledge of divergence times. Strict and relaxed clock models are used in Bayesian estimation of divergence times. We examined whether: i) strict clock models are generally more appropriate in shallow phylogenies where rate variation is expected to be low, ii) the likelihood ratio test of the clock (LRT) reliably informs which model is appropriate for dating divergence times. Strict and relaxed models were used to analyse sequences simulated under different levels of rate variation. Published shallow phylogenies (Black bass, Primate-sucking lice, Podarcis lizards, Gallotiinae lizards, and Caprinae mammals) were also analysed to determine natural levels of rate variation relative to the performance of the different models. RESULTS Strict clock analyses performed well on data simulated under the independent rates model when the standard deviation of log rate on branches, σ, was low (≤ 0.1), but were inappropriate when σ>0.1 (95% of rates fall within 0.0082-0.0121 subs/site/Ma when σ = 0.1, for a mean rate of 0.01). The independent rates relaxed clock model performed well at all levels of rate variation, although posterior intervals on times were significantly wider than for the strict clock. The strict clock is therefore superior when rate variation is low. The performance of a correlated rates relaxed clock model was similar to the strict clock. Increased numbers of independent loci led to slightly narrower posteriors under the relaxed clock while older root ages provided proportionately narrower posteriors. The LRT had low power for σ = 0.01-0.1, but high power for σ = 0.5-2.0. Posterior means of σ2 were useful for assessing rate variation in published datasets. Estimates of natural levels of rate variation ranged from 0.05-3.38 for different partitions. Differences in divergence times between relaxed and strict clock analyses were greater in two datasets with higher σ2 for one or more partitions, supporting the simulation results. CONCLUSIONS The strict clock can be superior for trees with shallow roots because of low levels of rate variation between branches. The LRT allows robust assessment of suitability of the clock model as does examination of posteriors on σ2.
Collapse
Affiliation(s)
- Richard P Brown
- School of Natural Sciences & Psychology, Liverpool John Moores University, Liverpool L3 3AF, UK.
| | | |
Collapse
|
49
|
Subramanian S. Fixation of deleterious mutations at critical positions in human proteins. Mol Biol Evol 2011; 28:2687-93. [PMID: 21498603 DOI: 10.1093/molbev/msr097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Deleterious mutations associated with human diseases are predominantly found in conserved positions and positions that are essential for the structure and/or function of proteins. However, these mutations are purged from the human population over time and prevented from being fixed. Contrary to this belief, here I show that high proportions of deleterious amino acid changing mutations are fixed at positions critical for the structure and/or function of proteins. Similarly, a high rate of fixation of deleterious mutations was observed in slow-evolving amino acid positions of human proteins. The fraction of deleterious substitutions was found to be two times higher in relatively conserved amino acid positions than in highly variable positions. This study also found fixation of a much higher proportion of radical amino acid changes in primates compared with rodents and artiodactyls in slow-evolving positions. Previous studies observed a higher proportion of nonsynonymous substitutions in humans compared with other mammals, which was taken as indirect evidence for the fixation of deleterious mutations in humans. However, the results of this investigation provide direct evidence for this prediction by suggesting that the excess nonsynonymous mutations fixed in humans are indeed deleterious in nature. Furthermore, these results suggest that studies on disease-associated mutations should consider that a significant fraction of such deleterious mutations has already been fixed in the human genome, and thus, the effects of new mutations at those amino acid positions may not necessarily be deleterious and might even result in reversion to benign phenotypes.
Collapse
Affiliation(s)
- Sankar Subramanian
- Griffith School of Environment, Griffith University, Nathan, Queensland, Australia.
| |
Collapse
|
50
|
Keightley PD, Eöry L, Halligan DL, Kirkpatrick M. Inference of mutation parameters and selective constraint in mammalian coding sequences by approximate Bayesian computation. Genetics 2011; 187:1153-61. [PMID: 21288873 PMCID: PMC3070523 DOI: 10.1534/genetics.110.124073] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Accepted: 01/31/2011] [Indexed: 01/20/2023] Open
Abstract
We develop an inference method that uses approximate Bayesian computation (ABC) to simultaneously estimate mutational parameters and selective constraint on the basis of nucleotide divergence for protein-coding genes between pairs of species. Our simulations explicitly model CpG hypermutability and transition vs. transversion mutational biases along with negative and positive selection operating on synonymous and nonsynonymous sites. We evaluate the method by simulations in which true mean parameter values are known and show that it produces reasonably unbiased parameter estimates as long as sequences are not too short and sequence divergence is not too low. We show that the use of quadratic regression within ABC offers an improvement over linear regression, but that weighted regression has little impact on the efficiency of the procedure. We apply the method to estimate mutational and selective constraint parameters in data sets of protein-coding genes extracted from the genome sequences of primates, murids, and carnivores. Estimates of CpG hypermutability are substantially higher in primates than murids and carnivores. Nonsynonymous site selective constraint is substantially higher in murids and carnivores than primates, and autosomal nonsynonymous constraint is higher than X-chromsome constraint in all taxa. We detect significant selective constraint at synonymous sites in primates, carnivores, and murid rodents. Synonymous site selective constraint is weakest in murids, a surprising result, considering that murid effective population sizes are likely to be considerably higher than the other two taxa.
Collapse
Affiliation(s)
- Peter D Keightley
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, EH9 3JT, United Kingdom.
| | | | | | | |
Collapse
|