1
|
Fani G, Coppi E, Errico S, Cherchi F, Gennari M, Barbut D, Vendruscolo M, Zasloff M, Pugliese AM, Chiti F. Natural aminosterols inhibit NMDA receptors with low nanomolar potency. FEBS J 2025. [PMID: 40123295 DOI: 10.1111/febs.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 01/21/2025] [Accepted: 01/31/2025] [Indexed: 03/25/2025]
Abstract
Abnormal functions of N-methyl-D-aspartate receptors (NMDARs) are associated with many brain disorders, making them primary targets for drug discovery. We show that natural aminosterols inhibit the NMDAR-mediated increase of intracellular calcium ions in cultured primary neurons and neuroblastoma cells. Structural comparison with known NMDAR-negative allosteric modulators, such as pregnanolone-sulfate-2 (PAS), raises the hypothesis that aminosterols have the same mechanism of action. Fluorescence resonance energy transfer (FRET) measurements using labeled NMDAR and the labeled aminosterol trodusquemine (TRO) indicate close spatial proximity, likely arising from binding. Other indirect yet plausible mechanisms for NMDAR inhibition by TRO were excluded. Electrophysiological patch clamp measurements on primary neurons indicate that pre-incubated TRO inhibits NMDA-induced ion currents with a IC50 of 5 nm. Inhibition is observed only after cell membrane pre-adsorption, indicating accessibility to NMDAR from the cell membrane and binding to the transmembrane domains (TMDs) and TMD-ligand-binding domain (LBD) linkers, similarly to PAS. The TRO IC50 is 5000-fold higher than that of PAS and 20-16 000 times higher than those of other inhibitors binding to TMD/TMD-LBD regions, identifying aminosterols as promising and potent NMDAR modulators.
Collapse
Affiliation(s)
- Giulia Fani
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Italy
| | - Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Federica Cherchi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Italy
| | - Martina Gennari
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| | - Denise Barbut
- Enterin Research Institute Inc., Philadelphia, PA, USA
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, UK
| | - Michael Zasloff
- Enterin Research Institute Inc., Philadelphia, PA, USA
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, USA
| | - Anna Maria Pugliese
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Division of Pharmacology and Toxicology, University of Florence, Italy
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Italy
| |
Collapse
|
2
|
Grage SL, Guschtschin-Schmidt N, Meng B, Kohlmeyer A, Afonin S, Ulrich AS. Interaction of Squalamine with Lipid Membranes. J Phys Chem B 2025; 129:1760-1773. [PMID: 39905636 DOI: 10.1021/acs.jpcb.4c06576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Squalamine is an aminosterol from dogfish shark which has drawn attention, besides its antimicrobial activity, as a drug candidate in the treatment of Parkinson's disease due to its ability to prevent binding of α-synuclein to lipid membranes. To get insight into the mode of action of this steroid, we studied the influence of squalamine on lipid bilayers and whether it could inhibit the binding of a model peptide. Solid-state 19F NMR of labeled [KIGAKI]3 indicated that, indeed, this peptide no longer binds as a flexible chain to the bilayer in the presence of squalamine. When the cationic squalamine was added to lipid vesicles containing phosphatidylglycerol lipids, the aminosterol was found in differential scanning calorimetry and solid-state 31P NMR experiments to lower the gel-to-fluid phase transition and cause the phase separation of domains enriched in anionic lipids. Squalamine had only a little influence on 2H NMR relaxation and on the order parameters of the chains. These findings indicate that the aminosterol does not affect the molecular mobility of the hydrophobic core of the bilayer; hence, it does not insert into the membrane, nor causes thinning as found for molecules inserting in the headgroup region. On the other hand, squalamine was found to interact with lipid headgroups through electrostatic interactions, as seen by solid-state 2H NMR on headgroup-labeled lipids. Furthermore, 31P NMR showed that squalamine shifted the lamellar-to-hexagonal phase transition of phosphatidylethanolamine lipids to higher temperatures, indicating a preference for positively curved membranes. Altogether, our experiments indicate a strong interaction of the cationic squalamine with lipid headgroups, in particular with anionic lipids. This affinity for membranes is strong enough to efficiently displace cationic polypeptides, confirming the proposed action mechanism in Parkinson treatment. Notably, supported by 1H-1H NOESY experiments, it was found that squalamine does not insert into the bilayer, but rather acts as facial amphiphile binding to the membrane surface. The binding to membranes may be envisaged in the form of oligomeric or micellar assemblies, which can disrupt the membrane at high concentrations, thereby explaining the antimicrobial and antifungal activities of squalamine.
Collapse
Affiliation(s)
- Stephan L Grage
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Nadja Guschtschin-Schmidt
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Beibei Meng
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Annika Kohlmeyer
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Sergii Afonin
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Anne S Ulrich
- Karlsruhe Institute of Technology (KIT), Institute of Biological Interfaces (IBG-2), P.O. Box 3640, 76021 Karlsruhe, Germany
- Karlsruhe Institute of Technology (KIT), Institute of Organic Chemistry (IOC), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Deng R, Zong GF, Wang X, Yue BJ, Cheng P, Tao RZ, Li X, Wei ZH, Lu Y. Promises of natural products as clinical applications for cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189241. [PMID: 39674416 DOI: 10.1016/j.bbcan.2024.189241] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 12/05/2024] [Accepted: 12/08/2024] [Indexed: 12/16/2024]
Abstract
Cancer represents a substantial threat to human health and mortality, necessitating the development of novel pharmacological agents with innovative mechanisms of action. Consequently, extensive research has been directed toward discovering new anticancer compounds derived from natural sources, including plants, microbes, and marine organisms. This review offers a comprehensive analysis of natural anticancer agents that are either currently undergoing clinical trials or have been integrated into clinical practice. A comprehensive understanding of the historical origins of natural anticancer agents, alongside traditional targets for tumor treatment and the distinct characteristics of cancer, can significantly facilitate researchers in the discovery and development of innovative anticancer drugs for clinical use. Furthermore, the exploration of microbial and marine sources is currently a prominent area of focus in the clinical application and advancement of new anticancer therapies. Detailed classification and elucidation of the functions and antitumor properties of these natural products are essential. It is imperative to comprehensively summarize and comprehend the natural anticancer drugs that have been and continue to be utilized in clinical settings.
Collapse
Affiliation(s)
- Rui Deng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Nanjing Integrated Traditional Chinese And Western Medicine Hospital, Nanjing 210018. China
| | - Gang-Fan Zong
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xi Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Bing-Jie Yue
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Peng Cheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Rui-Zhi Tao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Hong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023. China; Jiangsu Joint International Research Laboratory of Chinese Medicine and Regenerative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
4
|
Barbut D, Perni M, Zasloff M. Anti-aging properties of the aminosterols of the dogfish shark. NPJ AGING 2024; 10:62. [PMID: 39702521 DOI: 10.1038/s41514-024-00188-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
The development of anti-aging drugs is challenged by both the apparent complexity of the physiological mechanisms involved in aging and the likelihood that many of these mechanisms remain unknown. As a consequence, the development of anti-aging compounds based on the rational targeting of specific pathways has fallen short of the goal. To date, the most impressive compound is rapamycin, a natural bacterial product initially identified as an antifungal, and only subsequently discovered to have anti-aging properties. In this review, we focus on two aminosterols from the dogfish shark, Squalus acanthias, that we discovered initially as broad-spectrum anti-microbial agents. This review is the first to gather together published studies conducted both in vitro and in numerous vertebrate species to demonstrate that these compounds target aging pathways at the cellular level and provide benefits in multiple aging-associated conditions in relevant animal models and in humans. The dogfish aminosterols should be recognized as potential anti-aging drugs.
Collapse
Affiliation(s)
- Denise Barbut
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA
| | - Michele Perni
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA
| | - Michael Zasloff
- BAZ Therapeutics, Inc., Philadelphia, PA, 19103, USA.
- MedStar Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, 20010, USA.
| |
Collapse
|
5
|
Kawka A, Koenig H, Pospieszny T. Steroid and bioactive molecule conjugates: Improving therapeutic approaches in disease management. Bioorg Chem 2024; 153:107933. [PMID: 39509790 DOI: 10.1016/j.bioorg.2024.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Conjugates of steroids and other natural bioactive molecules (such as amino acids or carbohydrates) have proven promising compounds with diverse biological effects. This literature review summarises the importance of steroid conjugates in a broad spectrum of therapeutic applications. Steroid conjugates exhibit improved pharmacokinetic properties, improved target specificity, and reduced side effects compared to the parent compounds. This increases their clinical usefulness. Their versatility extends to drug delivery systems, enabling precise modulation of drug release kinetics and bioavailability. Moreover, steroid conjugates are vital in treating inflammatory and neurodegenerative diseases, hormonal disorders, cancer therapy, and combating microbial infections. The review presents the current state of research on steroid conjugates, highlighting the crucial role of steroid conjugates in modern medicine and their potential to revolutionise therapeutic paradigms and improve patient outcomes. Steroid compounds are excellent for developing agents with better bioavailability and are used as drug carriers or hydrogelators.
Collapse
Affiliation(s)
- Anna Kawka
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland.
| | - Hanna Koenig
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland
| | - Tomasz Pospieszny
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8 Street, 61-614 Poznań, Poland.
| |
Collapse
|
6
|
Yang K, Lv Z, Zhao W, Lai G, Zheng C, Qi F, Zhao C, Hu K, Chen X, Fu F, Li J, Xie G, Wang H, Wu X, Zheng W. The potential of natural products to inhibit abnormal aggregation of α-Synuclein in the treatment of Parkinson's disease. Front Pharmacol 2024; 15:1468850. [PMID: 39508052 PMCID: PMC11537895 DOI: 10.3389/fphar.2024.1468850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Parkinson's disease (PD), as a refractory neurological disorder with complex etiology, currently lacks effective therapeutic agents. Natural products (NPs), derived from plants, animals, or microbes, have shown promising effects in PD models through their antioxidative and anti-inflammatory properties, as well as the enhancement of mitochondrial homeostasis and autophagy. The misfolding and deposition of α-Synuclein (α-Syn), due to abnormal overproduction and impaired clearance, being central to the death of dopamine (DA) neurons. Thus, inhibiting α-Syn misfolding and aggregation has become a critical focus in PD discovery. This review highlights NPs that can reduce α-Syn aggregation by preventing its overproduction and misfolding, emphasizing their potential as novel drugs or adjunctive therapies for PD treatment, thereby providing further insights for clinical translation.
Collapse
Affiliation(s)
- Kaixia Yang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Zhongyue Lv
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wen Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guogang Lai
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cheng Zheng
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| | - Feiteng Qi
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Cui Zhao
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Kaikai Hu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiao Chen
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Fan Fu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Jiayi Li
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Guomin Xie
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Haifeng Wang
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Xiping Wu
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
| | - Wu Zheng
- Department of Neurology, The Affiliated Lihuili Hospital of Ningbo University, Ningbo, Zhejiang, China
- Neuroscience Medical Center, Ningbo Medical Center Lihuili Hospital, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
7
|
Sechi GP, Sechi MM. Small Molecules, α-Synuclein Pathology, and the Search for Effective Treatments in Parkinson's Disease. Int J Mol Sci 2024; 25:11198. [PMID: 39456980 PMCID: PMC11508228 DOI: 10.3390/ijms252011198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/10/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Parkinson's disease (PD) is a progressive age-related neurodegenerative disorder affecting millions of people worldwide. Essentially, it is characterised by selective degeneration of dopamine neurons of the nigro-striatal pathway and intraneuronal aggregation of misfolded α-synuclein with formation of Lewy bodies and Lewy neurites. Moreover, specific small molecules of intermediary metabolism may have a definite pathophysiological role in PD. These include dopamine, levodopa, reduced glutathione, glutathione disulfide/oxidised glutathione, and the micronutrients thiamine and ß-Hydroxybutyrate. Recent research indicates that these small molecules can interact with α-synuclein and regulate its folding and potential aggregation. In this review, we discuss the current knowledge on interactions between α-synuclein and both the small molecules of intermediary metabolism in the brain relevant to PD, and many other natural and synthetic small molecules that regulate α-synuclein aggregation. Additionally, we analyse some of the relevant molecular mechanisms potentially involved. A better understanding of these interactions may have relevance for the development of rational future therapies. In particular, our observations suggest that the micronutrients ß-Hydroxybutyrate and thiamine might have a synergistic therapeutic role in halting or reversing the progression of PD and other neuronal α-synuclein disorders.
Collapse
Affiliation(s)
- Gian Pietro Sechi
- Department of Medicine, Surgery and Pharmacy, University of Sassari, 07100 Sassari, Italy
| | | |
Collapse
|
8
|
Morris OM, Toprakcioglu Z, Röntgen A, Cali M, Knowles TPJ, Vendruscolo M. Aggregation of the amyloid-β peptide (Aβ40) within condensates generated through liquid-liquid phase separation. Sci Rep 2024; 14:22633. [PMID: 39349560 PMCID: PMC11442885 DOI: 10.1038/s41598-024-72265-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/05/2024] [Indexed: 10/02/2024] Open
Abstract
The deposition of the amyloid-β (Aβ) peptide into amyloid fibrils is a hallmark of Alzheimer's disease. Recently, it has been reported that some proteins can aggregate and form amyloids through an intermediate pathway involving a liquid-like condensed phase. These observations prompted us to investigate the phase space of Aβ. We thus explored the ability of Aβ to undergo liquid-liquid phase separation, and the subsequent liquid-to-solid transition that takes place within the resulting condensates. Through the use of microfluidic approaches, we observed that the 40-residue form of Αβ (Αβ40) can undergo liquid-liquid phase separation, and that accessing a liquid-like intermediate state enables Αβ40 to self-assemble and aggregate into amyloid fibrils through this pathway. These results prompt further studies to investigate the possible role of Αβ liquid-liquid phase separation and its subsequent aggregation in the context of Alzheimer's disease and more generally on neurodegenerative processes.
Collapse
Affiliation(s)
- Owen M Morris
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Zenon Toprakcioglu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Alexander Röntgen
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Mariana Cali
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 OHE, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
9
|
Muscat S, Errico S, Danani A, Chiti F, Grasso G. Leveraging Machine Learning-Guided Molecular Simulations Coupled with Experimental Data to Decipher Membrane Binding Mechanisms of Aminosterols. J Chem Theory Comput 2024. [PMID: 38979909 PMCID: PMC11447954 DOI: 10.1021/acs.jctc.4c00127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Understanding the molecular mechanisms of the interactions between specific compounds and cellular membranes is essential for numerous biotechnological applications, including targeted drug delivery, elucidation of the drug mechanism of action, pathogen identification, and novel antibiotic development. However, estimation of the free energy landscape associated with solute binding to realistic biological systems is still a challenging task. In this work, we leverage the Time-lagged Independent Component Analysis (TICA) in combination with neural networks (NN) through the Deep-TICA approach for determining the free energy associated with the membrane insertion processes of two natural aminosterol compounds, trodusquemine (TRO), and squalamine (SQ). These compounds are particularly noteworthy because they interact with the outer layer of neuron membranes, protecting them from the toxic action of misfolded proteins involved in neurodegenerative disorders, in both their monomeric and oligomeric forms. We demonstrate how this strategy could be used to generate an effective collective variable for describing solute absorption in the membrane and for estimating free energy landscape of translocation via on-the-fly probability enhanced sampling (OPES) method. In this context, the computational protocol allowed an exhaustive characterization of the aminosterol entry pathway into a neuron-like lipid bilayer. Furthermore, it provided accurate prediction of membrane binding affinities, in close agreement with the experimental binding data obtained by using fluorescently labeled aminosterols and large unilamellar vesicles (LUVs). The findings contribute significantly to our understanding of aminosterol entry pathways and aminosterol-lipid membrane interactions. Finally, the computational methods deployed in this study further demonstrate considerable potential for investigating membrane binding processes.
Collapse
Affiliation(s)
- Stefano Muscat
- Dalle Molle Institute for Artificial Intelligence IDSIA USI-SUPSI, Via la Santa 1 ,Lugano-Viganello 6962, Switzerland
| | - Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Andrea Danani
- Dalle Molle Institute for Artificial Intelligence IDSIA USI-SUPSI, Via la Santa 1 ,Lugano-Viganello 6962, Switzerland
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Gianvito Grasso
- Dalle Molle Institute for Artificial Intelligence IDSIA USI-SUPSI, Via la Santa 1 ,Lugano-Viganello 6962, Switzerland
| |
Collapse
|
10
|
Kong X, Vishwanath V, Neelakantan P, Ye Z. Harnessing antimicrobial peptides in endodontics. Int Endod J 2024; 57:815-840. [PMID: 38441321 DOI: 10.1111/iej.14043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 06/13/2024]
Abstract
Endodontic therapy includes various procedures such as vital pulp therapy, root canal treatment and retreatment, surgical endodontic treatment and regenerative endodontic procedures. Disinfection and tissue repair are crucial for the success of these therapies, necessitating the development of therapeutics that can effectively target microbiota, eliminate biofilms, modulate inflammation and promote tissue repair. However, no current endodontic agents can achieve these goals. Antimicrobial peptides (AMPs), which are sequences of amino acids, have gained attention due to their unique advantages, including reduced susceptibility to drug resistance, broad-spectrum antibacterial properties and the ability to modulate the immune response of the organism effectively. This review systematically discusses the structure, mechanisms of action, novel designs and limitations of AMPs. Additionally, it highlights the efforts made by researchers to overcome peptide shortcomings and emphasizes the potential applications of AMPs in endodontic treatments.
Collapse
Affiliation(s)
- Xinzi Kong
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| | - Vijetha Vishwanath
- Division of Restorative Dental Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| | - Prasanna Neelakantan
- Department of Endodontics, University of the Pacific Arthur A. Dugoni School of Dentistry, San Francisco, California, USA
| | - Zhou Ye
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, Hong Kong S.A.R., China
| |
Collapse
|
11
|
Mohanty I, Allaband C, Mannochio-Russo H, El Abiead Y, Hagey LR, Knight R, Dorrestein PC. The changing metabolic landscape of bile acids - keys to metabolism and immune regulation. Nat Rev Gastroenterol Hepatol 2024; 21:493-516. [PMID: 38575682 DOI: 10.1038/s41575-024-00914-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/06/2024]
Abstract
Bile acids regulate nutrient absorption and mitochondrial function, they establish and maintain gut microbial community composition and mediate inflammation, and they serve as signalling molecules that regulate appetite and energy homeostasis. The observation that there are hundreds of bile acids, especially many amidated bile acids, necessitates a revision of many of the classical descriptions of bile acids and bile acid enzyme functions. For example, bile salt hydrolases also have transferase activity. There are now hundreds of known modifications to bile acids and thousands of bile acid-associated genes, especially when including the microbiome, distributed throughout the human body (for example, there are >2,400 bile salt hydrolases alone). The fact that so much of our genetic and small-molecule repertoire, in both amount and diversity, is dedicated to bile acid function highlights the centrality of bile acids as key regulators of metabolism and immune homeostasis, which is, in large part, communicated via the gut microbiome.
Collapse
Affiliation(s)
- Ipsita Mohanty
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Celeste Allaband
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Helena Mannochio-Russo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Yasin El Abiead
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Lee R Hagey
- Department of Medicine, University of California San Diego, San Diego, CA, USA
| | - Rob Knight
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA.
- Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
12
|
Dada ST, Toprakcioglu Z, Cali MP, Röntgen A, Hardenberg MC, Morris OM, Mrugalla LK, Knowles TPJ, Vendruscolo M. Pharmacological inhibition of α-synuclein aggregation within liquid condensates. Nat Commun 2024; 15:3835. [PMID: 38714700 PMCID: PMC11076612 DOI: 10.1038/s41467-024-47585-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 04/03/2024] [Indexed: 05/10/2024] Open
Abstract
Aggregated forms of α-synuclein constitute the major component of Lewy bodies, the proteinaceous aggregates characteristic of Parkinson's disease. Emerging evidence suggests that α-synuclein aggregation may occur within liquid condensates formed through phase separation. This mechanism of aggregation creates new challenges and opportunities for drug discovery for Parkinson's disease, which is otherwise still incurable. Here we show that the condensation-driven aggregation pathway of α-synuclein can be inhibited using small molecules. We report that the aminosterol claramine stabilizes α-synuclein condensates and inhibits α-synuclein aggregation within the condensates both in vitro and in a Caenorhabditis elegans model of Parkinson's disease. By using a chemical kinetics approach, we show that the mechanism of action of claramine is to inhibit primary nucleation within the condensates. These results illustrate a possible therapeutic route based on the inhibition of protein aggregation within condensates, a phenomenon likely to be relevant in other neurodegenerative disorders.
Collapse
Affiliation(s)
- Samuel T Dada
- Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Zenon Toprakcioglu
- Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Mariana P Cali
- Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Alexander Röntgen
- Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Maarten C Hardenberg
- Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Owen M Morris
- Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Lena K Mrugalla
- Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Disease, University of Cambridge, Cambridge, CB2 1EW, UK.
| |
Collapse
|
13
|
Long Q, Zhou W, Zhou H, Tang Y, Chen W, Liu Q, Bian X. Polyamine-containing natural products: structure, bioactivity, and biosynthesis. Nat Prod Rep 2024; 41:525-564. [PMID: 37873660 DOI: 10.1039/d2np00087c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Covering: 2005 to August, 2023Polyamine-containing natural products (NPs) have been isolated from a wide range of terrestrial and marine organisms and most of them exhibit remarkable and diverse activities, including antimicrobial, antiprotozoal, antiangiogenic, antitumor, antiviral, iron-chelating, anti-depressive, anti-inflammatory, insecticidal, antiobesity, and antioxidant properties. Their extraordinary activities and potential applications in human health and agriculture attract increasing numbers of studies on polyamine-containing NPs. In this review, we summarized the source, structure, classification, bioactivities and biosynthesis of polyamine-containing NPs, focusing on the biosynthetic mechanism of polyamine itself and representative polyamine alkaloids, polyamine-containing siderophores with catechol/hydroxamate/hydroxycarboxylate groups, nonribosomal peptide-(polyketide)-polyamine (NRP-(PK)-PA), and NRP-PK-long chain poly-fatty amine (lcPFAN) hybrid molecules.
Collapse
Affiliation(s)
- Qingshan Long
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wen Zhou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural, Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Haibo Zhou
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| | - Ying Tang
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, China.
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, 410009, China.
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
14
|
Rawson KB, Neuberger T, Smith TB, Bell IJ, Looper RE, Sebahar PR, Haussener TJ, Kanna Reddy HR, Isaacson BM, Shero J, Pasquina PF, Williams DL. Ex vivo comparison of V.A.C.® Granufoam Silver™ and V.A.C.® Granufoam™ loaded with a first-in-class bis-dialkylnorspermidine-terphenyl antibiofilm agent. Biofilm 2023; 6:100142. [PMID: 37484784 PMCID: PMC10359492 DOI: 10.1016/j.bioflm.2023.100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023] Open
Abstract
Implementation of negative pressure wound therapy (NPWT) as a standard of care has proven efficacious in reducing both the healing time and likelihood of nosocomial infection among pressure ulcers and traumatic, combat-related injuries. However, current formulations may not target or dramatically reduce bacterial biofilm burden following therapy. The purpose of this study was to determine the antibiofilm efficacy of an open-cell polyurethane (PU) foam (V.A.C.® Granufoam™) loaded with a first-in-class compound (CZ-01179) as the active release agent integrated via lyophilized hydrogel scaffolding. An ex vivo porcine excision wound model was designed to perform antibiofilm efficacy testing in the presence of NPWT. PU foam samples loaded with a 10.0% w/w formulation of CZ-01179 and 0.5% hyaluronic acid were prepared and tested against current standards of care: V.A.C.® Granufoam Silver™ and V.A.C.® Granufoam™. We observed statistically significant reduction of methicillin-resistant Staphylococcus aureus (MRSA) and Acinetobacter baumannii biofilms with the CZ-01179 antibiofilm foam in comparison to current standard of care foams. These findings motivate further development of an antibiofilm PU foam loaded with CZ-01179.
Collapse
Affiliation(s)
- Kaden B. Rawson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
- Carle Illinois College of Medicine, University of Illinois, Urbana, IL, USA
| | - Travis Neuberger
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, UT, USA
- Carle Illinois College of Medicine, University of Illinois, Urbana, IL, USA
| | - Tyler B. Smith
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
| | - Isaac J. Bell
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
| | - Ryan E. Looper
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
- Curza Global, LLC, Salt Lake City, UT, USA
| | - Paul R. Sebahar
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
- Curza Global, LLC, Salt Lake City, UT, USA
| | - Travis J. Haussener
- Department of Chemistry, University of Utah, Salt Lake City, UT, USA
- Curza Global, LLC, Salt Lake City, UT, USA
| | | | - Brad M. Isaacson
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University, Bethesda, MD, USA
- The Geneva Foundation, Tacoma, WA, USA
| | - John Shero
- Extremity Trauma and Amputation Center of Excellence, Joint Base San Antonio Fort Sam Houston, San Antonio, TX, USA
| | - Paul F. Pasquina
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University, Bethesda, MD, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Dustin L. Williams
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA
- Bone and Biofilm Research Lab, University of Utah, Salt Lake City, UT, USA
- Department of Biomedical Engineering, University of Utah, UT, USA
- Curza Global, LLC, Salt Lake City, UT, USA
- The Center for Rehabilitation Sciences Research, Department of Physical Medicine and Rehabilitation, Uniformed Services University, Bethesda, MD, USA
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
15
|
Berdzik N, Koenig H, Mrówczyńska L, Nowak D, Jasiewicz B, Pospieszny T. Synthesis and Hemolytic Activity of Bile Acid-Indole Bioconjugates Linked by Triazole. J Org Chem 2023; 88:16719-16734. [PMID: 38059841 PMCID: PMC10729025 DOI: 10.1021/acs.joc.3c00815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 11/16/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
New formyl and acetyl derivatives of bile acid propargyl esters and their bioconjugates with modified gramine molecules have been obtained using the click chemistry method to study their hemolytic potency. The structures of all compounds were confirmed by spectral (1H- and 13C NMR and FT-IR) analysis and mass spectrometry (ESI-MS) as well as PM5 semiempirical methods. According to the results, the structural modification of formyl and acetyl bile acid derivatives, leading to the formation of new propargyl esters and indole bioconjugates, reduces their hemolytic activity. According to molecular docking studies, the tested ligands are highly likely to exhibit a similar affinity, as native ligands, for the active sites of specific protein domains (PDB IDs: 2Q85 and 5V5Z). The obtained results may be helpful for the development of selective bile acid bioconjugates as effective antibacterial, antifungal, or antioxidant agents.
Collapse
Affiliation(s)
- Natalia Berdzik
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Hanna Koenig
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Lucyna Mrówczyńska
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Damian Nowak
- Department of Quantum Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 8, 61-614 Poznań, Poland
| | - Beata Jasiewicz
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Tomasz Pospieszny
- Department of Bioactive Products, Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| |
Collapse
|
16
|
Bachar-Wikstrom E, Dhillon B, Gill Dhillon N, Abbo L, Lindén SK, Wikstrom JD. Mass Spectrometry Analysis of Shark Skin Proteins. Int J Mol Sci 2023; 24:16954. [PMID: 38069276 PMCID: PMC10707392 DOI: 10.3390/ijms242316954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The mucus layer covering the skin of fish has several roles, including protection against pathogens and mechanical damage in which proteins play a key role. While proteins in the skin mucus layer of various common bony fish species have been explored, the proteins of shark skin mucus remain unexplored. In this pilot study, we examine the protein composition of the skin mucus in spiny dogfish sharks and chain catsharks through mass spectrometry (NanoLC-MS/MS). Overall, we identified 206 and 72 proteins in spiny dogfish (Squalus acanthias) and chain catsharks (Scyliorhinus retifer), respectively. Categorization showed that the proteins belonged to diverse biological processes and that most proteins were cellular albeit a significant minority were secreted, indicative of mucosal immune roles. The secreted proteins are reviewed in detail with emphasis on their immune potentials. Moreover, STRING protein-protein association network analysis showed that proteins of closely related shark species were more similar as compared to a more distantly related shark and a bony fish, although there were also significant overlaps. This study contributes to the growing field of molecular shark studies and provides a foundation for further research into the functional roles and potential human biomedical implications of shark skin mucus proteins.
Collapse
Affiliation(s)
- Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, 17177 Stockholm, Sweden
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Braham Dhillon
- Department of Plant Pathology, Fort Lauderdale Research and Education Center, IFAS, University of Florida, Davie, FL 33314, USA
| | - Navi Gill Dhillon
- Department of Biological Sciences, Nova Southeastern University, Davie, FL 33314, USA
| | - Lisa Abbo
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Sara K. Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Jakob D. Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, 17177 Stockholm, Sweden
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Dermato-Venereology Clinic, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
17
|
Bachar-Wikstrom E, Thomsson KA, Sihlbom C, Abbo L, Tartor H, Lindén SK, Wikstrom JD. Identification of Novel Glycans in the Mucus Layer of Shark and Skate Skin. Int J Mol Sci 2023; 24:14331. [PMID: 37762632 PMCID: PMC10532229 DOI: 10.3390/ijms241814331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The mucus layer covering the skin of fish has several roles, including protection against pathogens and mechanical damage. While the mucus layers of various bony fish species have been investigated, the composition and glycan profiles of shark skin mucus remain relatively unexplored. In this pilot study, we aimed to explore the structure and composition of shark skin mucus through histological analysis and glycan profiling. Histological examination of skin samples from Atlantic spiny dogfish (Squalus acanthias) sharks and chain catsharks (Scyliorhinus retifer) revealed distinct mucin-producing cells and a mucus layer, indicating the presence of a functional mucus layer similar to bony fish mucus albeit thinner. Glycan profiling using liquid chromatography-electrospray ionization tandem mass spectrometry unveiled a diverse repertoire of mostly O-glycans in the mucus of the two sharks as well as little skate (Leucoraja erinacea). Elasmobranch glycans differ significantly from bony fish, especially in being more sulfated, and some bear resemblance to human glycans, such as gastric mucin O-glycans and H blood group-type glycans. This study contributes to the concept of shark skin having unique properties and provides a foundation for further research into the functional roles and potential biomedical implications of shark skin mucus glycans.
Collapse
Affiliation(s)
- Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, 17177 Stockholm, Sweden
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Kristina A. Thomsson
- Proteomics Core Facility of Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Carina Sihlbom
- Proteomics Core Facility of Sahlgrenska Academy, University of Gothenburg, 41390 Gothenburg, Sweden
| | - Lisa Abbo
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| | - Haitham Tartor
- Department of Fish Health and Welfare, Norwegian Veterinary Institute, P.O. Box 750, Sentrum, 0106 Oslo, Norway
| | - Sara K. Lindén
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, P.O. Box 440, Medicinaregatan 9C, 40530 Gothenburg, Sweden
| | - Jakob D. Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, 17177 Stockholm, Sweden
- Whitman Center, Marine Biological Laboratory, Woods Hole, MA 02543, USA
- Dermato-Venereology Clinic, Karolinska University Hospital, 17176 Stockholm, Sweden
| |
Collapse
|
18
|
Wagner CI, Kopp MEL, Thorburn J, Jones CS, Hoarau G, Noble LR. Characteristics of the spiny dogfish (Squalus acanthias) nuclear genome. G3 (BETHESDA, MD.) 2023; 13:jkad146. [PMID: 37395764 PMCID: PMC10468316 DOI: 10.1093/g3journal/jkad146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 02/28/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
Sequenced shark nuclear genomes are underrepresented, with reference genomes available for only four out of nine orders so far. Here, we present the nuclear genome, with annotations, of the spiny dogfish (Squalus acanthias), a shark of interest to biomedical and conservation efforts, and the first representative of the second largest order of sharks (Squaliformes) with nuclear genome annotations available. Using Pacific Biosciences Continuous Long Read data in combination with Illumina paired-end and Hi-C sequencing, we assembled the genome de novo, followed by RNA-Seq-supported annotation. The final chromosome-level assembly is 3.7 Gb in size, has a BUSCO completeness score of 91.6%, and an error rate of less than 0.02%. Annotation predicted 33,283 gene models in the spiny dogfish's genome, of which 31,979 are functionally annotated.
Collapse
Affiliation(s)
- C Isabel Wagner
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Martina E L Kopp
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - James Thorburn
- School of Biology, University of St Andrews, St Andrews, KY16 9ST, UK
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Catherine S Jones
- School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 3FX, UK
| | - Galice Hoarau
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Leslie R Noble
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| |
Collapse
|
19
|
Mohammed S, Russo I, Ramazzina I. Uncovering the Role of Natural and Synthetic Small Molecules in Counteracting the Burden of α-Synuclein Aggregates and Related Toxicity in Different Models of Parkinson's Disease. Int J Mol Sci 2023; 24:13370. [PMID: 37686175 PMCID: PMC10488152 DOI: 10.3390/ijms241713370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
A proteostasis network represents a sophisticated cellular system that controls the whole process which leads to properly folded functional proteins. The imbalance of proteostasis determines a quantitative increase in misfolded proteins prone to aggregation and elicits the onset of different diseases. Among these, Parkinson's Disease (PD) is a progressive brain disorder characterized by motor and non-motor signs. In PD pathogenesis, alpha-Synuclein (α-Syn) loses its native structure, triggering a polymerization cascade that leads to the formation of toxic inclusions, the PD hallmark. Because molecular chaperones represent a "cellular arsenal" to counteract protein misfolding and aggregation, the modulation of their expression represents a compelling PD therapeutic strategy. This review will discuss evidence concerning the effects of natural and synthetic small molecules in counteracting α-Syn aggregation process and related toxicity, in different in vitro and in vivo PD models. Firstly, the role of small molecules that modulate the function(s) of chaperones will be highlighted. Then, attention will be paid to small molecules that interfere with different steps of the protein-aggregation process. This overview would stimulate in-depth research on already-known small molecules or the development of new ones, with the aim of developing drugs that are able to modify the progression of the disease.
Collapse
Affiliation(s)
- Salihu Mohammed
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
| | - Isabella Russo
- Department of Molecular and Translational Medicine, University of Brescia, Via Europa 11, 25123 Brescia, Italy;
- IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni 4, 25125 Brescia, Italy
| | - Ileana Ramazzina
- Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy;
- Centre for Molecular and Translational Oncology (COMT), University of Parma, Parco Area delle Scienze 11/a, 43124 Parma, Italy
- Biostructures and Biosystems National Institute (INBB), Viale Medaglie d’Oro 305, 00136 Rome, Italy
| |
Collapse
|
20
|
Battis K, Xiang W, Winkler J. The Bidirectional Interplay of α-Synuclein with Lipids in the Central Nervous System and Its Implications for the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2023; 24:13270. [PMID: 37686080 PMCID: PMC10487772 DOI: 10.3390/ijms241713270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The alteration and aggregation of alpha-synuclein (α-syn) play a crucial role in neurodegenerative diseases collectively termed as synucleinopathies, including Parkinson's disease (PD). The bidirectional interaction of α-syn with lipids and biomembranes impacts not only α-syn aggregation but also lipid homeostasis. Indeed, lipid composition and metabolism are severely perturbed in PD. One explanation for lipid-associated alterations may involve structural changes in α-syn, caused, for example, by missense mutations in the lipid-binding region of α-syn as well as post-translational modifications such as phosphorylation, acetylation, nitration, ubiquitination, truncation, glycosylation, and glycation. Notably, different strategies targeting the α-syn-lipid interaction have been identified and are able to reduce α-syn pathology. These approaches include the modulation of post-translational modifications aiming to reduce the aggregation of α-syn and modify its binding properties to lipid membranes. Furthermore, targeting enzymes involved in various steps of lipid metabolism and exploring the neuroprotective potential of lipids themselves have emerged as novel therapeutic approaches. Taken together, this review focuses on the bidirectional crosstalk of α-syn and lipids and how alterations of this interaction affect PD and thereby open a window for therapeutic interventions.
Collapse
Affiliation(s)
| | | | - Jürgen Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054 Erlangen, Germany; (K.B.); (W.X.)
| |
Collapse
|
21
|
Errico S, Lucchesi G, Odino D, Osman EY, Cascella R, Neri L, Capitini C, Calamai M, Bemporad F, Cecchi C, Kinney WA, Barbut D, Relini A, Canale C, Caminati G, Limbocker R, Vendruscolo M, Zasloff M, Chiti F. Quantitative Attribution of the Protective Effects of Aminosterols against Protein Aggregates to Their Chemical Structures and Ability to Modulate Biological Membranes. J Med Chem 2023. [PMID: 37433124 PMCID: PMC10388293 DOI: 10.1021/acs.jmedchem.3c00182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Natural aminosterols are promising drug candidates against neurodegenerative diseases, like Alzheimer and Parkinson, and one relevant protective mechanism occurs via their binding to biological membranes and displacement or binding inhibition of amyloidogenic proteins and their cytotoxic oligomers. We compared three chemically different aminosterols, finding that they exhibited different (i) binding affinities, (ii) charge neutralizations, (iii) mechanical reinforcements, and (iv) key lipid redistributions within membranes of reconstituted liposomes. They also had different potencies (EC50) in protecting cultured cell membranes against amyloid-β oligomers. A global fitting analysis led to an analytical equation describing quantitatively the protective effects of aminosterols as a function of their concentration and relevant membrane effects. The analysis correlates aminosterol-mediated protection with well-defined chemical moieties, including the polyamine group inducing a partial membrane-neutralizing effect (79 ± 7%) and the cholestane-like tail causing lipid redistribution and bilayer mechanical resistance (21 ± 7%), linking quantitatively their chemistry to their protective effects on biological membranes.
Collapse
Affiliation(s)
- Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Giacomo Lucchesi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino 50019, Italy
| | - Davide Odino
- Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Enass Youssef Osman
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta 31527, The Arab Republic of Egypt
| | - Roberta Cascella
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Lorenzo Neri
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Claudia Capitini
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- Department of Physics and Astronomy, University of Florence, Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council of Italy (CNR), Florence 50125, Italy
| | - Martino Calamai
- European Laboratory for Non-linear Spectroscopy (LENS), Sesto Fiorentino 50019, Italy
- National Institute of Optics, National Research Council of Italy (CNR), Florence 50125, Italy
| | - Francesco Bemporad
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - Cristina Cecchi
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| | - William A Kinney
- Enterin Research Institute Inc., Philadelphia, Pennsylvania 19103, United States
| | - Denise Barbut
- Enterin Research Institute Inc., Philadelphia, Pennsylvania 19103, United States
| | - Annalisa Relini
- Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Claudio Canale
- Department of Physics, University of Genoa, Genoa 16146, Italy
| | - Gabriella Caminati
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Sesto Fiorentino 50019, Italy
| | - Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, United States
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Michael Zasloff
- Enterin Research Institute Inc., Philadelphia, Pennsylvania 19103, United States
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, District of Columbia 20007, United States
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence 50134, Italy
| |
Collapse
|
22
|
Cadelis MM, Kim J, Rouvier F, Gill ES, Fraser K, Bourguet-Kondracki ML, Brunel JM, Copp BR. Exploration of Bis-Cinnamido-Polyamines as Intrinsic Antimicrobial Agents and Antibiotic Enhancers. Biomolecules 2023; 13:1087. [PMID: 37509123 PMCID: PMC10377643 DOI: 10.3390/biom13071087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/26/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The marine natural product ianthelliformisamine C is a bis-cinnamido substituted spermine derivative that exhibits intrinsic antimicrobial properties and can enhance the action of doxycycline towards the Gram-negative bacterium Pseudomonas aeruginosa. As part of a study to explore the structure-activity requirements of these activities, we have synthesized a set of analogues that vary in the presence/absence of methoxyl group and bromine atoms and in the polyamine chain length. Intrinsic antimicrobial activity towards Staphylococcus aureus, methicillin-resistant S. aureus (MRSA) and the fungus Cryptococcus neoformans was observed for only the longest polyamine chain examples of non-brominated analogues while all examples bearing either one or two bromine atoms were active. Weak to no activity was typically observed towards Gram-negative bacteria, with exceptions being the longest polyamine chain examples 13f, 14f and 16f against Escherichia coli (MIC 1.56, 7.2 and 5.3 µM, respectively). Many of these longer polyamine-chain analogues also exhibited cytotoxic and/or red blood cell hemolytic properties, diminishing their potential as antimicrobial lead compounds. Two of the non-toxic, non-halogenated analogues, 13b and 13d, exhibited a strong ability to enhance the action of doxycycline against P. aeruginosa, with >64-fold and >32-fold enhancement, respectively. These results suggest that any future efforts to optimize the antibiotic-enhancing properties of cinnamido-polyamines should explore a wider range of aromatic ring substituents that do not include bromine or methoxyl groups.
Collapse
Affiliation(s)
- Melissa M Cadelis
- Department of Molecular Medicine and Pathology, School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jisoo Kim
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Florent Rouvier
- Membranes et Cibles Therapeutiques (MCT), SSA, INSERM, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Evangelene S Gill
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kyle Fraser
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 Rue Cuvier (C.P. 54), 75005 Paris, France
| | - Jean Michel Brunel
- Membranes et Cibles Therapeutiques (MCT), SSA, INSERM, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
23
|
Cadelis MM, Edmeades LR, Chen D, Gill ES, Fraser K, Rouvier F, Bourguet-Kondracki ML, Brunel JM, Copp BR. Investigation of Naphthyl-Polyamine Conjugates as Antimicrobials and Antibiotic Enhancers. Antibiotics (Basel) 2023; 12:1014. [PMID: 37370335 DOI: 10.3390/antibiotics12061014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
As part of our search for new antimicrobials and antibiotic enhancers, a series of naphthyl- and biphenyl-substituted polyamine conjugates have been synthesized. The structurally-diverse library of compounds incorporated variation in the capping end groups and in the length of the polyamine (PA) core. Longer chain (PA-3-12-3) variants containing both 1-naphthyl and 2-naphthyl capping groups exhibited more pronounced intrinsic antimicrobial properties against methicillin-resistant Staphylococcus aureus (MRSA) (MIC ≤ 0.29 µM) and the fungus Cryptococcus neoformans (MIC ≤ 0.29 µM). Closer mechanistic study of one of these analogues, 20f, identified it as a bactericide. In contrast to previously reported diarylacyl-substituted polyamines, several examples in the current set were able to enhance the antibiotic action of doxycycline and/or erythromycin towards the Gram-negative bacteria Pseudomonas aeruginosa and Escherichia coli. Two analogues (19a and 20c) were of note, exhibiting greater than 32-fold enhancement in activity. This latter result suggests that α,ω-disubstituted polyamines bearing 1-naphthyl- and 2-naphthyl-capping groups are worthy of further investigation and optimization as non-toxic antibiotic enhancers.
Collapse
Affiliation(s)
- Melissa M Cadelis
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Liam R Edmeades
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Dan Chen
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Evangelene S Gill
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kyle Fraser
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Florent Rouvier
- Membranes et Cibles Thérapeutiques (MCT), SSA, INSERM, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 rue Cuvier (C.P. 54), 75005 Paris, France
| | - Jean Michel Brunel
- Membranes et Cibles Thérapeutiques (MCT), SSA, INSERM, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
24
|
Maccari R, Ottanà R. Can Allostery Be a Key Strategy for Targeting PTP1B in Drug Discovery? A Lesson from Trodusquemine. Int J Mol Sci 2023; 24:ijms24119621. [PMID: 37298571 DOI: 10.3390/ijms24119621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Protein tyrosine phosphatase 1B (PTP1B) is an enzyme crucially implicated in aberrations of various signaling pathways that underlie the development of different human pathologies, such as obesity, diabetes, cancer, and neurodegenerative disorders. Its inhibition can prevent these pathogenetic events, thus providing a useful tool for the discovery of novel therapeutic agents. The search for allosteric PTP1B inhibitors can represent a successful strategy to identify drug-like candidates by offering the opportunity to overcome some issues related to catalytic site-directed inhibitors, which have so far hampered the development of drugs targeting this enzyme. In this context, trodusquemine (MSI-1436), a natural aminosterol that acts as a non-competitive PTP1B inhibitor, appears to be a milestone. Initially discovered as a broad-spectrum antimicrobial agent, trodusquemine exhibited a variety of unexpected properties, ranging from antidiabetic and anti-obesity activities to effects useful to counteract cancer and neurodegeneration, which prompted its evaluation in several preclinical and clinical studies. In this review article, we provide an overview of the main findings regarding the activities and therapeutic potential of trodusquemine and their correlation with PTP1B inhibition. We also included some aminosterol analogues and related structure-activity relationships that could be useful for further studies aimed at the discovery of new allosteric PTP1B inhibitors.
Collapse
Affiliation(s)
- Rosanna Maccari
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Rosaria Ottanà
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
25
|
Chen D, Cadelis MM, Rouvier F, Troia T, Edmeades LR, Fraser K, Gill ES, Bourguet-Kondracki ML, Brunel JM, Copp BR. α,ω-Diacyl-Substituted Analogues of Natural and Unnatural Polyamines: Identification of Potent Bactericides That Selectively Target Bacterial Membranes. Int J Mol Sci 2023; 24:5882. [PMID: 36982955 PMCID: PMC10052977 DOI: 10.3390/ijms24065882] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
In this study, α-ω-disubstituted polyamines exhibit a range of potentially useful biological activities, including antimicrobial and antibiotic potentiation properties. We have prepared an expanded set of diarylbis(thioureido)polyamines that vary in central polyamine core length, identifying analogues with potent methicillin-resistant Staphylococcus aureus (MRSA), Escherichia coli, Acinetobacter baumannii and Candida albicans growth inhibition properties, in addition to the ability to enhance action of doxycycline towards Gram-negative bacterium Pseudomonas aeruginosa. The observation of associated cytotoxicity/hemolytic properties prompted synthesis of an alternative series of diacylpolyamines that explored aromatic head groups of varying lipophilicity. Examples bearing terminal groups each containing two phenyl rings (15a-f, 16a-f) were found to have optimal intrinsic antimicrobial properties, with MRSA being the most susceptible organism. A lack of observed cytotoxicity or hemolytic properties for all but the longest polyamine chain variants identified these as non-toxic Gram-positive antimicrobials worthy of further study. Analogues bearing either one or three aromatic-ring-containing head groups were either generally devoid of antimicrobial properties (one ring) or cytotoxic/hemolytic (three rings), defining a rather narrow range of head group lipophilicity that affords selectivity for Gram-positive bacterial membranes versus mammalian. Analogue 15d is bactericidal and targets the Gram-positive bacterial membrane.
Collapse
Affiliation(s)
- Dan Chen
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Melissa M. Cadelis
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Florent Rouvier
- UMR MD1 “Membranes et Cibles Therapeutiques”, U1261 INSERM, Faculté de Pharmacie, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Thomas Troia
- UMR MD1 “Membranes et Cibles Therapeutiques”, U1261 INSERM, Faculté de Pharmacie, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Liam R. Edmeades
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Kyle Fraser
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Evangelene S. Gill
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, 57 Rue Cuvier (C.P. 54), 75005 Paris, France
| | - Jean Michel Brunel
- UMR MD1 “Membranes et Cibles Therapeutiques”, U1261 INSERM, Faculté de Pharmacie, Aix-Marseille Universite, 27 bd Jean Moulin, 13385 Marseille, France
| | - Brent R. Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
26
|
Peña-Díaz S, García-Pardo J, Ventura S. Development of Small Molecules Targeting α-Synuclein Aggregation: A Promising Strategy to Treat Parkinson's Disease. Pharmaceutics 2023; 15:839. [PMID: 36986700 PMCID: PMC10059018 DOI: 10.3390/pharmaceutics15030839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Parkinson's disease, the second most common neurodegenerative disorder worldwide, is characterized by the accumulation of protein deposits in the dopaminergic neurons. These deposits are primarily composed of aggregated forms of α-Synuclein (α-Syn). Despite the extensive research on this disease, only symptomatic treatments are currently available. However, in recent years, several compounds, mainly of an aromatic character, targeting α-Syn self-assembly and amyloid formation have been identified. These compounds, discovered by different approaches, are chemically diverse and exhibit a plethora of mechanisms of action. This work aims to provide a historical overview of the physiopathology and molecular aspects associated with Parkinson's disease and the current trends in small compound development to target α-Syn aggregation. Although these molecules are still under development, they constitute an important step toward discovering effective anti-aggregational therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Samuel Peña-Díaz
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Javier García-Pardo
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
27
|
Biodiversity: the overlooked source of human health. Trends Mol Med 2023; 29:173-187. [PMID: 36585352 DOI: 10.1016/j.molmed.2022.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
Biodiversity is the measure of the variation of lifeforms in a given ecological system. Biodiversity provides ecosystems with the robustness, stability, and resilience that sustains them. This is ultimately essential for our survival because we depend on the services that natural ecosystems provide (food, fresh water, air, climate, and medicine). Despite this, human activity is driving an unprecedented rate of biodiversity decline, which may jeopardize the life-support systems of the planet if no urgent action is taken. In this article we show why biodiversity is essential for human health. We raise our case and focus on the biomedicine services that are enabled by biodiversity, and we present known and novel approaches to promote biodiversity conservation.
Collapse
|
28
|
Investigation of α,ω-Disubstituted Polyamine-Cholic Acid Conjugates Identifies Hyodeoxycholic and Chenodeoxycholic Scaffolds as Non-Toxic, Potent Antimicrobials. Antibiotics (Basel) 2023; 12:antibiotics12020404. [PMID: 36830315 PMCID: PMC9951859 DOI: 10.3390/antibiotics12020404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/15/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
With the increased incidence of antibiotic resistance, the discovery and development of new antibacterials is of increasing importance and urgency. The report of the natural product antibiotic squalamine in 1993 has stimulated a lot of interest in the study of structurally simplified cholic acid-polyamine derivatives. We report the synthesis of a focused set of deoxycholic acid-polyamine conjugates and the identification of hyodeoxycholic acid derivatives as being potently active towards S. aureus MRSA and some fungal strains, but with no attendant cytotoxicity or hemolytic properties. Analogue 7e exhibited bactericidal activity towards a range of Gram-positive bacteria, while preliminary investigation of its mechanism of action ruled out the bacterial membrane as being a primary cellular target as determined using an ATP-release bioluminescence assay.
Collapse
|
29
|
Reorganization of the outer layer of a model of the plasma membrane induced by a neuroprotective aminosterol. Colloids Surf B Biointerfaces 2023; 222:113115. [PMID: 36603410 DOI: 10.1016/j.colsurfb.2022.113115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Trodusquemine is an amphipathic aminosterol that has recently shown therapeutic benefit in neurodegenerative diseases altering the binding of misfolded proteins to the cell membrane. To unravel the underlying mechanism, we studied the interactions between Trodusquemine (TRO) and lipid monolayers simulating the outer layer of the plasma membrane. We selected two different compositions of dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM), cholesterol (Chol) and monosialotetrahexosylganglioside (GM1) lipid mixture mimicking either a lipid-raft containing membrane (Ld+So phases) or a single-phase disordered membrane (Ld phase). Surface pressure-area isotherms and surface compressional modulus-area combined with Brewster Angle Microscopy (BAM) provided the thermodynamic and morphological information on the lipid monolayer in the presence of increasing amounts of TRO in the monolayer. Experiments revealed that TRO forms stable spreading monolayers at the buffer-air interface where it undergoes multiple reversible phase transitions to bi- and tri-layers at the interface. When TRO was spread at the interface with the lipid mixtures, we found that it distributes in the lipid monolayer for both the selected lipid compositions, but a maximum TRO uptake in the rafts-containing monolayer was observed for a Lipid/TRO molar ratio equal to 3:2. Statistical analysis of BAM images revealed that TRO induces a decrease in the size of the condensed domains, an increase in their number and in the thickness mismatch between the Ld and So phase. Experiments and MD simulations converge to indicate that TRO adsorbs preferentially at the border of the So domains. Removal of GM1 from the lipid Ld+So mixture resulted in an even greater TRO-mediated reduction of the size of the So domains suggesting that the presence of GM1 hinders the localization of TRO at the So domains boundaries. Taken together these observations suggest that Trodusquemine influences the organization of lipid rafts within the neuronal membrane in a dose-dependent manner whereas it evenly distributes in disordered expanded phases of the membrane model.
Collapse
|
30
|
Hoegenauer C, Hammer HF, Mahnert A, Moissl-Eichinger C. Methanogenic archaea in the human gastrointestinal tract. Nat Rev Gastroenterol Hepatol 2022; 19:805-813. [PMID: 36050385 DOI: 10.1038/s41575-022-00673-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2022] [Indexed: 12/24/2022]
Abstract
The human microbiome is strongly interwoven with human health and disease. Besides bacteria, viruses and eukaryotes, numerous archaea are located in the human gastrointestinal tract and are responsible for methane production, which can be measured in clinical methane breath analyses. Methane is an important readout for various diseases, including intestinal methanogen overgrowth. Notably, the archaea responsible for methane production are largely overlooked in human microbiome studies due to their non-bacterial biology and resulting detection issues. As such, their importance for health and disease remains largely unclear to date, in particular as not a single archaeal representative has been deemed to be pathogenic. In this Perspective, we discuss the current knowledge on the clinical relevance of methanogenic archaea. We explain the archaeal unique response to antibiotics and their negative and positive effects on human physiology, and present the current understanding of the use of methane as a diagnostic marker.
Collapse
Affiliation(s)
- Christoph Hoegenauer
- Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Heinz F Hammer
- Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Alexander Mahnert
- Diagnostic and Research Department of Microbiology, Hygiene and Environmental Medicine, Medical University of Graz, Graz, Austria
| | - Christine Moissl-Eichinger
- Diagnostic and Research Department of Microbiology, Hygiene and Environmental Medicine, Medical University of Graz, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
31
|
Sterling C, Márquez-Garbán D, Vadgama JV, Pietras RJ. Squalamines in Blockade of Tumor-Associated Angiogenesis and Cancer Progression. Cancers (Basel) 2022; 14:5154. [PMID: 36291938 PMCID: PMC9601113 DOI: 10.3390/cancers14205154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 12/30/2022] Open
Abstract
Mechanisms of action of squalamine in human vascular endothelial cells indicate that this compound attaches to cell membranes, potentially interacting with calmodulin, Na+/H+ exchanger isoform NHE3 and other signaling pathways involved in the angiogenic process. Thus, squalamine elicits blockade of VEGF-induced endothelial tube-like formation in vitro. Further, squalamine reduces growth of several preclinical models of human cancers in vivo and acts to stop metastatic tumor spread, actions due largely to blockade of angiogenesis induced by the tumor and tumor microenvironment. Squalamine in Phase I/II trials, alone or combined with standard care, shows promising antitumor activity with limited side-effects in patients with advanced solid cancers. Increased attention on squalamine regulation of signaling pathways with or without combination treatments in solid malignancies deserves further study.
Collapse
Affiliation(s)
- Colin Sterling
- Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA
| | - Diana Márquez-Garbán
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Jaydutt V. Vadgama
- Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| | - Richard J. Pietras
- Division of Cancer Research and Training, Charles Drew University School of Medicine and Science, Los Angeles, CA 90059, USA
- Division of Hematology-Oncology, Department of Medicine, UCLA David Geffen School of Medicine and UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
| |
Collapse
|
32
|
Wesseling CJ, Martin NI. Synergy by Perturbing the Gram-Negative Outer Membrane: Opening the Door for Gram-Positive Specific Antibiotics. ACS Infect Dis 2022; 8:1731-1757. [PMID: 35946799 PMCID: PMC9469101 DOI: 10.1021/acsinfecdis.2c00193] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
New approaches to target antibacterial agents toward Gram-negative bacteria are key, given the rise of antibiotic resistance. Since the discovery of polymyxin B nonapeptide as a potent Gram-negative outer membrane (OM)-permeabilizing synergist in the early 1980s, a vast amount of literature on such synergists has been published. This Review addresses a range of peptide-based and small organic compounds that disrupt the OM to elicit a synergistic effect with antibiotics that are otherwise inactive toward Gram-negative bacteria, with synergy defined as a fractional inhibitory concentration index (FICI) of <0.5. Another requirement for the inclusion of the synergists here covered is their potentiation of a specific set of clinically used antibiotics: erythromycin, rifampicin, novobiocin, or vancomycin. In addition, we have focused on those synergists with reported activity against Gram-negative members of the ESKAPE family of pathogens namely, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and/or Acinetobacter baumannii. In cases where the FICI values were not directly reported in the primary literature but could be calculated from the published data, we have done so, allowing for more direct comparison of potency with other synergists. We also address the hemolytic activity of the various OM-disrupting synergists reported in the literature, an effect that is often downplayed but is of key importance in assessing the selectivity of such compounds for Gram-negative bacteria.
Collapse
|
33
|
Bansal R, Suryan A. A Comprehensive Review on Steroidal Bioconjugates as Promising Leads in Drug Discovery. ACS BIO & MED CHEM AU 2022; 2:340-369. [PMID: 37102169 PMCID: PMC10125316 DOI: 10.1021/acsbiomedchemau.1c00071] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Ever increasing unmet medical requirements of the human race and the continuous fight for survival against variety of diseases give birth to novel molecules through research. As diseases evolve, different strategies are employed to counter the new challenges and to discover safer, more effective, and target-specific therapeutic agents. Among several novel approaches, bioconjugation, in which two chemical moieties are joined together to achieve noticeable results, has emerged as a simple and convenient technique for a medicinal chemist to obtain potent molecules. The steroid system has been extensively used as a privileged scaffold gifted with significantly diversified medicinal properties in the drug discovery and development process. Steroidal molecules are preferred for their rigidness and good ability to penetrate biological membranes. Slight alteration in the basic ring structure results in the formation of steroidal derivatives with a wide range of therapeutic activities. Steroids are not only active as such, conjugating them with various biologically active moieties results in increased lipophilicity, stability, and target specificity with decreased adverse effects. Thus, the steroid nucleus prominently behaves as a biological carrier for small molecules. The steroid bioconjugates offer several advantages such as synergistic activity with fewer side effects due to reduced dose and selective therapy. The steroidal bioconjugates have been widely explored for their usefulness against various disorders and have shown significant utility as anticancer, anti-inflammatory, anticoagulant, antimicrobial, insecticidal/pesticidal, antioxidant, and antiviral agents along with several other miscellaneous activities. This work provides a comprehensive review on the therapeutic progression of steroidal bioconjugates as medicinally active molecules. The review covers potential biological applications of steroidal bioconjugates and would benefit the wider scientific community in their drug discovery endeavors.
Collapse
Affiliation(s)
- Ranju Bansal
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| | - Amruta Suryan
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh 160014, India
| |
Collapse
|
34
|
Alkhzem AH, Woodman TJ, Blagbrough IS. Design and synthesis of hybrid compounds as novel drugs and medicines. RSC Adv 2022; 12:19470-19484. [PMID: 35865575 PMCID: PMC9257310 DOI: 10.1039/d2ra03281c] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/13/2022] Open
Abstract
The development of highly effective conjugate chemistry approaches is a way to improve the quality of drugs and of medicines. The aim of this paper is to highlight and review such hybrid compounds and the strategies underpinning their design. A variety of unique hybrid compounds provide an excellent toolkit for novel biological activity, e.g. anticancer and non-viral gene therapy (NVGT), and as templates for killing bacteria and preventing antibiotic drug resistance. First we discuss the anticancer potential of hybrid compounds, containing daunorubicin, benzyl- or tetrahydroisoquinoline-coumarin, and cytotoxic NSAID-pyrrolizidine/indolizine hybrids, then NVGT cationic lipid-based delivery agents, where steroids or long chain fatty acids as the lipid moiety are bound to polyamines as the cationic moiety. These polyamines can be linear as in spermidine or spermine, or on a polycyclic sugar template, aminoglycosides kanamycin and neomycin B, the latter substituted with six amino groups. They are highly efficient for the delivery of both fluorescent DNA and siRNA. Molecular precedents can be found for the design of hybrid compounds in the natural world, e.g., squalamine, the first representative of a previously unknown class of natural antibiotics of animal origin. These polyamine-bile acid (e.g. cholic acid type) conjugates display many exciting biological activities with the bile acids acting as a lipidic region and spermidine as the polycationic region. Analogues of squalamine can act as vectors in NVGT. Their natural role is as antibiotics. Novel antibacterial materials are urgently needed as recalcitrant bacterial infection is a worldwide problem for human health. Ribosome inhibitors founded upon dimers of tobramycin or neomycin, bound as ethers by a 1,6-hexyl linker or a more complex diether-disulfide linker, improved upon the antibiotic activity of aminoglycoside monomers by 20- to 1200-fold. Other hybrids, linked by click chemistry, conjugated ciprofloxacin to neomycin, trimethoprim, or tedizolid, which is now in clinical trials.
Collapse
Affiliation(s)
| | - Timothy J Woodman
- Department of Pharmacy and Pharmacology, University of Bath Bath BA2 7AY UK
| | - Ian S Blagbrough
- Department of Pharmacy and Pharmacology, University of Bath Bath BA2 7AY UK
| |
Collapse
|
35
|
Li SA, Cadelis MM, Deed RC, Douafer H, Bourguet-Kondracki ML, Michel Brunel J, Copp BR. Valorisation of the diterpene podocarpic acid - Antibiotic and antibiotic enhancing activities of polyamine conjugates. Bioorg Med Chem 2022; 64:116762. [PMID: 35477062 DOI: 10.1016/j.bmc.2022.116762] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/05/2022] [Accepted: 04/18/2022] [Indexed: 11/02/2022]
Abstract
As part of our search for new antimicrobials and antibiotic adjuvants, a series of podocarpic acid-polyamine conjugates have been synthesized. The library of compounds made use of the phenolic and carboxylic acid moieties of the diterpene allowing attachment of polyamines (PA) of different lengths to afford a structurally-diverse set of analogues. Evaluation of the conjugates for intrinsic antimicrobial properties identified two derivatives of interest: a PA3-4-3 (spermine) amide-bonded variant 7a that was a non-cytotoxic, non-hemolytic potent growth inhibitor of Gram-positive Staphylococcus aureus (MRSA) and 9d, a PA3-8-3 carbamate derivative that was a non-toxic selective antifungal towards Cryptococcus neoformans. Of the compound set, only one example exhibited activity towards Gram-negative bacteria. However, in the presence of sub-therapeutic amounts of either doxycycline (4.5 µM) or erythromycin (2.7 μM) several analogues were observed to exhibit weak to modest antibiotic adjuvant properties against Pseudomonas aeruginosa and/or Escherichia coli. The observation of strong cytotoxicity and/or hemolytic properties for subsets of the library, in particular those analogues bearing methyl ester or n-pentylamide functionality, highlighted the fine balance of structural requirements and lipophilicity for antimicrobial activity as opposed to mammalian cell toxicity.
Collapse
Affiliation(s)
- Steven A Li
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand
| | - Melissa M Cadelis
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand
| | - Rebecca C Deed
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand; School of Biological Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand
| | - Hana Douafer
- Aix-Marseille Universite, INSERM, SSA, MCT, Faculté de Pharmacie, 27 bd Jean Moulin, 13385 Marseille, France
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-organismes, UMR 7245 CNRS, Muséum National d'Histoire Naturelle, 57 rue Cuvier (C.P. 54), 75005 Paris, France
| | - Jean Michel Brunel
- Aix-Marseille Universite, INSERM, SSA, MCT, Faculté de Pharmacie, 27 bd Jean Moulin, 13385 Marseille, France
| | - Brent R Copp
- School of Chemical Sciences, The University of Auckland, Waipapa Taumata Rau, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
36
|
Mammari N, Salles E, Beaussart A, El-Kirat-Chatel S, Varbanov M. Squalamine and Its Aminosterol Derivatives: Overview of Biological Effects and Mechanisms of Action of Compounds with Multiple Therapeutic Applications. Microorganisms 2022; 10:microorganisms10061205. [PMID: 35744723 PMCID: PMC9229800 DOI: 10.3390/microorganisms10061205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/30/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023] Open
Abstract
Squalamine is a natural aminosterol that has been discovered in the tissues of the dogfish shark (Squalus acanthias). Studies have previously demonstrated that this promoter compound and its derivatives exhibit potent bactericidal activity against Gram-negative, Gram-positive bacteria, and multidrug-resistant bacteria. The antibacterial activity of squalamine was found to correlate with that of other antibiotics, such as colistin and polymyxins. Still, in the field of microbiology, evidence has shown that squalamine and its derivatives have antifungal activity, antiprotozoa effect against a limited list of protozoa, and could exhibit antiviral activity against both RNA- and DNA-enveloped viruses. Furthermore, squalamine and its derivatives have been identified as being antiangiogenic compounds in the case of several types of cancers and induce a potential positive effect in the case of other diseases such as experimental retinopathy and Parkinson's disease. Given the diverse effects of the squalamine and its derivatives, in this review we provide the different advances in our understanding of the various effects of these promising molecules and try to draw up a non-exhaustive list of the different mechanisms of actions of squalamine and its derivatives on the human organism and on different pathogens.
Collapse
Affiliation(s)
- Nour Mammari
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (N.M.); (E.S.)
| | - Elsa Salles
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (N.M.); (E.S.)
| | | | | | - Mihayl Varbanov
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; (N.M.); (E.S.)
- Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500 Vandœuvre-lès-Nancy, France
- Correspondence:
| |
Collapse
|
37
|
Arrieche D, Carrasco H, Olea AF, Espinoza L, San-Martín A, Taborga L. Secondary Metabolites Isolated from Chilean Marine Algae: A Review. Mar Drugs 2022; 20:337. [PMID: 35621988 PMCID: PMC9147571 DOI: 10.3390/md20050337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 11/24/2022] Open
Abstract
Chile is in the extreme southwestern part of America, and it has an extreme length, of approximately 4300 km that increases to 8000 km considering the Chilean Antarctic Territory. Despite the large extent of its coastal territory and the diversity of geographic environments and climates associated with Chilean coasts, the research on marine resources in Chile has been rather scarce. From marine organisms found in Chilean coastal waters, algae have been the most studied, since they contain a wide range of interesting secondary metabolites that have some structural traits that make them unique and uncharacteristic. Thus, a wide structural variety of natural products including terpenoids (monoterpenes, sesquiterpenes, diterpenes, and meroterpenoids), furanones, and C15-acetogenins have been isolated and identified. This review describes the existing literature on bioprospecting and exploration of secondary metabolites from Chilean coasts.
Collapse
Affiliation(s)
- Dioni Arrieche
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, CP, Chile; (D.A.); (L.E.)
| | - Héctor Carrasco
- Grupo QBAB, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux 2801, Santiago 8900000, CP, Chile; (H.C.); (A.F.O.)
| | - Andrés F. Olea
- Grupo QBAB, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Llano Subercaseaux 2801, Santiago 8900000, CP, Chile; (H.C.); (A.F.O.)
| | - Luis Espinoza
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, CP, Chile; (D.A.); (L.E.)
| | - Aurelio San-Martín
- Departamento de Ciencias y Recursos Naturales, Facultad de Ciencias Naturales, Universidad de Magallanes, Avenida Bulnes 01855, Punta Arenas 6200112, CP, Chile
| | - Lautaro Taborga
- Laboratorio de Productos Naturales, Departamento de Química, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2340000, CP, Chile; (D.A.); (L.E.)
| |
Collapse
|
38
|
α-Synuclein at the Presynaptic Axon Terminal as a Double-Edged Sword. Biomolecules 2022; 12:biom12040507. [PMID: 35454096 PMCID: PMC9029495 DOI: 10.3390/biom12040507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
α-synuclein (α-syn) is a presynaptic, lipid-binding protein strongly associated with the neuropathology observed in Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and Alzheimer’s Disease (AD). In normal physiology, α-syn plays a pivotal role in facilitating endocytosis and exocytosis. Interestingly, mutations and modifications of precise α-syn domains interfere with α-syn oligomerization and nucleation that negatively affect presynaptic vesicular dynamics, protein expressions, and mitochondrial profiles. Furthermore, the integration of the α-syn oligomers into the presynaptic membrane results in pore formations, ion influx, and excitotoxicity. Targeted therapies against specific domains of α-syn, including the use of small organic molecules, monoclonal antibodies, and synthetic peptides, are being screened and developed. However, the prospect of an effective α-syn targeted therapy is still plagued by low permeability across the blood–brain barrier (BBB), and poor entry into the presynaptic axon terminals. The present review proposes a modification of current strategies, which includes the use of novel encapsulation technology, such as lipid nanoparticles, to bypass the BBB and deliver such agents into the brain.
Collapse
|
39
|
Pratte ZA, Perry C, Dove ADM, Hoopes LA, Ritchie KB, Hueter RE, Fischer C, Newton AL, Stewart FJ. Microbiome structure in large pelagic sharks with distinct feeding ecologies. Anim Microbiome 2022; 4:17. [PMID: 35246276 PMCID: PMC8895868 DOI: 10.1186/s42523-022-00168-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/16/2022] [Indexed: 02/07/2023] Open
Abstract
Background Sharks play essential roles in ocean food webs and human culture, but also face population declines worldwide due to human activity. The relationship between sharks and the microbes on and in the shark body is unclear, despite research on other animals showing the microbiome as intertwined with host physiology, immunity, and ecology. Research on shark-microbe interactions faces the significant challenge of sampling the largest and most elusive shark species. We leveraged a unique sampling infrastructure to compare the microbiomes of two apex predators, the white (Carcharodon carcharias) and tiger shark (Galeocerdo cuvier), to those of the filter-feeding whale shark (Rhincodon typus), allowing us to explore the effects of feeding mode on intestinal microbiome diversity and metabolic function, and environmental exposure on the diversity of microbes external to the body (on the skin, gill). Results The fecal microbiomes of white and whale sharks were highly similar in taxonomic and gene category composition despite differences in host feeding mode and diet. Fecal microbiomes from these species were also taxon-poor compared to those of many other vertebrates and were more similar to those of predatory teleost fishes and toothed whales than to those of filter-feeding baleen whales. In contrast, microbiomes of external body niches were taxon-rich and significantly influenced by diversity in the water column microbiome. Conclusions These results suggest complex roles for host identity, diet, and environmental exposure in structuring the shark microbiome and identify a small, but conserved, number of intestinal microbial taxa as potential contributors to shark physiology. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00168-x.
Collapse
Affiliation(s)
- Zoe A Pratte
- Department of Microbiology & Cell Biology, Montanta State University, 621 Leon Johnson Hall, Bozeman, MT, 59717, USA.
| | - Cameron Perry
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | | | - Kim B Ritchie
- University of South Carolina Beaufort, Beaufort, SC, USA
| | - Robert E Hueter
- OCEARCH, 1790 Bonanza Drive, Park City, UT, USA.,Center for Shark Research, Mote Marine Laboratory, 1600 Ken Thompson Parkway, Sarasota, FL, USA
| | | | - Alisa L Newton
- Disney's Animals, Science and Environment, 1200 N. Savannah Circle East, Bay Lake, FL, USA
| | - Frank J Stewart
- Department of Microbiology & Cell Biology, Montanta State University, 621 Leon Johnson Hall, Bozeman, MT, 59717, USA.,Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
40
|
Kazakova O, Giniyatullina G, Babkov D, Wimmer Z. From Marine Metabolites to the Drugs of the Future: Squalamine, Trodusquemine, Their Steroid and Triterpene Analogues. Int J Mol Sci 2022; 23:ijms23031075. [PMID: 35162998 PMCID: PMC8834734 DOI: 10.3390/ijms23031075] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022] Open
Abstract
This review comprehensively describes the recent advances in the synthesis and pharmacological evaluation of steroid polyamines squalamine, trodusquemine, ceragenins, claramine, and their diverse analogs and derivatives, with a special focus on their complete synthesis from cholic acids, as well as an antibacterial and antiviral, neuroprotective, antiangiogenic, antitumor, antiobesity and weight-loss activity, antiatherogenic, regenerative, and anxiolytic properties. Trodusquemine is the most-studied small-molecule allosteric PTP1B inhibitor. The discovery of squalamine as the first representative of a previously unknown class of natural antibiotics of animal origin stimulated extensive research of terpenoids (especially triterpenoids) comprising polyamine fragments. During the last decade, this new class of biologically active semisynthetic natural product derivatives demonstrated the possibility to form supramolecular networks, which opens up many possibilities for the use of such structures for drug delivery systems in serum or other body fluids.
Collapse
Affiliation(s)
- Oxana Kazakova
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
- Correspondence:
| | - Gulnara Giniyatullina
- Ufa Institute of Chemistry, UFA Federal Research Centre of the Russian Academy of Sciences, Pr. Oktyabrya, 450054 Ufa, Russia;
| | - Denis Babkov
- Laboratory of Metabotropic Drugs, Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya St. 39, 400087 Volgograd, Russia;
| | - Zdenek Wimmer
- Department of Chemistry of Natural Compounds, University of Chemistry and Technology in Prague, Technicka’ 5, Prague 6, 16628 Prague, Czech Republic;
| |
Collapse
|
41
|
Lou Y, Schapman D, Mercier D, Alexandre S, Dé E, Brunel JM, Kébir N, Thébault P. Modification of poly(dimethyl siloxane) surfaces with an antibacterial claramine-derivative through click-chemistry grafting. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Bildziukevich U, Özdemir Z, Šaman D, Vlk M, Šlouf M, Rárová L, Wimmer Z. Novel cytotoxic 1,10-phenanthroline–triterpenoid amphiphiles with supramolecular characteristics capable of coordinating 64Cu( ii) labels. Org Biomol Chem 2022; 20:8157-8163. [DOI: 10.1039/d2ob01172g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Novel 1,10-phenanthroline–triterpenoid amphiphiles formed nano-assemblies in water, coordinated Cu(ii) and 64Cu(ii) salts for potential cancer monitoring and therapy, and displayed cytotoxicity partly dependent on the formation of nano-assemblies.
Collapse
Affiliation(s)
- Uladzimir Bildziukevich
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - Zulal Özdemir
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
| | - David Šaman
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, CZ-16610 Prague 6, Czech Republic
| | - Martin Vlk
- Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering, Břehová 7, CZ-11519 Prague 1, Czech Republic
| | - Miroslav Šlouf
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Heyrovsky Sq. 2, CZ-16206 Prague 6, Czech Republic
| | - Lucie Rárová
- Department of Experimental Biology, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Zdeněk Wimmer
- Institute of Experimental Botany of the Czech Academy of Sciences, Isotope Laboratory, Vídeňská 1083, CZ-14220 Prague 4, Czech Republic
- University of Chemistry and Technology in Prague, Department of Chemistry of Natural Compounds, Technická 5, CZ-16628 Prague 6, Czech Republic
| |
Collapse
|
43
|
Nishimura S. Marine natural products targeting the eukaryotic cell membrane. J Antibiot (Tokyo) 2021; 74:769-785. [PMID: 34493848 DOI: 10.1038/s41429-021-00468-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/16/2021] [Accepted: 07/01/2021] [Indexed: 02/07/2023]
Abstract
The cell membrane, with high fluidity and alternative curvatures, maintains the robust integrity to distinguish inner and outer space of cells or organelles. Lipids are the main components of the cell membrane, but their functions are largely unknown. Even the visualization of lipids is not straightforward since modification of lipids often hampers its correct physical properties. Many natural products target cell membranes, some of which are used as pharmaceuticals and/or research tools. They show specific recognition on lipids, and thus exhibit desired pharmacological effects and unique biological phenotypes. This review is a catalog of marine natural products that target eukaryotic cell membranes. Chemical structures, biological activities, and molecular mechanisms are summarized. I hope that this review will be helpful for readers to notice the potential of marine natural products in the exploration of the function of lipids and the druggability of eukaryotic cell membranes.
Collapse
Affiliation(s)
- Shinichi Nishimura
- Department of Biotechnology, Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
44
|
Limbocker R, Errico S, Barbut D, Knowles TPJ, Vendruscolo M, Chiti F, Zasloff M. Squalamine and trodusquemine: two natural products for neurodegenerative diseases, from physical chemistry to the clinic. Nat Prod Rep 2021; 39:742-753. [PMID: 34698757 DOI: 10.1039/d1np00042j] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 1993 to 2021 (mainly 2017-2021)Alzheimer's and Parkinson's diseases are neurodegenerative conditions affecting over 50 million people worldwide. Since these disorders are still largely intractable pharmacologically, discovering effective treatments is of great urgency and importance. These conditions are characteristically associated with the aberrant deposition of proteinaceous aggregates in the brain, and with the formation of metastable intermediates known as protein misfolded oligomers that play a central role in their aetiology. In this Highlight article, we review the evidence at the physicochemical, cellular, animal model and clinical levels on how the natural products squalamine and trodusquemine offer promising opportunities for chronic treatments for these progressive conditions by preventing both the formation of neurotoxic oligomers and their interaction with cell membranes.
Collapse
Affiliation(s)
- Ryan Limbocker
- Department of Chemistry and Life Science, United States Military Academy, West Point, New York 10996, USA
| | - Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy. .,Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Denise Barbut
- Enterin Inc., 3624 Market Street, Philadelphia, Pennsylvania 19104, USA
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK. .,Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, UK
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK.
| | - Fabrizio Chiti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50134, Italy.
| | - Michael Zasloff
- Enterin Inc., 3624 Market Street, Philadelphia, Pennsylvania 19104, USA.,MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC 20010, USA.
| |
Collapse
|
45
|
Daley SK, Cordell GA. Alkaloids in Contemporary Drug Discovery to Meet Global Disease Needs. Molecules 2021; 26:molecules26133800. [PMID: 34206470 PMCID: PMC8270272 DOI: 10.3390/molecules26133800] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/05/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
An overview is presented of the well-established role of alkaloids in drug discovery, the application of more sustainable chemicals, and biological approaches, and the implementation of information systems to address the current challenges faced in meeting global disease needs. The necessity for a new international paradigm for natural product discovery and development for the treatment of multidrug resistant organisms, and rare and neglected tropical diseases in the era of the Fourth Industrial Revolution and the Quintuple Helix is discussed.
Collapse
Affiliation(s)
| | - Geoffrey A. Cordell
- Natural Products Inc., Evanston, IL 60202, USA;
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
46
|
Perni M, van der Goot A, Limbocker R, van Ham TJ, Aprile FA, Xu CK, Flagmeier P, Thijssen K, Sormanni P, Fusco G, Chen SW, Challa PK, Kirkegaard JB, Laine RF, Ma KY, Müller MBD, Sinnige T, Kumita JR, Cohen SIA, Seinstra R, Kaminski Schierle GS, Kaminski CF, Barbut D, De Simone A, Knowles TPJ, Zasloff M, Nollen EAA, Vendruscolo M, Dobson CM. Comparative Studies in the A30P and A53T α-Synuclein C. elegans Strains to Investigate the Molecular Origins of Parkinson's Disease. Front Cell Dev Biol 2021; 9:552549. [PMID: 33829010 PMCID: PMC8019828 DOI: 10.3389/fcell.2021.552549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 02/16/2021] [Indexed: 02/02/2023] Open
Abstract
The aggregation of α-synuclein is a hallmark of Parkinson's disease (PD) and a variety of related neurological disorders. A number of mutations in this protein, including A30P and A53T, are associated with familial forms of the disease. Patients carrying the A30P mutation typically exhibit a similar age of onset and symptoms as sporadic PD, while those carrying the A53T mutation generally have an earlier age of onset and an accelerated progression. We report two C. elegans models of PD (PDA30P and PDA53T), which express these mutational variants in the muscle cells, and probed their behavior relative to animals expressing the wild-type protein (PDWT). PDA30P worms showed a reduced speed of movement and an increased paralysis rate, control worms, but no change in the frequency of body bends. By contrast, in PDA53T worms both speed and frequency of body bends were significantly decreased, and paralysis rate was increased. α-Synuclein was also observed to be less well localized into aggregates in PDA30P worms compared to PDA53T and PDWT worms, and amyloid-like features were evident later in the life of the animals, despite comparable levels of expression of α-synuclein. Furthermore, squalamine, a natural product currently in clinical trials for treating symptomatic aspects of PD, was found to reduce significantly the aggregation of α-synuclein and its associated toxicity in PDA53T and PDWT worms, but had less marked effects in PDA30P. In addition, using an antibody that targets the N-terminal region of α-synuclein, we observed a suppression of toxicity in PDA30P, PDA53T and PDWT worms. These results illustrate the use of these two C. elegans models in fundamental and applied PD research.
Collapse
Affiliation(s)
- Michele Perni
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Annemieke van der Goot
- University Medical Centre Groningen, European Research Institute for the Biology of Aging, University of Groningen, Groningen, Netherlands
| | - Ryan Limbocker
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom,Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Tjakko J. van Ham
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Francesco A. Aprile
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Catherine K. Xu
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Patrick Flagmeier
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Karen Thijssen
- University Medical Centre Groningen, European Research Institute for the Biology of Aging, University of Groningen, Groningen, Netherlands
| | - Pietro Sormanni
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Giuliana Fusco
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Serene W. Chen
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Pavan K. Challa
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Julius B. Kirkegaard
- Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge, United Kingdom
| | - Romain F. Laine
- MRC Laboratory for Molecular Cell Biology (LMCB) University College London, London, United Kingdom
| | - Kai Yu Ma
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom,University Medical Centre Groningen, European Research Institute for the Biology of Aging, University of Groningen, Groningen, Netherlands
| | - Martin B. D. Müller
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom,University Medical Centre Groningen, European Research Institute for the Biology of Aging, University of Groningen, Groningen, Netherlands
| | - Tessa Sinnige
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Janet R. Kumita
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Samuel I. A. Cohen
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Renée Seinstra
- University Medical Centre Groningen, European Research Institute for the Biology of Aging, University of Groningen, Groningen, Netherlands
| | | | - Clemens F. Kaminski
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Denise Barbut
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, United States
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Tuomas P. J. Knowles
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Michael Zasloff
- MedStar-Georgetown Transplant Institute, Georgetown University School of Medicine, Washington, DC, United States
| | - Ellen A. A. Nollen
- University Medical Centre Groningen, European Research Institute for the Biology of Aging, University of Groningen, Groningen, Netherlands,*Correspondence: Ellen A. A. Nollen
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom,Michele Vendruscolo
| | - Christopher M. Dobson
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
47
|
Lin C, Wang Y, Le M, Chen KF, Jia YG. Recent Progress in Bile Acid-Based Antimicrobials. Bioconjug Chem 2021; 32:395-410. [PMID: 33683873 DOI: 10.1021/acs.bioconjchem.0c00642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
With the emergence of drug-resistant bacteria and the formation of biofilms by bacteria and fungi, microbial infections gradually threaten global health. Natural antimicrobial peptides (AMPs) have low susceptibility for developing resistance due to the membrane targeted mechanism, but instability and high manufacturing cost limit their applications in clinic. Bile acids, a group of steroids in the human body, with high stability, biocompatibility, and inherent facial amphiphilic structure similar to the characteristics of AMPs, have been applied to the biological field, such as drug delivery systems, self-healing hydrogels, antimicrobials, and so on. In this review, we mainly focus on the different classes of bile acid-based antimicrobials in recent years. Various designs and methods for the preparation of unimolecular antimicrobials with bile acid skeletons are first introduced, including coupling of primary amine, quaternary ammonium, and amino acid units with bile acid skeletons. Some representative oligomeric antimicrobials, including dimers of bile acids, are summarized. Finally, macromolecular antimicrobials bearing some positive charges at the main chain or side chain and interaction mechanisms of these bile acid-based antimicrobials are discussed.
Collapse
Affiliation(s)
- Caihong Lin
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Yushi Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Mengqi Le
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Kai-Feng Chen
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China
| | - Yong-Guang Jia
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China.,National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou 510006, China.,Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, China.,Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
48
|
Bildziukevich U, Malík M, Özdemir Z, Rárová L, Janovská L, Šlouf M, Šaman D, Šarek J, Nonappa, Wimmer Z. Spermine amides of selected triterpenoid acids: dynamic supramolecular system formation influences the cytotoxicity of the drugs. J Mater Chem B 2021; 8:484-491. [PMID: 31834347 DOI: 10.1039/c9tb01957j] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cancer is a global disease of great importance, and the need for novel cytotoxic drugs is still eminent. A series of spermine amides of several selected triterpene acids (betulonic, heterobetulonic, oleanolic, ursolic and platanic acid) have been synthesized to search for new cytotoxic and antimicrobial agents. The compounds have also been subjected to the investigation of their physico-chemical characteristics (ability to self-assemble), and to an in silico comparative calculation of their physico-chemical and ADME parameters. In the in vitro screening tests with several target compounds (8a-8c and 11c), their cytotoxicity changed with prolonged time, which appeared to be a result of formation of dynamic supramolecular networks. This phenomenon is important in investigation of the effect of self-assembly on biological activity. The most important compounds in this series were spermine derivatives of heterobetulonic acid (3b) and ursolic acid (8b), showing cytotoxicity <5 μM and <10 μM, respectively, on all tested cancer cell lines. Comparable cytotoxicity was also displayed by 13b, formerly a model compound prepared for testing of the synthetic procedures, the 1,2-diaminoethane derivative. The target compounds 3b and 8b displayed antimicrobial activity on Staphylococcus aureus, Streptococcus mutans and Listeria monocytogenes at a concentration 6.25 μM. Supramolecular characteristics of several compounds were documented by the TEM and SEM micrographs showing fibrous, partially helical, networks, and UV measurements showing changes in the intensity of UV signals, also indicating formation of supramolecular systems.
Collapse
Affiliation(s)
- Uladzimir Bildziukevich
- University of Chemistry and Technology in Prague, Department of Chemistry of Natural Compounds, Technická 5, 16628 Prague 6, Czech Republic.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Bozelli JC, Kamski-Hennekam E, Melacini G, Epand RM. α-Synuclein and neuronal membranes: Conformational flexibilities in health and disease. Chem Phys Lipids 2021; 235:105034. [PMID: 33434528 DOI: 10.1016/j.chemphyslip.2020.105034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/15/2020] [Accepted: 12/23/2020] [Indexed: 02/08/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease. Currently, PD has no treatment. The neuronal protein α-synuclein (αS) plays an important role in PD. However, the molecular mechanisms governing its physiological and pathological roles are not fully understood. It is becoming widely acknowledged that the biological roles of αS involve interactions with biological membranes. In these biological processes there is a fine-tuned interplay between lipids affecting the properties of αS and αS affecting lipid metabolism, αS binding to membranes, and membrane damage. In this review, the intricate interactions between αS and membranes will be reviewed and a discussion of the relationship between αS and neuronal membrane structural plasticity in health and disease will be made. It is proposed that in healthy neurons the conformational flexibilities of αS and the neuronal membranes are coupled to assist the physiological roles of αS. However, in circumstances where their conformational flexibilities are decreased or uncoupled, there is a shift toward cell toxicity. Strategies to modulate toxic αS-membrane interactions are potential approaches for the development of new therapies for PD. Future work using specific αS molecular species as well as membranes with specific physicochemical properties should widen our understanding of the intricate biological roles of αS which, in turn, would propel the development of new strategies for the treatment of PD.
Collapse
Affiliation(s)
- José Carlos Bozelli
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada
| | - Evelyn Kamski-Hennekam
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada
| | - Giuseppe Melacini
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada; Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON, L8S 4M1, Canada.
| | - Richard M Epand
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
50
|
Errico S, Lucchesi G, Odino D, Muscat S, Capitini C, Bugelli C, Canale C, Ferrando R, Grasso G, Barbut D, Calamai M, Danani A, Zasloff M, Relini A, Caminati G, Vendruscolo M, Chiti F. Making biological membrane resistant to the toxicity of misfolded protein oligomers: a lesson from trodusquemine. NANOSCALE 2020; 12:22596-22614. [PMID: 33150350 DOI: 10.1039/d0nr05285j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Trodusquemine is an aminosterol known to prevent the binding of misfolded protein oligomers to cell membranes and to reduce their toxicity in a wide range of neurodegenerative diseases. Its precise mechanism of action, however, remains unclear. To investigate this mechanism, we performed confocal microscopy, fluorescence resonance energy transfer (FRET) and nuclear magnetic resonance (NMR) measurements, which revealed a strong binding of trodusquemine to large unilamellar vesicles (LUVs) and neuroblastoma cell membranes. Then, by combining quartz crystal microbalance (QCM), fluorescence quenching and anisotropy, and molecular dynamics (MD) simulations, we found that trodusquemine localises within, and penetrates, the polar region of lipid bilayer. This binding behaviour causes a decrease of the negative charge of the bilayer, as observed through ζ potential measurements, an increment in the mechanical resistance of the bilayer, as revealed by measurements of the breakthrough force applied with AFM and ζ potential measurements at high temperature, and a rearrangement of the spatial distances between ganglioside and cholesterol molecules in the LUVs, as determined by FRET measurements. These physicochemical changes are all known to impair the interaction of misfolded oligomers with cell membranes, protecting them from their toxicity. Taken together, our results illustrate how the incorporation in cell membranes of sterol molecules modified by the addition of polyamine tails leads to the modulation of physicochemical properties of the cell membranes themselves, making them more resistant to protein aggregates associated with neurodegeneration. More generally, they suggest that therapeutic strategies can be developed to reinforce cell membranes against protein misfolded assemblies.
Collapse
Affiliation(s)
- Silvia Errico
- Department of Experimental and Clinical Biomedical Sciences, Section of Biochemistry, University of Florence, Florence, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|