1
|
Katsumura KR, Liu P, Kim JA, Mehta C, Bresnick EH. Pathogenic GATA2 genetic variants utilize an obligate enhancer mechanism to distort a multilineage differentiation program. Proc Natl Acad Sci U S A 2024; 121:e2317147121. [PMID: 38422019 PMCID: PMC10927522 DOI: 10.1073/pnas.2317147121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 01/04/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in genes encoding transcription factors inactivate or generate ectopic activities to instigate pathogenesis. By disrupting hematopoietic stem/progenitor cells, GATA2 germline variants create a bone marrow failure and leukemia predisposition, GATA2 deficiency syndrome, yet mechanisms underlying the complex phenotypic constellation are unresolved. We used a GATA2-deficient progenitor rescue system to analyze how genetic variation influences GATA2 functions. Pathogenic variants impaired, without abrogating, GATA2-dependent transcriptional regulation. Variants promoted eosinophil and repressed monocytic differentiation without regulating mast cell and erythroid differentiation. While GATA2 and T354M required the DNA-binding C-terminal zinc finger, T354M disproportionately required the N-terminal finger and N terminus. GATA2 and T354M activated a CCAAT/Enhancer Binding Protein-ε (C/EBPε) enhancer, creating a feedforward loop operating with the T-cell Acute Lymphocyte Leukemia-1 (TAL1) transcription factor. Elevating C/EBPε partially normalized hematopoietic defects of GATA2-deficient progenitors. Thus, pathogenic germline variation discriminatively spares or compromises transcription factor attributes, and retaining an obligate enhancer mechanism distorts a multilineage differentiation program.
Collapse
Affiliation(s)
- Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Peng Liu
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
- Cancer Informatics Shared Resource, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Jeong-ah Kim
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Charu Mehta
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI53705
| |
Collapse
|
2
|
Jung MM, Shen S, Botten GA, Olender T, Katsumura KR, Johnson KD, Soukup AA, Liu P, Zhang Q, Jensvold ZD, Lewis PW, Beagrie RA, Low JK, Yang L, Mackay JP, Godley LA, Brand M, Xu J, Keles S, Bresnick EH. Pathogenic human variant that dislocates GATA2 zinc fingers disrupts hematopoietic gene expression and signaling networks. J Clin Invest 2023; 133:e162685. [PMID: 36809258 PMCID: PMC10065080 DOI: 10.1172/jci162685] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Although certain human genetic variants are conspicuously loss of function, decoding the impact of many variants is challenging. Previously, we described a patient with leukemia predisposition syndrome (GATA2 deficiency) with a germline GATA2 variant that inserts 9 amino acids between the 2 zinc fingers (9aa-Ins). Here, we conducted mechanistic analyses using genomic technologies and a genetic rescue system with Gata2 enhancer-mutant hematopoietic progenitor cells to compare how GATA2 and 9aa-Ins function genome-wide. Despite nuclear localization, 9aa-Ins was severely defective in occupying and remodeling chromatin and regulating transcription. Variation of the inter-zinc finger spacer length revealed that insertions were more deleterious to activation than repression. GATA2 deficiency generated a lineage-diverting gene expression program and a hematopoiesis-disrupting signaling network in progenitors with reduced granulocyte-macrophage colony-stimulating factor (GM-CSF) and elevated IL-6 signaling. As insufficient GM-CSF signaling caused pulmonary alveolar proteinosis and excessive IL-6 signaling promoted bone marrow failure and GATA2 deficiency patient phenotypes, these results provide insight into mechanisms underlying GATA2-linked pathologies.
Collapse
Affiliation(s)
- Mabel Minji Jung
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Siqi Shen
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Giovanni A. Botten
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Thomas Olender
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Koichi R. Katsumura
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Kirby D. Johnson
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Alexandra A. Soukup
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| | - Peng Liu
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Qingzhou Zhang
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute–General Hospital, Ottawa, Ontario, Canada
| | - Zena D. Jensvold
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Peter W. Lewis
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Robert A. Beagrie
- MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Jason K.K. Low
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lihua Yang
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Joel P. Mackay
- School of Life and Environmental Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Lucy A. Godley
- Section of Hematology/Oncology, The University of Chicago, Chicago, Illinois, USA
| | - Marjorie Brand
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Jian Xu
- Children’s Medical Center Research Institute, Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Sunduz Keles
- Department of Biostatistics and Biomedical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Emery H. Bresnick
- Wisconsin Blood Cancer Research Institute, Department of Cell and Regenerative Biology, Carbone Cancer Center, and
| |
Collapse
|
3
|
Negi S, Imanishi M, Hamori M, Kawahara-Nakagawa Y, Nomura W, Kishi K, Shibata N, Sugiura Y. The past, present, and future of artificial zinc finger proteins: design strategies and chemical and biological applications. J Biol Inorg Chem 2023; 28:249-261. [PMID: 36749405 PMCID: PMC9903285 DOI: 10.1007/s00775-023-01991-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/25/2023] [Indexed: 02/08/2023]
Abstract
Zinc finger proteins are abundant in the human proteome and are responsible for a variety of functions. The domains that constitute zinc finger proteins are compact spherical structures, each comprising approximately 30 amino acid residues, but they also have precise molecular factor functions: zinc binding and DNA recognition. Due to the biological importance of zinc finger proteins and their unique structural and functional properties, many artificial zinc finger proteins have been created and are expected to improve their functions and biological applications. In this study, we review previous studies on the redesign and application of artificial zinc finger proteins, focusing on the experimental results obtained by our research group. In addition, we systematically review various design strategies used to construct artificial zinc finger proteins and discuss in detail their potential biological applications, including gene editing. This review will provide relevant information to researchers involved or interested in the field of artificial zinc finger proteins as a potential new treatment for various diseases.
Collapse
Affiliation(s)
- Shigeru Negi
- Faculty of Pharmaceutical Science, Doshisha Women's University Kyotanabe, Kyoto, 610-0395, Japan.
| | - Miki Imanishi
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Mami Hamori
- Faculty of Pharmaceutical Science, Doshisha Women's University Kyotanabe, Kyoto, 610-0395, Japan
| | - Yuka Kawahara-Nakagawa
- Graduate School of Life Science, University of Hyogo, 3-2-1 Kouto, Kamigori-Cho, Ako-Gun, Hyogo, 678-1297, Japan
| | - Wataru Nomura
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-Ku, Hiroshima, 734-8553, Japan
| | - Kanae Kishi
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi Minami-Ku, Hiroshima, 734-8553, Japan
| | - Nobuhito Shibata
- Faculty of Pharmaceutical Science, Doshisha Women's University Kyotanabe, Kyoto, 610-0395, Japan
| | - Yukio Sugiura
- Faculty of Pharmaceutical Science, Doshisha Women's University Kyotanabe, Kyoto, 610-0395, Japan
| |
Collapse
|
4
|
Ilina A, Khavinson V, Linkova N, Petukhov M. Neuroepigenetic Mechanisms of Action of Ultrashort Peptides in Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23084259. [PMID: 35457077 PMCID: PMC9032300 DOI: 10.3390/ijms23084259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 12/23/2022] Open
Abstract
Epigenetic regulation of gene expression is necessary for maintaining higher-order cognitive functions (learning and memory). The current understanding of the role of epigenetics in the mechanism of Alzheimer’s disease (AD) is focused on DNA methylation, chromatin remodeling, histone modifications, and regulation of non-coding RNAs. The pathogenetic links of this disease are the misfolding and aggregation of tau protein and amyloid peptides, mitochondrial dysfunction, oxidative stress, impaired energy metabolism, destruction of the blood–brain barrier, and neuroinflammation, all of which lead to impaired synaptic plasticity and memory loss. Ultrashort peptides are promising neuroprotective compounds with a broad spectrum of activity and without reported side effects. The main aim of this review is to analyze the possible epigenetic mechanisms of the neuroprotective action of ultrashort peptides in AD. The review highlights the role of short peptides in the AD pathophysiology. We formulate the hypothesis that peptide regulation of gene expression can be mediated by the interaction of short peptides with histone proteins, cis- and transregulatory DNA elements and effector molecules (DNA/RNA-binding proteins and non-coding RNA). The development of therapeutic agents based on ultrashort peptides may offer a promising addition to the multifunctional treatment of AD.
Collapse
Affiliation(s)
- Anastasiia Ilina
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 19711 Saint Petersburg, Russia; (V.K.); (N.L.)
- Department of General Pathology and Pathological Physiology, Institute of Experimental Medicine, 197376 Saint Petersburg, Russia
- Correspondence: ; Tel.: +7-(953)145-89-58
| | - Vladimir Khavinson
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 19711 Saint Petersburg, Russia; (V.K.); (N.L.)
- Group of Peptide Regulation of Aging, Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Natalia Linkova
- Department of Biogerontology, Saint Petersburg Institute of Bioregulation and Gerontology, 19711 Saint Petersburg, Russia; (V.K.); (N.L.)
| | - Mikhael Petukhov
- Department of Molecular Radiation Biophysics, Petersburg Nuclear Physics Institute Named after B.P. Konstantinov, NRC “Kurchatov Institute”, 188300 Gatchina, Russia;
- Group of Biophysics, Higher Engineering and Technical School, Peter the Great St. Petersburg Polytechnic University, 195251 Saint Petersburg, Russia
| |
Collapse
|
5
|
De R, Prakash KU, Edison ES. Complex Interactions in Regulation of Haematopoiesis-An Unexplored Iron Mine. Genes (Basel) 2021; 12:genes12081270. [PMID: 34440444 PMCID: PMC8391430 DOI: 10.3390/genes12081270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/14/2022] Open
Abstract
Iron is one of the most abundant metals on earth and is vital for the growth and survival of life forms. It is crucial for the functioning of plants and animals as it is an integral component of the photosynthetic apparatus and innumerable proteins and enzymes. It plays a pivotal role in haematopoiesis and affects the development and differentiation of different haematopoietic lineages, apart from its obvious necessity in erythropoiesis. A large amount of iron stores in humans is diverted towards the latter process, as iron is an indispensable component of haemoglobin. This review summarises the important players of iron metabolism and homeostasis that have been discovered in recent years and highlights the overall significance of iron in haematopoiesis. Its role in maintenance of haematopoietic stem cells, influence on differentiation of varied haematopoietic lineages and consequences of iron deficiency/overloading on development and maturation of different groups of haematopoietic cells have been discussed.
Collapse
|
6
|
Gutiérrez L, Caballero N, Fernández-Calleja L, Karkoulia E, Strouboulis J. Regulation of GATA1 levels in erythropoiesis. IUBMB Life 2019; 72:89-105. [PMID: 31769197 DOI: 10.1002/iub.2192] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
Abstract
GATA1 is considered as the "master" transcription factor in erythropoiesis. It regulates at the transcriptional level all aspects of erythroid maturation and function, as revealed by gene knockout studies in mice and by genome-wide occupancies in erythroid cells. The GATA1 protein contains two zinc finger domains and an N-terminal transactivation domain. GATA1 translation results in the production of the full-length protein and of a shorter variant (GATA1s) lacking the N-terminal transactivation domain, which is functionally deficient in supporting erythropoiesis. GATA1 protein abundance is highly regulated in erythroid cells at different levels, including transcription, mRNA translation, posttranslational modifications, and protein degradation, in a differentiation-stage-specific manner. Maintaining high GATA1 protein levels is essential in the early stages of erythroid maturation, whereas downregulating GATA1 protein levels is a necessary step in terminal erythroid differentiation. The importance of maintaining proper GATA1 protein homeostasis in erythropoiesis is demonstrated by the fact that both GATA1 loss and its overexpression result in lethal anemia. Importantly, alterations in any of those GATA1 regulatory checkpoints have been recognized as an important cause of hematological disorders such as dyserythropoiesis (with or without thrombocytopenia), β-thalassemia, Diamond-Blackfan anemia, myelodysplasia, or leukemia. In this review, we provide an overview of the multilevel regulation of GATA1 protein homeostasis in erythropoiesis and of its deregulation in hematological disease.
Collapse
Affiliation(s)
- Laura Gutiérrez
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain.,Department of Medicine, Universidad de Oviedo, Oviedo, Spain
| | - Noemí Caballero
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Fernández-Calleja
- Platelet Research Lab, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Elena Karkoulia
- Institute of Molecular Biology and Biotechnology, Foundation of Research & Technology Hellas, Heraklion, Crete, Greece
| | - John Strouboulis
- Cancer Comprehensive Center, School of Cancer and Pharmaceutical Sciences, King's College London, London, United Kingdom
| |
Collapse
|
7
|
Ling T, Crispino JD. GATA1 mutations in red cell disorders. IUBMB Life 2019; 72:106-118. [PMID: 31652397 DOI: 10.1002/iub.2177] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/18/2019] [Indexed: 01/01/2023]
Abstract
GATA1 is an essential regulator of erythroid cell gene expression and maturation. In its absence, erythroid progenitors are arrested in differentiation and undergo apoptosis. Much has been learned about GATA1 function through animal models, which include genetic knockouts as well as ones with decreased levels of expression. However, even greater insights have come from the finding that a number of rare red cell disorders, including Diamond-Blackfan anemia, are associated with GATA1 mutations. These mutations affect the amino-terminal zinc finger (N-ZF) and the amino-terminus of the protein, and in both cases can alter the DNA-binding activity, which is primarily conferred by the third functional domain, the carboxyl-terminal zinc finger (C-ZF). Here we discuss the role of GATA1 in erythropoiesis with an emphasis on the mutations found in human patients with red cell disorders.
Collapse
Affiliation(s)
- Te Ling
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| | - John D Crispino
- Division of Hematology/Oncology, Northwestern University, Chicago, Illinois
| |
Collapse
|
8
|
Wang Y, Lu E, Bao R, Xu P, Feng F, Wen W, Dong Q, Hu C, Xiao L, Tang M, Li G, Wang J, Zhang C. Notch signalling regulates steroidogenesis in mouse ovarian granulosa cells. Reprod Fertil Dev 2019; 31:1091-1103. [PMID: 30827331 DOI: 10.1071/rd18281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
The Notch signalling pathway in the mammalian ovary regulates granulosa cell proliferation. However, the effects of Notch signalling on steroidogenesis are unclear. In this study we cultured mouse ovarian granulosa cells from preantral follicles invitro and observed the effect of Notch signalling on steroidogenesis through overexpression, knockdown and inhibition of Notch signalling. Activation of Notch signalling decreased progesterone and oestrogen secretion. In contrast, inhibition of Notch signalling increased the production of progesterone and oestrogen. Expression of the genes for steroidogenic-related enzymes, including 3β-hydroxysteroid dehydrogenase, p450 cholesterol side-chain cleavage enzyme and aromatase, was repressed after stimulation of Notch signalling. The expression of upstream transcription factors, including steroidogenic factor 1 (SF1), Wilms' tumour 1 (Wt1), GATA-binding protein 4 (Gata4) and Gata6, was also inhibited after stimulation of Notch signalling. Production of interleukin (IL)-6 was positively correlated with Notch signalling and negatively correlated with the expression of these transcription factors and enzymes. In conclusion, Notch signalling regulated progesterone and oestrogen secretion by affecting the expression of upstream transcription factors SF1, Wt1, Gata4 and Gata6, as well as downstream steroidogenic-related enzymes. IL-6, which may be regulated directly by Notch signalling, may contribute to this process. Our findings add to the understanding of the diverse functions of Notch signalling in the mammalian ovary.
Collapse
Affiliation(s)
- Yishu Wang
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Enhang Lu
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Riqiang Bao
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Ping Xu
- Second Clinical College, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Fen Feng
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Weihui Wen
- Department of Microbiology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Qiming Dong
- Joint Program of Nanchang University and Queen Mary University of London, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Chuan Hu
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Li Xiao
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Min Tang
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Gang Li
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Jing Wang
- Department of Microbiology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China
| | - Chunping Zhang
- Department of Cell Biology, School of Medicine, Nanchang University, #461 Bayi Avenue, Nanchang, Jiangxi 330006, PR China; and Corresponding author.
| |
Collapse
|
9
|
Katsumura KR, Mehta C, Hewitt KJ, Soukup AA, Fraga de Andrade I, Ranheim EA, Johnson KD, Bresnick EH. Human leukemia mutations corrupt but do not abrogate GATA-2 function. Proc Natl Acad Sci U S A 2018; 115:E10109-E10118. [PMID: 30301799 PMCID: PMC6205465 DOI: 10.1073/pnas.1813015115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
By inducing the generation and function of hematopoietic stem and progenitor cells, the master regulator of hematopoiesis GATA-2 controls the production of all blood cell types. Heterozygous GATA2 mutations cause immunodeficiency, myelodysplastic syndrome, and acute myeloid leukemia. GATA2 disease mutations commonly disrupt amino acid residues that mediate DNA binding or cis-elements within a vital GATA2 intronic enhancer, suggesting a haploinsufficiency mechanism of pathogenesis. Mutations also occur in GATA2 coding regions distinct from the DNA-binding carboxyl-terminal zinc finger (C-finger), including the amino-terminal zinc finger (N-finger), and N-finger function is not established. Whether distinct mutations differentially impact GATA-2 mechanisms is unknown. Here, we demonstrate that N-finger mutations decreased GATA-2 chromatin occupancy and attenuated target gene regulation. We developed a genetic complementation assay to quantify GATA-2 function in myeloid progenitor cells from Gata2 -77 enhancer-mutant mice. GATA-2 complementation increased erythroid and myeloid differentiation. While GATA-2 disease mutants were not competent to induce erythroid differentiation of Lin-Kit+ myeloid progenitors, unexpectedly, they promoted myeloid differentiation and proliferation. As the myelopoiesis-promoting activity of GATA-2 mutants exceeded that of GATA-2, GATA2 disease mutations are not strictly inhibitory. Thus, we propose that the haploinsufficiency paradigm does not fully explain GATA-2-linked pathogenesis, and an amalgamation of qualitative and quantitative defects instigated by GATA2 mutations underlies the complex phenotypes of GATA-2-dependent pathologies.
Collapse
Affiliation(s)
- Koichi R Katsumura
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Charu Mehta
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Kyle J Hewitt
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Alexandra A Soukup
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Isabela Fraga de Andrade
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Erik A Ranheim
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Kirby D Johnson
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Emery H Bresnick
- University of Wisconsin-Madison Blood Research Program, Department of Cell and Regenerative Biology, Wisconsin Institutes for Medical Research, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705;
- University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| |
Collapse
|
10
|
Martins FTA, Ramos BD, Sartorato EL. A rare case of deafness and renal abnormalities in HDR syndrome caused by a de novo mutation in the GATA3 gene. Genet Mol Biol 2018; 41:794-798. [PMID: 30534854 PMCID: PMC6415598 DOI: 10.1590/1678-4685-gmb-2017-0194] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 03/03/2018] [Indexed: 11/22/2022] Open
Abstract
HDR syndrome is a rare autosomal dominant disorder caused by mutations in the GATA3 gene and characterized by hypoparathyroidism, sensorineural deafness and renal abnormalities. Here we report a Brazilian family, from which the proband, his mother and his grandfather were diagnosed with bilateral sensorineural hearing loss. Molecular screening of the GJB2, GJB6 and MTRNR1 genes in the proband showed no alterations; however, whole exome sequencing detected a heterozygous mutation, c.1099C > T (p.Arg367*), in the GATA3 gene. Segregation analyses showed that the mother also had the mutation, but not the grandparents, hence indicating a different hearing impairment type for the grandfather. Paternity test of the mother of the proband confirmed that she has a de novo mutation. Furthermore, HDR syndrome was confirmed with new clinical evaluations showing right kidney agenesis in the proband. This is the first study reporting only deafness and renal abnormalities as symptoms of the p.Arg367* mutation in the GATA3 gene, and also the sixth HDR syndrome case in the world, and the first on the American continent. Together with other reported cases, this study highlights the variability of HDR syndrome symptoms in individuals with the p.Arg367* mutation, emphasizing the importance of molecular analyses for correct diagnosis.
Collapse
Affiliation(s)
- Fábio Tadeu Arrojo Martins
- Laboratório de Genética Molecular Humana, Centro de Engenharia Molecular e Genética, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Berenice Dias Ramos
- Departamento de Otorrinolaringologia e Fonoaudiologia Pediátrica, Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Edi Lúcia Sartorato
- Laboratório de Genética Molecular Humana, Centro de Engenharia Molecular e Genética, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| |
Collapse
|
11
|
Kluska K, Adamczyk J, Krężel A. Metal binding properties, stability and reactivity of zinc fingers. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.04.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Shimberg GD, Ok K, Neu HM, Splan KE, Michel SLJ. Cu(I) Disrupts the Structure and Function of the Nonclassical Zinc Finger Protein Tristetraprolin (TTP). Inorg Chem 2017; 56:6838-6848. [PMID: 28557421 DOI: 10.1021/acs.inorgchem.7b00125] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tristetraprolin (TTP) is a nonclassical zinc finger (ZF) protein that plays a key role in regulating inflammatory response. TTP regulates cytokines at the mRNA level by binding to AU-rich sequences present at the 3'-untranslated region, forming a complex that is then degraded. TTP contains two conserved CCCH domains with the sequence CysX8CysX5CysX3His that are activated to bind RNA when zinc is coordinated. During inflammation, copper levels are elevated, which is associated with increased inflammatory response. A potential target for Cu(I) during inflammation is TTP. To determine whether Cu(I) binds to TTP and how Cu(I) can affect TTP/RNA binding, two TTP constructs were prepared. One construct contained just the first CCCH domain (TTP-1D) and serves as a peptide model for a CCCH domain; the second construct contains both CCCH domains (TTP-2D) and is functional (binds RNA) when Zn(II) is coordinated. Cu(I) binding to TTP-1D was assessed via electronic absorption spectroscopy titrations, and Cu(I) binding to TTP-2D was assessed via both absorption spectroscopy and a spin filter/inductively coupled plasma mass spectrometry (ICP-MS) assay. Cu(I) binds to TTP-1D with a 1:1 stoichiometry and to TTP-2D with a 3:1 stoichiometry. The CD spectrum of Cu(I)-TTP-2D did not exhibit any secondary structure, matching that of apo-TTP-2D, while Zn(II)-TTP-2D exhibited a secondary structure. Measurement of RNA binding via fluorescence anisotropy revealed that Cu(I)-TTP-2D does not bind to the TTP-2D RNA target sequence UUUAUUUAUUU with any measurable affinity, while Zn(II)-TTP-2D binds to this site with nanomolar affinity. Similarly, addition of Cu(I) to the Zn(II)-TTP-2D/RNA complex resulted in inhibition of RNA binding. Together, these data indicate that, while Cu(I) binds to TTP-2D, it does not result in a folded or functional protein and that Cu(I) inhibits Zn(II)-TTP-2D/RNA binding.
Collapse
Affiliation(s)
- Geoffrey D Shimberg
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Kiwon Ok
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Heather M Neu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| | - Kathryn E Splan
- Department of Chemistry, Macalester College , 1600 Grand Avenue, Saint Paul, Minnesota 55105, United States
| | - Sarah L J Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland , Baltimore, Maryland 21201-1180, United States
| |
Collapse
|
13
|
DeVilbiss AW, Tanimura N, McIver SC, Katsumura KR, Johnson KD, Bresnick EH. Navigating Transcriptional Coregulator Ensembles to Establish Genetic Networks: A GATA Factor Perspective. Curr Top Dev Biol 2016; 118:205-44. [PMID: 27137658 DOI: 10.1016/bs.ctdb.2016.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Complex developmental programs require orchestration of intrinsic and extrinsic signals to control cell proliferation, differentiation, and survival. Master regulatory transcription factors are vital components of the machinery that transduce these stimuli into cellular responses. This is exemplified by the GATA family of transcription factors that establish cell type-specific genetic networks and control the development and homeostasis of systems including blood, vascular, adipose, and cardiac. Dysregulated GATA factor activity/expression underlies anemia, immunodeficiency, myelodysplastic syndrome, and leukemia. Parameters governing the capacity of a GATA factor expressed in multiple cell types to generate cell type-specific transcriptomes include selective coregulator usage and target gene-specific chromatin states. As knowledge of GATA-1 mechanisms in erythroid cells constitutes a solid foundation, we will focus predominantly on GATA-1, while highlighting principles that can be extrapolated to other master regulators. GATA-1 interacts with ubiquitous and lineage-restricted transcription factors, chromatin modifying/remodeling enzymes, and other coregulators to activate or repress transcription and to maintain preexisting transcriptional states. Major unresolved issues include: how does a GATA factor selectively utilize diverse coregulators; do distinct epigenetic landscapes and nuclear microenvironments of target genes dictate coregulator requirements; and do gene cohorts controlled by a common coregulator ensemble function in common pathways. This review will consider these issues in the context of GATA factor-regulated hematopoiesis and from a broader perspective.
Collapse
Affiliation(s)
- A W DeVilbiss
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - N Tanimura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - S C McIver
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K R Katsumura
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - K D Johnson
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States
| | - E H Bresnick
- UW-Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; UW-Madison Blood Research Program, Madison, WI, United States.
| |
Collapse
|
14
|
Rai R, Tate JJ, Shanmuganatham K, Howe MM, Nelson D, Cooper TG. Nuclear Gln3 Import Is Regulated by Nitrogen Catabolite Repression Whereas Export Is Specifically Regulated by Glutamine. Genetics 2015; 201:989-1016. [PMID: 26333687 PMCID: PMC4649666 DOI: 10.1534/genetics.115.177725] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 08/31/2015] [Indexed: 11/18/2022] Open
Abstract
Gln3, a transcription activator mediating nitrogen-responsive gene expression in Saccharomyces cerevisiae, is sequestered in the cytoplasm, thereby minimizing nitrogen catabolite repression (NCR)-sensitive transcription when cells are grown in nitrogen-rich environments. In the face of adverse nitrogen supplies, Gln3 relocates to the nucleus and activates transcription of the NCR-sensitive regulon whose products transport and degrade a variety of poorly used nitrogen sources, thus expanding the cell's nitrogen-acquisition capability. Rapamycin also elicits nuclear Gln3 localization, implicating Target-of-rapamycin Complex 1 (TorC1) in nitrogen-responsive Gln3 regulation. However, we long ago established that TorC1 was not the sole regulatory system through which nitrogen-responsive regulation is achieved. Here we demonstrate two different ways in which intracellular Gln3 localization is regulated. Nuclear Gln3 entry is regulated by the cell's overall nitrogen supply, i.e., by NCR, as long accepted. However, once within the nucleus, Gln3 can follow one of two courses depending on the glutamine levels themselves or a metabolite directly related to glutamine. When glutamine levels are high, e.g., glutamine or ammonia as the sole nitrogen source or addition of glutamine analogues, Gln3 can exit from the nucleus without binding to DNA. In contrast, when glutamine levels are lowered, e.g., adding additional nitrogen sources to glutamine-grown cells or providing repressive nonglutamine nitrogen sources, Gln3 export does not occur in the absence of DNA binding. We also demonstrate that Gln3 residues 64-73 are required for nuclear Gln3 export.
Collapse
Affiliation(s)
- Rajendra Rai
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Jennifer J Tate
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Karthik Shanmuganatham
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Martha M Howe
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - David Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| | - Terrance G Cooper
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, Tennessee 38163
| |
Collapse
|
15
|
Jacques A, Latour JM, Sénèque O. Peptide-based FeS4 complexes: the zinc ribbon fold is unsurpassed to stabilize both the FeII and FeIII states. Dalton Trans 2014; 43:3922-30. [DOI: 10.1039/c3dt53157k] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
16
|
Nan X, Dai S, Li CT, Chen XR, Zhao HS, Zhang FS, Song QH. Novel deletion mutation of TRPS1 gene in a Chinese patient of trichorhinophalangeal syndrome type I. Gene 2013; 523:88-91. [PMID: 23510776 DOI: 10.1016/j.gene.2013.03.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2013] [Accepted: 03/07/2013] [Indexed: 11/15/2022]
Abstract
Tricho-rhino-phalangeal syndrome (TRPS) is a rare autosomal dominant disorder. Deletion or mutation of the TRPS1 gene leads to the tricho-rhino-phalangeal syndromes type I or type III. In this article, we describe a Chinese patient affected with type I TRPS and showing prominent pilar, rhinal and phalangeal abnormalities. Mutational screening and sequence analysis of TRPS1 gene revealed a previously unidentified four-base-pair deletion of nucleotides 1783-1786 (c.1783_1786delACTT). The mutation causes a frame shift after codon 593, introducing a premature stop codon after 637 residues in the gene sequence. This deletion is an unquestionable loss-of-function mutation, deleting all the functionally important parts of the protein. Our novel discovery indicates that sparse hair and metacarpal defects of tricho-rhino-phalangeal syndromes in this patient are due to this TRPS1 mutation. And this data further supports the critical role of TRPS1 gene in hair and partial skeleton morphogenesis.
Collapse
Affiliation(s)
- Xu Nan
- Department of Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing, China; Human Disease Genomics Center, Peking University, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Rao VA. Iron chelators with topoisomerase-inhibitory activity and their anticancer applications. Antioxid Redox Signal 2013; 18:930-55. [PMID: 22900902 PMCID: PMC3557438 DOI: 10.1089/ars.2012.4877] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
SIGNIFICANCE Iron and topoisomerases are abundant and essential cellular components. Iron is required for several key processes such as DNA synthesis, mitochondrial electron transport, synthesis of heme, and as a co-factor for many redox enzymes. Topoisomerases serve as critical enzymes that resolve topological problems during DNA synthesis, transcription, and repair. Neoplastic cells have higher uptake and utilization of iron, as well as elevated levels of topoisomerase family members. Separately, the chelation of iron and the cytotoxic inhibition of topoisomerase have yielded potent anticancer agents. RECENT ADVANCES The chemotherapeutic drugs doxorubicin and dexrazoxane both chelate iron and target topoisomerase 2 alpha (top2α). Newer chelators such as di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone and thiosemicarbazone -24 have recently been identified as top2α inhibitors. The growing list of agents that appear to chelate iron and inhibit topoisomerases prompts the question of whether and how these two distinct mechanisms might interplay for a cytotoxic chemotherapeutic outcome. CRITICAL ISSUES While iron chelation and topoisomerase inhibition each represent mechanistically advantageous anticancer therapeutic strategies, dual targeting agents present an attractive multi-modal opportunity for enhanced anticancer tumor killing and overcoming drug resistance. The commonalities and caveats of dual inhibition are presented in this review. FUTURE DIRECTIONS Gaps in knowledge, relevant biomarkers, and strategies for future in vivo studies with dual inhibitors are discussed.
Collapse
Affiliation(s)
- V Ashutosh Rao
- Laboratory of Biochemistry, Division of Therapeutic Proteins, Office of Biotechnology Products, Office of Pharmaceutical Science, Center for Drug Evaluation and Research, Food and Drug Administration, Bethesda, Maryland 20892, USA.
| |
Collapse
|
18
|
Viger RS, Taniguchi H, Robert NM, Tremblay JJ. The 25th Volume: Role of the GATA Family of Transcription Factors in Andrology. ACTA ACUST UNITED AC 2013; 25:441-52. [PMID: 15223831 DOI: 10.1002/j.1939-4640.2004.tb02813.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Robert S Viger
- Ontogeny-Reproduction Research Unit, CHUL Research Centre, and Centre de Recherche en Biologie de la Reproduction, Department of Obstetrics and Gynecology, Faculty of Medicine, Université Laval, Ste-Foy, Québec, Canada.
| | | | | | | |
Collapse
|
19
|
Whitfield TW, Wang J, Collins PJ, Partridge EC, Aldred SF, Trinklein ND, Myers RM, Weng Z. Functional analysis of transcription factor binding sites in human promoters. Genome Biol 2012; 13:R50. [PMID: 22951020 PMCID: PMC3491394 DOI: 10.1186/gb-2012-13-9-r50] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Revised: 04/19/2012] [Accepted: 06/18/2012] [Indexed: 12/19/2022] Open
Abstract
Background The binding of transcription factors to specific locations in the genome is integral to the orchestration of transcriptional regulation in cells. To characterize transcription factor binding site function on a large scale, we predicted and mutagenized 455 binding sites in human promoters. We carried out functional tests on these sites in four different immortalized human cell lines using transient transfections with a luciferase reporter assay, primarily for the transcription factors CTCF, GABP, GATA2, E2F, STAT, and YY1. Results In each cell line, between 36% and 49% of binding sites made a functional contribution to the promoter activity; the overall rate for observing function in any of the cell lines was 70%. Transcription factor binding resulted in transcriptional repression in more than a third of functional sites. When compared with predicted binding sites whose function was not experimentally verified, the functional binding sites had higher conservation and were located closer to transcriptional start sites (TSSs). Among functional sites, repressive sites tended to be located further from TSSs than were activating sites. Our data provide significant insight into the functional characteristics of YY1 binding sites, most notably the detection of distinct activating and repressing classes of YY1 binding sites. Repressing sites were located closer to, and often overlapped with, translational start sites and presented a distinctive variation on the canonical YY1 binding motif. Conclusions The genomic properties that we found to associate with functional TF binding sites on promoters -- conservation, TSS proximity, motifs and their variations -- point the way to improved accuracy in future TFBS predictions.
Collapse
Affiliation(s)
- Troy W Whitfield
- Program in Bioinformatics and Integrative Biology and Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Nunez N, Clifton MMK, Funnell APW, Artuz C, Hallal S, Quinlan KGR, Font J, Vandevenne M, Setiyaputra S, Pearson RCM, Mackay JP, Crossley M. The multi-zinc finger protein ZNF217 contacts DNA through a two-finger domain. J Biol Chem 2011; 286:38190-38201. [PMID: 21908891 DOI: 10.1074/jbc.m111.301234] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Classical C2H2 zinc finger proteins are among the most abundant transcription factors found in eukaryotes, and the mechanisms through which they recognize their target genes have been extensively investigated. In general, a tandem array of three fingers separated by characteristic TGERP links is required for sequence-specific DNA recognition. Nevertheless, a significant number of zinc finger proteins do not contain a hallmark three-finger array of this type, raising the question of whether and how they contact DNA. We have examined the multi-finger protein ZNF217, which contains eight classical zinc fingers. ZNF217 is implicated as an oncogene and in repressing the E-cadherin gene. We show that two of its zinc fingers, 6 and 7, can mediate contacts with DNA. We examine its putative recognition site in the E-cadherin promoter and demonstrate that this is a suboptimal site. NMR analysis and mutagenesis is used to define the DNA binding surface of ZNF217, and we examine the specificity of the DNA binding activity using fluorescence anisotropy titrations. Finally, sequence analysis reveals that a variety of multi-finger proteins also contain two-finger units, and our data support the idea that these may constitute a distinct subclass of DNA recognition motif.
Collapse
Affiliation(s)
- Noelia Nunez
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Molly M K Clifton
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Alister P W Funnell
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia
| | - Crisbel Artuz
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia
| | - Samantha Hallal
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Kate G R Quinlan
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Josep Font
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Marylène Vandevenne
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Surya Setiyaputra
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Richard C M Pearson
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia
| | - Joel P Mackay
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia
| | - Merlin Crossley
- School of Molecular Bioscience, University of Sydney, New South Wales 2006, Australia; School of Biotechnology and Biomolecular Sciences, University of New South Wales, New South Wales 2052, Australia.
| |
Collapse
|
21
|
Structural basis of simultaneous recruitment of the transcriptional regulators LMO2 and FOG1/ZFPM1 by the transcription factor GATA1. Proc Natl Acad Sci U S A 2011; 108:14443-8. [PMID: 21844373 DOI: 10.1073/pnas.1105898108] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The control of red blood cell and megakaryocyte development by the regulatory protein GATA1 is a paradigm for transcriptional regulation of gene expression in cell lineage differentiation and maturation. Most GATA1-regulated events require GATA1 to bind FOG1, and essentially all GATA1-activated genes are cooccupied by a TAL1/E2A/LMO2/LDB1 complex; however, it is not known whether FOG1 and TAL1/E2A/LMO2/LDB1 are simultaneously recruited by GATA1. Our structural data reveal that the FOG1-binding domain of GATA1, the N finger, can also directly contact LMO2 and show that, despite the small size (< 50 residues) of the GATA1 N finger, both FOG1 and LMO2 can simultaneously bind this domain. LMO2 in turn can simultaneously contact both GATA1 and the DNA-binding protein TAL1/E2A at bipartite E-box/WGATAR sites. Taken together, our data provide the first structural snapshot of multiprotein complex formation at GATA1-dependent genes and support a model in which FOG1 and TAL1/E2A/LMO2/LDB1 can cooccupy E-box/WGATAR sites to facilitate GATA1-mediated activation of gene activation.
Collapse
|
22
|
Lu J, Wang W, Tan G, Landry AP, Yi P, Si F, Ren Y, Ding H. Escherichia coli topoisomerase I is an iron and zinc binding protein. Biometals 2011; 24:729-36. [PMID: 21347852 PMCID: PMC3123405 DOI: 10.1007/s10534-011-9425-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 02/11/2011] [Indexed: 01/13/2023]
Abstract
Escherichia coli topoisomerase I (TopA) cleaves and rejoins one strand of double-stranded DNA to relax the negatively supercoiled DNA. Structurally, TopA contains an N-terminal catalytic fragment and a C-terminal zinc-binding region that is required for relaxation of the negatively supercoiled DNA. Here we report that E. coli TopA is an iron and zinc binding protein. The UV-Vis absorption measurements and metal content analyses reveal that TopA purified from E. coli cells grown in the rich LB medium contains both iron and zinc. However, TopA purified from E. coli cells grown in the M9 minimal medium has negligible amounts of zinc or iron and no topoisomerase activity. Nevertheless, supplement of exogenous zinc or iron in E. coli cells grown in the M9 minimal medium produces the zinc- or iron-bound TopA, respectively. Whereas the zinc-bound TopA is fully active to relax the negatively supercoiled DNA, the iron-bound TopA has little or no enzyme activity. Furthermore, excess iron in the M9 minimal medium is able to compete with the zinc binding in TopA in E. coli cells and attenuate the topoisomerase activity, suggesting that E. coli TopA may be modulated by iron and zinc binding in vivo.
Collapse
Affiliation(s)
- Jianxin Lu
- Laboratory of Molecular Medicine, Wenzhou Medical College, Wenzhou 325035, Zhejiang, People’s Republic of China
| | - Wu Wang
- Laboratory of Molecular Medicine, Wenzhou Medical College, Wenzhou 325035, Zhejiang, People’s Republic of China
| | - Guoqiang Tan
- Laboratory of Molecular Medicine, Wenzhou Medical College, Wenzhou 325035, Zhejiang, People’s Republic of China
| | - Aaron P. Landry
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| | - Peng Yi
- Laboratory of Molecular Medicine, Wenzhou Medical College, Wenzhou 325035, Zhejiang, People’s Republic of China
| | - Fan Si
- Laboratory of Molecular Medicine, Wenzhou Medical College, Wenzhou 325035, Zhejiang, People’s Republic of China
| | - Yaguang Ren
- Laboratory of Molecular Medicine, Wenzhou Medical College, Wenzhou 325035, Zhejiang, People’s Republic of China
| | - Huangen Ding
- Laboratory of Molecular Medicine, Wenzhou Medical College, Wenzhou 325035, Zhejiang, People’s Republic of China. Department of Biological Sciences, Louisiana State University, 202 Life Sciences Building, Baton Rouge, LA 70803, USA
| |
Collapse
|
23
|
Carlton DD, Schug KA. A review on the interrogation of peptide–metal interactions using electrospray ionization-mass spectrometry. Anal Chim Acta 2011; 686:19-39. [DOI: 10.1016/j.aca.2010.11.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2010] [Revised: 11/24/2010] [Accepted: 11/25/2010] [Indexed: 11/27/2022]
|
24
|
Nakamura A, Fujiwara F, Hasegawa Y, Ishizu K, Mabe A, Nakagawa H, Nagasaki K, Jo W, Tajima T. Molecular analysis of the GATA3 gene in five Japanese patients with HDR syndrome. Endocr J 2011; 58:123-30. [PMID: 21157112 DOI: 10.1507/endocrj.k10e-246] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
GATA3 is a member of the GATA family of transcription factors. Heterozygous GATA3 abnormalities are associated with hypoparathyroidism, sensorineural deafness, and renal abnormality (HDR syndrome). However, this triad of symptoms does not occur in all HDR patients and other clinical features may be present in some cases. We report the clinical phenotypes and the molecular analysis of GATA3 in five Japanese HDR patients, including two familial cases. All five patients had hypoparathyroidism and sensorineural deafness, however renal abnormalities were absent in four patients. In addition, two patients with different mutations of GATA3 had female genital tract abnormalities. Sequence analysis of GATA3 demonstrated three novel (R262G, c1063delC and C318) and two reported mutations (c.432insG and c.1051-1G>T). Transient transfection assay using the GATA3 activating reporter system revealed that the transactivating activity of the R262G, c.1063delC, C318S and c.432insG mutants were markedly decreased, indicating that all four mutations are loss-of-function. In conclusion, this study reiterates the clinical variability in HDR syndrome and identifies three novel mutations of GATA3.
Collapse
Affiliation(s)
- Akie Nakamura
- Department of Pediatrics, Hokkaido University School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Kim BS, Uhm TG, Lee SK, Lee SH, Kang JH, Park CS, Chung IY. The crucial role of GATA-1 in CCR3 gene transcription: modulated balance by multiple GATA elements in the CCR3 regulatory region. THE JOURNAL OF IMMUNOLOGY 2010; 185:6866-75. [PMID: 21041734 DOI: 10.4049/jimmunol.1001037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
GATA-1, a zinc finger-containing transcription factor, regulates not only the differentiation of eosinophils but also the expression of many eosinophil-specific genes. In the current study, we dissected CCR3 gene expression at the molecular level using several cell types that express varying levels of GATA-1 and CCR3. Chromatin immunoprecipitation analysis revealed that GATA-1 preferentially bound to sequences in both exon 1 and its proximal intron 1. A reporter plasmid assay showed that constructs harboring exon 1 and/or intron 1 sequences retained transactivation activity, which was essentially proportional to cellular levels of endogenous GATA-1. Introduction of a dominant-negative GATA-1 or small interfering RNA of GATA-1 resulted in a decrease in transcription activity of the CCR3 reporter. Both point mutation and EMSA analyses demonstrated that although GATA-1 bound to virtually all seven putative GATA elements present in exon 1-intron 1, the first GATA site in exon 1 exhibited the highest binding affinity for GATA-1 and was solely responsible for GATA-1-mediated transactivation. The fourth and fifth GATA sites in exon 1, which were postulated previously to be a canonical double-GATA site for GATA-1-mediated transcription of eosinophil-specific genes, appeared to play an inhibitory role in transactivation, albeit with a high affinity for GATA-1. Furthermore, mutation of the seventh GATA site (present in intron 1) increased transcription, suggesting an inhibitory role. These data suggest that GATA-1 controls CCR3 transcription by interacting dynamically with the multiple GATA sites in the regulatory region of the CCR3 gene.
Collapse
Affiliation(s)
- Byung Soo Kim
- Division of Molecular and Life Sciences, College of Science and Technology, Hanyang University, Ansan, South Korea
| | | | | | | | | | | | | |
Collapse
|
26
|
Bandhu A, Ganguly T, Jana B, Mondal R, Sau S. Regions and residues of an asymmetric operator DNA interacting with the monomeric repressor of temperate mycobacteriophage L1. Biochemistry 2010; 49:4235-43. [PMID: 20377203 DOI: 10.1021/bi9020956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previously, the repressor protein of mycobacteriophage L1 bound to two operator DNAs with dissimilar affinity. Surprisingly, the putative operator consensus sequence, 5'GGTGGa/cTGTCAAG, lacks the dyad symmetry reported for the repressor binding operators of lambda and related phages. To gain insight into the structure of the L1 repressor-asymmetric operator DNA complex, we have performed various in vitro experiments. A dimethyl sulfate protection assay revealed that five guanine bases, mostly distributed in the two adjacent major grooves of the 13 bp operator DNA helix, participate in repressor binding. Hydroxyl radical footprinting demonstrated that interaction between the repressor and operator DNA is asymmetric in nature and occurs primarily through one face of the DNA helix. Genetic studies not only confirmed the results of the dimethyl sulfate protection assay but also indicated that other bases in the 13 bp operator DNA are critical for repressor binding. Interestingly, repressor that weakly induced bending in the asymmetric operator DNA interacted with this operator as a monomer. The tertiary structure of the L1 repressor-operator DNA complex therefore appears to be distinct from those of the lambdoid phages even though the number of repressor molecules per operator site closely matched that of the lambda phage system.
Collapse
Affiliation(s)
- Amitava Bandhu
- Department of Biochemistry, Bose Institute, P1/12-CIT Scheme VII M, Kolkata, WB 700 054, India
| | | | | | | | | |
Collapse
|
27
|
Haemig HA, Moen PJ, Brooker RJ. Evidence that highly conserved residues of transmembrane segment 6 of Escherichia coli MntH are important for transport activity. Biochemistry 2010; 49:4662-71. [PMID: 20441230 PMCID: PMC2900830 DOI: 10.1021/bi100320y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nramp (natural resistance-associated macrophage protein) family members have been characterized in mammals, yeast, and bacteria as divalent metal ion/H(+) symporters. In previous work, a bioinformatic approach was used for the identification of residues that are conserved within the Nramp family [Haemig, H. A., and Brooker, R. J. (2004) J. Membr. Biol. 201 (2), 97-107]. On the basis of site-directed mutagenesis of highly conserved negatively charged residues, a model was proposed for the metal binding site of the Escherichia coli homologue, MntH. In this study, we have focused on the highly conserved residues, including two histidines, of transmembrane segment 6 (TMS-6). Multiple mutants were made at the eight conserved sites (i.e., Gly-205, Ala-206, Met-209, Pro-210, His-211, Leu-215, His-216, and Ser-217) in TMS-6 of E. coli MntH. Double mutants involving His-211 and His-216 were also created. The results indicate the side chain volume of these residues is critically important for function. In most cases, only substitutions that are closest in side chain volume still permit transport. In addition, the K(m) for metal binding is largely unaffected by mutations in TMS-6, whereas V(max) values were decreased in all mutants characterized kinetically. Thus, these residues do not appear to play a role in metal binding. Instead, they may comprise an important face on TMS-6 that is critical for protein conformational changes during transport. Also, in contrast to other studies, our data do not strongly indicate that the conserved histidine residues play a role in the pH regulation of metal transport.
Collapse
Affiliation(s)
- Heather A.H. Haemig
- Dept. of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church St., Minneapolis, MN 55455
| | - Patrick J. Moen
- Dept. of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church St., Minneapolis, MN 55455
| | - Robert J. Brooker
- Dept. of Genetics, Cell Biology, and Development, University of Minnesota, 321 Church St., Minneapolis, MN 55455
| |
Collapse
|
28
|
Besold AN, Lee SJ, Michel SLJ, Lue Sue N, Cymet HJ. Functional characterization of iron-substituted neural zinc finger factor 1: metal and DNA binding. J Biol Inorg Chem 2010; 15:583-90. [DOI: 10.1007/s00775-010-0626-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
|
29
|
|
30
|
del Castillo-Olivares A, Kulkarni M, Smith HE. Regulation of sperm gene expression by the GATA factor ELT-1. Dev Biol 2009; 333:397-408. [PMID: 19591818 PMCID: PMC6334776 DOI: 10.1016/j.ydbio.2009.06.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 05/14/2009] [Accepted: 06/30/2009] [Indexed: 01/15/2023]
Abstract
Cell fate specification is mediated primarily through the expression of cell-type-specific genes. The regulatory pathway that governs the sperm/egg decision in the hermaphrodite germ line of Caenorhabditis elegans has been well characterized, but the transcription factors that drive these developmental programs remain unknown. We report the identification of ELT-1, a GATA transcription factor that specifies hypodermal fate in the embryo, as a regulator of sperm-specific transcription in the germ line. Computational analysis identified a conserved bipartite sequence element that is found almost exclusively in the promoters of a number of sperm genes. ELT-1 was recovered in a yeast one-hybrid screen for factors that bind to that sperm consensus site. In vitro assays defined the sperm consensus sequence as an optimal binding site for ELT-1. We determined that expression of elt-1 is elevated in the sperm-producing germ line, and that ELT-1 is required for sperm function. Deletion of the ELT-1 binding site from a sperm promoter abrogates sperm-specific expression of a reporter transgene. This work demonstrates a role for the ELT-1 transcription factor in sperm, and provides a critical link between the germ line sex determination program and gamete-specific gene expression.
Collapse
Affiliation(s)
- Antonio del Castillo-Olivares
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
| | - Madhura Kulkarni
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
- Massachusetts General Hospital Cancer Center and Department of Cell Biology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Harold E. Smith
- Center for Advanced Research in Biotechnology, University of Maryland Biotechnology Institute, Rockville, MD 20850, USA
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
31
|
Lowry JA, Gamsjaeger R, Thong SY, Hung W, Kwan AH, Broitman-Maduro G, Matthews JM, Maduro M, Mackay JP. Structural analysis of MED-1 reveals unexpected diversity in the mechanism of DNA recognition by GATA-type zinc finger domains. J Biol Chem 2008; 284:5827-35. [PMID: 19095651 DOI: 10.1074/jbc.m808712200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
MED-1 is a member of a group of divergent GATA-type zinc finger proteins recently identified in several species of Caenorhabditis. The med genes are transcriptional regulators that are involved in the specification of the mesoderm and endoderm precursor cells in nematodes. Unlike other GATA-type zinc fingers that recognize the consensus sequence (A/C/T)GATA(A/G), the MED-1 zinc finger (MED1zf) binds the larger and atypical site GTATACT(T/C)(3). We have examined the basis for this unusual DNA specificity using a range of biochemical and biophysical approaches. Most strikingly, we show that although the core of the MED1zf structure is similar to that of GATA-1, the basic tail C-terminal to the zinc finger unexpectedly adopts an alpha-helical structure upon binding DNA. This additional helix appears to contact the major groove of the DNA, making contacts that explain the extended DNA consensus sequence observed for MED1zf. Our data expand the versatility of DNA recognition by GATA-type zinc fingers and perhaps shed new light on the DNA-binding properties of mammalian GATA factors.
Collapse
Affiliation(s)
- Jason A Lowry
- School of Molecular and Microbial Biosciences, University of Sydney, New South Wales 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Bates DL, Chen Y, Kim G, Guo L, Chen L. Crystal structures of multiple GATA zinc fingers bound to DNA reveal new insights into DNA recognition and self-association by GATA. J Mol Biol 2008; 381:1292-306. [PMID: 18621058 DOI: 10.1016/j.jmb.2008.06.072] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/11/2008] [Accepted: 06/25/2008] [Indexed: 11/26/2022]
Abstract
The GATA family of transcription factors (GATA1-6) binds selected GATA sites in vertebrate genomes to regulate specific gene expression. Although vertebrate GATA factors have two highly conserved zinc finger motifs, how the two fingers act together to recognize functional DNA elements is not well understood. Here we determined the crystal structures of the C-terminal zinc finger of mouse GATA3 bound to DNA containing two variously arranged GATA binding sites. Our structures and accompanying biochemical analyses reveal two distinct modes of DNA binding by GATA to closely arranged sites. One mode involves cooperative binding by two GATA factors that interact with each other through protein-protein interactions. The other involves simultaneous binding of the N-terminal zinc finger (N-finger) and the C-terminal zinc finger of the same GATA factor. Our studies represent the first crystallographic analysis of GATA zinc fingers bound to DNA and provide new insights into the DNA recognition mechanism by the GATA zinc finger. Our crystal structure also reveals a dimerization interface in GATA that has previously been shown to be important for GATA self-association. These findings significantly advance our understanding of the structure and function of GATA and provide an important framework for further investigating the in vivo mechanisms of GATA-dependent gene regulation.
Collapse
Affiliation(s)
- Darren L Bates
- Department of Chemistry and Biochemistry, University of Colorado at Boulder, Boulder, CO 80309-0215, USA
| | | | | | | | | |
Collapse
|
33
|
Vonderfecht TR, Schroyer DL, Schenck BL, McDonough VM, Pikaart MJ. Substitution of DNA-contacting amino acids with functional variants in the Gata-1 zinc finger: a structurally and phylogenetically guided mutagenesis. Biochem Biophys Res Commun 2008; 369:1052-6. [PMID: 18328814 PMCID: PMC2443638 DOI: 10.1016/j.bbrc.2008.02.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 02/27/2008] [Indexed: 10/22/2022]
Abstract
DNA-binding functionality among transcription factor proteins is afforded by a number of structural motifs, such as the helix-turn-helix, helix-loop-helix, and zinc finger domains. The common thread among these diverse structures is their sequence-specific binding to essential promoter or other genetic regulatory sequences with high selectivity and affinity. One such motif, present in a wide range of organisms from bacteria to vertebrates, is the Gata-type zinc finger. This family of DNA-binding proteins is characterized by the presence of one or two (Cys)(4) metal binding sites which recognize the protein's eponymous binding site, GATA. Unlike other conserved DNA-binding domains, Gata proteins appear to be restricted to binding consensus GATA sequences, or near variations, in DNA. Since the architecture of the Gata finger seems built around recognizing this particular sequence, we set out to define the allowable range of amino acid substitutions along the DNA-binding surface of a Gata finger that could continue to support sequence-specific DNA-binding activity. Accordingly, we set up a one-hybrid screen in yeast based on the chicken Gata-1 C-terminal zinc finger. Mutant libraries were generated at five amino acids identified in the Gata-DNA structure as likely to mediate sequence-specific contacts between the Gata finger and DNA. These libraries were designed to give as exhaustive amino acid coverage as possible such that almost all alternative amino acids were screened at each of the five probed positions. Screening and characterization of these libraries revealed several functional amino acid substitutions at two leucines which contact the DNA at the 3' and 5' flanks of the GATA binding site, but no functional substituents for amino acids near the core of the binding site. This pattern is consistent with amino acid sequences of known DNA-binding Gata fingers.
Collapse
|
34
|
Romney SJ, Thacker C, Leibold EA. An iron enhancer element in the FTN-1 gene directs iron-dependent expression in Caenorhabditis elegans intestine. J Biol Chem 2007; 283:716-25. [PMID: 18024960 DOI: 10.1074/jbc.m707043200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ferritin is a ubiquitous protein that sequesters iron and protects cells from iron toxicity. Caenorhabditis elegans express two ferritins, FTN-1 and FTN-2, which are transcriptionally regulated by iron. To identify the cis-acting sequences and proteins required for iron-dependent regulation of ftn-1 and ftn-2 expression, we generated transcriptional GFP reporters corresponding to 5 '-upstream sequences of the ftn-1 and ftn-2 genes. We identified a conserved 63-bp sequence, the iron-dependent element (IDE), that is required for iron-dependent regulation of a ftn-1 GFP reporter in intestine. The IDE contains two GATA-binding motifs and three octameric direct repeats. Site-directed mutagenesis of the GATA sequences, singly or in combination, reduces ftn-1 GFP reporter expression in the intestine. In vitro DNA mobility shift assays show that the intestine-specific GATA protein ELT-2 binds to both GATA sequences. Inhibition of ELT-2 function by RNA interference blocks ftn-1 GFP reporter expression in vivo. Insertion of the IDE into the promoter region of a heterologous reporter activates iron-dependent transcription in intestine. These data demonstrate that the activation of ftn-1 and ftn-2 transcription by iron requires ELT-2 and that the IDE functions as an iron-dependent enhancer in intestine.
Collapse
Affiliation(s)
- S Joshua Romney
- Eccles Program in Human Molecular Biology and Genetics, University of Utah, Salt Lake City 84112, USA
| | | | | |
Collapse
|
35
|
Ryan DP, Duncan JL, Lee C, Kuchel PW, Matthews JM. Assembly of the oncogenic DNA-binding complex LMO2-Ldb1-TAL1-E12. Proteins 2007; 70:1461-74. [PMID: 17910069 DOI: 10.1002/prot.21638] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The nuclear proteins TAL1 (T-cell acute leukaemia protein 1) and LMO2 (LIM-only protein 2) have critical roles in haematopoietic development, but are also often aberrantly activated in T-cell acute lymphoblastic leukaemia. TAL1 and LMO2 operate within multifactorial protein-DNA complexes that regulate gene expression in the developing blood cell. TAL1 is a tissue-specific basic helix-loop-helix (bHLH) protein that binds bHLH domains of ubiquitous E-proteins, (E12 and E47), to bind E-box (CANNTG) DNA motifs. TAL1(bHLH) also interacts specifically with the LIM domains of LMO2, which in turn bind Ldb1 (LIM-domain binding protein 1). Here we used biophysical methods to characterize the assembly of a five-component complex containing TAL1, LMO2, Ldb1, E12, and DNA. The bHLH domains of TAL1 and E12 alone primarily formed helical homodimers, but together preferentially formed heterodimers, to which LMO2 bound with high affinity (K(A) approximately 10(8) M(-1)). The resulting TAL1/E12/LMO2 complex formed in the presence or absence of DNA, but the different complexes preferentially bound different Ebox-sequences. Our data provide biophysical evidence for a mechanism, by which LMO2 and TAL1 both regulate transcription in normal blood cell development, and synergistically disrupt E2A function in T-cells to promote the onset of leukaemia.
Collapse
Affiliation(s)
- Daniel P Ryan
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, New South Wales 2006, Australia
| | | | | | | | | |
Collapse
|
36
|
Gopich IV, Szabo A. Theory of the statistics of kinetic transitions with application to single-molecule enzyme catalysis. J Chem Phys 2007; 124:154712. [PMID: 16674256 DOI: 10.1063/1.2180770] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Single-molecule spectroscopy can monitor transitions between two microscopic states when these transitions are associated with the emission of photons. A general formalism is developed for obtaining the statistics of such transitions from a microscopic model when the dynamics is described by master or rate equations or their continuum analog, multidimensional reaction-diffusion equations. The focus is on the distribution of the number of transitions during a fixed observation time, the distribution of times between transitions, and the corresponding correlation functions. It is shown how these quantities are related to each other and how they can be explicitly calculated in a straightforward way for both immobile and diffusing molecules. Our formalism reduces to renewal theory when the monitored transitions either go to or originate from a single state. The influence of dynamics slow compared with the time between monitored transitions is treated in a simple way, and the probability distributions are expressed in terms of Mandel-type formulas. The formalism is illustrated by a detailed analysis of the statistics of catalytic turnovers of enzymes. When the rates of conformational changes are slower than the catalytic rates which are in turn slower than the binding relaxation rate, (1) the mean number of turnovers is shown to have the classical Michaelis-Menten form, (2) the correlation function of the number of turnovers is a direct measure of the time scale of catalytic rate fluctuations, and (3) the distribution of the time between consecutive turnovers is determined by the steady-state distribution.
Collapse
Affiliation(s)
- Irina V Gopich
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
37
|
Johnson KD, Kim SI, Bresnick EH. Differential sensitivities of transcription factor target genes underlie cell type-specific gene expression profiles. Proc Natl Acad Sci U S A 2006; 103:15939-15944. [PMID: 17043224 PMCID: PMC1635106 DOI: 10.1073/pnas.0604041103] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Indexed: 02/05/2023] Open
Abstract
Changes in transcription factor levels and activities dictate developmental fate. Such a change might affect the full ensemble of target genes for a factor or only uniquely sensitive targets. We investigated the relationship among activity of the hematopoietic transcription factor GATA-1, chromatin occupancy, and target gene sensitivity. Graded activation of GATA-1 in GATA-1-null cells revealed high-, intermediate-, and low-sensitivity targets. GATA-1 activity requirements for occupancy and transcription often correlated. A GATA-1 amino-terminal deletion mutant severely deregulated the low-sensitivity gene Tac-2. Thus, cells expressing different levels of a cell type-specific activator can have qualitatively distinct target gene expression patterns, and factor mutations preferentially deregulate low-sensitivity genes. Unlike other target genes, GATA-1-mediated Tac-2 regulation was bimodal, with activation followed by repression, and the coregulator Friend of GATA-1 (FOG-1) selectively mediated repression. A GATA-1 mutant defective in FOG-1 binding occupied a Tac-2 regulatory region at levels higher than wild-type GATA-1, whereas FOG-1 facilitated chromatin occupancy at a distinct target site. These results indicate that FOG-1 is a determinant of GATA factor target gene sensitivity by either facilitating or opposing chromatin occupancy.
Collapse
Affiliation(s)
- Kirby D. Johnson
- Molecular and Cellular Pharmacology Program, Department of Pharmacology, University of Wisconsin School of Medicine, 383 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
| | - Shin-Il Kim
- Molecular and Cellular Pharmacology Program, Department of Pharmacology, University of Wisconsin School of Medicine, 383 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
| | - Emery H. Bresnick
- Molecular and Cellular Pharmacology Program, Department of Pharmacology, University of Wisconsin School of Medicine, 383 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706
| |
Collapse
|
38
|
Jenkins LMM, Durell SR, Maynard AT, Stahl SJ, Inman JK, Appella E, Legault P, Omichinski JG. Comparison of the Specificity of Interaction of Cellular and Viral Zinc-Binding Domains with 2-Mercaptobenzamide Thioesters. J Am Chem Soc 2006; 128:11964-76. [PMID: 16953638 DOI: 10.1021/ja063329e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The interactions of two 2-mercaptobenzamide thioester compounds with six diverse zinc-binding domains (ZBDs) have been analyzed by UV/visible spectroscopy, NMR spectroscopy, and nucleic acid binding assays. These thioester compounds serve as useful tools for probing the intrinsic chemical stability of ZBDs that exist within a variety of cellular and viral proteins. In our studies, the classical (Cys(2)His(2)) zinc finger ZBDs, the interleaved RING like ZBDs of protein kinase C delta (Cys(2)HisCys and HisCys(3)), and the carboxyl-terminal (Cys(2)HisCys) ZBD of Mouse Mammary Tumor Virus nucleocapsid protein (MMTV NCp10) were resistant to reaction with the thioester compounds. In contrast, the thioester compounds were able to efficiently eject zinc from the amino-terminal (Cys(2)HisCys) ZBD of MMTV NCp10, a Cys(2)HisCys ZBD from Friend of GATA-1 (FOG-1), and from both Cys(4) ZBDs of GATA-1. In all cases, zinc ejection led to a loss of protein structure. Interestingly, GATA-1 was resistant to reaction with the thioester compounds when bound to its target DNA sequence. The electronic and steric screening was calculated for select ZBDs to further explore their reactivity. Based on these results, it appears that both first and second zinc-coordination shell interactions within ZBDs, as well as nucleic acid binding, play important roles in determining the chemical stability and reactivity of ZBDs. These studies not only provide information regarding the relative reactivity of cysteine residues within structural ZBDs but also are crucial for the design of future therapeutic agents that selectively target ZBDs, such as those that occur in the HIV-1 nucleocapsid protein.
Collapse
Affiliation(s)
- Lisa M Miller Jenkins
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, 30602, USA
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Lowry JA, Mackay JP. GATA-1: one protein, many partners. Int J Biochem Cell Biol 2005; 38:6-11. [PMID: 16095949 DOI: 10.1016/j.biocel.2005.06.017] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Revised: 06/29/2005] [Accepted: 06/29/2005] [Indexed: 10/25/2022]
Abstract
GATA-1, the founding member of the GATA transcription factor family, is essential for cell maturation and differentiation within the erythroid and megakaryocytic lineages. GATA-1 regulates the expression of many genes within these lineages and its functionality depends upon its ability to bind both DNA and protein partners. Disruption of either of these functions causes severe hematopoietic dysfunction and results in blood disorders, such as thrombocytopenia and anemia. Within this review, we will focus on the structural aspects of GATA-1 with regard to interactions with its many partners and the identification of several mutations that disrupt these interactions.
Collapse
Affiliation(s)
- Jason A Lowry
- School of Molecular and Microbial Biosciences, University of Sydney, Sydney, NSW 2006, Australia.
| | | |
Collapse
|
40
|
Morceau F, Schnekenburger M, Dicato M, Diederich M. GATA-1: friends, brothers, and coworkers. Ann N Y Acad Sci 2005; 1030:537-54. [PMID: 15659837 DOI: 10.1196/annals.1329.064] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
GATA-1 is the founding member of the GATA family of transcription factors. GATA-1 and GATA family member GATA-2 are expressed in erythroid and megakaryocytic lineages, in which they play a crucial role in cell maturation and differentiation. GATA-1 regulates the transcription of many specific and nonspecific erythroid genes by binding to DNA at the consensus sequence WGATAR, which is recognized by all of the GATA family of transcription factors. However, it was identified in eosinophilic cells and also in Sertoli cells in testis. Its activity depends on close cooperation with a functional network of cofactors, among them Friend of GATA, PU.1, and CBP/p300. The GATA-1 protein structure has been well described and includes two zinc fingers that are directly involved in the interaction with DNA and other proteins in vivo. GATA-1 mutations in the zinc fingers can cause deregulation of required interactions and lead to severe dysfunction in the hematopoietic system.
Collapse
Affiliation(s)
- Franck Morceau
- Laboratoire de Biologie Moléculaire et Cellulaire du Cancer, Hôpital Kirchberg, L-2540 Luxembourg, Luxembourg
| | | | | | | |
Collapse
|
41
|
Ghering AB, Jenkins LMM, Schenck BL, Deo S, Mayer RA, Pikaart MJ, Omichinski JG, Godwin HA. Spectroscopic and functional determination of the interaction of Pb2+ with GATA proteins. J Am Chem Soc 2005; 127:3751-9. [PMID: 15771509 DOI: 10.1021/ja0464544] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
GATA proteins are transcription factors that bind GATA DNA elements through Cys4 structural zinc-binding domains and play critical regulatory roles in neurological and urogenital development and the development of cardiac disease. To evaluate GATA proteins as potential targets for lead, spectroscopically monitored metal-binding titrations were used to measure the affinity of Pb2+ for the C-terminal zinc-binding domain from chicken GATA-1 (CF) and the double-finger domain from human GATA-1 (DF). Using this method, Pb2+ coordinating to CF and DF was directly observed through the appearance of intense bands in the near-ultraviolet region of the spectrum (250-380 nm). Absorption data collected from these experiments were best fit to a 1:1 Pb2+ -CF model and a 2:1 Pb2+ -DF model. Competition experiments using Zn2+ were used to determine the absolute affinities of Pb2+ for these proteins. These studies reveal that Pb2+ forms tight complexes with cysteine residues in the zinc-binding sites in GATA proteins, beta1Pb = 6.4 (+/- 2.0) x 10(9) M(-1) for CF and beta2 = 6.3 (+/- 6.3) x 10(19) M(-2) for Pb(2+)2-DF, and within an order of magnitude of the affinity of Zn2+ for these proteins. Furthermore, Pb2+ was able to displace bound Zn2+ from CF and DF. Upon addition of Pb2+, GATA shows a decreased ability to bind to DNA and subsequently activate transcription. Therefore, the DNA binding and transcriptional activity of GATA proteins are most likely to be targeted by Pb2+ in cells and tissues that sequester Pb2+ in vivo, which include the brain and the heart.
Collapse
Affiliation(s)
- Amy B Ghering
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Kaiser FJ, Brega P, Raff ML, Byers PH, Gallati S, Kay TT, de Almeida S, Horsthemke B, Lüdecke HJ. Novel missense mutations in the TRPS1 transcription factor define the nuclear localization signal. Eur J Hum Genet 2004; 12:121-6. [PMID: 14560312 DOI: 10.1038/sj.ejhg.5201094] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Deletion or mutation of the TRPS1 gene leads to the tricho-rhino-phalangeal syndromes (TRPS). The gene encodes a zinc-finger transcription factor, which contains two regions with basic amino acids LRRRRG (NLS1) and RRRTRKR (NLS2) that resemble potential nuclear localization signals (NLSs). Here, we describe the identification of novel TRPS1 mutations in patients with TRPS type I (TRPS I) and provide, by reconstructing the mutant TRPS1 proteins and subcellular localization studies, evidence that only the RRRTRKR motif functions as a NLS. Two different mutations affect the last arginine residue of this motif. The exchanges of arginine to histidine, found in two unrelated patients with TRPS I, as well as the exchange of arginine to cysteine, found in another unrelated patient, prevent the translocation of the mutant TRPS1 to the nucleus when ectopically expressed in COS 7 cells. In contrast, a mutant that lacks the conserved GATA-type zinc-finger domain and most of the LRRRRG motif is able to enter the nucleus.
Collapse
Affiliation(s)
- Frank J Kaiser
- Institut für Humangenetik, Universitätsklinikum, Hufelandstr 55, Essen D-45122, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Davies N, Freebody J, Murray V. Chromatin structure at the flanking regions of the human beta-globin locus control region DNase I hypersensitive site-2: proposed nucleosome positioning by DNA-binding proteins including GATA-1. ACTA ACUST UNITED AC 2004; 1679:201-13. [PMID: 15358512 DOI: 10.1016/j.bbaexp.2004.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Revised: 04/06/2004] [Accepted: 04/08/2004] [Indexed: 11/27/2022]
Abstract
The human beta-globin locus control region DNase I hypersensitive site-2 (LCR HS-2) is erythroid-specific and is located 10.9 kb upstream of the epsilon-globin gene. Most studies have only examined the core region of HS-2. However, previous studies in this laboratory indicate that positioned nucleosomes are present at the 5'- and 3'-flanking regions of HS-2. In addition, footprints were observed that indicated the involvement of DNA-binding proteins in positioning the nucleosome cores. A consensus GATA-1 site exists in the region of the 3'-footprint. In this study, using an electrophoretic mobility shift assay (EMSA) and DNase I footprinting, we confirmed that GATA-1 binds in vitro at the 3'-end of HS-2. An additional GATA-1 site was found to bind GATA-1 in vitro at a site positioned 40 bp upstream. At the 5'-end of HS-2, DNase I footprinting revealed a series of footprints showing a marked correlation with the in vivo footprints. EMSA indicated the presence of several erythroid-specific complexes in this region including GATA-1 binding. Sequence alignment for 12 mammalian species in HS-2 confirmed that the highest conservation to be in the HS-2 core. However, a second level of conservation extends from the core to the sites of the proposed positioning proteins at the HS-2 flanking regions, before declining rapidly. This indicates the importance of the HS-2 flanking regions and supports the proposal of nucleosome positioning proteins in these regions.
Collapse
Affiliation(s)
- Neil Davies
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | | | | |
Collapse
|
44
|
Gould DJ, Chernajovsky Y. Endogenous GATA Factors Bind the Core Sequence of the tetO and Influence Gene Regulation with the Tetracycline System. Mol Ther 2004; 10:127-38. [PMID: 15233949 DOI: 10.1016/j.ymthe.2004.04.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2003] [Accepted: 04/15/2004] [Indexed: 12/11/2022] Open
Abstract
The tetracycline-regulated eukaryotic gene expression systems have been applied in numerous areas of bioscience. The systems utilize a tetracycline-responsive promoter (P(tet)) and synthetic transactivators (tTA or rtTA) that bind to the promoter in the presence or absence of doxycycline, regulating gene expression. Both the basal activity of the P(tet) and the magnitude of regulation by the system vary between cell types. In this investigation we have mapped the positions of endogenous transcription factor binding sites within the P(tet) and through deletion studies determined the portion of the promoter that contributes to basal activity. The tetracycline operator (tetO) repeats appear to be the source of basal activity and they were shown to harbor motifs for GATA transcription factors. The GATA motif is located within the central core of the tetO and so has the potential to compete with tTA and rtTA binding. The molecular interactions of endogenous and overexpressed GATA factors with the GATA motif in the tetO were demonstrated and effects on function of the tetracycline-regulated gene expression system investigated. GATA factors are widespread in embryonic tissues, are expressed within several adult cell types, and display altered expression in disease states. We suggest that endogenous GATA factor expression may influence the degree of gene regulation by the tetracycline system between different cell types. The findings of this study may have implications for the application of the tetracycline system in gene therapy.
Collapse
Affiliation(s)
- David J Gould
- Bone & Joint Research Unit, Barts and The London, Queen Mary's School of Medicine and Dentistry, London University, Charterhouse Square, London EC1M 6BQ, UK.
| | | |
Collapse
|
45
|
Mott BH, Bassman J, Pikaart MJ. A molecular dissection of the interaction between the transcription factor Gata-1 zinc finger and DNA. Biochem Biophys Res Commun 2004; 316:910-7. [PMID: 15033488 DOI: 10.1016/j.bbrc.2004.02.142] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2004] [Indexed: 11/16/2022]
Abstract
The production of circulating blood cells from bone marrow stem cells during hematopoiesis is accompanied by overall changes in gene expression which cause production of required functional proteins, such as hemoglobin in erythroid cells, as well as control of cell growth, preventing apoptosis of differentiating cells. Hematopoietic gene regulation is controlled by several specific transcription factors, including the factor Gata-1, which is required for erythrocyte maturation. Based on contacts observed in the NMR structure of the cGata-1 binding domain in complex with DNA, the protein's key DNA interface is interesting in being quite hydrophobic in nature, due to the presence of three leucine side chains protruding toward the DNA. Given the T-rich composition of the GATA DNA binding site, it is possible that thymine's unique 5-methyl group may mediate some of these hydrophobic contacts to increase the stability of binding. The hypothesis that thymine methyl groups are important to the free energy of binding between Gata and DNA is tested by measuring binding of an oligonucleotide substrate in which individual thymine bases are substituted with uracil. To test for any important base-pair specific interactions which may be hydrogen-bonded in character, we have also assayed Gata binding to oligonucleotides with base analogs which cannot make hydrogen bonds. We report that out of the binding site's five thymine methyl groups, only one appeared to make a notable contribution to binding affinity, with removal causing a loss of less than 1kcal/mol of binding free energy. On the other hand, perturbing the potential hydrogen-bonding surface of the DNAs major groove was found to cause a larger decrease in binding affinity than removal of any of the thymine methyl groups, with a loss of 2-3kcal/mol of binding free energy.
Collapse
Affiliation(s)
- Brian H Mott
- Department of Chemistry, Hope College, Holland, MI 49423, USA
| | | | | |
Collapse
|
46
|
Nesbit MA, Bowl MR, Harding B, Ali A, Ayala A, Crowe C, Dobbie A, Hampson G, Holdaway I, Levine MA, McWilliams R, Rigden S, Sampson J, Williams AJ, Thakker RV. Characterization of GATA3 Mutations in the Hypoparathyroidism, Deafness, and Renal Dysplasia (HDR) Syndrome. J Biol Chem 2004; 279:22624-34. [PMID: 14985365 DOI: 10.1074/jbc.m401797200] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome is an autosomal dominant disorder caused by mutations of the dual zinc finger transcription factor, GATA3. The C-terminal zinc finger (ZnF2) binds DNA, whereas the N-terminal finger (ZnF1) stabilizes this DNA binding and interacts with other zinc finger proteins, such as the Friends of GATA (FOG). We have investigated seven HDR probands and their families for GATA3 abnormalities and have identified two nonsense mutations (Glu-228 --> Stop and Arg-367 --> Stop); two intragenic deletions that result in frameshifts from codons 201 and 355 with premature terminations at codons 205 and 370, respectively; one acceptor splice site mutation that leads to a frameshift from codon 351 and a premature termination at codon 367; and two missense mutations (Cys-318 --> Arg and Asn-320 --> Lys). The functional effects of these mutations, together with a previously reported GATA3 ZnF1 mutation and seven other engineered ZnF1 mutations, were assessed by electrophoretic mobility shift, dissociation, yeast two-hybrid and glutathione S-transferase pull-down assays. Mutations involving GATA3 ZnF2 or adjacent basic amino acids resulted in a loss of DNA binding, but those of ZnF1 either lead to a loss of interaction with specific FOG2 ZnFs or altered DNA-binding affinity. These findings are consistent with the proposed three-dimensional model of ZnF1, which has separate DNA and protein binding surfaces. Thus, our results, which expand the spectrum of HDR-associated GATA3 mutations and report the first acceptor splice site mutation, help to elucidate the molecular mechanisms that alter the function of this zinc finger transcription factor and its role in causing this developmental anomaly.
Collapse
Affiliation(s)
- M Andrew Nesbit
- Nuffield Department of Medicine, University of Oxford, Oxford Centre for Diabetes, Endocrinology and Metabolism, Churchill Hospital, Oxford OX3 7LJ, United Kingdom
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Pal S, Nemeth MJ, Bodine D, Miller JL, Svaren J, Thein SL, Lowry PJ, Bresnick EH. Neurokinin-B transcription in erythroid cells: direct activation by the hematopoietic transcription factor GATA-1. J Biol Chem 2004; 279:31348-56. [PMID: 15123623 DOI: 10.1074/jbc.m403475200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The GATA family of transcription factors establishes genetic networks that control developmental processes including hematopoiesis, vasculogenesis, and cardiogenesis. We found that GATA-1 strongly activates transcription of the Tac-2 gene, which encodes proneurokinin-B, a precursor of neurokinin-B (NK-B). Neurokinins function through G protein-coupled transmembrane receptors to mediate diverse physiological responses including pain perception and the control of vascular tone. Whereas an elevated level of NK-B was implicated in pregnancy-associated pre-eclampsia (Page, N. M., Woods, R. J., Gardiner, S. M., Lomthaisong, K., Gladwell, R. T., Butlin, D. J., Manyonda, I. T., and Lowry, P. J. (2000) Nature 405, 797-800), the regulation of NK-B synthesis and function are poorly understood. Tac-2 was expressed in normal murine erythroid cells and was induced upon ex vivo erythropoiesis. An estrogen receptor fusion to GATA-1 (ER-GATA-1) and endogenous GATA-1 both occupied a region of Tac-2 intron-7, which contains two conserved GATA motifs. Genetic complementation analysis in GATA-1-null G1E cells revealed that endogenous GATA-2 occupied the same region of intron-7, and expression of ER-GATA-1 displaced GATA-2 and activated Tac-2 transcription. Erythroid cells did not express neurokinin receptors, whereas aortic and yolk sac endothelial cells differentially expressed neurokinin receptor subtypes. Since NK-B induced cAMP accumulation in yolk sac endothelial cells, these results suggest a new mode of vascular regulation in which GATA-1 controls NK-B synthesis in erythroid cells.
Collapse
Affiliation(s)
- Saumen Pal
- University of Wisconsin Medical School, Molecular and Cellular Pharmacology Program, Department of Pharmacology, Madison, Wisconsin 53706, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Ghirlando R, Trainor CD. Determinants of GATA-1 binding to DNA: the role of non-finger residues. J Biol Chem 2003; 278:45620-8. [PMID: 12941967 DOI: 10.1074/jbc.m306410200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Mammalian GATA transcription factors are expressed in various tissues in a temporally regulated manner. The prototypic member, GATA-1, is required for normal erythroid, megakaryocytic, and mast cell development. This family of DNA-binding proteins recognizes a consensus (A/T)GATA(A/G) motif and possesses homologous DNA binding domains consisting of two zinc fingers. The C-terminal finger of GATA-1 recognizes the consensus motif with nanomolar affinities, whereas the N-terminal finger shows a binding preference for a GATC motif, albeit with much reduced affinity (Kd approximately microm). The N-terminal finger of GATA-2 also shows a preference for an AGATCT binding site, with an increased affinity attributed to N- and C-terminal flanking basic residues (Kd approximately nm). To understand the differences in the binding specificities of the N- and C-terminal zinc fingers of GATA-1, we have constructed a series of swapped domain peptides. We show that the specificity for AGATAA over AGATCT arises from the C-terminal non-finger basic domain. Thus, the N-terminal finger binds preferentially to AGATAA once appended to the C-terminal arm of the C-terminal finger. We further show that this specificity arises from the highly conserved QTRNRK residues. The converse is, however, untrue in the case of the C-terminal finger; swapping of QTRNRK with the corresponding LVSKRA does not switch the DNA binding specificity from AGATAA to AGATCT. These results highlight the important role of residues adjacent to the CXXCX17CNAC zinc finger motif (i.e. non-finger residues) in the specific recognition of DNA residues.
Collapse
Affiliation(s)
- Rodolfo Ghirlando
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
49
|
Fukushige T, Goszczynski B, Tian H, McGhee JD. The Evolutionary Duplication and Probable Demise of an Endodermal GATA Factor in Caenorhabditis elegans. Genetics 2003; 165:575-88. [PMID: 14573471 PMCID: PMC1462794 DOI: 10.1093/genetics/165.2.575] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
We describe the elt-4 gene from the nematode Caenorhabditis elegans. elt-4 is predicted to encode a very small (72 residues, 8.1 kD) GATA-type zinc finger transcription factor. The elt-4 gene is located ∼5 kb upstream of the C. elegans elt-2 gene, which also encodes a GATA-type transcription factor; the zinc finger DNA-binding domains are highly conserved (24/25 residues) between the two proteins. The elt-2 gene is expressed only in the intestine and is essential for normal intestinal development. This article explores whether elt-4 also has a role in intestinal development. Reporter fusions to the elt-4 promoter or reporter insertions into the elt-4 coding regions show that elt-4 is indeed expressed in the intestine, beginning at the 1.5-fold stage of embryogenesis and continuing into adulthood. elt-4 reporter fusions are also expressed in nine cells of the posterior pharynx. Ectopic expression of elt-4 cDNA within the embryo does not cause detectable ectopic expression of biochemical markers of gut differentiation; furthermore, ectopic elt-4 expression neither inhibits nor enhances the ectopic marker expression caused by ectopic elt-2 expression. A deletion allele of elt-4 was isolated but no obvious phenotype could be detected, either in the gut or elsewhere; brood sizes, hatching efficiencies, and growth rates were indistinguishable from wild type. We found no evidence that elt-4 provided backup functions for elt-2. We used microarray analysis to search for genes that might be differentially expressed between L1 larvae of the elt-4 deletion strain and wild-type worms. Paired hybridizations were repeated seven times, allowing us to conclude, with some confidence, that no candidate target transcript could be identified as significantly up- or downregulated by loss of elt-4 function. In vitro binding experiments could not detect specific binding of ELT-4 protein to candidate binding sites (double-stranded oligonucleotides containing single or multiple WGATAR sequences); ELT-4 protein neither enhanced nor inhibited the strong sequence-specific binding of the ELT-2 protein. Whereas ELT-2 protein is a strong transcriptional activator in yeast, ELT-4 protein has no such activity under similar conditions, nor does it influence the transcriptional activity of coexpressed ELT-2 protein. Although an elt-2 homolog was easily identified in the genomic sequence of the related nematode C. briggsae, no elt-4 homolog could be identified. Analysis of the changes in silent third codon positions within the DNA-binding domains indicates that elt-4 arose as a duplication of elt-2, some 25–55 MYA. Thus, elt-4 has survived far longer than the average duplicated gene in C. elegans, even though no obvious biological function could be detected. elt-4 provides an interesting example of a tandemly duplicated gene that may originally have been the same size as elt-2 but has gradually been whittled down to its present size of little more than a zinc finger. Although elt-4 must confer (or must have conferred) some selective advantage to C. elegans, we suggest that its ultimate evolutionary fate will be disappearance from the C. elegans genome.
Collapse
Affiliation(s)
- Tetsunari Fukushige
- Genes and Development Research Group, Department of Biochemistry and Molecular Biology, University of Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
50
|
Abstract
Steroidogenesis is a tightly regulated process that is dependent on pituitary hormones. In steroidogenic tissues, hormonal stimulation triggers activation of an intracellular signalling pathway that typically involves cAMP production, activation of PKA, and phosphorylation of target transcription factors. In the classic cAMP signalling pathway, phosphorylation of CREB (cAMP response element (CRE)-binding protein) and its subsequent binding to cAMP-response elements (CREs) in the regulatory regions of target genes play a key role in mediating cAMP responsiveness. However, the cAMP responsive regions of several genes expressed in steroidogenic tissues do not contain consensus CREs indicating that other transcription factors are also involved. We have been studying the role played by the GATA family of transcription factors. GATA factors are expressed in a variety of tissues including the adrenals and gonads. Since the regulatory regions of several steroidogenic genes contain GATA elements, we have proposed that GATA factors, particularly GATA-4 and GATA-6, might represent novel downstream effectors of hormonal signalling in steroidogenic tissues. In vitro experiments have revealed that GATA-4 is indeed phosphorylated in steroidogenic cells and that phosphorylation levels are rapidly induced by cAMP. GATA-4 phosphorylation is mediated by PKA. Phosphorylation increases GATA-4 DNA-binding activity and enhances its transcriptional properties on multiple steroidogenic promoters. We now define a new molecular mechanism whereby phospho-GATA factors contribute to increased transcription of steroidogenic genes in response to hormonal stimulation.
Collapse
Affiliation(s)
- Jacques J Tremblay
- Ontogeny-Reproduction Research Unit, Room T1-49, CHUL Research Centre, 2705 Laurier Blvd. Sainte-Foy, Quebec, Canada G1V 4G2
| | | |
Collapse
|