1
|
Samanta S, Akhter F, Xue R, Sosunov AA, Wu L, Chen D, Arancio O, Yan SF, Yan SS. Synaptic mitochondria glycation contributes to mitochondrial stress and cognitive dysfunction. Brain 2025; 148:262-275. [PMID: 39001866 PMCID: PMC11706288 DOI: 10.1093/brain/awae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 07/15/2024] Open
Abstract
Mitochondrial and synaptic dysfunction are pathological features of brain ageing and cognitive decline. Synaptic mitochondria are vital for meeting the high energy demands of synaptic transmission. However, little is known about the link between age-related metabolic changes and the integrity of synaptic mitochondria. To this end, we investigated the mechanisms of advanced glycation end product (AGE)-mediated mitochondrial and synaptic stress and evaluated the strategies to eliminate these toxic metabolites. Using aged brain and novel transgenic mice overexpressing neuronal glyoxalase 1 (GLO1), we comprehensively analysed alterations in accumulation/build-up of AGEs and related metabolites in synaptic mitochondria and the association of AGE levels with mitochondrial function. We demonstrated for the first time that synaptic mitochondria are an early and major target of AGEs and the related toxic metabolite methylglyoxal (MG), a precursor of AGEs. MG/AGE-insulted synaptic mitochondria exhibit deterioration of mitochondrial and synaptic function. Such accumulation of MG/AGEs positively correlated with mitochondrial perturbation and oxidative stress in ageing brain. Importantly, clearance of AGE-related metabolites by enhancing neuronal GLO1, a key enzyme for detoxification of AGEs, reduces synaptic mitochondrial AGE accumulation and improves mitochondrial and cognitive function in ageing and AGE-challenged mice. Furthermore, we evaluated the direct effect of AGEs on synaptic function in hippocampal neurons in live brain slices as an ex vivo model and in vitro cultured hippocampal neurons by recording long-term potentiation (LTP) and measuring spontaneously occurring miniature excitatory postsynaptic currents (mEPSCs). Neuronal GLO1 rescues deficits in AGE-induced synaptic plasticity and transmission by full recovery of decline in LTP or frequency of mEPSC. These studies explored crosstalk between synaptic mitochondrial dysfunction and age-related metabolic changes relevant to brain ageing and cognitive decline. Synaptic mitochondria are particularly susceptible to AGE-induced damage, highlighting the central importance of synaptic mitochondrial dysfunction in synaptic degeneration in age-related cognitive decline. Thus, augmenting GLO1 function to scavenge toxic metabolites represents a therapeutic approach to reduce age-related AGE accumulation and improve mitochondrial function and learning and memory.
Collapse
Affiliation(s)
- Sourav Samanta
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Firoz Akhter
- Higuchi Bioscience Center, University of Kansas, Lawrence, KS 66047, USA
| | - Renhao Xue
- Higuchi Bioscience Center, University of Kansas, Lawrence, KS 66047, USA
| | - Alexandre A Sosunov
- Department of Neurosurgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Long Wu
- Higuchi Bioscience Center, University of Kansas, Lawrence, KS 66047, USA
| | - Doris Chen
- Higuchi Bioscience Center, University of Kansas, Lawrence, KS 66047, USA
| | - Ottavio Arancio
- Department of Pathology and Taub Institute, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Shi Fang Yan
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Shirley ShiDu Yan
- Department of Surgery, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
- Department of Molecular Pharmacology & Therapeutics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| |
Collapse
|
2
|
Liu E, Zhang Y, Wang JZ. Updates in Alzheimer's disease: from basic research to diagnosis and therapies. Transl Neurodegener 2024; 13:45. [PMID: 39232848 PMCID: PMC11373277 DOI: 10.1186/s40035-024-00432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/11/2024] [Indexed: 09/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized pathologically by extracellular deposition of β-amyloid (Aβ) into senile plaques and intracellular accumulation of hyperphosphorylated tau (pTau) as neurofibrillary tangles. Clinically, AD patients show memory deterioration with varying cognitive dysfunctions. The exact molecular mechanisms underlying AD are still not fully understood, and there are no efficient drugs to stop or reverse the disease progression. In this review, we first provide an update on how the risk factors, including APOE variants, infections and inflammation, contribute to AD; how Aβ and tau become abnormally accumulated and how this accumulation plays a role in AD neurodegeneration. Then we summarize the commonly used experimental models, diagnostic and prediction strategies, and advances in periphery biomarkers from high-risk populations for AD. Finally, we introduce current status of development of disease-modifying drugs, including the newly officially approved Aβ vaccines, as well as novel and promising strategies to target the abnormal pTau. Together, this paper was aimed to update AD research progress from fundamental mechanisms to the clinical diagnosis and therapies.
Collapse
Affiliation(s)
- Enjie Liu
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Yao Zhang
- Department of Endocrine, Liyuan Hospital, Key Laboratory of Ministry of Education for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430077, China
| | - Jian-Zhi Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Department of Pathophysiology, Key Laboratory of Ministry of Education for Neurological Disorders, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China.
| |
Collapse
|
3
|
Mooldijk SS, Lu T, Waqas K, Chen J, Vernooij MW, Ikram MK, Zillikens MC, Ikram MA. Skin autofluorescence, reflecting accumulation of advanced glycation end products, and the risk of dementia in a population-based cohort. Sci Rep 2024; 14:1256. [PMID: 38218902 PMCID: PMC10787742 DOI: 10.1038/s41598-024-51703-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/08/2024] [Indexed: 01/15/2024] Open
Abstract
Conditions such as hyperglycemia and oxidative stress lead to the formation of advanced glycation end products (AGEs), which are harmful compounds that have been implicated in dementia. Within the Rotterdam Study, we measured skin AGEs as skin autofluorescence, reflecting long-term accumulation of AGEs, and determined their association with the risk of dementia and with brain magnetic resonance imaging (MRI) measures. Skin autofluorescence was measured between 2013 and 2016 in 2922 participants without dementia. Of these, 1504 also underwent brain MRI, on which measures of brain atrophy and cerebral small vessel disease were assessed. All participants were followed for the incidence of dementia until 2020. Of 2922 participants (mean age 72.6 years, 57% women), 123 developed dementia. Higher skin autofluorescence (per standard deviation) was associated with an increased risk of dementia (hazard ratio 1.21 [95% confidence interval 1.01-1.46]) and Alzheimer's disease (1.19 [0.97-1.47]), independently of age and other studied potential confounders. Stronger effects were seen in apolipoprotein E (APOE) ε4 carriers (1.34 [0.98-1.82]) and in participants with diabetes (1.35 [0.94-1.94]). Participants with higher skin autofluorescence levels also had smaller total brain volumes and smaller hippocampus volumes on MRI, and they had more often lacunes. These results suggest that AGEs may be involved in dementia pathophysiology.
Collapse
Affiliation(s)
- Sanne S Mooldijk
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Tianqi Lu
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Komal Waqas
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jinluan Chen
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - M Kamran Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands
- Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus University Medical Center, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
4
|
Younas N, Saleem T, Younas A, Zerr I. Nuclear face of Tau: an inside player in neurodegeneration. Acta Neuropathol Commun 2023; 11:196. [PMID: 38087392 PMCID: PMC10714511 DOI: 10.1186/s40478-023-01702-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Tau (Tubulin associated unit) protein is a major hallmark of Alzheimer's disease (AD) and tauopathies. Tau is predominantly an axonal protein with a crucial role in the stabilization and dynamics of the microtubules. Since the discovery of Tau protein in 1975, research efforts were concentrated on the pathophysiological role of Tau protein in the context of the microtubules. Although, for more than three decades, different localizations of Tau protein have been discovered e.g., in the nuclear compartments. Discovery of the role of Tau protein in various cellular compartments especially in the nucleus opens up a new fold of complexity in tauopathies. Data from cellular models, animal models, and the human brain indicate that nuclear Tau is crucial for genome stability and to cope with cellular distress. Moreover, it's nature of nuclear translocation, its interactions with the nuclear DNA/RNA and proteins suggest it could play multiple roles in the nucleus. To comprehend Tau pathophysiology and efficient Tau-based therapies, there is an urgent need to understand whole repertoire of Tau species (nuclear and cytoplasmic) and their functional relevance. To complete the map of Tau repertoire, understanding of various species of Tau in the nucleus and cytoplasm, identification if specific transcripts of Tau, isoforms and post-translational modifications could foretell Tau's localizations and functions, and how they are modified in neurodegenerative diseases like AD, is urgently required. In this review, we explore the nuclear face of Tau protein, its nuclear localizations and functions and its linkage with Alzheimer's disease.
Collapse
Affiliation(s)
- Neelam Younas
- University Medical Center Göttingen, National Reference Center for Surveillance of TSE, Department of Neurology, Robert-Koch strasse 40, 37075, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, 37075, Germany.
| | - Tayyaba Saleem
- University Medical Center Göttingen, National Reference Center for Surveillance of TSE, Department of Neurology, Robert-Koch strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, 37075, Germany
| | - Abrar Younas
- University Medical Center Göttingen, National Reference Center for Surveillance of TSE, Department of Neurology, Robert-Koch strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, 37075, Germany
| | - Inga Zerr
- University Medical Center Göttingen, National Reference Center for Surveillance of TSE, Department of Neurology, Robert-Koch strasse 40, 37075, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, 37075, Germany
| |
Collapse
|
5
|
Meng F, Fu J, Zhang L, Guo M, Zhuang P, Yin Q, Zhang Y. Function and therapeutic value of astrocytes in diabetic cognitive impairment. Neurochem Int 2023; 169:105591. [PMID: 37543309 DOI: 10.1016/j.neuint.2023.105591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Diabetic cognitive impairment (DCI) is a complex complication of diabetes in the central nervous system, and its pathological mechanism is still being explored. Astrocytes are abundant glial cells in central nervous system that perform diverse functions in health and disease. Accumulating excellent research has identified astrocyte dysfunction in many neurodegenerative diseases (such as Alzheimer's disease, aging and Parkinson's disease), and summarized and discussed its pathological mechanisms and potential therapeutic value. However, the contribution of astrocytes to DCI has been largely overlooked. In this review, we first systematically summarized the effects and mechanisms of diabetes on brain astrocytes, and found that the diabetic environment (such as hyperglycemia, advanced glycation end products and cerebral insulin resistance) mediated brain reactive astrogliosis, which was specifically reflected in the changes of cell morphology and the remodeling of signature molecules. Secondly, we emphasized the contribution and potential targets of reactive astrogliosis to DCI, and found that reactive astrogliosis-induced increased blood-brain barrier permeability, glymphatic system dysfunction, neuroinflammation, abnormal cell communication and cholesterol metabolism dysregulation worsened cognitive function. In addition, we summarized effective strategies for treating DCI by targeting astrocytes. Finally, we discuss the application of new techniques in astrocytes, including single-cell transcriptome, in situ sequencing, and prospected new functions, new subsets and new targets of astrocytes in DCI.
Collapse
Affiliation(s)
- Fanyu Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mengqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qingsheng Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
6
|
Cario A, Berger CL. Tau, microtubule dynamics, and axonal transport: New paradigms for neurodegenerative disease. Bioessays 2023; 45:e2200138. [PMID: 37489532 PMCID: PMC10630968 DOI: 10.1002/bies.202200138] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 05/04/2023] [Accepted: 05/23/2023] [Indexed: 07/26/2023]
Abstract
The etiology of Tauopathies, a diverse class of neurodegenerative diseases associated with the Microtubule Associated Protein (MAP) Tau, is usually described by a common mechanism in which Tau dysfunction results in the loss of axonal microtubule stability. Here, we reexamine and build upon the canonical disease model to encompass other Tau functions. In addition to regulating microtubule dynamics, Tau acts as a modulator of motor proteins, a signaling hub, and a scaffolding protein. This diverse array of functions is related to the dynamic nature of Tau isoform expression, post-translational modification (PTM), and conformational flexibility. Thus, there is no single mechanism that can describe Tau dysfunction. The effects of specific pathogenic mutations or aberrant PTMs need to be examined on all of the various functions of Tau in order to understand the unique etiology of each disease state.
Collapse
Affiliation(s)
- Alisa Cario
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| | - Christopher L. Berger
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405
| |
Collapse
|
7
|
Kumar P, Mathew S, Gamage R, Bodkin F, Doyle K, Rossetti I, Wagnon I, Zhou X, Raju R, Gyengesi E, Münch G. From the Bush to the Brain: Preclinical Stages of Ethnobotanical Anti-Inflammatory and Neuroprotective Drug Discovery-An Australian Example. Int J Mol Sci 2023; 24:11086. [PMID: 37446262 DOI: 10.3390/ijms241311086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
The Australian rainforest is a rich source of medicinal plants that have evolved in the face of dramatic environmental challenges over a million years due to its prolonged geographical isolation from other continents. The rainforest consists of an inherent richness of plant secondary metabolites that are the most intense in the rainforest. The search for more potent and more bioavailable compounds from other plant sources is ongoing, and our short review will outline the pathways from the discovery of bioactive plants to the structural identification of active compounds, testing for potency, and then neuroprotection in a triculture system, and finally, the validation in an appropriate neuro-inflammatory mouse model, using some examples from our current research. We will focus on neuroinflammation as a potential treatment target for neurodegenerative diseases including multiple sclerosis (MS), Parkinson's (PD), and Alzheimer's disease (AD) for these plant-derived, anti-inflammatory molecules and highlight cytokine suppressive anti-inflammatory drugs (CSAIDs) as a better alternative to conventional nonsteroidal anti-inflammatory drugs (NSAIDs) to treat neuroinflammatory disorders.
Collapse
Affiliation(s)
- Payaal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Shintu Mathew
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rashmi Gamage
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Frances Bodkin
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kerrie Doyle
- Indigenous Health Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ilaria Rossetti
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ingrid Wagnon
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
8
|
Koutarapu S, Ge J, Jha D, Blennow K, Zetterberg H, Lashley T, Michno W, Hanrieder J. Correlative Chemical Imaging Identifies Amyloid Peptide Signatures of Neuritic Plaques and Dystrophy in Human Sporadic Alzheimer's Disease. Brain Connect 2023; 13:297-306. [PMID: 36074939 PMCID: PMC10398722 DOI: 10.1089/brain.2022.0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Objective: Alzheimer's disease (AD) is the most common neurodegenerative disease. The predominantly sporadic form of AD is age-related, but the underlying pathogenic mechanisms remain not fully understood. Current efforts to combat the disease focus on the main pathological hallmarks, in particular beta-amyloid (Aβ) plaque pathology. According to the amyloid cascade hypothesis, Aβ is the critical early initiator of AD pathogenesis. Plaque pathology is very heterogeneous, where a subset of plaques, neuritic plaques (NPs), are considered most neurotoxic rendering their in-depth characterization essential to understand Aβ pathogenicity. Methods: To delineate the chemical traits specific to NP types, we investigated senile Aβ pathology in the postmortem, human sporadic AD brain using advanced correlative biochemical imaging based on immunofluorescence (IF) microscopy and mass spectrometry imaging (MSI). Results: Immunostaining-guided MSI identified distinct Aβ signatures of NPs characterized by increased Aβ1-42(ox) and Aβ2-42. Moreover, correlation with a marker of dystrophy (reticulon 3 [RTN3]) identified key Aβ species that both delineate NPs and display association with neuritic dystrophy. Conclusion: Together, these correlative imaging data shed light on the complex biochemical architecture of NPs and associated dystrophic neurites. These in turn are obvious targets for disease-modifying treatment strategies, as well as novel biomarkers of Aβ pathogenicity.
Collapse
Affiliation(s)
- Srinivas Koutarapu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Junyue Ge
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Durga Jha
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- RECETOX, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
- UK Dementia Research Institute, University College London, London, United Kingdom
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Tammaryn Lashley
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
- Queen Square Brain Bank for Neurological Disorders, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Wojciech Michno
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
- Department of Pediatrics, Stanford University School of Medicine, Stanford University, Palo Alto, California, USA
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Neurodegenerative Disease, Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
9
|
Liu YQ, Liang CQ, Chen ZW, Hu J, Hu JJ, Luo YY, Chen YX, Li YM. 14-3-3ζ Participates in the Phase Separation of Phosphorylated and Glycated Tau and Modulates the Physiological and Pathological Functions of Tau. ACS Chem Neurosci 2023; 14:1220-1225. [PMID: 36939323 DOI: 10.1021/acschemneuro.3c00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023] Open
Abstract
Tau plays a major role in Alzheimer's disease (AD) and several other neurodegenerative diseases. Tau undergoing liquid-liquid phase separation (LLPS) performs specific physiological functions, induces pathological processes, and contributes to neurodegeneration. Regulating Tau phase separation helps maintain physiological functions of Tau and inhibits pathological aggregation. Here, we show that the 14-3-3 zeta isoform (14-3-3ζ) participates in Tau LLPS. 14-3-3ζ can undergo co-phase separation with WT Tau, participate in and stabilize Tau droplets, and inhibit Tau droplet-driven tubulin assembly. On the other hand, 14-3-3ζ disrupts the LLPS of phosphorylated and glycated Tau, thereby inhibiting the amyloid aggregation initiated by LLPS.
Collapse
Affiliation(s)
- Yu-Qing Liu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Chu-Qiao Liang
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Zhi-Wei Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jun Hu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Jin-Jian Hu
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yun-Yi Luo
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yong-Xiang Chen
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China
| | - Yan-Mei Li
- Key Lab of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.,Beijing Institute for Brain Disorders, Beijing 100069, P. R. China.,Center for Synthetic and System Biology, Tsinghua University, Beijing 100084, P. R. China
| |
Collapse
|
10
|
Development of p-Tau Differentiated Cell Model of Alzheimer's Disease to Screen Novel Acetylcholinesterase Inhibitors. Int J Mol Sci 2022; 23:ijms232314794. [PMID: 36499118 PMCID: PMC9741399 DOI: 10.3390/ijms232314794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 11/16/2022] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by an initial accumulation of amyloid plaques and neurofibrillary tangles, along with the depletion of cholinergic markers. The currently available therapies for AD do not present any disease-modifying effects, with the available in vitro platforms to study either AD drug candidates or basic biology not fully recapitulating the main features of the disease or being extremely costly, such as iPSC-derived neurons. In the present work, we developed and validated a novel cell-based AD model featuring Tau hyperphosphorylation and degenerative neuronal morphology. Using the model, we evaluated the efficacy of three different groups of newly synthesized acetylcholinesterase (AChE) inhibitors, along with a new dual acetylcholinesterase/glycogen synthase kinase 3 inhibitor, as potential AD treatment on differentiated SH-SY5Y cells treated with glyceraldehyde to induce Tau hyperphosphorylation, and subsequently neurite degeneration and cell death. Testing of such compounds on the newly developed model revealed an overall improvement of the induced defects by inhibition of AChE alone, showing a reduction of S396 aberrant phosphorylation along with a moderate amelioration of the neuron-like morphology. Finally, simultaneous AChE/GSK3 inhibition further enhanced the limited effects observed by AChE inhibition alone, resulting in an improvement of all the key parameters, such as cell viability, morphology, and Tau abnormal phosphorylation.
Collapse
|
11
|
Hu Z, Ondrejcak T, Yu P, Zhang Y, Yang Y, Klyubin I, Kennelly SP, Rowan MJ, Hu NW. Do tau-synaptic long-term depression interactions in the hippocampus play a pivotal role in the progression of Alzheimer's disease? Neural Regen Res 2022; 18:1213-1219. [PMID: 36453396 PMCID: PMC9838152 DOI: 10.4103/1673-5374.360166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Cognitive decline in Alzheimer's disease correlates with the extent of tau pathology, in particular tau hyperphosphorylation that initially appears in the transentorhinal and related regions of the brain including the hippocampus. Recent evidence indicates that tau hyperphosphorylation caused by either amyloid-β or long-term depression, a form of synaptic weakening involved in learning and memory, share similar mechanisms. Studies from our group and others demonstrate that long-term depression-inducing low-frequency stimulation triggers tau phosphorylation at different residues in the hippocampus under different experimental conditions including aging. Conversely, certain forms of long-term depression at hippocampal glutamatergic synapses require endogenous tau, in particular, phosphorylation at residue Ser396. Elucidating the exact mechanisms of interaction between tau and long-term depression may help our understanding of the physiological and pathological functions of tau/tau (hyper)phosphorylation. We first summarize experimental evidence regarding tau-long-term depression interactions, followed by a discussion of possible mechanisms by which this interplay may influence the pathogenesis of Alzheimer's disease. Finally, we conclude with some thoughts and perspectives on future research about these interactions.
Collapse
Affiliation(s)
- Zhengtao Hu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China,Department of Gerontology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui Province, China
| | - Tomas Ondrejcak
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Pengpeng Yu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yangyang Zhang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yin Yang
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China,Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Igor Klyubin
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Sean P. Kennelly
- Department of Age-Related Healthcare, Tallaght University Hospital, Dublin, Ireland,Department of Medical Gerontology, Trinity College, Dublin, Ireland
| | - Michael J. Rowan
- Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Neng-Wei Hu
- Department of Physiology and Neurobiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan Province, China,Department of Pharmacology & Therapeutics and Institute of Neuroscience, Trinity College, Dublin, Ireland,Correspondence to: Neng-Wei Hu, .
| |
Collapse
|
12
|
Abdullah NAH, Sainik NQAV, Esa E, Muhamad Hendri NA, Ahmad Rusmili MR, Hodgson WC, Shaikh MF, Othman I. Neuroprotective effect of phospholipase A 2 from Malaysian Naja sumatrana venom against H 2O 2-induced cell damage and apoptosis. Front Pharmacol 2022; 13:935418. [PMID: 36313292 PMCID: PMC9614335 DOI: 10.3389/fphar.2022.935418] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/22/2022] [Indexed: 10/23/2023] Open
Abstract
Oxidative stress is one of the factors involved in the pathogenesis of several neurodegenerative diseases. It has been reported that a secretory phospholipase A2 known as A2-EPTX-NSm1a has lower cytotoxicity in neuronal cells compared to its crude Naja sumatrana venom. In this study, A2-EPTX-NSm1a was tested for its neuroprotective activity on human neuroblastoma cells (SH-SY5Y) differentiated into cholinergic neurons against oxidative stress induced by hydrogen peroxide (H2O2). H2O2 treatment alone increased the caspase-3 and caspase-8 activities, whereas pre-treatment with A2-EPTX-NSm1a reduced the activity of these apoptosis-associated proteins. Moreover, A2-EPTX-NSm1a protects the morphology and ultrastructure of differentiated SH-SY5Y cells in the presence of H2O2. Oxidative stress increased the number of small mitochondria. Further evaluation showed the size of mitochondria with a length below 0.25 µm in oxidative stress conditions is higher than the control group, suggesting mitochondria fragmentation. Pre-treatment with A2-EPTX-NSm1a attenuated the number of mitochondria in cells with H2O2 Furthermore, A2-EPTX-NSm1a altered the expression of several neuroprotein biomarkers of GDNF, IL-8, MCP-1, TIMP-1, and TNF-R1 in cells under oxidative stress induced by H2O2. These findings indicate that anti-apoptosis with mitochondria-related protection, anti-inflammatory effect, and promote expression of important markers for cell survival may underlie the neuroprotective effect of A2-EPTX-NSm1a in cholinergic rich human cells under oxidative stress, a vital role in the neuronal disorder.
Collapse
Affiliation(s)
- Nur Atiqah Haizum Abdullah
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Faculty of Medicine, Centre for Tissue Engineering and Regenerative Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nur Qisya Afifah Veronica Sainik
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health Malaysia, Shah Alam, Malaysia
| | - Ezalia Esa
- Haematology Unit, Cancer Research Centre, Institute for Medical Research, National Institutes of Health Malaysia, Shah Alam, Malaysia
| | - Nur Afrina Muhamad Hendri
- Department of Electron Microscopy, Institute for Medical Research, National Institutes of Health Malaysia, Shah Alam, Malaysia
| | | | - Wayne C. Hodgson
- Department of Pharmacology, Monash Venom Group, Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Iekhsan Othman
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
13
|
Yekta R, Sadeghi L, Dehghan G. The role of non-enzymatic glycation on Tau-DNA interactions: Kinetic and mechanistic approaches. Int J Biol Macromol 2022; 207:161-168. [PMID: 35257729 DOI: 10.1016/j.ijbiomac.2022.02.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/26/2021] [Accepted: 02/27/2022] [Indexed: 11/05/2022]
Abstract
Despite the regulatory role of Tau protein in the stabilization and assembly of microtubules, this protein has an important function in the protection and stabilizing of DNA molecules in the cell nucleus. In the present study, it has been indicated that glycation of lysine residues (Lys-267, Lys-274, and Lys-280) in the microtubule-binding domain (MBD) can considerably decrease its binding affinity to DNA molecules. The structural analysis also confirmed that the decreased glycated tau-DNA complex's stability was due to structural modification of this protein after the glycation process. The study of hippocampal cells under hyperglycemic conditions showed that near to 70% of Tau proteins glycated in these cells, although the expression of Tau remained unaffected. The assessment of H3K9me2, as a marker for binding of Tau to pericentromeric heterochromatin (PCH), indicated that localization of Tau protein on PCH was remarkably decreased at high glucose conditions relative to the controls. It is suggested that increasing the structural stability of Tau protein limits the ability of this protein for DNA binding, while the molecular and physical barrier of glycated Lys residues should not be neglected.
Collapse
Affiliation(s)
- Reza Yekta
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Leila Sadeghi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran..
| | - Gholamreza Dehghan
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran..
| |
Collapse
|
14
|
Eldeeb MA, Ragheb MA, Soliman MH, Fahlman RP. Regulation of Neurodegeneration-associated Protein Fragments by the N-degron Pathways. Neurotox Res 2022; 40:298-318. [PMID: 35043375 DOI: 10.1007/s12640-021-00396-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/20/2022]
Abstract
Among the most salient features that underpin the development of aging-related neurodegenerative disorders are the accumulation of protein aggregates and the decrease in cellular degradation capacity. Mammalian cells have evolved sophisticated quality control mechanisms to repair or eliminate the otherwise abnormal or misfolded proteins. Chaperones identify unstable or abnormal conformations in proteins and often help them regain their correct conformation. However, if repair is not an option, abnormal proteins are selectively degraded to prevent undesired interactions with other proteins or oligomerization into toxic multimeric complexes. The autophagic-lysosomal system and the ubiquitin-proteasome system mediate the selective and targeted degradation of abnormal or aberrant protein fragments. Despite an increasing understanding regarding the molecular responses that counteract the formation and clearance of dysfunctional protein aggregates, the role of N-degrons in these processes is poorly understood. Previous work demonstrated that the Arg-N-end rule degradation pathway (Arg-N-degron pathway) mediates the degradation of neurodegeneration-associated proteins, thereby regulating crucial signaling hubs that modulate the progression of neurodegenerative diseases. Herein, we discuss the functional interconnection between N-degron pathways and proteins associated with neurodegenerative disorders, including Alzheimer's disease, amyotrophic lateral sclerosis, and Parkinson's disease. We also highlight some future prospects related to how the molecular insights gained from these processes will help unveil novel therapeutic approaches.
Collapse
Affiliation(s)
- Mohamed A Eldeeb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt. .,Neurodegenerative Diseases Group, Department of Neurology and Neurosurgery, McGill Parkinson Program, Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Mohamed A Ragheb
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Marwa H Soliman
- Chemistry Department (Biochemistry Division), Faculty of Science, Cairo University, Giza, Egypt
| | - Richard P Fahlman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Limorenko G, Lashuel HA. Revisiting the grammar of Tau aggregation and pathology formation: how new insights from brain pathology are shaping how we study and target Tauopathies. Chem Soc Rev 2021; 51:513-565. [PMID: 34889934 DOI: 10.1039/d1cs00127b] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Converging evidence continues to point towards Tau aggregation and pathology formation as central events in the pathogenesis of Alzheimer's disease and other Tauopathies. Despite significant advances in understanding the morphological and structural properties of Tau fibrils, many fundamental questions remain about what causes Tau to aggregate in the first place. The exact roles of cofactors, Tau post-translational modifications, and Tau interactome in regulating Tau aggregation, pathology formation, and toxicity remain unknown. Recent studies have put the spotlight on the wide gap between the complexity of Tau structures, aggregation, and pathology formation in the brain and the simplicity of experimental approaches used for modeling these processes in research laboratories. Embracing and deconstructing this complexity is an essential first step to understanding the role of Tau in health and disease. To help deconstruct this complexity and understand its implication for the development of effective Tau targeting diagnostics and therapies, we firstly review how our understanding of Tau aggregation and pathology formation has evolved over the past few decades. Secondly, we present an analysis of new findings and insights from recent studies illustrating the biochemical, structural, and functional heterogeneity of Tau aggregates. Thirdly, we discuss the importance of adopting new experimental approaches that embrace the complexity of Tau aggregation and pathology as an important first step towards developing mechanism- and structure-based therapies that account for the pathological and clinical heterogeneity of Alzheimer's disease and Tauopathies. We believe that this is essential to develop effective diagnostics and therapies to treat these devastating diseases.
Collapse
Affiliation(s)
- Galina Limorenko
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| | - Hilal A Lashuel
- Laboratory of Molecular and Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Federal de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
16
|
Lin W, Conway LP, Vujasinovic M, Löhr J, Globisch D. Chemoselective and Highly Sensitive Quantification of Gut Microbiome and Human Metabolites. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Weifeng Lin
- Department of Chemistry—BMC Science for Life Laboratory Uppsala University, Box 599 75124 Uppsala Sweden
| | - Louis P. Conway
- Department of Chemistry—BMC Science for Life Laboratory Uppsala University, Box 599 75124 Uppsala Sweden
| | - Miroslav Vujasinovic
- Department for Digestive Diseases Karolinska University Hospital Stockholm Sweden
| | - J.‐Matthias Löhr
- Department for Digestive Diseases Karolinska University Hospital Stockholm Sweden
- Department of Clinical Science Intervention and Technology (CLINTEC) Karolinska Institute Stockholm Sweden
| | - Daniel Globisch
- Department of Chemistry—BMC Science for Life Laboratory Uppsala University, Box 599 75124 Uppsala Sweden
| |
Collapse
|
17
|
Lin W, Conway LP, Vujasinovic M, Löhr J, Globisch D. Chemoselective and Highly Sensitive Quantification of Gut Microbiome and Human Metabolites. Angew Chem Int Ed Engl 2021; 60:23232-23240. [PMID: 34339587 PMCID: PMC8597006 DOI: 10.1002/anie.202107101] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/15/2021] [Indexed: 11/18/2022]
Abstract
The microbiome has a fundamental impact on the human host's physiology through the production of highly reactive compounds that can lead to disease development. One class of such compounds are carbonyl-containing metabolites, which are involved in diverse biochemical processes. Mass spectrometry is the method of choice for analysis of metabolites but carbonyls are analytically challenging. Herein, we have developed a new chemical biology tool using chemoselective modification to overcome analytical limitations. Two isotopic probes allow for the simultaneous and semi-quantitative analysis at the femtomole level as well as qualitative analysis at attomole quantities that allows for detection of more than 200 metabolites in human fecal, urine and plasma samples. This comprehensive mass spectrometric analysis enhances the scope of metabolomics-driven biomarker discovery. We anticipate that our chemical biology tool will be of general use in metabolomics analysis to obtain a better understanding of microbial interactions with the human host and disease development.
Collapse
Affiliation(s)
- Weifeng Lin
- Department of Chemistry—BMCScience for Life LaboratoryUppsala University, Box 59975124UppsalaSweden
| | - Louis P. Conway
- Department of Chemistry—BMCScience for Life LaboratoryUppsala University, Box 59975124UppsalaSweden
| | | | - J.‐Matthias Löhr
- Department for Digestive DiseasesKarolinska University HospitalStockholmSweden
- Department of Clinical ScienceIntervention and Technology (CLINTEC)Karolinska InstituteStockholmSweden
| | - Daniel Globisch
- Department of Chemistry—BMCScience for Life LaboratoryUppsala University, Box 59975124UppsalaSweden
| |
Collapse
|
18
|
Icariin improves cutaneous wound healing in streptozotocin-induced diabetic rats. J Tissue Viability 2021; 31:197-206. [PMID: 34565677 DOI: 10.1016/j.jtv.2021.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 09/09/2021] [Accepted: 09/16/2021] [Indexed: 12/27/2022]
Abstract
In diabetes, wound healing gets delayed due to various factors. Icariin, a flavonoid obtained from the plants of the Epimedium genus, exhibited anti-inflammatory, angiogenic, and matrix metalloproteinase-inhibiting effects to heal skin wounds in non-diabetic rats on topical application. Hence, we designed the present study to explore icariin's potential to heal cutaneous diabetic wounds in rats. Diabetes was induced by streptozotocin in male Wistar rats and they were divided into two groups after creating a skin wound of approximately 4 cm2 area. Simple ointment base and 0.04% icariin ointment were applied twice daily for 19 days in the control and the treatment group, respectively. The healing of the wound was assessed based on wound closure, the expression patterns of NF-κB, TNF-α, IL-10, CD31, MMP-2 and -9 activities, and collagen deposition on predetermined days after wound creation. Wounds treated with icariin showed a marked increase in per cent wound closure on different post-wounding days than diabetic control. Upregulation of IL-10 and decreased expressions of NF-κB and TNF-α were revealed in western blots, indicating an anti-inflammatory effect of icariin. Western blot, as well as immunohistochemistry, showed increased expression of CD31 on all days confirming the angiogenic effect of icariin in healing. Icariin treatment reduced MMP-2 and -9 activities and increased deposition of well-organized collagen. Results demonstrate that icariin reduced inflammation and improved angiogenesis and thus, it appears to possess the potential to enhance the healing of diabetic wounds.
Collapse
|
19
|
Moloney CM, Lowe VJ, Murray ME. Visualization of neurofibrillary tangle maturity in Alzheimer's disease: A clinicopathologic perspective for biomarker research. Alzheimers Dement 2021; 17:1554-1574. [PMID: 33797838 PMCID: PMC8478697 DOI: 10.1002/alz.12321] [Citation(s) in RCA: 165] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/11/2021] [Accepted: 02/03/2021] [Indexed: 12/29/2022]
Abstract
Neurofibrillary tangles, one of the neuropathologic hallmarks of Alzheimer's disease, have a dynamic lifespan of maturity that associates with progressive neuronal dysfunction and cognitive deficits. As neurofibrillary tangles mature, the biology of the neuron undergoes extensive changes that may impact biomarker recognition and therapeutic targeting. Neurofibrillary tangle maturity encompasses three levels: pretangles, mature tangles, and ghost tangles. In this review, we detail distinct and overlapping characteristics observed in the human brain regarding morphologic changes the neuron undergoes, conversion from intracellular to extracellular space, tau immunostaining patterns, and tau isoform expression changes across the lifespan of the neurofibrillary tangle. Post-translational modifications of tau such as phosphorylation, ubiquitination, conformational events, and truncations are discussed to contextualize tau immunostaining patterns. We summarize accumulated and emerging knowledge of neurofibrillary tangle maturity, discuss the current tools used to interpret the dynamic nature in the postmortem brain, and consider implications for cognitive dysfunction and tau biomarkers.
Collapse
Affiliation(s)
| | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | |
Collapse
|
20
|
Zglejc-Waszak K, Mukherjee K, Juranek JK. The cross-talk between RAGE and DIAPH1 in neurological complications of diabetes: A review. Eur J Neurosci 2021; 54:5982-5999. [PMID: 34449932 DOI: 10.1111/ejn.15433] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 01/10/2023]
Abstract
Neuropathy, or dysfunction of peripheral nerve, is one of the most common neurological manifestation in patients with diabetes mellitus (DM). DM is typically associated with a hyperglycaemic milieu, which promotes non-enzymatic glycation of proteins. Proteins with advanced glycation are known to engage a cell-surface receptor called the receptor for advanced glycation end products (RAGE). Thus, it is reasonable to assume that RAGE and its associated molecule-mediated cellular signalling may contribute to DM-induced symmetrical axonal (length-dependent) neuropathy. Of particular interest is diaphanous related formin 1 (DIAPH1), a cytoskeletal organizing molecule, which interacts with the cytosolic domain of RAGE and whose dysfunction may precipitate axonopathy/neuropathy. Indeed, it has been demonstrated that both RAGE and DIAPH1 are expressed in the motor and sensory fibres of nerve harvested from DM animal models. Although the detailed molecular role of RAGE and DIAPH1 in diabetic neurological complications remains unclear, here we will discuss available evidence of their involvement in peripheral diabetic neuropathy. Specifically, we will discuss how a hyperglycaemic environment is not only likely to elevate advanced glycation end products (ligands of RAGE) and induce a pro-inflammatory environment but also alter signalling via RAGE and DIAPH1. Further, hyperglycaemia may regulate epigenetic mechanisms that interacts with RAGE signalling. We suggest the cumulative effect of hyperglycaemia on RAGE-DIAPH1-mediated signalling may be disruptive to axonal cytoskeletal organization and transport and is therefore likely to play a key role in pathogenesis of diabetic symmetrical axonal neuropathy.
Collapse
Affiliation(s)
- Kamila Zglejc-Waszak
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Konark Mukherjee
- Fralin Biomedical Research Institute at VTC, Virginia Tech Roanoke, Roanoke, Virginia, USA
| | - Judyta Karolina Juranek
- Department of Human Physiology and Pathophysiology, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| |
Collapse
|
21
|
Sinsky J, Pichlerova K, Hanes J. Tau Protein Interaction Partners and Their Roles in Alzheimer's Disease and Other Tauopathies. Int J Mol Sci 2021; 22:9207. [PMID: 34502116 PMCID: PMC8431036 DOI: 10.3390/ijms22179207] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Tau protein plays a critical role in the assembly, stabilization, and modulation of microtubules, which are important for the normal function of neurons and the brain. In diseased conditions, several pathological modifications of tau protein manifest. These changes lead to tau protein aggregation and the formation of paired helical filaments (PHF) and neurofibrillary tangles (NFT), which are common hallmarks of Alzheimer's disease and other tauopathies. The accumulation of PHFs and NFTs results in impairment of physiological functions, apoptosis, and neuronal loss, which is reflected as cognitive impairment, and in the late stages of the disease, leads to death. The causes of this pathological transformation of tau protein haven't been fully understood yet. In both physiological and pathological conditions, tau interacts with several proteins which maintain their proper function or can participate in their pathological modifications. Interaction partners of tau protein and associated molecular pathways can either initiate and drive the tau pathology or can act neuroprotective, by reducing pathological tau proteins or inflammation. In this review, we focus on the tau as a multifunctional protein and its known interacting partners active in regulations of different processes and the roles of these proteins in Alzheimer's disease and tauopathies.
Collapse
Affiliation(s)
| | | | - Jozef Hanes
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska Cesta 9, 845 10 Bratislava, Slovakia; (J.S.); (K.P.)
| |
Collapse
|
22
|
Inhibition of neuroinflammatory nitric oxide signaling suppresses glycation and prevents neuronal dysfunction in mouse prion disease. Proc Natl Acad Sci U S A 2021; 118:2009579118. [PMID: 33653950 PMCID: PMC7958397 DOI: 10.1073/pnas.2009579118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Several neurodegenerative diseases associated with protein misfolding (Alzheimer's and Parkinson's disease) exhibit oxidative and nitrergic stress following initiation of neuroinflammatory pathways. Associated nitric oxide (NO)-mediated posttranslational modifications impact upon protein functions that can exacerbate pathology. Nonenzymatic and irreversible glycation signaling has been implicated as an underlying pathway that promotes protein misfolding, but the direct interactions between both pathways are poorly understood. Here we investigated the therapeutic potential of pharmacologically suppressing neuroinflammatory NO signaling during early disease progression of prion-infected mice. Mice were injected daily with an NO synthase (NOS) inhibitor at early disease stages, hippocampal gene and protein expression levels of oxidative and nitrergic stress markers were analyzed, and electrophysiological characterization of pyramidal CA1 neurons was performed. Increased neuroinflammatory signaling was observed in mice between 6 and 10 wk postinoculation (w.p.i.) with scrapie prion protein. Their hippocampi were characterized by enhanced nitrergic stress associated with a decline in neuronal function by 9 w.p.i. Daily in vivo administration of the NOS inhibitor L-NAME between 6 and 9 w.p.i. at 20 mg/kg prevented the functional degeneration of hippocampal neurons in prion-diseased mice. We further found that this intervention in diseased mice reduced 3-nitrotyrosination of triose-phosphate isomerase, an enzyme involved in the formation of disease-associated glycation. Furthermore, L-NAME application led to a reduced expression of the receptor for advanced glycation end-products and the diminished accumulation of hippocampal prion misfolding. Our data suggest that suppressing neuroinflammatory NO signaling slows functional neurodegeneration and reduces nitrergic and glycation-associated cellular stress.
Collapse
|
23
|
Kropf E, Fahnestock M. Effects of Reactive Oxygen and Nitrogen Species on TrkA Expression and Signalling: Implications for proNGF in Aging and Alzheimer's Disease. Cells 2021; 10:cells10081983. [PMID: 34440751 PMCID: PMC8392605 DOI: 10.3390/cells10081983] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Nerve growth factor (NGF) and its precursor form, proNGF, are critical for neuronal survival and cognitive function. In the brain, proNGF is the only detectable form of NGF. Dysregulation of proNGF in the brain is implicated in age-related memory loss and Alzheimer’s disease (AD). AD is characterized by early and progressive degeneration of the basal forebrain, an area critical for learning, memory, and attention. Learning and memory deficits in AD are associated with loss of proNGF survival signalling and impaired retrograde transport of proNGF to the basal forebrain. ProNGF transport and signalling may be impaired by the increased reactive oxygen and nitrogen species (ROS/RNS) observed in the aged and AD brain. The current literature suggests that ROS/RNS nitrate proNGF and reduce the expression of the proNGF receptor tropomyosin-related kinase A (TrkA), disrupting its downstream survival signalling. ROS/RNS-induced reductions in TrkA expression reduce cell viability, as proNGF loses its neurotrophic function in the absence of TrkA and instead generates apoptotic signalling via the pan-neurotrophin receptor p75NTR. ROS/RNS also interfere with kinesin and dynein motor functions, causing transport deficits. ROS/RNS-induced deficits in microtubule motor function and TrkA expression and signalling may contribute to the vulnerability of the basal forebrain in AD. Antioxidant treatments may be beneficial in restoring proNGF signalling and axonal transport and reducing basal forebrain neurodegeneration and related deficits in cognitive function.
Collapse
Affiliation(s)
- Erika Kropf
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence:
| |
Collapse
|
24
|
Saeed M, Kausar MA, Singh R, Siddiqui AJ, Akhter A. The Role of Glyoxalase in Glycation and Carbonyl Stress Induced Metabolic Disorders. Curr Protein Pept Sci 2021; 21:846-859. [PMID: 32368974 DOI: 10.2174/1389203721666200505101734] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/09/2019] [Accepted: 12/08/2019] [Indexed: 12/14/2022]
Abstract
Glycation refers to the covalent binding of sugar molecules to macromolecules, such as DNA, proteins, and lipids in a non-enzymatic reaction, resulting in the formation of irreversibly bound products known as advanced glycation end products (AGEs). AGEs are synthesized in high amounts both in pathological conditions, such as diabetes and under physiological conditions resulting in aging. The body's anti-glycation defense mechanisms play a critical role in removing glycated products. However, if this defense system fails, AGEs start accumulating, which results in pathological conditions. Studies have been shown that increased accumulation of AGEs acts as key mediators in multiple diseases, such as diabetes, obesity, arthritis, cancer, atherosclerosis, decreased skin elasticity, male erectile dysfunction, pulmonary fibrosis, aging, and Alzheimer's disease. Furthermore, glycation of nucleotides, proteins, and phospholipids by α-oxoaldehyde metabolites, such as glyoxal (GO) and methylglyoxal (MGO), causes potential damage to the genome, proteome, and lipidome. Glyoxalase-1 (GLO-1) acts as a part of the anti-glycation defense system by carrying out detoxification of GO and MGO. It has been demonstrated that GLO-1 protects dicarbonyl modifications of the proteome and lipidome, thereby impeding the cell signaling and affecting age-related diseases. Its relationship with detoxification and anti-glycation defense is well established. Glycation of proteins by MGO and GO results in protein misfolding, thereby affecting their structure and function. These findings provide evidence for the rationale that the functional modulation of the GLO pathway could be used as a potential therapeutic target. In the present review, we summarized the newly emerged literature on the GLO pathway, including enzymes regulating the process. In addition, we described small bioactive molecules with the potential to modulate the GLO pathway, thereby providing a basis for the development of new treatment strategies against age-related complications.
Collapse
Affiliation(s)
- Mohd Saeed
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Mohd Adnan Kausar
- Department of Biochemistry, College of Medicine, University of Hail, Hail, Saudi Arabia
| | - Rajeev Singh
- Department of Environmental Studies, Sataywati College, Delhi University, Delhi, India
| | - Arif J Siddiqui
- Department of Biology, College of Sciences, University of Hail, Hail, Saudi Arabia
| | - Asma Akhter
- Department of Biosciences, Integral University, Lucknow, Uttar Pradesh 226026, India
| |
Collapse
|
25
|
Sonawane SK, Chinnathambi S. Epigallocatechin-3-gallate modulates Tau Post-translational modifications and cytoskeletal network. Oncotarget 2021; 12:1083-1099. [PMID: 34084282 PMCID: PMC8169072 DOI: 10.18632/oncotarget.27963] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 05/05/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Alzheimer's disease is a type of dementia denoted by progressive neuronal death due to the accumulation of proteinaceous aggregates of Tau. Post-translational modifications like hyperphosphorylation, truncation, glycation, etc. play a pivotal role in Tau pathogenesis. Glycation of Tau aids in paired helical filament formation and abates its microtubule-binding function. The chemical modulators of Tau PTMs, such as kinase inhibitors and antibody-based therapeutics, have been developed, but natural compounds, as modulators of Tau PTMs are not much explored. MATERIALS AND METHODS We applied biophysical and biochemical techniques like fluorescence kinetics, oligomerization analysis and transmission electron microscopy to investigate the impact of EGCG on Tau glycation in vitro. The effect of glycation on cytoskeleton instability and its EGCG-mediated rescue were studied by immunofluorescence microscopy in neuroblastoma cells. RESULTS EGCG inhibited methyl glyoxal (MG)-induced Tau glycation in vitro. EGCG potently inhibited MG-induced advanced glycation endproducts formation in neuroblastoma cells as well modulated the localization of AT100 phosphorylated Tau in the cells. In addition to preventing the glycation, EGCG enhanced actin-rich neuritic extensions and rescued actin and tubulin cytoskeleton severely disrupted by MG. EGCG maintained the integrity of the Microtubule Organizing Center (MTOC) stabilized microtubules by Microtubule-associated protein RP/EB family member 1 (EB1). CONCLUSIONS We report EGCG, a green tea polyphenol, as a modulator of in vitro methylglyoxal-induced Tau glycation and its impact on reducing advanced glycation end products in neuroblastoma cells. We unravel unprecedented function of EGCG in remodeling neuronal cytoskeletal integrity.
Collapse
Affiliation(s)
- Shweta Kishor Sonawane
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subashchandrabose Chinnathambi
- Neurobiology Group, Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune 411008, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
26
|
Akhter F, Chen D, Akhter A, Sosunov AA, Chen A, McKhann GM, Yan SF, Yan SS. High Dietary Advanced Glycation End Products Impair Mitochondrial and Cognitive Function. J Alzheimers Dis 2021; 76:165-178. [PMID: 32444539 DOI: 10.3233/jad-191236] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Advanced glycation end products (AGEs) are an important risk factor for the development of cognitive decline in aging and late-onset neurodegenerative diseases including Alzheimer's disease. However, whether and how dietary AGEs exacerbate cognitive impairment and brain mitochondrial dysfunction in the aging process remains largely unknown. OBJECTIVE We investigated the direct effects of dietary AGEs on AGE adducts accumulation, mitochondrial function, and cognitive performance in mice. METHODS Mice were fed the AGE+ diet or AGE- diet. We examined levels of AGE adducts in serum and cerebral cortexes by immunodetection and immunohistochemistry, determined levels of reactive oxygen species by biochemical analysis, detected enzyme activity associated with mitochondrial respiratory chain complexes I & IV and ATP levels, and assessed learning and memory ability by Morris Water Maze and nesting behavior. RESULTS Levels of AGE adducts (MG-H1 and CEL) were robustly increased in the serum and brain of AGE+ diet fed mice compared to the AGE- group. Furthermore, greatly elevated levels of reactive oxygen species, decreased activities of mitochondrial respiratory chain complexes I & IV, reduced ATP levels, and impaired learning and memory were evident in AGE+ diet fed mice compared to the AGE- group. CONCLUSION These results indicate that dietary AGEs are important sources of AGE accumulation in vivo, resulting in mitochondrial dysfunction, impairment of energy metabolism, and subsequent cognitive impairment. Thus, reducing AGEs intake to lower accumulation of AGEs could hold therapeutic potential for the prevention and treatment of AGEs-induced mitochondrial dysfunction linked to cognitive decline.
Collapse
Affiliation(s)
- Firoz Akhter
- Department of Pharmacology and Toxicology and Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA.,Department of Surgery, Columbia University, New York, NY, USA
| | - Doris Chen
- Department of Pharmacology and Toxicology and Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| | - Asma Akhter
- Department of Pharmacology and Toxicology and Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA.,Department of Surgery, Columbia University, New York, NY, USA
| | - Alexander A Sosunov
- Department of Neurological Surgery and Surgery, Columbia University, New York, NY, USA
| | - Allen Chen
- Department of Pharmacology and Toxicology and Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA
| | - Guy M McKhann
- Department of Neurological Surgery and Surgery, Columbia University, New York, NY, USA
| | - Shi Fang Yan
- Department of Pharmacology and Toxicology and Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA.,Department of Neurological Surgery and Surgery, Columbia University, New York, NY, USA
| | - Shirley ShiDu Yan
- Department of Pharmacology and Toxicology and Higuchi Biosciences Center, University of Kansas, Lawrence, KS, USA.,Department of Surgery, Columbia University, New York, NY, USA
| |
Collapse
|
27
|
Akhter F, Chen D, Akhter A, Yan SF, Yan SS. Age-dependent accumulation of dicarbonyls and advanced glycation endproducts (AGEs) associates with mitochondrial stress. Free Radic Biol Med 2021; 164:429-438. [PMID: 33359687 PMCID: PMC8552367 DOI: 10.1016/j.freeradbiomed.2020.12.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 01/09/2023]
Abstract
Aging is a strong risk factor for brain dementia and cognitive decline. Age-related accumulation of metabolites such as advanced glycation end products (AGEs) could serve as danger signals to initiate and accelerate disease process and neurodegeneration. The underlying causes and consequences of cerebral AGEs accumulation remain largely unknown. Here, we comprehensively investigate age-related accumulation of AGEs and dicarbonyls, including methylglyoxal (MG), glyoxal (GO), and 3-deoxyglucosone (3-DG), and the effects of mitochondrial reactive oxygen species (ROS) on cerebral AGEs accumulation, mitochondrial function, and oxidative stress in the aging human and mouse brain. We demonstrate that AGEs, including arginine and lysine derived N(6)-carboxymethyl lysine (CML), Nε-(1-Carboxyethyl)-l-lysine (CEL), and methylglyoxal-derived hydroimidazolone-1 (MG-H1), were significantly elevated in the cerebral cortex and hippocampus with advanced age in mice. Accordingly, aging mouse and human brains revealed decrease in activities of mitochondrial respiratory chain complexes I & IV and ATP levels, and increased ROS. Notably, administration of mitoTEMPO (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (mTEMPO), a scavenger of mitochondrial ROS, not only suppressed ROS production but also reduced aged-induced accumulation of AGEs and dicarbonyls. mTEMPO treatment improved mitochondrial respiratory function and restored ATP levels. Our findings provide evidence linking age-related accumulation of toxic metabolites (AGEs) to mitochondrial oxidative stress. This highlights a novel mechanism by which AGEs-dependent signaling promotes carbonyl stress and sustained mitochondrial dysfunction. Eliminating formation and accumulation of AGEs may represent a new therapeutic avenue for combating cognitive decline and mitochondrial degeneration relevant to aging and neurodegenerative diseases including Alzheimer's disease.
Collapse
Affiliation(s)
- Firoz Akhter
- Department of Surgery, Columbia University, New York, NY, 10032, USA
| | - Doris Chen
- Department of Pharmacology and Toxicology and Higuchi Bioscience Center, University of Kansas, KS66047, USA
| | - Asma Akhter
- Department of Surgery, Columbia University, New York, NY, 10032, USA
| | - Shi Fang Yan
- Department of Surgery, Columbia University, New York, NY, 10032, USA.
| | - Shirley ShiDu Yan
- Department of Surgery, Columbia University, New York, NY, 10032, USA; Molecular Pharmacology & Therapeutics, Columbia University New York, NY, 10032, USA.
| |
Collapse
|
28
|
Alquezar C, Arya S, Kao AW. Tau Post-translational Modifications: Dynamic Transformers of Tau Function, Degradation, and Aggregation. Front Neurol 2021; 11:595532. [PMID: 33488497 PMCID: PMC7817643 DOI: 10.3389/fneur.2020.595532] [Citation(s) in RCA: 190] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Post-translational modifications (PTMs) on tau have long been recognized as affecting protein function and contributing to neurodegeneration. The explosion of information on potential and observed PTMs on tau provides an opportunity to better understand these modifications in the context of tau homeostasis, which becomes perturbed with aging and disease. Prevailing views regard tau as a protein that undergoes abnormal phosphorylation prior to its accumulation into the toxic aggregates implicated in Alzheimer's disease (AD) and other tauopathies. However, the phosphorylation of tau may, in fact, represent part of the normal but interrupted function and catabolism of the protein. In addition to phosphorylation, tau undergoes another forms of post-translational modification including (but not limited to), acetylation, ubiquitination, glycation, glycosylation, SUMOylation, methylation, oxidation, and nitration. A holistic appreciation of how these PTMs regulate tau during health and are potentially hijacked in disease remains elusive. Recent studies have reinforced the idea that PTMs play a critical role in tau localization, protein-protein interactions, maintenance of levels, and modifying aggregate structure. These studies also provide tantalizing clues into the possibility that neurons actively choose how tau is post-translationally modified, in potentially competitive and combinatorial ways, to achieve broad, cellular programs commensurate with the distinctive environmental conditions found during development, aging, stress, and disease. Here, we review tau PTMs and describe what is currently known about their functional impacts. In addition, we classify these PTMs from the perspectives of protein localization, electrostatics, and stability, which all contribute to normal tau function and homeostasis. Finally, we assess the potential impact of tau PTMs on tau solubility and aggregation. Tau occupies an undoubtedly important position in the biology of neurodegenerative diseases. This review aims to provide an integrated perspective of how post-translational modifications actively, purposefully, and dynamically remodel tau function, clearance, and aggregation. In doing so, we hope to enable a more comprehensive understanding of tau PTMs that will positively impact future studies.
Collapse
Affiliation(s)
| | | | - Aimee W. Kao
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
29
|
Cioffi F, Adam RHI, Broersen K. Molecular Mechanisms and Genetics of Oxidative Stress in Alzheimer's Disease. J Alzheimers Dis 2020; 72:981-1017. [PMID: 31744008 PMCID: PMC6971833 DOI: 10.3233/jad-190863] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Alzheimer’s disease is the most common neurodegenerative disorder that can cause dementia in elderly over 60 years of age. One of the disease hallmarks is oxidative stress which interconnects with other processes such as amyloid-β deposition, tau hyperphosphorylation, and tangle formation. This review discusses current thoughts on molecular mechanisms that may relate oxidative stress to Alzheimer’s disease and identifies genetic factors observed from in vitro, in vivo, and clinical studies that may be associated with Alzheimer’s disease-related oxidative stress.
Collapse
Affiliation(s)
- Federica Cioffi
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Rayan Hassan Ibrahim Adam
- Nanobiophysics Group, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| | - Kerensa Broersen
- Applied Stem Cell Technologies, Technical Medical Centre, Faculty of Science and Technology, University of Twente, Enschede, The Netherlands
| |
Collapse
|
30
|
Garay-Sevilla ME, Beeri MS, de la Maza MP, Rojas A, Salazar-Villanea S, Uribarri J. The potential role of dietary advanced glycation endproducts in the development of chronic non-infectious diseases: a narrative review. Nutr Res Rev 2020; 33:298-311. [PMID: 32238213 DOI: 10.1017/s0954422420000104] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing clinical and experimental evidence accumulated during the past few decades supports an important role for dietary advanced glycation endproducts (AGE) in the pathogenesis of many chronic non-infectious diseases, such as type 2 diabetes, CVD and others, that are reaching epidemic proportions in the Western world. Although AGE are compounds widely recognised as generated in excess in the body in diabetic patients, the potential importance of exogenous AGE, mostly of dietary origin, has been largely ignored in the general nutrition audience. In the present review we aim to describe dietary AGE, their mechanisms of formation and absorption into the body as well as their main mechanisms of action. We will present in detail current evidence of their potential role in the development of several chronic non-infectious clinical conditions, some general suggestions on how to restrict them in the diet and evidence regarding the potential benefits of lowering their consumption.
Collapse
Affiliation(s)
- M E Garay-Sevilla
- Medical Science Department, University of Guanajuato, Guanajuato, Mexico
| | - M S Beeri
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Ramat Gan, Israel
| | - M P de la Maza
- Institute of Nutrition and Food Technology Dr. Fernando Monckeberg Barros, University of Chile, Santiago, Chile
| | - A Rojas
- Biomedical Research Laboratories, Faculty of Medicine, Catholic University of Maule, Talca, Chile
| | - S Salazar-Villanea
- Department of Animal Science, Universidad de Costa Rica, San Pedro Montes de Oca, San José, Costa Rica
| | - J Uribarri
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
31
|
Sikkink SK, Mine S, Freis O, Danoux L, Tobin DJ. Stress-sensing in the human greying hair follicle: Ataxia Telangiectasia Mutated (ATM) depletion in hair bulb melanocytes in canities-prone scalp. Sci Rep 2020; 10:18711. [PMID: 33128003 PMCID: PMC7603349 DOI: 10.1038/s41598-020-75334-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023] Open
Abstract
Canities (or hair greying) is an age-linked loss of the natural pigment called melanin from hair. While the specific cause(s) underlying the loss of melanogenically-active melanocytes from the anagen hair bulbs of affected human scalp remains unclear, oxidative stress sensing appears to be a key factor involved. In this study, we examined the follicular melanin unit in variably pigmented follicles from the aging human scalp of healthy individuals (22-70 years). Over 20 markers were selected within the following categories: melanocyte-specific, apoptosis, cell cycle, DNA repair/damage, senescence and oxidative stress. As expected, a reduction in melanocyte-specific markers in proportion to the extent of canities was observed. A major finding of our study was the intense and highly specific nuclear expression of Ataxia Telangiectasia Mutated (ATM) protein within melanocytes in anagen hair follicle bulbs. ATM is a serine/threonine protein kinase that is recruited and activated by DNA double-strand breaks and functions as an important sensor of reactive oxygen species (ROS) in human cells. The incidence and expression level of ATM correlated with pigmentary status in canities-affected hair follicles. Moreover, increased staining of the redox-associated markers 8-OHdG, GADD45 and GP-1 were also detected within isolated bulbar melanocytes, although this change was not clearly associated with donor age or canities extent. Surprisingly, we were unable to detect any specific change in the expression of other markers of oxidative stress, senescence or DNA damage/repair in the canities-affected melanocytes compared to surrounding bulbar keratinocytes. By contrast, several markers showed distinct expression of markers for oxidative stress and apoptosis/differentiation in the inner root sheath (IRS) as well as other parts of the hair follicle. Using our in vitro model of primary human scalp hair follicle melanocytes, we showed that ATM expression increased after incubation with the pro-oxidant hydrogen peroxide (H2O2). In addition, this ATM increase was prevented by pre-incubation of cells with antioxidants. The relationship between ATM and redox stress sensing was further evidenced as we observed that the inhibition of ATM expression by chemical inhibition promoted the loss of melanocyte viability induced by oxidative stress. Taken together these new findings illustrate the key role of ATM in the protection of human hair follicle melanocytes from oxidative stress/damage within the human scalp hair bulb. In conclusion, these results highlight the remarkable complexity and role of redox sensing in the status of human hair follicle growth, differentiation and pigmentation.
Collapse
Affiliation(s)
- Stephen K Sikkink
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Rd., Bradford, BD7 1DP, West Yorkshire, UK.
| | - Solene Mine
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Olga Freis
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Louis Danoux
- BASF Beauty Care Solutions France S.A.S., Pulnoy, France
| | - Desmond J Tobin
- Centre for Skin Sciences, School of Life Sciences, University of Bradford, Richmond Rd., Bradford, BD7 1DP, West Yorkshire, UK. .,The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
32
|
Wu B, Wang Y, Shi C, Chen Y, Yu L, Li J, Li W, Wei Y, He R. Ribosylation-Derived Advanced Glycation End Products Induce Tau Hyperphosphorylation Through Brain-Derived Neurotrophic Factor Reduction. J Alzheimers Dis 2020; 71:291-305. [PMID: 31381511 DOI: 10.3233/jad-190158] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Advanced glycation end products (AGEs) have been implicated in the disease process of diabetes mellitus. They have also been found in senile plaques and neurofibrillary tangles in the brains of Alzheimer's disease patients. Furthermore, abnormally high levels of D-ribose and D-glucose were found in the urine of patients with type 2 diabetes mellitus, suggesting that diabetic patients suffer from dysmetabolism of not only D-glucose but also D-ribose. In the present study, intravenous tail injections of ribosylated rat serum albumin (RRSA) were found to impair memory in rats, but they did not markedly impair learning, as measured by the Morris water maze test. Injections of RRSA were found to trigger tau hyperphosphorylation in the rat hippocampus via GSK-3β activation. Tau hyperphosphorylation and GSK-3β activation were also observed in N2a cells in the presence of ribosylation-derived AGEs. Furthermore, the administration of ribosylation-derived AGEs induced the suppression of brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB). Both GSK-3β inhibition and BDNF treatment decreased the levels of phosphorylated tau in N2a cells. In particular, the administration of BDNF could rescue memory failure in ribosylated AGE-injected rats. Ribosylation-derived AGEs downregulated the BDNF-TrkB pathway in rat brains and N2a cells, leading to GSK-3β activation-mediated tau hyperphosphorylation, which was involved in the observed rat memory loss. Targeting ribosylation may be a promising therapeutic strategy to prevent Alzheimer's disease and diabetic encephalopathies.
Collapse
Affiliation(s)
- Beibei Wu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Yujing Wang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Chenggang Shi
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Chen
- Southwest Medical University, Luzhou, Sichuan, China
| | - Lexiang Yu
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Weiwei Li
- Peking University Hospital, Beijing, China
| | - Yan Wei
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China
| | - Rongqiao He
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, University of Chinese Academy of Sciences, Beijing, China.,Alzheimer's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
33
|
Vegh C, Stokes K, Ma D, Wear D, Cohen J, Ray SD, Pandey S. A Bird's-Eye View of the Multiple Biochemical Mechanisms that Propel Pathology of Alzheimer's Disease: Recent Advances and Mechanistic Perspectives on How to Halt the Disease Progression Targeting Multiple Pathways. J Alzheimers Dis 2020; 69:631-649. [PMID: 31127770 PMCID: PMC6598003 DOI: 10.3233/jad-181230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurons consume the highest amount of oxygen, depend on oxidative metabolism for energy, and survive for the lifetime of an individual. Therefore, neurons are vulnerable to death caused by oxidative-stress, accumulation of damaged and dysfunctional proteins and organelles. There is an exponential increase in the number of patients diagnosed with neurodegenerative diseases such as Alzheimer's (AD) as the number of elderly increases exponentially. Development of AD pathology is a complex phenomenon characterized by neuronal death, accumulation of extracellular amyloid-β plaques and neurofibrillary tangles, and most importantly loss of memory and cognition. These pathologies are most likely caused by mechanisms including oxidative stress, mitochondrial dysfunction/stress, accumulation of misfolded proteins, and defective organelles due to impaired proteasome and autophagy mechanisms. Currently, there are no effective treatments to halt the progression of this disease. In order to treat this complex disease with multiple biochemical pathways involved, a complex treatment regimen targeting different mechanisms should be investigated. Furthermore, as AD is a progressive disease-causing morbidity over many years, any chemo-modulator for treatment must be used over long period of time. Therefore, treatments must be safe and non-interfering with other processes. Ideally, a treatment like medicinal food or a supplement that can be taken regularly without any side effect capable of reducing oxidative stress, stabilizing mitochondria, activating autophagy or proteasome, and increasing energy levels of neurons would be the best solution. This review summarizes progress in research on different mechanisms of AD development and some of the potential therapeutic development strategies targeting the aforementioned pathologies.
Collapse
Affiliation(s)
- Caleb Vegh
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| | - Kyle Stokes
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| | - Dennis Ma
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| | - Darcy Wear
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| | - Jerome Cohen
- Department of Psychology University of Windsor, Ontario, Canada
| | - Sidhartha D Ray
- Department of Pharmaceutical and Biomedical Sciences, Touro College of Pharmacy and School of Medicine, Manhattan, NY, USA
| | - Siyaram Pandey
- Department of Chemistry and Biochemistry University of Windsor, Ontario, Canada
| |
Collapse
|
34
|
Guo T, Zhang D, Zeng Y, Huang TY, Xu H, Zhao Y. Molecular and cellular mechanisms underlying the pathogenesis of Alzheimer's disease. Mol Neurodegener 2020; 15:40. [PMID: 32677986 PMCID: PMC7364557 DOI: 10.1186/s13024-020-00391-7] [Citation(s) in RCA: 532] [Impact Index Per Article: 106.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common neurodegenerative disorder seen in age-dependent dementia. There is currently no effective treatment for AD, which may be attributed in part to lack of a clear underlying mechanism. Studies within the last few decades provide growing evidence for a central role of amyloid β (Aβ) and tau, as well as glial contributions to various molecular and cellular pathways in AD pathogenesis. Herein, we review recent progress with respect to Aβ- and tau-associated mechanisms, and discuss glial dysfunction in AD with emphasis on neuronal and glial receptors that mediate Aβ-induced toxicity. We also discuss other critical factors that may affect AD pathogenesis, including genetics, aging, variables related to environment, lifestyle habits, and describe the potential role of apolipoprotein E (APOE), viral and bacterial infection, sleep, and microbiota. Although we have gained much towards understanding various aspects underlying this devastating neurodegenerative disorder, greater commitment towards research in molecular mechanism, diagnostics and treatment will be needed in future AD research.
Collapse
Affiliation(s)
- Tiantian Guo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Denghong Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China
| | - Yuzhe Zeng
- Department of Orthopaedics, Orthopaedic Center of People's Liberation Army, The Affiliated Southeast Hospital of Xiamen University, Zhangzhou, China
| | - Timothy Y Huang
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Huaxi Xu
- Neuroscience Initiative, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, USA.
| | - Yingjun Zhao
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, China.
| |
Collapse
|
35
|
Wang W, Gopal S, Pocock R, Xiao Z. Glycan Mimetics from Natural Products: New Therapeutic Opportunities for Neurodegenerative Disease. Molecules 2019; 24:molecules24244604. [PMID: 31888221 PMCID: PMC6943557 DOI: 10.3390/molecules24244604] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/12/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases (NDs) affect millions of people worldwide. Characterized by the functional loss and death of neurons, NDs lead to symptoms (dementia and seizures) that affect the daily lives of patients. In spite of extensive research into NDs, the number of approved drugs for their treatment remains limited. There is therefore an urgent need to develop new approaches for the prevention and treatment of NDs. Glycans (carbohydrate chains) are ubiquitous, abundant, and structural complex natural biopolymers. Glycans often covalently attach to proteins and lipids to regulate cellular recognition, adhesion, and signaling. The importance of glycans in both the developing and mature nervous system is well characterized. Moreover, glycan dysregulation has been observed in NDs such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). Therefore, glycans are promising but underexploited therapeutic targets. In this review, we summarize the current understanding of glycans in NDs. We also discuss a number of natural products that functionally mimic glycans to protect neurons, which therefore represent promising new therapeutic approaches for patients with NDs.
Collapse
|
36
|
Top-Down Proteomics Applied to Human Cerebrospinal Fluid. Methods Mol Biol 2019. [PMID: 31432414 DOI: 10.1007/978-1-4939-9706-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Cerebrospinal fluid (CSF) is the fluid of choice to study pathologies and disorders of the central nervous system (CNS). Its composition, especially its proteins and peptides, holds the promise that it may reflect the pathological state of an individual. Traditionally, proteins and peptides in CSF have been analyzed using bottom-up proteomics technologies in the search of high proteome coverage. However, the limited protein sequence coverage of this technology means that information regarding post-translational modifications (PTMs) and alternative splice variants is lost. As an alternative technology, top-down proteomics offers low to medium proteome coverage, but high protein coverage enabling almost a full characterization of the proteins' primary structure. This allows us to precisely identify distinct molecular forms of proteins (proteoforms) as well as naturally occurring bioactive peptide fragments, which could be of critical biological relevance and would otherwise remain undetected with a classical proteomics approach.Here, we describe various strategies including sample preparation protocols, off-line intact protein prefractionation, and LC-MS/MS methods together with data analysis pipelines to analyze cerebrospinal fluid (CSF) by top-down proteomics. However, there is not a unique or standardized method and the selection of the top-down strategy will depend on the exact goal of the study. Here, we describe various top-down proteomics methods that enable rapid protein characterization and may be an excellent companion analytical workflow in the search for new protein biomarkers in neurodegenerative diseases.
Collapse
|
37
|
Ullah R, Khan M, Shah SA, Saeed K, Kim MO. Natural Antioxidant Anthocyanins-A Hidden Therapeutic Candidate in Metabolic Disorders with Major Focus in Neurodegeneration. Nutrients 2019; 11:E1195. [PMID: 31141884 PMCID: PMC6628002 DOI: 10.3390/nu11061195] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
All over the world, metabolic syndrome constitutes severe health problems. Multiple factors have been reported in the pathogenesis of metabolic syndrome. Metabolic disorders result in reactive oxygen species (ROS) induced oxidative stress, playing a vital role in the development and pathogenesis of major health issues, including neurological disorders Alzheimer's disease (AD) Parkinson's disease (PD). Considerable increasing evidence indicates the substantial contribution of ROS-induced oxidative stress in neurodegenerative diseases. An imbalanced metabolism results in a defective antioxidant defense system, free radicals causing inflammation, cellular apoptosis, and tissue damage. Due to the annual increase in financial and social burdens, in addition to the adverse effects associated with available synthetic agents, treatment diversion from synthetic to natural approaches has occurred. Antioxidants are now being considered as convincing therapeutic agents against various neurodegenerative disorders. Therefore, medicinal herbs and fruits currently receive substantially more attention as commercial sources of antioxidants. In this review, we argue that ROS-targeted therapeutic interventions with naturally occurring antioxidant flavonoid, anthocyanin, and anthocyanin-loaded nanoparticles might be the ultimate treatment against devastating illnesses. Furthermore, we elucidate the hidden potential of the neuroprotective role of anthocyanins and anthocyanin-loaded nanoparticles in AD and PD neuropathies, which lack sufficient attention compared with other polyphenols, despite their strong antioxidant potential. Moreover, we address the need for future research studies of native anthocyanins and nano-based-anthocyanins, which will be helpful in developing anthocyanin treatments as therapeutic mitochondrial antioxidant drug-like regimens to delay or prevent the progression of neurodegenerative diseases, such as AD and PD.
Collapse
Affiliation(s)
- Rahat Ullah
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Mehtab Khan
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Shahid Ali Shah
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
- Department of Chemistry, Sarhad University of Science & Information Technology (SUIT), Peshawar Khyber Pakhtunkhwa 25000, Pakistan.
| | - Kamran Saeed
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| | - Myeong Ok Kim
- Division of Applied Life Science (BK 21), College of Natural Sciences, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
38
|
Crucial players in Alzheimer's disease and diabetes mellitus: Friends or foes? Mech Ageing Dev 2019; 181:7-21. [PMID: 31085195 DOI: 10.1016/j.mad.2019.03.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 03/02/2019] [Accepted: 03/26/2019] [Indexed: 01/21/2023]
Abstract
Alzheimer's disease (AD) and diabetes mellitus, especially type 2 (T2DM), are very common and widespread diseases in contemporary societies, and their incidence is steadily on the increase. T2DM is a multiple metabolic disorder, with several mechanisms including hyperglycaemia, insulin resistance, insulin receptor and insulin growth factor disturbances, glucose toxicity, formation of advanced glycation end products (AGEs) and the activity of their receptors. AD is the most common form of dementia, characterized by the accumulation of extracellular beta amyloid peptide aggregates and intracellular hyper-phosphorylated tau proteins, which are thought to drive and/or accelerate inflammatory and oxidative stress processes leading to neurodegeneration. The aim of this paper is to provide a comprehensive review of the evidence linking T2DM to the onset and development of AD and highlight the unknown or poorly studied "nooks and crannies" of this interesting relationship, hence providing an opportunity to stimulate new ideas for the analysis of comorbidities between AD and DM. Despite, indication of possible biomarkers of early diagnosis of T2DM and AD, this review is also an attempt to answer the question as to whether the crucial factors in the development of both conditions support the link between DM and AD.
Collapse
|
39
|
Covalent Modification by Glyoxals Converts Cytochrome c Into its Apoptotically Competent State. Sci Rep 2019; 9:4781. [PMID: 30886207 PMCID: PMC6423144 DOI: 10.1038/s41598-019-41282-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 02/27/2019] [Indexed: 01/08/2023] Open
Abstract
The effects of glycation by glyoxal (Gly) and methylglyoxal (MGly) on the early and late conformational alterations in Cytochrome c (Cyt c) were studied. Spectroscopic measurements revealed that Cyt c undergo certain conformational alterations and exposure of heme upon overnight incubation with Gly and MGly. These were followed by the reduction of heme centre and activation of its peroxidase-like, which is crucial for initiation of the intrinsic apoptotic pathway. An extended incubation resulted in appearance of AGE-like fluorescence, with significant alterations in secondary structural compositions. However, no amyloidogenic conversions were observed as suggested by TEM analyses. The study provides an insight to the role of glycating agents, elevated under oxidative stress in inducing Cyt c release and apoptosis.
Collapse
|
40
|
Jadhav S, Avila J, Schöll M, Kovacs GG, Kövari E, Skrabana R, Evans LD, Kontsekova E, Malawska B, de Silva R, Buee L, Zilka N. A walk through tau therapeutic strategies. Acta Neuropathol Commun 2019; 7:22. [PMID: 30767766 PMCID: PMC6376692 DOI: 10.1186/s40478-019-0664-z] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/21/2019] [Indexed: 12/18/2022] Open
Abstract
Tau neuronal and glial pathologies drive the clinical presentation of Alzheimer's disease and related human tauopathies. There is a growing body of evidence indicating that pathological tau species can travel from cell to cell and spread the pathology through the brain. Throughout the last decade, physiological and pathological tau have become attractive targets for AD therapies. Several therapeutic approaches have been proposed, including the inhibition of protein kinases or protein-3-O-(N-acetyl-beta-D-glucosaminyl)-L-serine/threonine Nacetylglucosaminyl hydrolase, the inhibition of tau aggregation, active and passive immunotherapies, and tau silencing by antisense oligonucleotides. New tau therapeutics, across the board, have demonstrated the ability to prevent or reduce tau lesions and improve either cognitive or motor impairment in a variety of animal models developing neurofibrillary pathology. The most advanced strategy for the treatment of human tauopathies remains immunotherapy, which has already reached the clinical stage of drug development. Tau vaccines or humanised antibodies target a variety of tau species either in the intracellular or extracellular spaces. Some of them recognise the amino-terminus or carboxy-terminus, while others display binding abilities to the proline-rich area or microtubule binding domains. The main therapeutic foci in existing clinical trials are on Alzheimer's disease, progressive supranuclear palsy and non-fluent primary progressive aphasia. Tau therapy offers a new hope for the treatment of many fatal brain disorders. First efficacy data from clinical trials will be available by the end of this decade.
Collapse
Affiliation(s)
- Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravska 9, 845 10, Bratislava, Slovakia
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Jesus Avila
- Centro de Biologia Molecular "Severo Ochoa", Consejo Superior de Investigaciones, Cientificas, Universidad Autonoma de Madrid, C/ Nicolas Cabrera, 1. Campus de Cantoblanco, 28049, Madrid, Spain
- Networking Research Center on Neurodegenerative, Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- Department of, Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Clinical Memory Research Unit, Department of Clinical Sciences, Lund University, Malmö, Sweden
- Dementia Research Centre, University College London, London, UK
| | - Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, Währinger Gürtel 18-20, 1097, Vienna, Austria
| | - Enikö Kövari
- Department of Mental Health and Psychiatry, University Hospitals of Geneva, Geneva, Switzerland
| | - Rostislav Skrabana
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Lewis D Evans
- Gurdon Institute and Department of Biochemistry, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Eva Kontsekova
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia
| | - Barbara Malawska
- Department of Physicochemical Drug Analysis, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Cracow, Poland
| | - Rohan de Silva
- Reta Lila Weston Institute and Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, 1 Wakefield Street, London, WC1N 1PJ, UK
| | - Luc Buee
- Universite of Lille, Inserm, CHU-Lille, UMRS1172, Alzheimer & Tauopathies, Place de Verdun, 59045, Lille cedex, France.
| | - Norbert Zilka
- AXON Neuroscience R&D Services SE, Dvorakovo nabrezie 10, 811 02, Bratislava, Slovakia.
| |
Collapse
|
41
|
Saha P, Sen N. Tauopathy: A common mechanism for neurodegeneration and brain aging. Mech Ageing Dev 2019; 178:72-79. [PMID: 30668956 DOI: 10.1016/j.mad.2019.01.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/09/2019] [Accepted: 01/18/2019] [Indexed: 01/07/2023]
Abstract
Tau, a microtubule-associated protein promotes assembly and stability of microtubules which is related to axoplasmic flow and critical neuronal activities upon physiological conditions. Under neurodegenerative condition such as in Alzheimer's Disease (AD), tau-microtubule binding dynamics and equilibrium are severely affected due to its aberrant post-translational modifications including acetylation and hyperphosphorylation. This event results in its conformational changes to form neurofibrillary tangles (NFT) after aggregation in the cytosol. The formation of NFT is more strongly correlated with cognitive decline than the distribution of senile plaque, which is formed by polymorphous beta-amyloid (Aβ) protein deposits, another pathological hallmark of AD. In neurodegenerative conditions, other than AD, the disease manifestation is correlated with mutations of the MAPT gene. In Primary age-related tauopathy (PART), which is commonly observed in the brains of aged individuals, tau deposition is directly correlated with cognitive deficits even in the absence of Aβ deposition. Thus, tauopathy has been considered as an essential hallmark in neurodegeneration and normal brain aging. In this review, we highlighted the recent progress about the tauopathies in the light of its posttranslational modifications and its implication in AD and the aged brain.
Collapse
Affiliation(s)
- Pampa Saha
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, United States
| | - Nilkantha Sen
- Department of Neurological Surgery, University of Pittsburgh, 200 Lothrop Street, Scaife Hall, Pittsburgh, 15213, United States.
| |
Collapse
|
42
|
Tapia-Rojas C, Cabezas-Opazo F, Deaton CA, Vergara EH, Johnson GVW, Quintanilla RA. It's all about tau. Prog Neurobiol 2018; 175:54-76. [PMID: 30605723 DOI: 10.1016/j.pneurobio.2018.12.005] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 12/07/2018] [Accepted: 12/28/2018] [Indexed: 12/21/2022]
Abstract
Tau is a protein that is highly enriched in neurons and was originally defined by its ability to bind and stabilize microtubules. However, it is now becoming evident that the functions of tau extend beyond its ability to modulate microtubule dynamics. Tau plays a role in mediating axonal transport, synaptic structure and function, and neuronal signaling pathways. Although tau plays important physiological roles in neurons, its involvement in neurodegenerative diseases, and most prominently in the pathogenesis of Alzheimer disease (AD), has directed the majority of tau studies. However, a thorough knowledge of the physiological functions of tau and its post-translational modifications under normal conditions are necessary to provide the foundation for understanding its role in pathological settings. In this review, we will focus on human tau, summarizing tau structure and organization, as well as its posttranslational modifications associated with physiological processes. We will highlight possible mechanisms involved in mediating the turnover of tau and finally discuss newly elucidated tau functions in a physiological context.
Collapse
Affiliation(s)
- Cheril Tapia-Rojas
- Laboratory of Neurobiology of Aging, Centro de Biología Celular y Biomedicina (CEBICEM), Universidad San Sebastián, Santiago, Chile
| | - Fabian Cabezas-Opazo
- Laboratory of Neurodegenerative Diseases, Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile
| | - Carol A Deaton
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, NY, USA
| | - Erick H Vergara
- Laboratory of Neurodegenerative Diseases, Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile
| | - Gail V W Johnson
- Department of Anesthesiology and Perioperative Medicine, University of Rochester Medical Center, NY, USA
| | - Rodrigo A Quintanilla
- Laboratory of Neurodegenerative Diseases, Centro de Investigación Biomédica, Universidad Autónoma de Chile, Santiago, Chile; Centro de Investigación y Estudio del Consumo de Alcohol en Adolescentes (CIIA), Santiago, Chile.
| |
Collapse
|
43
|
Saeed Y, Wang JQ, Zheng N. Furosine induces DNA damage and cell death in selected human cell lines: a strong toxicant to kidney Hek-293 cells. Food Sci Biotechnol 2018; 26:1093-1101. [PMID: 30263641 DOI: 10.1007/s10068-017-0131-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 03/13/2017] [Accepted: 04/04/2017] [Indexed: 11/26/2022] Open
Abstract
Ne-(2-furoylmethyl)-l-lysine (furosine) is well-known indicator of early stage of Maillard reaction in processed food. Yet the toxicological aspects associated with its exposure remain rarely studied. Here, we investigated the effects of furosine exposure on cell viability, DNA damage, and its mutagenic potential by using MTT assay (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide), TUNEL assay (Terminal deoxynucleotidyl transferase mediated dUTP Nick End Labeling assay), and Ames assay techniques on human cell lines, i.e., liver HepG-2, kidney Hek-293, neuronal SK-N-SH, and intestinal Caco-2, respectively. Our results showed that kidney Hek-293 cell line was the most sensitive to furosine exposure as significant reduction in cell viability and induction of DNA damage were observed at 50 mg/L concentration. In contrast, intestinal Caco-2 cell lines showed resistance to furosine exposure as DNA damage was only observed at 800 mg/L concentration of furosine. Ames assay indicated that furosine has no mutagenic effects on TA 100 and TA 1535 strains. Hence, this study suggests that furosine is a strong toxicant for kidney cells.
Collapse
Affiliation(s)
- Yasmeen Saeed
- 1Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture, Beijing, People's Republic of China
- 2Ministry of Agriculture Milk and Dairy Product Inspection Center (Beijing), Beijing, People's Republic of China
- 3State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - J Q Wang
- 1Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture, Beijing, People's Republic of China
- 2Ministry of Agriculture Milk and Dairy Product Inspection Center (Beijing), Beijing, People's Republic of China
- 3State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - N Zheng
- 1Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture, Beijing, People's Republic of China
- 2Ministry of Agriculture Milk and Dairy Product Inspection Center (Beijing), Beijing, People's Republic of China
- 3State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
44
|
Ahmad S, Farhan M. Impact of Non-Enzymatic Glycation in Neurodegenerative Diseases: Role of Natural Products in Prevention. ADVANCES IN NEUROBIOLOGY 2018; 12:125-51. [PMID: 27651252 DOI: 10.1007/978-3-319-28383-8_8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Non-enzymatic protein glycosylation is the addition of free carbonyls to the free amino groups of proteins, amino acids, lipoproteins and nucleic acids resulting in the formation of early glycation products. The early glycation products are also known as Maillard reaction which undergoes dehydration, cyclization and rearrangement to form advanced glycation end-products (AGEs). By and large the researchers in the past have also established that glycation and the AGEs are responsible for most type of metabolic disorders, including diabetes mellitus, cancer, neurological disorders and aging. The amassing of AGEs in the tissues of neurodegenerative diseases shows its involvement in diseases. Therefore, it is likely that inhibition of glycation reaction may extend the lifespan of an individual. The hunt for inhibitors of glycation, mainly using in vitro models, has identified natural compounds able to prevent glycation, especially polyphenols and other natural antioxidants. Extrapolation of results of in vitro studies on the in vivo situation is not straightforward due to differences in the conditions and mechanism of glycation, and bioavailability problems. Nevertheless, existing data allow postulating that enrichment of diet in natural anti-glycating agents may attenuate glycation and, in consequence may halt the aging and neurological problems.
Collapse
Affiliation(s)
- Saheem Ahmad
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-sciences, Integral University, Lucknow, UP, India.
| | - Mohammed Farhan
- Laboratory of Glycation Biology and Metabolic Disorder, Integral Research Centre-I, Department of Bio-sciences, Integral University, Lucknow, UP, India
| |
Collapse
|
45
|
Rowan S, Bejarano E, Taylor A. Mechanistic targeting of advanced glycation end-products in age-related diseases. Biochim Biophys Acta Mol Basis Dis 2018; 1864:3631-3643. [PMID: 30279139 DOI: 10.1016/j.bbadis.2018.08.036] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/02/2018] [Accepted: 08/27/2018] [Indexed: 02/06/2023]
Abstract
Glycative stress, caused by the accumulation of cytotoxic and irreversibly-formed sugar-derived advanced glycation end-products (AGEs), contributes to morbidity associated with aging, age-related diseases, and metabolic diseases. In this review, we summarize pathways leading to formation of AGEs, largely from sugars and glycolytic intermediates, and discuss detoxification of AGE precursors, including the glyoxalase system and DJ-1/Park7 deglycase. Disease pathogenesis downstream of AGE accumulation can be cell autonomous due to aggregation of glycated proteins and impaired protein function, which occurs in ocular cataracts. Extracellular AGEs also activate RAGE signaling, leading to oxidative stress, inflammation, and leukostasis in diabetic complications such as diabetic retinopathy. Pharmaceutical agents have been tested in animal models and clinically to diminish glycative burden. We summarize existing strategies and point out several new directions to diminish glycative stress including: plant-derived polyphenols as AGE inhibitors and glyoxalase inducers; improved dietary patterns, particularly Mediterranean and low glycemic diets; and enhancing proteolytic capacities of the ubiquitin-proteasome and autophagy pathways that are involved in cellular clearing of AGEs.
Collapse
Affiliation(s)
- Sheldon Rowan
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA 02111, USA
| | - Eloy Bejarano
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA 02111, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, 711 Washington St, Boston, MA 02111, USA.
| |
Collapse
|
46
|
Sharma S, Young RJ, Chen J, Chen X, Oh EC, Schiller MR. Minimotifs dysfunction is pervasive in neurodegenerative disorders. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2018; 4:414-432. [PMID: 30225339 PMCID: PMC6139474 DOI: 10.1016/j.trci.2018.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Minimotifs are modular contiguous peptide sequences in proteins that are important for posttranslational modifications, binding to other molecules, and trafficking to specific subcellular compartments. Some molecular functions of proteins in cellular pathways can be predicted from minimotif consensus sequences identified through experimentation. While a role for minimotifs in regulating signal transduction and gene regulation during disease pathogenesis (such as infectious diseases and cancer) is established, the therapeutic use of minimotif mimetic drugs is limited. In this review, we discuss a general theme identifying a pervasive role of minimotifs in the pathomechanism of neurodegenerative diseases. Beyond their longstanding history in the genetics of familial neurodegeneration, minimotifs are also major players in neurotoxic protein aggregation, aberrant protein trafficking, and epigenetic regulation. Generalizing the importance of minimotifs in neurodegenerative diseases offers a new perspective for the future study of neurodegenerative mechanisms and the investigation of new therapeutics.
Collapse
Affiliation(s)
- Surbhi Sharma
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Richard J. Young
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
| | - Jingchun Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- Department of Psychology, Las Vegas, NV, USA
| | - Edwin C. Oh
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| | - Martin R. Schiller
- Nevada Institute of Personalized Medicine, Las Vegas, NV, USA
- School of Life Sciences, Las Vegas, NV, USA
- School of Medicine, Las Vegas, NV, USA
| |
Collapse
|
47
|
Prion-Like Propagation of Post-Translationally Modified Tau in Alzheimer’s Disease: A Hypothesis. J Mol Neurosci 2018; 65:480-490. [DOI: 10.1007/s12031-018-1111-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/20/2018] [Indexed: 12/25/2022]
|
48
|
Chong FP, Ng KY, Koh RY, Chye SM. Tau Proteins and Tauopathies in Alzheimer's Disease. Cell Mol Neurobiol 2018; 38:965-980. [PMID: 29299792 PMCID: PMC11481908 DOI: 10.1007/s10571-017-0574-1] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/22/2017] [Indexed: 10/18/2022]
Abstract
Alzheimer's disease (AD) is characterized by progressive memory loss and cognitive function deficits. There are two major pathological hallmarks that contribute to the pathogenesis of AD which are the presence of extracellular amyloid plaques composed of amyloid-β (Aβ) and intracellular neurofibrillary tangles composed of hyperphosphorylated tau. Despite extensive research that has been done on Aβ in the last two decades, therapies targeting Aβ were not very fruitful at treating AD as the efficacy of Aβ therapies observed in animal models is not reflected in human clinical trials. Hence, tau-directed therapies have received tremendous attention as the potential treatments for AD. Tauopathies are closely correlated with dementia and immunotherapy has been effective at reducing tau pathology and improving cognitive deficits in animal models. Thus, in this review article, we discussed the pathological mechanism of tau proteins, the key factors contributing to tauopathies, and therapeutic approaches for tauopathies in AD based on the recent progress in tau-based research.
Collapse
Affiliation(s)
- Fong Ping Chong
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Khuen Yen Ng
- School of Pharmacy, Monash University Malaysia, 47500, Subang Jaya, Selangor, Malaysia
| | - Rhun Yian Koh
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Soi Moi Chye
- Division of Biomedical Science and Biotechnology, School of Health Science, International Medical University, No. 126, Jalan Jalil Perkasa 19, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
49
|
Zhou Y, Shi J, Chu D, Hu W, Guan Z, Gong CX, Iqbal K, Liu F. Relevance of Phosphorylation and Truncation of Tau to the Etiopathogenesis of Alzheimer's Disease. Front Aging Neurosci 2018; 10:27. [PMID: 29472853 PMCID: PMC5810298 DOI: 10.3389/fnagi.2018.00027] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/22/2018] [Indexed: 01/29/2023] Open
Abstract
Microtubule (MT) associated protein tau is abnormally hyperphosphorylated and aggregated into paired helical filaments (PHFs), which manifest as neurofibrillary tangles (NFTs) in the brains of individuals with Alzheimer’s disease (AD) and related tauopathies. Hyperphosphorylation and truncation of tau have been linked to the progression of the disease. However, the nature of phosphorylation and truncation of tau in AD brain are not very clear. In the present study we investigated the association of phosphorylation and truncation with high-molecular weight oligomers of tau (HMW-tau) in post-mortem AD brain by western blots. We found that tau from AD brain appears as a smear from low molecular weight (LMW) to HMW tau species in western blots developed with pan-tau antibodies. Similar level of LMW-tau was found in AD and control brains, whereas HMW-tau was found in AD brain only. HMW-tau was hyperphosphorylated at multiple sites and not unphosphorylated at Ser46 or Ser198/199/202. HMW-tau was weakly labeled by tau antibodies 43D against a.a. 6–18 and HT7 against a.a. 159–163 of tau, whereas, the C-terminal antibodies, tau46 and tau46.1, strongly labeled HMW-tau. The ratio of HMW-tau/LMW-tau detected by tau antibodies increased as the epitope of the tau antibodies ranges from N-terminal to C-terminal. The level of tau truncated at Asp421 was increased in AD brain, but was poorly associated with the HMW-tau. These findings suggest that tau pathogenesis involves both hyperphosphorylation and dominantly N-terminal truncation of tau in AD.
Collapse
Affiliation(s)
- Yan Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States.,Department of Biochemistry and Molecular Biology, School of Medicine, Nantong University, Nantong, China
| | - Jianhua Shi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Dandan Chu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Wen Hu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Zongyu Guan
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Cheng-Xin Gong
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Khalid Iqbal
- Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| | - Fei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education of China, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.,Department of Neurochemistry, Inge Grundke-Iqbal Research Floor, New York State Institute for Basic Research in Developmental Disabilities, New York, NY, United States
| |
Collapse
|
50
|
Derk J, MacLean M, Juranek J, Schmidt AM. The Receptor for Advanced Glycation Endproducts (RAGE) and Mediation of Inflammatory Neurodegeneration. JOURNAL OF ALZHEIMER'S DISEASE & PARKINSONISM 2018; 8:421. [PMID: 30560011 PMCID: PMC6293973 DOI: 10.4172/2161-0460.1000421] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Julia Derk
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, 550 First Avenue, Smilow 906, New York, NY, 10016, USA
| | - Michael MacLean
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, 550 First Avenue, Smilow 906, New York, NY, 10016, USA
| | - Judyta Juranek
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, 550 First Avenue, Smilow 906, New York, NY, 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, NYU School of Medicine, 550 First Avenue, Smilow 906, New York, NY, 10016, USA
| |
Collapse
|