1
|
Lin DYW, Kueffer LE, Juneja P, Wales TE, Engen JR, Andreotti AH. Conformational heterogeneity of the BTK PHTH domain drives multiple regulatory states. eLife 2024; 12:RP89489. [PMID: 38189455 PMCID: PMC10945472 DOI: 10.7554/elife.89489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Full-length Bruton's tyrosine kinase (BTK) has been refractory to structural analysis. The nearest full-length structure of BTK to date consists of the autoinhibited SH3-SH2-kinase core. Precisely how the BTK N-terminal domains (the Pleckstrin homology/Tec homology [PHTH] domain and proline-rich regions [PRR] contain linker) contribute to BTK regulation remains unclear. We have produced crystals of full-length BTK for the first time but despite efforts to stabilize the autoinhibited state, the diffraction data still reveal only the SH3-SH2-kinase core with no electron density visible for the PHTH-PRR segment. Cryo-electron microscopy (cryoEM) data of full-length BTK, on the other hand, provide the first view of the PHTH domain within full-length BTK. CryoEM reconstructions support conformational heterogeneity in the PHTH-PRR region wherein the globular PHTH domain adopts a range of states arrayed around the autoinhibited SH3-SH2-kinase core. On the way to activation, disassembly of the SH3-SH2-kinase core opens a new autoinhibitory site on the kinase domain for PHTH domain binding that is ultimately released upon interaction of PHTH with phosphatidylinositol (3,4,5)-trisphosphate. Membrane-induced dimerization activates BTK and we present here a crystal structure of an activation loop swapped BTK kinase domain dimer that likely represents the conformational state leading to trans-autophosphorylation. Together, these data provide the first structural elucidation of full-length BTK and allow a deeper understanding of allosteric control over the BTK kinase domain during distinct stages of activation.
Collapse
Affiliation(s)
- David Yin-wei Lin
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Lauren E Kueffer
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State UniversityAmesUnited States
| | - Puneet Juneja
- Cryo-EM Facility, Office of Biotechnology, Iowa State UniversityAmesUnited States
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern UniversityBostonUnited States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern UniversityBostonUnited States
| | - Amy H Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State UniversityAmesUnited States
| |
Collapse
|
2
|
Lin DYW, Kueffer LE, Juneja P, Wales TE, Engen JR, Andreotti AH. Conformational heterogeneity of the BTK PHTH domain drives multiple regulatory states. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543453. [PMID: 37786675 PMCID: PMC10541622 DOI: 10.1101/2023.06.02.543453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Full-length BTK has been refractory to structural analysis. The nearest full-length structure of BTK to date consists of the autoinhibited SH3-SH2-kinase core. Precisely how the BTK N-terminal domains (the Pleckstrin homology/Tec homology (PHTH) domain and proline-rich regions (PRR) contain linker) contribute to BTK regulation remains unclear. We have produced crystals of full-length BTK for the first time but despite efforts to stabilize the autoinhibited state, the diffraction data still reveals only the SH3-SH2-kinase core with no electron density visible for the PHTH-PRR segment. CryoEM data of full-length BTK, on the other hand, provide the first view of the PHTH domain within full-length BTK. CryoEM reconstructions support conformational heterogeneity in the PHTH-PRR region wherein the globular PHTH domain adopts a range of states arrayed around the autoinhibited SH3-SH2-kinase core. On the way to activation, disassembly of the SH3-SH2-kinase core opens a new autoinhibitory site on the kinase domain for PHTH domain binding that is ultimately released upon interaction of PHTH with PIP3. Membrane-induced dimerizationactivates BTK and we present here a crystal structure of an activation loop swapped BTK kinase domain dimer that likely represents the conformational state leading to transautophosphorylation. Together, these data provide the first structural elucidation of full-length BTK and allow a deeper understanding of allosteric control over the BTK kinase domain during distinct stages of activation.
Collapse
|
3
|
Szklener K, Michalski A, Żak K, Piwoński M, Mańdziuk S. Ibrutinib in the Treatment of Solid Tumors: Current State of Knowledge and Future Directions. Cells 2022; 11:1338. [PMID: 35456016 PMCID: PMC9032968 DOI: 10.3390/cells11081338] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/10/2022] [Accepted: 04/12/2022] [Indexed: 12/24/2022] Open
Abstract
Bruton's Tyrosine Kinase (BTK) is considered crucial in the activation and survival of both physiological and malignant B-cells. In recent years, ibrutinib, an oral BTK inhibitor, became a breakthrough therapy for hematological malignancies, such as chronic lymphocytic. However, ibrutinib's feasibility might not end there. Several other kinases with established involvement with solid malignancies (i.e., EGFR, HER2) have been found to be inhibited by this agent. Recent discoveries indicate that BTK is a potential anti-solid tumor therapy target. Consequently, ibrutinib, a BTK-inhibitor, has been studied as a therapeutic option in solid malignancies. While most preclinical studies indicate ibrutinib to be an effective therapeutic option in some specific indications, such as NSCLC and breast cancer, clinical trials contradict these observations. Nevertheless, while ibrutinib failed as a monotherapy, it might become an interesting part of a multidrug regime: not only has a synergism between ibrutinib and other compounds, such as trametinib or dactolisib, been observed in vitro, but this BTK inhibitor has also been established as a radio- and chemosensitizer. This review aims to describe the milestones in translating BTK inhibitors to solid tumors in order to understand the future potential of this agent better.
Collapse
Affiliation(s)
- Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 20-090 Lublin, Poland; (A.M.); (K.Ż.); (M.P.); (S.M.)
| | | | | | | | | |
Collapse
|
4
|
Montresor A, Toffali L, Fumagalli L, Constantin G, Rigo A, Ferrarini I, Vinante F, Laudanna C. Activation of Protein Tyrosine Phosphatase Receptor Type γ Suppresses Mechanisms of Adhesion and Survival in Chronic Lymphocytic Leukemia Cells. THE JOURNAL OF IMMUNOLOGY 2021; 207:671-684. [PMID: 34162728 DOI: 10.4049/jimmunol.2001462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/04/2021] [Indexed: 01/29/2023]
Abstract
The regulatory role of protein tyrosine kinases in β1- and β2-integrin activation and in the survival of chronic lymphocytic leukemia (CLL) cells is well established. In contrast, the involvement of protein tyrosine phosphatases in CLL biology was less investigated. We show that selective activation of the protein tyrosine phosphatase receptor type γ (PTPRG) strongly suppresses integrin activation and survival in leukemic B cells isolated from patients with CLL. Activation of PTPRG specifically inhibits CXCR4- as well as BCR-induced triggering of LFA-1 and VLA-4 integrins and mediated rapid adhesion. Triggering of LFA-1 affinity is also prevented by PTPRG activity. Analysis of signaling mechanisms shows that activation of PTPRG blocks chemokine-induced triggering of JAK2 and Bruton's tyrosine kinase protein tyrosine kinases and of the small GTP-binding protein RhoA. Furthermore, activated PTPRG triggers rapid and robust caspase-3/7-mediated apoptosis in CLL cells in a manner quantitatively comparable to the Bruton's tyrosine kinase inhibitor ibrutinib. However, in contrast to ibrutinib, PTPRG-triggered apoptosis is insensitive to prosurvival signals generated by CXCR4 and BCR signaling. Importantly, PTPRG activation does not trigger apoptosis in healthy B lymphocytes. The data show that activated PTPRG inhibits, at once, the signaling pathways controlling adhesion and survival of CLL cells, thus emerging as a negative regulator of CLL pathogenesis. These findings suggest that pharmacological potentiation of PTPRG tyrosine-phosphatase enzymatic activity could represent a novel approach to CLL treatment.
Collapse
Affiliation(s)
- Alessio Montresor
- Department of Medicine, Section of General Pathology, Laboratory of Cell Trafficking and Signal Transduction, University of Verona, Verona, Italy
| | - Lara Toffali
- Department of Medicine, Section of General Pathology, Laboratory of Cell Trafficking and Signal Transduction, University of Verona, Verona, Italy
| | - Laura Fumagalli
- Department of Medicine, Section of General Pathology, Laboratory of Cell Trafficking and Signal Transduction, University of Verona, Verona, Italy
| | - Gabriela Constantin
- Department of Medicine, Section of General Pathology, Laboratory of Neuroimmunology and Neuroinflammation, University of Verona, Verona, Italy; and
| | - Antonella Rigo
- Department of Medicine, Section of Hematology, Cancer Research and Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Isacco Ferrarini
- Department of Medicine, Section of Hematology, Cancer Research and Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Fabrizio Vinante
- Department of Medicine, Section of Hematology, Cancer Research and Cell Biology Laboratory, University of Verona, Verona, Italy
| | - Carlo Laudanna
- Department of Medicine, Section of General Pathology, Laboratory of Cell Trafficking and Signal Transduction, University of Verona, Verona, Italy;
| |
Collapse
|
5
|
Good L, Benner B, Carson WE. Bruton's tyrosine kinase: an emerging targeted therapy in myeloid cells within the tumor microenvironment. Cancer Immunol Immunother 2021; 70:2439-2451. [PMID: 33818636 PMCID: PMC8019691 DOI: 10.1007/s00262-021-02908-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/02/2021] [Indexed: 12/15/2022]
Abstract
Bruton’s tyrosine kinase (BTK) is a non-receptor kinase belonging to the Tec family of kinases. The role of BTK in B cell receptor signaling is well defined and is known to play a key role in the proliferation and survival of malignant B cells. Moreover, BTK has been found to be expressed in cells of the myeloid lineage. BTK has been shown to contribute to a variety of cellular pathways in myeloid cells including signaling in the NLRP3 inflammasome, receptor activation of nuclear factor-κβ and inflammation, chemokine receptor activation affecting migration, and phagocytosis. Myeloid cells are crucial components of the tumor microenvironment and suppressive myeloid cells contribute to cancer progression, highlighting a potential role for BTK inhibition in the treatment of malignancy. The increased interest in BTK inhibition in cancer has resulted in many preclinical studies that are testing the efficacy of using single-agent BTK inhibitors. Moreover, the ability of tumor cells to develop resistance to single-agent checkpoint inhibitors has resulted in clinical studies utilizing BTK inhibitors in combination with these agents to improve clinical responses. Furthermore, BTK regulates the immune response in microbial and viral infections through B cells and myeloid cells such as monocytes and macrophages. In this review, we describe the role that BTK plays in supporting suppressive myeloid cells, including myeloid-derived suppressor cells (MDSC) and tumor-associated macrophages (TAM), while also discussing the anticancer effects of BTK inhibition and briefly describe the role of BTK signaling and BTK inhibition in microbial and viral infections.
Collapse
Affiliation(s)
- Logan Good
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Brooke Benner
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - William E Carson
- Department of Surgery, Division of Surgical Oncology, Tzagournis Medical Research Facility, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
6
|
Montaño-Rendón F, Grinstein S, Walpole GFW. Monitoring Phosphoinositide Fluxes and Effectors During Leukocyte Chemotaxis and Phagocytosis. Front Cell Dev Biol 2021; 9:626136. [PMID: 33614656 PMCID: PMC7890364 DOI: 10.3389/fcell.2021.626136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/06/2021] [Indexed: 01/22/2023] Open
Abstract
The dynamic re-organization of cellular membranes in response to extracellular stimuli is fundamental to the cell physiology of myeloid and lymphoid cells of the immune system. In addition to maintaining cellular homeostatic functions, remodeling of the plasmalemma and endomembranes endow leukocytes with the potential to relay extracellular signals across their biological membranes to promote rolling adhesion and diapedesis, migration into the tissue parenchyma, and to ingest foreign particles and effete cells. Phosphoinositides, signaling lipids that control the interface of biological membranes with the external environment, are pivotal to this wealth of functions. Here, we highlight the complex metabolic transitions that occur to phosphoinositides during several stages of the leukocyte lifecycle, namely diapedesis, migration, and phagocytosis. We describe classical and recently developed tools that have aided our understanding of these complex lipids. Finally, major downstream effectors of inositides are highlighted including the cytoskeleton, emphasizing the importance of these rare lipids in immunity and disease.
Collapse
Affiliation(s)
- Fernando Montaño-Rendón
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON, Canada
| | - Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON, Canada.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
7
|
Abstract
Bruton’s tyrosine kinase (Btk) activation on the cell membrane is critical for B cell proliferation and development, and Btk inhibition is a promising treatment for several hematologic cancers and autoimmune diseases. Here, we examine Btk activation using the results of long-timescale molecular dynamics simulations. In our simulations, Btk lipid-binding modules dimerized on the membrane in a single predominant conformation. We observed that the phospholipid PIP3—in addition to its expected role of recruiting Btk to the membrane—allosterically mediated dimer formation and stability by binding at two novel sites. Our results provide strong evidence that PIP3-mediated dimerization of Btk at the cell membrane is a critical step in Btk activation and suggest a potential approach to allosteric Btk inhibitor development. Bruton’s tyrosine kinase (Btk) is critical for B cell proliferation and activation, and the development of Btk inhibitors is a vigorously pursued strategy for the treatment of various B cell malignancies. A detailed mechanistic understanding of Btk activation has, however, been lacking. Here, inspired by a previous suggestion that Btk activation might depend on dimerization of its lipid-binding PH–TH module on the cell membrane, we performed long-timescale molecular dynamics simulations of membrane-bound PH–TH modules and observed that they dimerized into a single predominant conformation. We found that the phospholipid PIP3 stabilized the dimer allosterically by binding at multiple sites, and that the effects of PH–TH mutations on dimer stability were consistent with their known effects on Btk activity. Taken together, our simulation results strongly suggest that PIP3-mediated dimerization of Btk at the cell membrane is a critical step in Btk activation.
Collapse
|
8
|
Surendran S, Paul D, Pokharkar S, Choulwar S, Deshpande A, Giri S, Satheeshkumar N. Novel Bruton tyrosine kinase inhibitor acalabrutinib quantification by validated LC-MS/MS method: An application to pharmacokinetic study in Sprague Dawley rats. J Pharm Biomed Anal 2019; 164:509-513. [PMID: 30453157 DOI: 10.1016/j.jpba.2018.11.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/18/2018] [Accepted: 11/05/2018] [Indexed: 12/29/2022]
Abstract
USFDA has approved a novel Bruton tyrosine kinase (BTK) inhibitor acalabrutinib (ACA) for the treatment of mantle cell lymphoma in adults. ACA is more potent and selective with fewer side effects compared to other Bruton tyrosine kinase inhibitors. In the current work a highly sensitive, selective and specific LC-MS/MS method for the estimation of acalabrutinib (ACA) in rat plasma was developed. Agilent Eclipse Plus C 8 column (50 mm × 4.6 mm, μm), with gradient elution using 10 mM ammonium formate and acetonitrile as mobile phase at a flow rate of 0.6 mL/min was used for the chromatographic separation. The ion transitions were quantified in positive mode with MRM transition of 466.1→372.3 for ACA and 236.8→194.0 for internal standard (IS). Solid phase extraction process was used as sample preparation approach. The method was validated according to USFDA bioanalytical guidelines. The method provided good linearity over the range of 0.2-199.14 ng/mL for ACA with short run time of 4 min. The method offers very high sensitivity (0.2 ng/mL) and was free from matrix interferences. The validated LC-MS/MS method was successfully applied for in vivo pharmacokinetic study in Sprague Dawley rats. The Cmax of ACA was found to be 25.56 ng/mL reaching at time of 0.5 h. The developed analytical method can also be utilized for bioequivalence studies and/or for pharmacokinetic studies in clinics.
Collapse
Affiliation(s)
- Shruti Surendran
- Drug Metabolism and Interactions Research Lab, Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - David Paul
- Drug Metabolism and Interactions Research Lab, Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Sunil Pokharkar
- Drug Metabolism and Pharmacokinetic Department, Aurigene Discovery Technologies Limited, Bollaram Road, Miyapur, Hyderabad, 500049, Telangana, India
| | - Sagar Choulwar
- Drug Metabolism and Pharmacokinetic Department, Aurigene Discovery Technologies Limited, Bollaram Road, Miyapur, Hyderabad, 500049, Telangana, India
| | - Abhijeet Deshpande
- Drug Metabolism and Pharmacokinetic Department, Aurigene Discovery Technologies Limited, Bollaram Road, Miyapur, Hyderabad, 500049, Telangana, India
| | - Sanjeev Giri
- Drug Metabolism and Pharmacokinetic Department, Aurigene Discovery Technologies Limited, Bollaram Road, Miyapur, Hyderabad, 500049, Telangana, India.
| | - N Satheeshkumar
- Drug Metabolism and Interactions Research Lab, Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India.
| |
Collapse
|
9
|
Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton's tyrosine kinase in B cells and malignancies. Mol Cancer 2018; 17:57. [PMID: 29455639 PMCID: PMC5817726 DOI: 10.1186/s12943-018-0779-z] [Citation(s) in RCA: 481] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 02/01/2018] [Indexed: 12/14/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is a non-receptor kinase that plays a crucial role in oncogenic signaling that is critical for proliferation and survival of leukemic cells in many B cell malignancies. BTK was initially shown to be defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) and is essential both for B cell development and function of mature B cells. Shortly after its discovery, BTK was placed in the signal transduction pathway downstream of the B cell antigen receptor (BCR). More recently, small-molecule inhibitors of this kinase have shown excellent anti-tumor activity, first in animal models and subsequently in clinical studies. In particular, the orally administered irreversible BTK inhibitor ibrutinib is associated with high response rates in patients with relapsed/refractory chronic lymphocytic leukemia (CLL) and mantle-cell lymphoma (MCL), including patients with high-risk genetic lesions. Because ibrutinib is generally well tolerated and shows durable single-agent efficacy, it was rapidly approved for first-line treatment of patients with CLL in 2016. To date, evidence is accumulating for efficacy of ibrutinib in various other B cell malignancies. BTK inhibition has molecular effects beyond its classic role in BCR signaling. These involve B cell-intrinsic signaling pathways central to cellular survival, proliferation or retention in supportive lymphoid niches. Moreover, BTK functions in several myeloid cell populations representing important components of the tumor microenvironment. As a result, there is currently a considerable interest in BTK inhibition as an anti-cancer therapy, not only in B cell malignancies but also in solid tumors. Efficacy of BTK inhibition as a single agent therapy is strong, but resistance may develop, fueling the development of combination therapies that improve clinical responses. In this review, we discuss the role of BTK in B cell differentiation and B cell malignancies and highlight the importance of BTK inhibition in cancer therapy.
Collapse
Affiliation(s)
- Simar Pal Singh
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.,Department of Immunology, Rotterdam, The Netherlands.,Post graduate school Molecular Medicine, Rotterdam, The Netherlands
| | - Floris Dammeijer
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.,Post graduate school Molecular Medicine, Rotterdam, The Netherlands.,Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
10
|
Mediation of transitional B cell maturation in the absence of functional Bruton's tyrosine kinase. Sci Rep 2017; 7:46029. [PMID: 28378771 PMCID: PMC5380950 DOI: 10.1038/srep46029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 03/08/2017] [Indexed: 01/09/2023] Open
Abstract
X-linked immune-deficient (Xid) mice, carrying a mutation in Bruton’s tyrosine kinase (Btk), have multiple B cell lineage differentiation defects. We now show that, while Xid mice showed only mild reduction in the frequency of the late transitional (T2) stage of peripheral B cells, the defect became severe when the Xid genotype was combined with either a CD40-null, a TCRbeta-null or an MHC class II (MHCII)-null genotype. Purified Xid T1 and T2 B cells survived poorly in vitro compared to wild-type (WT) cells. BAFF rescued WT but not Xid T1 and T2 B cells from death in culture, while CD40 ligation equivalently rescued both. Xid transitional B cells ex vivo showed low levels of the p100 protein substrate for non-canonical NF-kappaB signalling. In vitro, CD40 ligation induced equivalent activation of the canonical but not of the non-canonical NF-kappaB pathway in Xid and WT T1 and T2 B cells. CD40 ligation efficiently rescued p100-null T1 B cells from neglect-induced death in vitro. These data indicate that CD40-mediated signals, likely from CD4 T cells, can mediate peripheral transitional B cell maturation independent of Btk and the non-canonical NF-kappaB pathway, and thus contribute to the understanding of the complexities of peripheral B cell maturation.
Collapse
|
11
|
Jiang Y, Jiang H, Zhou S, Meng B, Liu ZJ, Ouyang S. Crystal structure of hGEF-H1 PH domain provides insight into incapability in phosphoinositide binding. Biochem Biophys Res Commun 2016; 471:621-7. [DOI: 10.1016/j.bbrc.2016.01.150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 01/23/2016] [Indexed: 01/31/2023]
|
12
|
BTK inhibition results in impaired CXCR4 chemokine receptor surface expression, signaling and function in chronic lymphocytic leukemia. Leukemia 2015; 30:833-43. [PMID: 26582643 PMCID: PMC4832074 DOI: 10.1038/leu.2015.316] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 09/29/2015] [Accepted: 10/16/2015] [Indexed: 02/06/2023]
Abstract
Bruton's tyrosine kinase (BTK) is involved in the regulation of B-cell growth, migration and adhesion. The importance of BTK in cell trafficking is emphasized by the clonal contraction proceeded by lymphocytosis typical for the enzyme inhibitor, ibrutinib, in B-cell malignancies, including chronic lymphocytic leukemia (CLL). Here, we investigated BTK regulation of leukemic B-cell trafficking in a mouse model of aggressive TCL1 CLL-like disease. Inhibiting BTK by ibrutinib reduced surface membrane (sm) levels of CXCR4 but not CXCR5, CD49d and other adhesion/homing receptors. Decreased smCXCR4 levels resulted from blocking receptor signal transduction, which in turn aborted cycling from and to the membrane. This resulted in rapid re-distribution of CLL cells from spleens and lymph nodes into the circulation. CLL cells with impaired smCXCR4 from BTK inhibition failed to home to spleens. These functional changes mainly resulted from inhibition of CXCR4 phosphorylation at Ser339, mediated directly by blocking BTK enzymatic activity and indirectly by affecting the function of downstream targets PLCγ2 and PKCμ, and eventually synthesis of PIM-1 and BTK itself. Our data identify CXCR4 as a key regulator in BTK-mediated CLL-cell retention and have elucidated a complex set of not previously described mechanisms responsible for these effects.
Collapse
|
13
|
Wang Q, Vogan EM, Nocka LM, Rosen CE, Zorn JA, Harrison SC, Kuriyan J. Autoinhibition of Bruton's tyrosine kinase (Btk) and activation by soluble inositol hexakisphosphate. eLife 2015; 4:e06074. [PMID: 25699547 PMCID: PMC4384635 DOI: 10.7554/elife.06074] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 02/19/2015] [Indexed: 01/07/2023] Open
Abstract
Bruton's tyrosine kinase (Btk), a Tec-family tyrosine kinase, is essential for B-cell function. We present crystallographic and biochemical analyses of Btk, which together reveal molecular details of its autoinhibition and activation. Autoinhibited Btk adopts a compact conformation like that of inactive c-Src and c-Abl. A lipid-binding PH-TH module, unique to Tec kinases, acts in conjunction with the SH2 and SH3 domains to stabilize the inactive conformation. In addition to the expected activation of Btk by membranes containing phosphatidylinositol triphosphate (PIP3), we found that inositol hexakisphosphate (IP6), a soluble signaling molecule found in both animal and plant cells, also activates Btk. This activation is a consequence of a transient PH-TH dimerization induced by IP6, which promotes transphosphorylation of the kinase domains. Sequence comparisons with other Tec-family kinases suggest that activation by IP6 is unique to Btk.
Collapse
Affiliation(s)
- Qi Wang
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Erik M Vogan
- Beryllium Inc, Boston, United States,Laboratory of Molecular Medicine, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States
| | - Laura M Nocka
- Department of Chemistry, University of California, Berkeley, Berkeley, United States
| | - Connor E Rosen
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Julie A Zorn
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States
| | - Stephen C Harrison
- Laboratory of Molecular Medicine, Harvard Medical School, Howard Hughes Medical Institute, Boston, United States,For correspondence: (SCH)
| | - John Kuriyan
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, United States,Department of Chemistry, University of California, Berkeley, Berkeley, United States,Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, United States, (JK)
| |
Collapse
|
14
|
Corneth OBJ, Klein Wolterink RGJ, Hendriks RW. BTK Signaling in B Cell Differentiation and Autoimmunity. Curr Top Microbiol Immunol 2015; 393:67-105. [PMID: 26341110 DOI: 10.1007/82_2015_478] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the original identification of Bruton's tyrosine kinase (BTK) as the gene defective in the primary immunodeficiency X-linked agammaglobulinemia (XLA) in 1993, our knowledge on the physiological function of BTK has expanded impressively. In this review, we focus on the role of BTK during B cell differentiation in vivo, both in the regulation of expansion and in the developmental progression of pre-B cells in the bone marrow and as a crucial signal transducer of signals downstream of the IgM or IgG B cell antigen receptor (BCR) in mature B cells governing proliferation, survival, and differentiation. In particular, we highlight BTK function in B cells in the context of host defense and autoimmunity. Small-molecule inhibitors of BTK have very recently shown impressive anti-tumor activity in clinical studies in patients with various B cell malignancies. Since promising effects of BTK inhibition were also seen in experimental animal models for lupus and rheumatoid arthritis, BTK may be a good target for controlling autoreactive B cells in patients with systemic autoimmune disease.
Collapse
Affiliation(s)
- Odilia B J Corneth
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Room Ee2251a, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands
| | - Roel G J Klein Wolterink
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Room Ee2251a, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC Rotterdam, Room Ee2251a, PO Box 2040, NL 3000, CA, Rotterdam, The Netherlands.
| |
Collapse
|
15
|
BTK inhibitors in chronic lymphocytic leukemia: a glimpse to the future. Oncogene 2014; 34:2426-36. [PMID: 24954503 DOI: 10.1038/onc.2014.181] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2014] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 12/14/2022]
Abstract
The treatment of chronic lymphocytic leukemia (CLL) with inhibitors targeting B cell receptor signaling and other survival mechanisms holds great promise. Especially the early clinical success of Ibrutinib, an irreversible inhibitor of Bruton's tyrosine kinase (BTK), has received widespread attention. In this review we will focus on the fundamental and clinical aspects of BTK inhibitors in CLL, with emphasis on Ibrutinib as the best studied of this class of drugs. Furthermore, we summarize recent laboratory as well as clinical findings relating to the first cases of Ibrutinib resistance. Finally, we address combination strategies with Ibrutinib, and attempt to extrapolate its current status to the near future in the clinic.
Collapse
|
16
|
Abstract
Bruton's tyrosine kinase (BTK) is a key component of B cell receptor (BCR) signalling and functions as an important regulator of cell proliferation and cell survival in various B cell malignancies. Small-molecule inhibitors of BTK have shown antitumour activity in animal models and, recently, in clinical studies. High response rates were reported in patients with chronic lymphocytic leukaemia and mantle cell lymphoma. Remarkably, BTK inhibitors have molecular effects that cannot be explained by the classic role of BTK in BCR signalling. In this Review, we highlight the importance of BTK in various signalling pathways in the context of its therapeutic inhibition.
Collapse
Affiliation(s)
- Rudi W Hendriks
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| | - Saravanan Yuvaraj
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| | - Laurens P Kil
- Department of Pulmonary Medicine, Room Ee2251a, Erasmus MC Rotterdam, PO Box 2040, NL 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
17
|
George AJ, Purdue BW, Gould CM, Thomas DW, Handoko Y, Qian H, Quaife-Ryan GA, Morgan KA, Simpson KJ, Thomas WG, Hannan RD. A functional siRNA screen identifies genes modulating angiotensin II-mediated EGFR transactivation. J Cell Sci 2013; 126:5377-90. [PMID: 24046455 DOI: 10.1242/jcs.128280] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The angiotensin type 1 receptor (AT1R) transactivates the epidermal growth factor receptor (EGFR) to mediate cellular growth, however, the molecular mechanisms involved have not yet been resolved. To address this, we performed a functional siRNA screen of the human kinome in human mammary epithelial cells that demonstrate a robust AT1R-EGFR transactivation. We identified a suite of genes encoding proteins that both positively and negatively regulate AT1R-EGFR transactivation. Many candidates are components of EGFR signalling networks, whereas others, including TRIO, BMX and CHKA, have not been previously linked to EGFR transactivation. Individual knockdown of TRIO, BMX or CHKA attenuated tyrosine phosphorylation of the EGFR by angiotensin II stimulation, but this did not occur following direct stimulation of the EGFR with EGF, indicating that these proteins function between the activated AT1R and the EGFR. Further investigation of TRIO and CHKA revealed that their activity is likely to be required for AT1R-EGFR transactivation. CHKA also mediated EGFR transactivation in response to another G protein-coupled receptor (GPCR) ligand, thrombin, indicating a pervasive role for CHKA in GPCR-EGFR crosstalk. Our study reveals the power of unbiased, functional genomic screens to identify new signalling mediators important for tissue remodelling in cardiovascular disease and cancer.
Collapse
Affiliation(s)
- Amee J George
- School of Biomedical Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Raimondi C, Falasca M. Phosphoinositides signalling in cancer: focus on PI3K and PLC. Adv Biol Regul 2013; 52:166-82. [PMID: 22019900 DOI: 10.1016/j.advenzreg.2011.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 09/13/2011] [Indexed: 12/19/2022]
Affiliation(s)
- Claudio Raimondi
- Queen Mary University of London, Barts and The London School of Medicine and Dentistry, Blizard Institute, Centre for Diabetes, Inositide Signalling Group, London E1 2AT, UK
| | | |
Collapse
|
19
|
Boyken SE, Fulton DB, Andreotti AH. Rescue of the aggregation prone Itk Pleckstrin Homology domain by two mutations derived from the related kinases, Btk and Tec. Protein Sci 2012; 21:1288-97. [PMID: 22761113 DOI: 10.1002/pro.2114] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 12/18/2022]
Abstract
IL-2 inducible T-cell kinase (Itk) is a Tec family non-receptor tyrosine kinase involved in signaling downstream of the T-cell receptor. Itk contains an amino-terminal Pleckstrin Homology (PH) domain that binds phosphatidylinositol (3,4,5)-trisphosphate, recruiting Itk to the plasma membrane upon T-cell receptor activation. In addition to phosphoinositide binding, accumulating data suggest that the Itk PH domain likely mediates additional interactions outside of the phosphoinositide ligand binding pocket. The structural basis for additional PH domain functions remains elusive because of the poor recombinant expression and in vitro solution behavior of the Itk PH domain. Here, we determine that the lone α-helix in the Itk PH domain is responsible for the poor solution properties and that mutation of just two residues in the Itk α-helix to the corresponding amino acids in Btk or Tec dramatically improves the soluble recombinant expression and solution behavior of the Itk PH domain. We present this double mutant as a valuable tool to characterize the structure and function of the Itk PH domain. It is also interesting to note that the precise sites of mutation identified in this study appear as somatic mutations associated with cancerous tissue. Collectively, the findings suggest that the two helical residues in the Itk PH domain may serve an important and unique structural role in wild-type Itk that differentiates this tyrosine kinase from its related family members.
Collapse
Affiliation(s)
- Scott E Boyken
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, USA
| | | | | |
Collapse
|
20
|
Uckun FM, Qazi S. Bruton's tyrosine kinase as a molecular target in treatment of leukemias and lymphomas as well as inflammatory disorders and autoimmunity. Expert Opin Ther Pat 2010; 20:1457-70. [DOI: 10.1517/13543776.2010.517750] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
21
|
Torti M, Festetics ET, Bertoni A, Moratti R, Balduini C, Sinigaglia F. Lysophosphatidic acid induces protein tyrosine phosphorylation in the absence of phospholipase C activation in human platelets. Platelets 2010; 8:181-7. [DOI: 10.1080/09537109709169335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Mudgil Y, Uhrig JF, Zhou J, Temple B, Jiang K, Jones AM. Arabidopsis N-MYC DOWNREGULATED-LIKE1, a positive regulator of auxin transport in a G protein-mediated pathway. THE PLANT CELL 2009; 21:3591-609. [PMID: 19948787 PMCID: PMC2798320 DOI: 10.1105/tpc.109.065557] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Revised: 10/08/2009] [Accepted: 10/28/2009] [Indexed: 05/20/2023]
Abstract
Root architecture results from coordinated cell division and expansion in spatially distinct cells of the root and is established and maintained by gradients of auxin and nutrients such as sugars. Auxin is transported acropetally through the root within the central stele and then, upon reaching the root apex, auxin is transported basipetally through the outer cortical and epidermal cells. The two Gbetagamma dimers of the Arabidopsis thaliana heterotrimeric G protein complex are differentially localized to the central and cortical tissues of the Arabidopsis roots. A null mutation in either the single beta (AGB1) or the two gamma (AGG1 and AGG2) subunits confers phenotypes that disrupt the proper architecture of Arabidopsis roots and are consistent with altered auxin transport. Here, we describe an evolutionarily conserved interaction between AGB1/AGG dimers and a protein designated N-MYC DOWNREGULATED-LIKE1 (NDL1). The Arabidopsis genome encodes two homologs of NDL1 (NDL2 and NDL3), which also interact with AGB1/AGG1 and AGB1/AGG2 dimers. We show that NDL proteins act in a signaling pathway that modulates root auxin transport and auxin gradients in part by affecting the levels of at least two auxin transport facilitators. Reduction of NDL family gene expression and overexpression of NDL1 alter root architecture, auxin transport, and auxin maxima. AGB1, auxin, and sugars are required for NDL1 protein stability in regions of the root where auxin gradients are established; thus, the signaling mechanism contains feedback loops.
Collapse
Affiliation(s)
- Yashwanti Mudgil
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Joachm F. Uhrig
- Botanical Institute III, University of Cologne, D-50931 Cologne, Germany
| | - Jiping Zhou
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Brenda Temple
- The R. L. Juliano Structural Bioinformatics Core Facility, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Kun Jiang
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Alan M. Jones
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
23
|
|
24
|
Dupré DJ, Robitaille M, Rebois RV, Hébert TE. The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes. Annu Rev Pharmacol Toxicol 2009; 49:31-56. [PMID: 18834311 DOI: 10.1146/annurev-pharmtox-061008-103038] [Citation(s) in RCA: 204] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The role of Gbetagamma subunits in cellular signaling has become well established in the past 20 years. Not only do they regulate effectors once thought to be the sole targets of Galpha subunits, but it has become clear that they also have a unique set of binding partners and regulate signaling pathways that are not always localized to the plasma membrane. However, this may be only the beginning of the story. Gbetagamma subunits interact with G protein-coupled receptors, Galpha subunits, and several different effector molecules during assembly and trafficking of receptor-based signaling complexes and not simply in response to ligand stimulation at sites of receptor cellular activity. Gbetagamma assembly itself seems to be tightly regulated via the action of molecular chaperones and in turn may serve a similar role in the assembly of specific signaling complexes. We propose that specific Gbetagamma subunits have a broader role in controlling the architecture, assembly, and activity of cellular signaling pathways.
Collapse
Affiliation(s)
- Denis J Dupré
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | |
Collapse
|
25
|
Mohamed AJ, Yu L, Bäckesjö CM, Vargas L, Faryal R, Aints A, Christensson B, Berglöf A, Vihinen M, Nore BF, Smith CIE. Bruton's tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev 2009; 228:58-73. [PMID: 19290921 DOI: 10.1111/j.1600-065x.2008.00741.x] [Citation(s) in RCA: 376] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bruton's agammaglobulinemia tyrosine kinase (Btk) is a cytoplasmic tyrosine kinase important in B-lymphocyte development, differentiation, and signaling. Btk is a member of the Tec family of kinases. Mutations in the Btk gene lead to X-linked agammaglobulinemia (XLA) in humans and X-linked immunodeficiency (Xid) in mice. Activation of Btk triggers a cascade of signaling events that culminates in the generation of calcium mobilization and fluxes, cytoskeletal rearrangements, and transcriptional regulation involving nuclear factor-kappaB (NF-kappaB) and nuclear factor of activated T cells (NFAT). In B cells, NF-kappaB was shown to bind to the Btk promoter and induce transcription, whereas the B-cell receptor-dependent NF-kappaB signaling pathway requires functional Btk. Moreover, Btk activation is tightly regulated by a plethora of other signaling proteins including protein kinase C (PKC), Sab/SH3BP5, and caveolin-1. For example, the prolyl isomerase Pin1 negatively regulates Btk by decreasing tyrosine phosphorylation and steady state levels of Btk. It is intriguing that PKC and Pin1, both of which are negative regulators, bind to the pleckstrin homology domain of Btk. To this end, we describe here novel mutations in the pleckstrin homology domain investigated for their transforming capacity. In particular, we show that the mutant D43R behaves similar to E41K, already known to possess such activity.
Collapse
Affiliation(s)
- Abdalla J Mohamed
- Clinical Research Center, Department of Laboratory Medicine, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Readinger JA, Mueller KL, Venegas AM, Horai R, Schwartzberg PL. Tec kinases regulate T-lymphocyte development and function: new insights into the roles of Itk and Rlk/Txk. Immunol Rev 2009; 228:93-114. [PMID: 19290923 DOI: 10.1111/j.1600-065x.2008.00757.x] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Tec (tyrosine kinase expressed in hepatocellular carcinoma) family of non-receptor tyrosine kinases consists of five members: Tec, Bruton's tyrosine kinase (Btk), inducible T-cell kinase (Itk), resting lymphocyte kinase (Rlk/Txk), and bone marrow-expressed kinase (Bmx/Etk). Although their functions are probably best understood in antigen receptor signaling, where they participate in the phosphorylation and regulation of phospholipase C-gamma (PLC-gamma), it is now appreciated that these kinases contribute to signaling from many receptors and that they participate in multiple downstream pathways, including regulation of the actin cytoskeleton. In T cells, three Tec kinases are expressed, Itk, Rlk/Txk, and Tec. Itk is expressed at highest amounts and plays the major role in regulating signaling from the T-cell receptor. Recent studies provide evidence that these kinases contribute to multiple aspects of T-cell biology and have unique roles in T-cell development that have revealed new insight into the regulation of conventional and innate T-cell development. We review new findings on the Tec kinases with a focus on their roles in T-cell development and mature T-cell differentiation.
Collapse
Affiliation(s)
- Julie A Readinger
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
27
|
Tumusiime S, Rana MK, Kher SS, Kurella VB, Williams KA, Guidry JJ, Worthylake DK, Worthylake RA. Regulation of ROCKII by localization to membrane compartments and binding to DynaminI. Biochem Biophys Res Commun 2009; 381:393-6. [PMID: 19222995 DOI: 10.1016/j.bbrc.2009.02.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2009] [Accepted: 02/12/2009] [Indexed: 11/25/2022]
Abstract
ROCKII kinase activity is known to be regulated by Rho GTPase binding; however, the context-specific regulation of ROCKII is not clearly understood. We pursued the C-terminal PH domain as a candidate domain for regulating ROCKII function. A proteomics-based screen identified potential ROCKII signaling partners, a large number of which were associated with membrane dynamics. We used subcellular fractionation to demonstrate that ROCKII is localized to both the plasma membrane and internal endosomal membrane fractions, and then used microscopy to show that the C-terminal PH domain can localize to internal or peripheral membrane compartments, depending on the cellular context. Co-immunoprecipitation demonstrated that Dynamin1 is a novel ROCKII binding partner. Furthermore, blocking Dynamin function with a dominant negative mutant mimicked the effect of inhibiting ROCK activity on the actin cytoskeleton. Our data suggest that ROCKII is regulated by localization to specific membrane compartments and its novel binding partner, Dynamin1.
Collapse
Affiliation(s)
- Sylvester Tumusiime
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, 1901 Perdido St., 5th Floor MEB, New Orleans, LA 70112, USA
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
G protein betagamma subunits are central participants in G protein-coupled receptor signaling pathways. They interact with receptors, G protein alpha subunits and downstream targets to coordinate multiple, different GPCR functions. Much is known about the biology of Gbetagamma subunits but mysteries remain. Here, we will review what is known about general aspects of structure and function of Gbetagamma as well as discuss emerging mechanisms for regulation of Gbetagamma signaling. Recent data suggest that Gbetagamma is a potential therapeutic drug target. Thus, a thorough understanding of the molecular and physiological functions of Gbetagamma has significant implications.
Collapse
Affiliation(s)
- A V Smrcka
- Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA.
| |
Collapse
|
29
|
Gomez-Rodriguez J, Readinger JA, Viorritto IC, Mueller KL, Houghtling RA, Schwartzberg PL. Tec kinases, actin, and cell adhesion. Immunol Rev 2007; 218:45-64. [PMID: 17624943 DOI: 10.1111/j.1600-065x.2007.00534.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Tec family non-receptor tyrosine kinases have been recognized for their roles in the regulation of phospholipase C-gamma and Ca(2+) mobilization downstream from antigen receptors on lymphocytes. Recent data, however, show that the Tec family kinase interleukin-2-inducible T-cell kinase (Itk) also participates in pathways regulating the actin cytoskeleton and 'inside-out' signaling to integrins downstream from the T-cell antigen receptor. Data suggest that Itk may function in a kinase-independent fashion to regulate proper recruitment of the Vav1 guanine nucleotide exchange factor. By enhancing actin cytoskeleton reorganization, recruitment of signaling molecules to the immune synapse, and integrin clustering in response to both antigen and chemokine receptors, the Tec kinases serve as modulators or amplifiers that can increase the duration of T-cell signaling and regulate T-cell functional responses.
Collapse
Affiliation(s)
- Julio Gomez-Rodriguez
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | |
Collapse
|
30
|
Halcomb KE, Contreras CM, Hinman RM, Coursey TG, Wright HL, Satterthwaite AB. Btk and phospholipase C gamma 2 can function independently during B cell development. Eur J Immunol 2007; 37:1033-42. [PMID: 17372989 DOI: 10.1002/eji.200636451] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The pre-BCR and the BCR regulate B cell development via a signalosome nucleated by the adaptor protein B cell linker protein (BLNK). Formation of this complex facilitates activation of phospholipase C (PLC) gamma2 by Bruton's tyrosine kinase (Btk). To determine whether Btk and PLCgamma2 also have separate functions, we generated Btk(-/-)PLCgamma2(-/-) mice. They demonstrated a block in development at the pre-B stage and increased pre-BCR surface expression. This phenotype was more severe than that of Btk(-/-) or PLCgamma2(-/-) mice. Although both Btk and PLCgamma2 were required for proliferation of splenic B cells in response to BCR cross-linking, they contributed differently to anti-IgM-induced phosphorylation of ERK. Btk(-/-) and PLCgamma2(-/-) mice each had a reduced frequency of Iglambda-expressing B cells and impaired migration of pre-B cells towards stromal cell-derived factor 1. However, the increase in pre-B cell malignancy that occurs in BLNK(-/-) mice in the absence of Btk was not observed in the absence of PLCgamma2. Thus, Btk and PLCgamma2 act both in concert and independently throughout B cell development.
Collapse
Affiliation(s)
- Kristina E Halcomb
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX 75390-8884, USA
| | | | | | | | | | | |
Collapse
|
31
|
Birnbaumer L. Expansion of signal transduction by G proteins. The second 15 years or so: from 3 to 16 alpha subunits plus betagamma dimers. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1768:772-93. [PMID: 17258171 PMCID: PMC1993906 DOI: 10.1016/j.bbamem.2006.12.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 12/02/2006] [Indexed: 10/23/2022]
Abstract
The first 15 years, or so, brought the realization that there existed a G protein coupled signal transduction mechanism by which hormone receptors regulate adenylyl cyclases and the light receptor rhodopsin activates visual phosphodiesterase. Three G proteins, Gs, Gi and transducin (T) had been characterized as alphabetagamma heterotrimers, and Gsalpha-GTP and Talpha-GTP had been identified as the sigaling arms of Gs and T. These discoveries were made using classical biochemical approaches, and culminated in the purification of these G proteins. The second 15 years, or so, are the subject of the present review. This time coincided with the advent of powerful recombinant DNA techniques. Combined with the classical approaches, the field expanded the repertoire of G proteins from 3 to 16, discovered the superfamily of seven transmembrane G protein coupled receptors (GPCRs) -- which is not addressed in this article -- and uncovered an amazing repertoire of effector functions regulated not only by alphaGTP complexes but also by betagamma dimers. Emphasis is placed in presenting how the field developed with the hope of conveying why many of the new findings were made.
Collapse
Affiliation(s)
- Lutz Birnbaumer
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
32
|
Frusić-Zlotkin M, Raichenberg D, Wang X, David M, Michel B, Milner Y. Apoptotic mechanism in pemphigus autoimmunoglobulins-induced acantholysis--possible involvement of the EGF receptor. Autoimmunity 2007; 39:563-75. [PMID: 17101500 DOI: 10.1080/08916930600971836] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pemphigus is an autoimmune cutaneous disease characterized by circulating autoantibodies that cause blistering and erosions on skin and mucous membranes. Circulating autoantibodies bind to epidermal cell membrane and cause cell-cell detachment (acantholysis), leading to epidermal tissue damage and cell death. The principal target of pemphigus vulgaris autoantibodies (PV-IgG) is desmosomal cadherin desmoglein 3 (Dsg3), a constituent of desmosomes, mediating cell-cell adhesion. Several hypotheses for the mechanisms of acantholysis induction by PV-IgG exist, but the actual mechanism is not clear as yet. We have previously reported on apoptosis induction in PV-IgG-mediated epidermal tissue and cell damage as a possible mechanism of acantholysis and cell death (Wang et al. 2004, Apoptosis, 9:131-143). In this study we investigated the involvement of the EGFR and intracellular signal transduction pathways in the PV-IgG-induced apoptosis. We show here that PV-IgG induced activation/autophosphorylation of EGFR in cultured keratinocytes in vitro. The specific tyrosine kinase inhibitor AG1478 abrogated EGFR autophosphorylation, cell death, FasL appearance and acantholysis, all induced by PV-IgG, in parallel, confirming the involvement of EGFR in this Fas apoptotic cascade. Activation of EGFR was followed by phosphorylation of its downstream substrates, MAP kinase ERK and transcription factor c-Jun, and internalization of EGFR. Pharmacological inactivation of the EGFR and ERK kinase activities, by use of specific inhibitors AG1478 and PD98059 respectively, blocked PV-IgG-induced phosphorylation of EGFR, ERK and c-Jun and cellular apoptosis, measured by flow cytometry and caspase 3 activity. Prolonged activation of EGFR by PV-IgG led to dramatic internalization of this receptor, possibly reducing the ability of the cell to perform survival signals. This suggests that activation of EGFR, followed by its internalization, is pivotal for intracellular apoptotic signal transduction via ERK/c-Jun pathways, leading to acantholysis. Our experimental data indicate that the EGFR is instrumental in transducing apoptotic/acantholytic signals in keratinocytes cultures in response to PV-IgG treatment. The acantholytic effect caused by PV-IgG binding to cell surface receptors begins with and depends on cell surface receptor (EGFR) activation of intracellular signaling pathways (ERK pathway) and apoptosis induction (FasR pathway), which later lead to major cell-cell separation (acantholysis) and cell death.
Collapse
Affiliation(s)
- Marina Frusić-Zlotkin
- Myers Skin Biology and Biochemistry Lab, Life Sciences Institute, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | | | | | |
Collapse
|
33
|
Rajaiya J, Nixon JC, Ayers N, Desgranges ZP, Roy AL, Webb CF. Induction of immunoglobulin heavy-chain transcription through the transcription factor Bright requires TFII-I. Mol Cell Biol 2006; 26:4758-68. [PMID: 16738337 PMCID: PMC1489113 DOI: 10.1128/mcb.02009-05] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2005] [Revised: 11/30/2005] [Accepted: 04/01/2006] [Indexed: 02/04/2023] Open
Abstract
Bright/ARID3a/Dril1, a member of the ARID family of transcription factors, is expressed in a highly regulated fashion in B lymphocytes, where it enhances immunoglobulin transcription three- to sixfold. Recent publications from our lab indicated that functional, but not kinase-inactive, Bruton's tyrosine kinase (Btk) is critical for Bright activity in an in vitro model system, yet Bright itself is not appreciably tyrosine phosphorylated. These data suggested that a third protein, and Btk substrate, must contribute to Bright-enhanced immunoglobulin transcription. The ubiquitously expressed transcription factor TFII-I was identified as a substrate for Btk several years ago. In this work, we show that TFII-I directly interacts with human Bright through amino acids in Bright's protein interaction domain and that specific tyrosine residues of TFII-I are essential for Bright-induced activity of an immunoglobulin reporter gene. Moreover, inhibition of TFII-I function in a B-cell line resulted in decreased heavy-chain transcript levels. These data suggest that Bright functions as a three-component protein complex in the immunoglobulin locus and tie together previous data indicating important roles for Btk and TFII-I in B lymphocytes.
Collapse
Affiliation(s)
- Jaya Rajaiya
- Oklahoma Medical Research Foundation, Immunobiology and Cancer Research Program, 825 N. E. 13th Street, Oklahoma City, OK 73104, USA
| | | | | | | | | | | |
Collapse
|
34
|
Várnai P, Bondeva T, Tamás P, Tóth B, Buday L, Hunyady L, Balla T. Selective cellular effects of overexpressed pleckstrin-homology domains that recognize PtdIns(3,4,5)P3 suggest their interaction with protein binding partners. J Cell Sci 2005; 118:4879-88. [PMID: 16219693 DOI: 10.1242/jcs.02606] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Several pleckstrin-homology (PH) domains with the ability to bind phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3, PIP3] were expressed as green fluorescent protein (GFP) fusion proteins to determine their effects on various cellular responses known to be activated by PIP3. These proteins comprised the PH domains of Akt, ARNO, Btk or GRP1, and were found to show growth-factor-stimulated and wortmannin-sensitive translocation from the cytosol to the plasma membrane in several cell types, indicating their ability to recognize PIP3. Remarkably, although overexpressed Akt-PH–GFP and Btk-PH–GFP were quite potent in antagonizing the PIP3-mediated activation of the Akt protein kinase, such inhibition was not observed with the other PH domains. By contrast, expression of the PH domains of GRP1 and ARNO, but not of Akt or Btk, inhibited the attachment and spreading of freshly seeded cells to culture dishes. Activation of PLCγ by epidermal growth factor (EGF) was attenuated by the PH domains of GRP1, ARNO and Akt, but was significantly enhanced by the Btk PH domain. By following the kinetics of expression of the various GFP-fused PH domains for several days, only the PH domain of Akt showed a lipid-binding-dependent self-elimination, consistent with its interference with the anti-apoptotic Akt signaling pathway. Mutations of selective residues that do not directly participate in PIP3 binding in the GRP1-PH and Akt-PH domain were able to reduce the dominant-negative effects of these constructs yet retain their lipid binding. These data suggest that interaction with and sequestration of PIP3 may not be the sole mechanism by which PH domains interfere with cellular responses and that their interaction with other membrane components, most probably with proteins, allows a more specific participation in the regulation of specific signaling pathways.
Collapse
Affiliation(s)
- Péter Várnai
- Endocrinology and Reproduction Research Branch, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
35
|
Chen W, Li N, Chen T, Han Y, Li C, Wang Y, He W, Zhang L, Wan T, Cao X. The lysosome-associated apoptosis-inducing protein containing the pleckstrin homology (PH) and FYVE domains (LAPF), representative of a novel family of PH and FYVE domain-containing proteins, induces caspase-independent apoptosis via the lysosomal-mitochondrial pathway. J Biol Chem 2005; 280:40985-95. [PMID: 16188880 DOI: 10.1074/jbc.m502190200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Lysosomes have recently been identified as important apoptotic signal integrators in response to various stimuli. Here we report the functional characterization of LAPF, a novel lysosome-associated apoptosis-inducing protein containing PH and FYVE domains. LAPF is a representative of a new protein family, the Phafins (protein containing both PH and FYVE domains), which consists of 14 unidentified proteins from various species. Overexpression of LAPF in L929 cells induces apoptosis and also increases cell sensitivity to TNFalpha-induced apoptosis, concomitant with its translocation to lysosomes. Two mutants of LAPF, either lacking the PH or FYVE domain, failed to induce cell death and translocate to lysosomes, suggesting that both domains are required for its apoptosis-inducing activity and relocation. We demonstrate that LAPF may induce apoptosis via the following steps: LAPF translocation to lysosomes, lysosomal membrane permeabilization (LMP), release of cathepsin (cath) D and L, mitochondrial membrane permeabilization (MMP), release of apoptosis-inducing factor (AIF), and caspase-independent apoptosis. The cath D-specific inhibitor attenuates LAPF-induced apoptosis, indicating a pivotal role of lysosomes in LAPF-initiated apoptosis. We also demonstrate that the lysosomal pathway was employed in the typical apoptotic model in which high dose TNFalpha was used to stimulate L929 cells. Silencing of LAPF expression by small RNA interference protected L929 cells from hTNFalpha-induced apoptosis by impairing hTNFalpha-triggered LMP and MMP. Therefore, LAPF may launch caspase-independent apoptosis through the lysosomal-mitochondrial pathway.
Collapse
Affiliation(s)
- Wei Chen
- Institute of Immunology, Zhejiang University, 353 Yanan Road, Hangzhou 310031, Zhejiang, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Balla T. Inositol-lipid binding motifs: signal integrators through protein-lipid and protein-protein interactions. J Cell Sci 2005; 118:2093-104. [PMID: 15890985 DOI: 10.1242/jcs.02387] [Citation(s) in RCA: 208] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Inositol lipids have emerged as universal lipid regulators of protein signaling complexes in defined membrane compartments. The number of protein modules that are known to recognise these membrane lipids is rapidly increasing. Pleckstrin homology domains, FYVE domains, PX domains, ENTH domains, CALM domains, PDZ domains, PTB domains and FERM domains are all inositide-recognition modules. The latest additions to this list are members of the clathrin adaptor protein and arrestin families. Initially, inositol lipids were believed to recruit signaling molecules to specific membrane compartments, but many of the domains clearly do not possess high enough affinity to act alone as localisation signals. Another important notion is that some (and probably most) of these protein modules also have protein binding partners, and their protein- and lipid-binding activities might influence one another through allosteric mechanisms. Comparison of the structural features of these domains not only reveals a high degree of conservation of their lipid interaction sites but also highlights their evolutionary link to protein modules known for protein-protein interactions. Protein-protein interactions involving lipid-binding domains could serve as the basis for phosphoinositide-induced conformational regulation of target proteins at biological membranes. Therefore, these modules function as crucially important signal integrators, which explains their involvement in a broad range of regulatory functions in eukaryotic cells.
Collapse
Affiliation(s)
- Tamas Balla
- Endocrinology and Reproduction Research Branch, NICHD, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
37
|
Abstract
The Tec family tyrosine kinases are now recognized as important mediators of antigen receptor signaling in lymphocytes. Three members of this family, Itk, Rlk, and Tec, are expressed in T cells and activated in response to T cell receptor (TCR) engagement. Although initial studies demonstrated a role for these proteins in TCR-mediated activation of phospholipase C-gamma, recent data indicate that Tec family kinases also regulate actin cytoskeletal reorganization and cellular adhesion following TCR stimulation. In addition, Tec family kinases are activated downstream of G protein-coupled chemokine receptors, where they play parallel roles in the regulation of Rho GTPases, cell polarization, adhesion, and migration. In all these systems, however, Tec family kinases are not essential signaling components, but instead function to modulate or amplify signaling pathways. Although they quantitatively reduce proximal signaling, mutations that eliminate Tec family kinases in T cells nonetheless qualitatively alter T cell development and differentiation.
Collapse
Affiliation(s)
- Leslie J Berg
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA.
| | | | | | | |
Collapse
|
38
|
Forssell J, Sideras P, Eriksson C, Malm-Erjefält M, Rydell-Törmänen K, Ericsson PO, Erjefält JS. Interleukin-2-inducible T cell kinase regulates mast cell degranulation and acute allergic responses. Am J Respir Cell Mol Biol 2005; 32:511-20. [PMID: 15778496 DOI: 10.1165/rcmb.2004-0348oc] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Bruton's tyrosine kinase (Btk) is thought to positively regulate mast cell activation, implying a role in allergic responses. We have compared acute and late phase allergic airway reactions in mice lacking either Btk or interleukin-2-inducible T cell kinase (Itk), another Tec kinase expressed in mast cells. Btk(-/-) mice showed minor protection against allergic symptoms when challenged with allergen via the airways. In sharp contrast, both acute and late phase inflammatory allergic responses were markedly reduced in Itk(-/-) mice. Notably, airway mast cell degranulation in Itk(-/-) mice was severely impaired, despite wild-type levels of allergen-specific IgE and IgG1. The degranulation defect was confirmed in DNP-conjugated human serum albumin-challenged mice passively sensitized with anti-DNP IgE antibodies, and was also observed after direct G-protein stimulation with the mast cell secretagogue c48/80. Moreover, late phase inflammatory changes, including eosinophilia, lymphocyte infiltration, and Th2 cytokine production in the lungs, was eliminated in Itk(-/-) mice. Collectively, our data suggest a critical role of Itk in airway mast cell degranulation in vivo that together with an impaired T cell response prevents the development of both acute and late phase inflammatory allergic reactions.
Collapse
Affiliation(s)
- Johan Forssell
- Transplantation Center, Foundation for Biomedical Research, Academy of Athens, Athens, Greece
| | | | | | | | | | | | | |
Collapse
|
39
|
Rajaiya J, Hatfield M, Nixon JC, Rawlings DJ, Webb CF. Bruton's tyrosine kinase regulates immunoglobulin promoter activation in association with the transcription factor Bright. Mol Cell Biol 2005; 25:2073-84. [PMID: 15743806 PMCID: PMC1061591 DOI: 10.1128/mcb.25.6.2073-2084.2005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2004] [Revised: 07/06/2004] [Accepted: 12/13/2004] [Indexed: 01/19/2023] Open
Abstract
Bright (B-cell regulator of immunoglobulin heavy chain transcription) binding to immunoglobulin heavy chain loci after B-cell activation is associated with increased heavy chain transcription. Our earlier reports demonstrated that Bright coimmunoprecipitates with Bruton's tyrosine kinase (Btk) and that these proteins associate in a DNA-binding complex in primary B cells. B cells from immunodeficient mice with a mutation in Btk failed to produce stable Bright DNA-binding complexes. In order to determine if Btk is important for Bright function, a transcription activation assay was established and analyzed using real-time PCR technology. Cells lacking both Bright and Btk were transfected with Bright and/or Btk along with an immunoglobulin heavy chain reporter construct. Immunoglobulin gene transcription was enhanced when Bright and Btk were coexpressed. In contrast, neither Bright nor Btk alone led to activation of heavy chain transcription. Furthermore, Bright function required both Btk kinase activity and sequences within the pleckstrin homology domain of Btk. Bright was not appreciably phosphorylated by Btk; however, a third tyrosine-phosphorylated protein coprecipitated with Bright. Thus, the ability of Bright to enhance immunoglobulin transcription critically requires functional Btk.
Collapse
Affiliation(s)
- Jaya Rajaiya
- Oklahoma Medical Research Foundation, Immunobiology and Cancer Research Program, 825 N.E. 13th St., Oklahoma City, OK 73104, USA
| | | | | | | | | |
Collapse
|
40
|
Wang Y, Chen W, Simpson DM, Elion EA. Cdc24 regulates nuclear shuttling and recruitment of the Ste5 scaffold to a heterotrimeric G protein in Saccharomyces cerevisiae. J Biol Chem 2005; 280:13084-96. [PMID: 15657049 DOI: 10.1074/jbc.m410461200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae guanine nucleotide exchange factor Cdc24 regulates polarized growth by binding to Cdc42, a Rho-type GTPase that has many effectors, including Ste20 kinase, which activates multiple MAPK cascades. Here, we show that Cdc24 promotes MAPK signaling during mating through interactions with Ste5, a scaffold that must shuttle through the nucleus and bind to the beta subunit (Ste4) of a G protein for Ste20 to activate the tethered MAPK cascade. Ste5 was basally recruited to growth sites of G1 phase cells independently of Ste4. Loss of Cdc24 inhibited nuclear import and blocked basal and pheromone-induced recruitment of Ste5. Ste5 was not basally recruited and the MAPK Fus3 was not basally activated in the presence of a Cdc24 mutant (G168D) that still activates Cdc42, suggesting that Cdc24 regulates Ste5 and the associated MAPK cascade through a function that is not dependent on its guanine nucleotide exchange factor activity. Consistent with this, Cdc24 bound Ste5 and coprecipitated with Ste4 independently of Far1 and Ste5. Loss of Cdc24 decreased Ste5-Ste4 complex formation, and loss of Ste4 stimulated Cdc24-Ste5 complex formation. Collectively, these findings suggest that Cdc24 mediates site-specific localization of Ste5 to a heterotrimeric G protein and may therefore ensure localized activation of the associated MAPK cascade.
Collapse
Affiliation(s)
- Yunmei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
41
|
|
42
|
Olkkonen VM, Levine TP. Oxysterol binding proteins: in more than one place at one time? Biochem Cell Biol 2004; 82:87-98. [PMID: 15052330 DOI: 10.1139/o03-088] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Oxysterols are potent signalling lipids that directly bind liver X receptors (LXRs) and a subset of oxysterol binding protein (OSBP) related proteins (ORPs). It is relatively well established that the oxysterol-regulated function of LXRs is to control the expression of genes involved in reverse cholesterol transport, catabolism of cholesterol, and lipogenesis. In contrast, the mechanisms by which oxysterols and ORPs affect cellular lipid metabolism have remained poorly understood. In this review, we summarize the information available on function of the ORPs and compare the two families of proteins binding oxysterol to demonstrate the different responses that similar lipids can elicit within cells. The other focus is on the membrane targeting determinants and the protein interaction partners of ORPs, which provide interesting clues to the mode(s) of ORP action. Specifically, we suggest a model in which a general property of ORPs is to function at membrane contact sites, specialized zones of communication between two different organelles.
Collapse
Affiliation(s)
- Vesa M Olkkonen
- Department of Molecular Medicine, National Public Health Institute, Helsinki, Finland.
| | | |
Collapse
|
43
|
Hirano M, Kikuchi Y, Nisitani S, Yamaguchi A, Satoh A, Ito T, Iba H, Takatsu K. Bruton's tyrosine kinase (Btk) enhances transcriptional co-activation activity of BAM11, a Btk-associated molecule of a subunit of SWI/SNF complexes. Int Immunol 2004; 16:747-57. [PMID: 15096481 DOI: 10.1093/intimm/dxh076] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Bruton's tyrosine kinase (Btk) is required for B cell development and signal transduction through cell-surface molecules such as BCR and IL-5 receptor. We have identified a Btk-associated molecule, BAM11 (hereafter referred to as BAM) that binds to the pleckstrin homology (PH) domain of Btk, and inhibits Btk activity both in vivo and in vitro. In this study, we demonstrate BAM's transcriptional co-activation activity and its functional interaction with Btk. By using transient transcription assays, we demonstrate that the enforced expression of BAM enhances transcriptional activity of the synthetic reporter gene. The C-terminus of BAM is essential for the transcriptional co-activation activity. The ectopic expression of Btk together with BAM enhances BAM's transcriptional co-activation activity. BAM's transcriptional co-activation activity is enhanced through interaction with Btk, and requires both its intact PH domain and functional kinase activity. We also show that enforced expression of TFII-I, another Btk-binding protein with transcriptional activity, together with BAM and Btk, further augments BAM- and Btk-dependent transcriptional co-activation. Furthermore, BAM can be co-immunoprecipitated with the INI1/SNF5 protein, a member of the SWI/SNF complex that remodels chromatin and activates transcription. We propose a model in which Btk regulates gene transcription in B cells by activating BAM and the SWI/SNF transcriptional complex via TFII-I activation.
Collapse
Affiliation(s)
- Masayuki Hirano
- Division of Immunology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Cozier GE, Carlton J, Bouyoucef D, Cullen PJ. Membrane targeting by pleckstrin homology domains. Curr Top Microbiol Immunol 2004; 282:49-88. [PMID: 14594214 DOI: 10.1007/978-3-642-18805-3_3] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pleckstrin homology (PH) domains are small modular domains that occur once, or occasionally several times, in a large variety of signalling proteins. In a number of instances, PH domains act to target their host protein to the cytosolic face of cellular membranes through an ability to associate with phosphoinositides. In this review, we discuss recent advances in our understanding of PH domain function. In particular we describe the structural aspects of how PH domains have evolved to bind various phosphoinositides, how PH domains regulate phosphoinositide-mediated association to plasma and internals membranes, and finally raise the issue of PH domains in protein:protein interactions and the allosteric regulation of their host protein.
Collapse
Affiliation(s)
- G E Cozier
- Inositide Group, Henry Wellcome Integrated Signaling Laboratories, Department of Biochemistry, School of Medical Sciences, University of Bristol, Bristol BS8 1TD, UK
| | | | | | | |
Collapse
|
45
|
Chen HC, Chen CH, Chuang NN. Differential effects of prenyl pyrophosphates on the phosphatase activity of phosphotyrosyl protein phosphatase. ACTA ACUST UNITED AC 2004; 301:307-16. [PMID: 15039989 DOI: 10.1002/jez.a.20034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phosphotyrosyl protein phosphatase (PTPase) 1B was purified from human placenta. Immunoprecipitation analysis revealed that the isolated PTPase 1B appears as a complex with the receptor for protein kinase C (RACK1) and protein kinase C (PKC)delta. The abilities of PTPase 1B and PKCdelta to associate with RACK1 were reconfirmed by an in vitro reconstitution experiment. The E. coli expressed and biotinylated mice-RACK1-encoded fusion protein was capable of recruiting PTPase 1B and PKCdelta in the antibiotin immunoprecipitate as a complex of PTPase 1B/RACK1/PKCdelta. Thus PTPase 1B enzyme preparation was subjected to further purification by selective binding of PTPase 1B onto PEP(Taxol) affinity column in the absence of ATP. The purified PTPase 1B enzyme exihibited dose-dependent phosphatase activity towards [gamma-(32)P]-ATP labeled mice beta-tubulin-encoded fusion protein. The dephosphorylation reaction with PTPase 1B was enhanced with geranylgeranyl pyrophosphate, but not with farnesyl pyrophosphate. Interestingly, additional incubation of the purified PTPase 1B enzyme preparation with RACK1, geranylgeranyl pyrophosphate failed to modulate the dephosphorylation activity of PTPase 1B. In contrast, the enhancement effect of farnesyl pyrophosphate on the kinase activity of PKCdelta was sustained in the presence of RACK1. That is, farnesyl pyrophosphate may function as a signal to induce the kinase activity of PKCdelta in PTPase 1B/RACK1/PKCdelta complex but geranylgeranyl pyrophosphate may not for PTPase 1B. J. Exp. Zool. 301A:307-316, 2004.
Collapse
Affiliation(s)
- Huei-Chen Chen
- Division of Biochemistry and Molecular Science, Institute of Zoology, Academia Sinica, Nankang 11529, Taipei, Taiwan
| | | | | |
Collapse
|
46
|
Saito K, Tolias KF, Saci A, Koon HB, Humphries LA, Scharenberg A, Rawlings DJ, Kinet JP, Carpenter CL. BTK regulates PtdIns-4,5-P2 synthesis: importance for calcium signaling and PI3K activity. Immunity 2003; 19:669-78. [PMID: 14614854 DOI: 10.1016/s1074-7613(03)00297-8] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Intracellular signaling by most cell surface receptors requires the generation of two major second messengers, phosphatidylinositol-3,4,5-trisphosphate (PtdIns-3,4,5-P3) and inositol-1,4,5-trisphosphate (IP3). The enzymes that produce these second messengers, phosphoinositide 3-kinase (PI3K) and phospholipase C (PLC), utilize a common substrate, phosphatidylinositol-4,5-bisphosphate (PtdIns-4,5-P2). Until now, it has not been clear whether de novo PtdIns-4,5-P2 synthesis is necessary for PtdIns-3,4,5-P3 and IP3 production. Here we show that BTK, a member of the Tec family of cytoplasmic protein tyrosine kinases, associates with phosphatidylinositol-4-phosphate 5-kinases (PIP5Ks), the enzymes that synthesize PtdIns-4,5-P2. Upon B cell receptor activation, BTK brings PIP5K to the plasma membrane as a means of generating local PtdIns-4,5-P2 synthesis. This enzyme-enzyme interaction provides a shuttling mechanism that allows BTK to stimulate the production of the substrate required by both its upstream activator, PI3K, and its downstream target, PLC-gamma2.
Collapse
Affiliation(s)
- Kan Saito
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Niu J, Profirovic J, Pan H, Vaiskunaite R, Voyno-Yasenetskaya T. G Protein βγ Subunits Stimulate p114RhoGEF, a Guanine Nucleotide Exchange Factor for RhoA and Rac1. Circ Res 2003; 93:848-56. [PMID: 14512443 DOI: 10.1161/01.res.0000097607.14733.0c] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rho GTPases integrate the intracellular signaling in a wide range of cellular processes. Activation of these G proteins is tightly controlled by a number of guanine nucleotide exchange factors (GEFs). In this study, we addressed the functional role of the recently identified p114RhoGEF in in vivo experiments. Activation of endogenous G protein-coupled receptors with lysophosphatidic acid resulted in activation of a transcription factor, serum response element (SRE), that was enhanced by p114RhoGEF. This stimulation was inhibited by the functional scavenger of Gβγ subunits, transducin. We have determined that Gβγ subunits but not Gα subunits of heterotrimeric G proteins stimulated p114RhoGEF-dependent SRE activity. Using coimmunoprecipitation assay, we have determined that Gβγ subunits interacted with full-length and DH/PH domain of p114RhoGEF. Similarly, Gβγ subunits stimulated SRE activity induced by full-length and DH/PH domain of p114RhoGEF. Using in vivo pull-down assays and dominant-negative mutants of Rho GTPases, we have determined that p114RhoGEF activated RhoA and Rac1 but not Cdc42 proteins. Functional significance of RhoA activation was established by the ability of p114RhoGEF to induce actin stress fibers and cell rounding. Functional significance of Rac1 activation was established by the ability of p114RhoGEF to induce production of reactive oxygen species (ROS) followed by activation of NADPH oxidase enzyme complex. In summary, our data showed that the novel guanine nucleotide exchange factor p114RhoGEF regulates the activity of RhoA and Rac1, and that Gβγ subunits of heterotrimeric G proteins are activators of p114RhoGEF under physiological conditions. The findings help to explain the integrated effects of LPA and other G-protein receptor-coupled agonists on actin stress fiber formation, cell shape change, and ROS production.
Collapse
Affiliation(s)
- Jiaxin Niu
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Ill 60612, USA
| | | | | | | | | |
Collapse
|
48
|
Yonezawa S, Yoshizaki N, Sano M, Hanai A, Masaki S, Takizawa T, Kageyama T, Moriyama A. Possible involvement of myosin-X in intercellular adhesion: importance of serial pleckstrin homology regions for intracellular localization. Dev Growth Differ 2003; 45:175-85. [PMID: 12752505 DOI: 10.1034/j.1600-0854.2004.00688.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Subcellular fractionation experiments with mouse hepatocytes, combined with sodium dodecylsulfate (SDS)-polyacrylamide gel electrophoresis (PAGE)-immunoblot analysis using antibodies against two different tail regions of mouse myosin-X demonstrated a 240 kDa molecular mass to be associated with the plasma membrane-rich P2 fraction. The basolateral plasma membrane fraction, but not the brush border fraction, isolated from renal cortices also contained the 240 kDa form of myosin-X. In an attempt to assess relative contributions of possible functional domains in the tail of myosin-X to localization and function, cDNA corresponding to all three pleckstrin homology (PH) domains and different regions (PH1, 2 and 3, and the two subdomains of PH1: PHS1 and PHS2), as well as the myosin tail homology 4 domain (MyTH4) and the band4.1/ezrin/radixin/moesin-like domain (FERM) were separately inserted into the pEGFP vector and expressed in cultured COS-1 cells. As a result, two distinct regions responsible for localization were identified with regard to PH: one covers all three forms that tends to localize to regions of dynamic actin, such as membrane ruffles, lamellipodia and thick cortical actin bundles at the sites of cell-cell adhesion in a Rac- and Cdc42-dependent manner. The other covers PHS1 and PH2 that localizes to filopodia, filopodial puncta and the sites of intercellular adhesion in a Cdc42-dependent manner. Expression of green fluorescent protein (GFP)-MyTH4 fusion protein resulted in formation of phalloidin-positive granules, while GFP-FERM affected the actin cytoskeletal system in a distinctly different way. Taken altogether, the results lend support to the view that myosin-X is involved in cell-cell adhesion-associated signaling-linked membrane and/or cytoskeleton reorganization.
Collapse
Affiliation(s)
- Satoshi Yonezawa
- Institute for Developmental Research, Aichi Human Service Center, Kamiya-cho, Kasugai 480-0392, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Shen TL, Han DC, Guan JL. Association of Grb7 with phosphoinositides and its role in the regulation of cell migration. J Biol Chem 2002; 277:29069-77. [PMID: 12021278 DOI: 10.1074/jbc.m203085200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Grb7 is the prototype of a family of adaptor molecules that also include Grb10 and Grb14 that share a conserved molecular architecture including Src homology 2 (SH2) and pleckstrin homology (PH) domains. Grb7 has been implicated as a downstream mediator of integrin-FAK signal pathways in the regulation of cell migration, although the molecular mechanisms are still not well understood. In this paper, we investigated the potential role and mechanisms of PH domain in Grb7 in the regulation of cell migration. We found that the PH domain mediated Grb7 binding to phospholipids both in vitro and in intact cells. Furthermore, both Grb7 and its PH domain preferentially interacted with phosphatidylinositol phosphates showing strongest affinity to the D3- and D5-phosphoinositides. The PH domain interaction with phosphoinositides was shown to play a role in the stimulation of cell migration by Grb7. It was also shown to be necessary for Grb7 phosphorylation by FAK, although it was not required for Grb7 interaction with FAK or recruitment to the focal contacts. Last, we found that PI 3-kinase activity played a role in both Grb7 association with phosphoinositides and its stimulation of cell migration. In addition, both FAK binding to PI 3-kinase via its autophosphorylated Tyr(397) and integrin-mediated cell adhesion increased Grb7 association with phosphoinositides. Together, these results identified the Grb7 PH domain interaction with phosphoinositides and suggested a potential mechanism by which several signaling molecules including Grb7, FAK, and PI 3-kinase and their interactions cooperate to mediate signal transduction pathways in integrin-mediated cell migration.
Collapse
Affiliation(s)
- Tang-Long Shen
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853, USA
| | | | | |
Collapse
|
50
|
Takesono A, Finkelstein LD, Schwartzberg PL. Beyond calcium: new signaling pathways for Tec family kinases. J Cell Sci 2002; 115:3039-48. [PMID: 12118060 DOI: 10.1242/jcs.115.15.3039] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The Tec kinases represent the second largest family of mammalian non-receptor tyrosine kinases and are distinguished by the presence of distinct proline-rich regions and pleckstrin homology domains that are required for proper regulation and activation. Best studied in lymphocyte and mast cells, these kinases are critical for the full activation of phospholipase-C γ (PLC-γ) and Ca2+ mobilization downstream of antigen receptors. However, it has become increasingly clear that these kinases are activated downstream of many cell-surface receptors,including receptor tyrosine kinases, cytokine receptors, integrins and G-protein-coupled receptors. Evidence suggests that the Tec kinases influence a wide range of signaling pathways controlling activation of MAP kinases,actin reorganization, transcriptional regulation, cell survival and cellular transformation. Their impact on cellular physiology suggests that the Tec kinases help regulate multiple cellular processes beyond Ca2+mobilization.
Collapse
Affiliation(s)
- Aya Takesono
- National Human Genome Research Institute, 49 Convent Drive, 49/4A38, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|