1
|
Nishimoto M, Hasegawa T, Murashima M, Noma H, Nishiwaki H, Yamada S, Mizukami A, Saito H, Kimura H, Taniguchi M, Hamano T, Fukagawa M. Efficacy and Safety of Phosphate-Lowering Agents for Adult Patients with CKD Requiring Dialysis: A Network Meta-Analysis. Clin J Am Soc Nephrol 2025; 20:676-696. [PMID: 40085178 PMCID: PMC12097192 DOI: 10.2215/cjn.0000000665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
Key Points Sevelamer was associated with lower all-cause mortality compared with calcium-based agents. Sucroferric oxyhydroxide and tenapanor were estimated to rank high in lowering all-cause mortality compared with other phosphate-lowering agents. Sucroferric oxyhydroxide and lanthanum were associated with slower progression of coronary artery calcium score compared with calcium-based agents. Background It is necessary to update the evidence of each phosphate-lowering agent on dialysis patients. Methods From the CENTRAL, MEDLINE, Embase, and ClinicalTrial.gov databases, randomized controlled trials using oral phosphate-lowering agents on adult patients requiring maintenance dialysis were extracted. The treatment period was required for 8 or more weeks, and the risk of bias was assessed according to the Cochrane Collaboration method. The outcomes were all-cause mortality, cardiovascular mortality, gastrointestinal events, fracture, coronary artery calcium score (CACS), serum calcium, phosphate, intact parathyroid hormone, and bicarbonate levels. A network meta-analyses using multivariate random-effects models were performed for assessing the comparative effectiveness. The ranking of the phosphate-lowering agents was assessed using a surface under the cumulative ranking curve. Results A total of 70 randomized controlled trials involving 15,551 participants were included. Eleven phosphate-lowering agents including calcium-based agents, sevelamer, bixalomer, lanthanum, sucroferric oxyhydroxide, ferric citrate, tenapanor, magnesium, nicotinamide, aluminum, and sucralfate were assessed. Sevelamer was significantly associated with lower all-cause mortality compared with calcium-based agents (risk ratio [95% confidence interval]: 0.59 [0.37 to 0.94]), and sucroferric oxyhydroxide and tenapanor were estimated to rank high in lowering all-cause mortality on the basis of the surface under the cumulative ranking curve. The risk of gastrointestinal events was the highest with nicotinamide, followed by sucroferric oxyhydroxide. Compared with calcium-based agents, CACS was significantly lower among those on lanthanum and sucroferric oxyhydroxide (standardized mean difference [95% confidence interval]: −0.26 [−0.52 to −0.01] and −0.50 [−0.95 to−0.06], respectively). Serum calcium levels were higher, and serum intact parathyroid hormone levels were lower in patients treated with calcium-based agents. Except for sevelamer, serum bicarbonate levels for all other agents were higher compared with placebo. Conclusions Compared with calcium-based agents, sevelamer was associated with lower all-cause mortality, and sucroferric oxyhydroxide and lanthanum were associated with slower progression of CACS. Potential benefits and harms should be considered when selecting phosphate-lowering agents (International prospective register of systematic reviews: CRD42022328388).
Collapse
Affiliation(s)
| | - Takeshi Hasegawa
- Institute of Clinical Epidemiology (iCE), Showa Medical University, Tokyo, Japan
- Department of Hygiene, Public Health and Preventive Medicine, Showa University Graduate School of Medicine, Tokyo, Japan
- Department of Nephrology, Showa University Graduate School of Medicine, Tokyo, Japan
- Showa University Research Administration Center, Showa Medical University, Japan
| | - Miho Murashima
- Division of Nephrology, Department of Internal Medicine, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hisashi Noma
- Department of Interdisciplinary Statistical Mathematics, The Institute of Statistical Mathematics, Tokyo, Japan
| | - Hiroki Nishiwaki
- Division of Nephrology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Shunsuke Yamada
- Department of Medicine and Clinical Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Aya Mizukami
- Division of Nephrology, Department of Internal Medicine, Showa University Fujigaoka Hospital, Kanagawa, Japan
| | - Hirotaka Saito
- Department of Nephrology and Hypertension, Fukushima Medical University, Fukushima, Japan
| | - Hiroshi Kimura
- Department of Nephrology and Hypertension, Fukushima Medical University, Fukushima, Japan
| | | | - Takayuki Hamano
- Department of Nephrology, Nagoya City University Graduate School of Medical Sciences, Aichi, Japan
- Department of Nephrology, The University of Osaka Graduate School of Medicine, Osaka, Japan
| | - Masafumi Fukagawa
- Division of Nephrology, Endocrinology, and Metabolism, Tokai University School of Medicine, Kanagawa, Japan
- Department of Internal Medicine, Ikegami General Hospital, Tokyo, Japan
| |
Collapse
|
2
|
Werner LE, Wagner U. Calcium-sensing receptor-mediated NLRP3 inflammasome activation in rheumatoid arthritis and autoinflammation. Front Physiol 2023; 13:1078569. [PMID: 36685206 PMCID: PMC9854345 DOI: 10.3389/fphys.2022.1078569] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/17/2022] [Indexed: 01/09/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is expressed in many cell types - including immune cells and in particular circulating monocytes. Here, the receptor plays an important physiological role as a regulator of constitutive macropinocytosis. This review article provides an overview of the literature on the role of the calcium sensing receptor in the context of inflammatory processes. Special emphasis is laid upon the importance for monocytes in the context of rheumatoid arthritis. We have shown previously, that stimulation of the receptor by increased extracellular Ca2+ ([Ca2+]ex) triggers a pro-inflammatory response due to NLRP3 inflammasome assembly and interleukin (IL)-1β release. The underlying mechanism includes macropinocytosis of calciprotein particles (CPPs), which are taken up in a [Ca2+]ex-induced, CaSR dependent manner, and leads to strong IL-1β release. In rheumatoid arthritis (RA), this uptake and the resulting IL-1β release is significantly increased due to increased expression of the receptor. Moreover, increased [Ca2+]ex-induced CPP uptake and IL-1β release is associated with more active disease, while CaSR overexpression has been reported to be associated with cardiovascular complications of RA. Most importantly, however, in animal experiments with arthritic mice, increased local calcium concentrations are present, which in combination with release of fetuin-A from eroded bone could contribute to formation of CPPs. We propose, that increased [Ca2+]ex, CPPs and pro-inflammatory cytokines drive a vicious cycle of inflammation and bone destruction which in turn offers new potential therapeutic approaches.
Collapse
|
3
|
Boder P, Mary S, Mark PB, Leiper J, Dominiczak AF, Padmanabhan S, Rampoldi L, Delles C. Mechanistic interactions of uromodulin with the thick ascending limb: perspectives in physiology and hypertension. J Hypertens 2021; 39:1490-1504. [PMID: 34187999 PMCID: PMC7611110 DOI: 10.1097/hjh.0000000000002861] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hypertension is a significant risk factor for cardiovascular disease and mortality worldwide. The kidney is a major regulator of blood pressure and electrolyte homeostasis, with monogenic disorders indicating a link between abnormal ion transport and salt-sensitive hypertension. However, the association between salt and hypertension remains controversial. Thus, there is continued interest in deciphering the molecular mechanisms behind these processes. Uromodulin (UMOD) is the most abundant protein in the normal urine and is primarily synthesized by the thick ascending limb epithelial cells of the kidney. Genome-wide association studies have linked common UMOD variants with kidney function, susceptibility to chronic kidney disease and hypertension independent of renal excretory function. This review will discuss and provide predictions on the role of the UMOD protein in renal ion transport and hypertension based on current observational, biochemical, genetic, pharmacological and clinical evidence.
Collapse
Affiliation(s)
- Philipp Boder
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sheon Mary
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Patrick B. Mark
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James Leiper
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Anna F. Dominiczak
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Sandosh Padmanabhan
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Luca Rampoldi
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Christian Delles
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
4
|
Li X, Chen S, Feng D, Fu Y, Wu H, Lu J, Bao J. Calcium-sensing receptor promotes calcium oxalate crystal adhesion and renal injury in Wistar rats by promoting ROS production and subsequent regulation of PS ectropion, OPN, KIM-1, and ERK expression. Ren Fail 2021; 43:465-476. [PMID: 33678127 PMCID: PMC7946014 DOI: 10.1080/0886022x.2021.1881554] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES To explore the mechanism of calcium-sensing receptors (CaSRs) during the development of nephrolithiasis. MATERIALS AND METHODS Wistar rats were treated with ethylene glycol to induce calcium oxalate crystallization, and gadolinium chloride (GdCl3, an agonist of CaSR) and NPS 2390 (an antagonist of CaSR) were added. Oxidative stress (OS) and calcium oxalate crystals in the kidney were observed. CaSR expression and the expression of extracellular signal-regulated protein kinase (ERK), OPN, and KIM-1 were determined by western blotting. In addition, renal tubular epithelial cells were isolated from the kidney to observe phosphatidylserine (PS) ectropion using flow cytometric analysis. Various biochemical parameters were assessed in serum and urine at the end of the experiment. RESULTS Calcium oxalate increased OS, crystal adhesion, PS ectropion, and the expression of CaSR and ERK, OPN, and KIM-1 in vivo. In addition, lower levels of urine citrate as well as increased serum creatinine and urea levels were observed after treatment with calcium oxalate (p < .05). Compared with calcium oxalate treatment alone, the above deleterious changes were further significantly confirmed by GdCl3 but were reversed by NPS-2390. However, urine calcium excretion was decreased after ethylene glycol treatment but was significantly reduced by NPS 2390 and increased by GdCl3 (p < .05). CONCLUSIONS The results suggest that CaSR might play significant roles in the induction of nephrolithiasis in rats by regulating reactive oxygen species (ROS) and PS ectropion and the composition of urine, OPN, KIM-1, and ERK expression.
Collapse
Affiliation(s)
- Xiaoran Li
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Siyu Chen
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Demei Feng
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Yuqiang Fu
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Huang Wu
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Jianzhong Lu
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| | - Junsheng Bao
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, Lanzhou University Second Hospital, Lanzhou, People's Republic of China
| |
Collapse
|
5
|
Hui Q, Zhao X, Lu P, Liu S, Nyachoti M, O K, Yang C. Molecular distribution and localization of extracellular calcium-sensing receptor (CaSR) and vitamin D receptor (VDR) at three different laying stages in laying hens (Gallus gallus domesticus). Poult Sci 2021; 100:101060. [PMID: 33752067 PMCID: PMC8010884 DOI: 10.1016/j.psj.2021.101060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 11/02/2020] [Accepted: 02/11/2021] [Indexed: 01/06/2023] Open
Abstract
The extracellular calcium-sensing receptor (CaSR) and vitamin D receptor (VDR) play important roles in regulating calcium mobilization, calcium absorption, and calcium homeostasis, and they could be potential therapeutic targets to osteoporosis in laying hens. The present study investigated the molecular distribution of CaSR and VDR and the localization of CaSR in the kidney, proventriculus (true stomach), duodenum, jejunum, ileum, colon, cecum, shell gland, and tibia of laying hens at 3 different laying stages (19, 40, and 55 wk). The results showed that the relative mRNA abundance of CaSR in the kidney, ileum, proventriculus, duodenum, and colon was higher (P < 0.05) than the other tissues at 40 and 55 wk. The relative mRNA abundance of CaSR in the tibia was higher (P < 0.05) at 55 wk than at 40 wk. However, there were no significant differences in the relative protein abundance of CaSR among all tested tissues at peak production or in each tissue at the 3 different laying stages (P > 0.05). The relative mRNA abundance of VDR was higher (P < 0.05) in the small intestine (duodenum, jejunum, and ileum) when compared with other tissues at the 3 different laying stages. The relative protein abundance of VDR in the duodenum was higher (P < 0.05) than that in the proventriculus, colon, and cecum. There were no significant differences in the VDR expression among the tested tissues at the 3 different laying stages (P > 0.05). The immunohistochemical results showed that the positive staining was found widely in each tissue. Moreover, different laying stages did not affect the localization of CaSR except for the tibia tissue. In conclusion, similar to VDR, CaSR was widely expressed not only in the gut but also in the tibia and shell gland in laying hens. The expression level of CaSR and VDR in all tested tissues was unchanged at the different laying stages.
Collapse
Affiliation(s)
- Qianru Hui
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Xiaoya Zhao
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Peng Lu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Shangxi Liu
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Karmin O
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; CCARM, St. Boniface Hospital Research Centre, Winnipeg, Manitoba R2H 2A6, Canada
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada.
| |
Collapse
|
6
|
Abstract
Umami, the fifth taste, has been recognized as a legitimate taste modality only recently relative to the other tastes. Dozens of compounds from vastly different chemical classes elicit a savory (also called umami) taste. The prototypical umami substance glutamic acid or its salt monosodium glutamate (MSG) is present in numerous savory food sources or ingredients such as kombu (edible kelp), beans, soy sauce, tomatoes, cheeses, mushrooms, and certain meats and fish. Derivatives of glutamate (Glu), other amino acids, nucleotides, and small peptides can also elicit or modulate umami taste. In addition, many potent umami tasting compounds structurally unrelated to amino acids, nucleotides, and MSG have been either synthesized or discovered as naturally occurring in plants and other substances. Over the last 20 years several receptors have been suggested to mediate umami taste, including members of the metabotropic and ionotropic Glu receptor families, and more recently, the heterodimeric G protein-coupled receptor, T1R1/T1R3. Careful assessment of representative umami tasting molecules from several different chemical classes shows activation of T1R1/T1R3 with the expected rank order of potency in cell-based assays. Moreover, 5'-ribonucleotides, molecules known to enhance the savory note of Glu, considerably enhance the effect of MSG on T1R1/T1R3 in vitro. Binding sites are found on at least 4 distinct locations on T1R1/T1R3, explaining the propensity of the receptor to being activated or modulated by many structurally distinct compounds and these binding sites allosterically interact to modulate receptor activity. Activation of T1R1/T1R3 by all known umami substances evaluated and the receptor's pharmacological properties are sufficient to explain the basic human sensory experience of savory taste and it is therefore unlikely that other receptors are involved.
Collapse
|
7
|
Calcium-Sensing Receptor and Regulation of WNK Kinases in the Kidney. Cells 2020; 9:cells9071644. [PMID: 32659887 PMCID: PMC7407487 DOI: 10.3390/cells9071644] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/27/2022] Open
Abstract
The kidney is essential for systemic calcium homeostasis. Urinary calcium excretion can be viewed as an integrative renal response to endocrine and local stimuli. The extracellular calcium-sensing receptor (CaSR) elicits a number of adaptive reactions to increased plasma Ca2+ levels including the control of parathyroid hormone release and regulation of the renal calcium handling. Calcium reabsorption in the distal nephron of the kidney is functionally coupled to sodium transport. Apart from Ca2+ transport systems, CaSR signaling affects relevant distal Na+-(K+)-2Cl- cotransporters, NKCC2 and NCC. NKCC2 and NCC are activated by a kinase cascade comprising with-no-lysine [K] kinases (WNKs) and two homologous Ste20-related kinases, SPAK and OSR1. Gain-of-function mutations within the WNK-SPAK/OSR1-NKCC2/NCC pathway lead to renal salt retention and hypertension, whereas loss-of-function mutations have been associated with salt-losing tubulopathies such as Bartter or Gitelman syndromes. A Bartter-like syndrome has been also described in patients carrying gain-of-function mutations in the CaSR gene. Recent work suggested that CaSR signals via the WNK-SPAK/OSR1 cascade to modulate salt reabsorption along the distal nephron. The review presented here summarizes the latest progress in understanding of functional interactions between CaSR and WNKs and their potential impact on the renal salt handling and blood pressure.
Collapse
|
8
|
Leach K, Hannan FM, Josephs TM, Keller AN, Møller TC, Ward DT, Kallay E, Mason RS, Thakker RV, Riccardi D, Conigrave AD, Bräuner-Osborne H. International Union of Basic and Clinical Pharmacology. CVIII. Calcium-Sensing Receptor Nomenclature, Pharmacology, and Function. Pharmacol Rev 2020; 72:558-604. [PMID: 32467152 PMCID: PMC7116503 DOI: 10.1124/pr.119.018531] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The calcium-sensing receptor (CaSR) is a class C G protein-coupled receptor that responds to multiple endogenous agonists and allosteric modulators, including divalent and trivalent cations, L-amino acids, γ-glutamyl peptides, polyamines, polycationic peptides, and protons. The CaSR plays a critical role in extracellular calcium (Ca2+ o) homeostasis, as demonstrated by the many naturally occurring mutations in the CaSR or its signaling partners that cause Ca2+ o homeostasis disorders. However, CaSR tissue expression in mammals is broad and includes tissues unrelated to Ca2+ o homeostasis, in which it, for example, regulates the secretion of digestive hormones, airway constriction, cardiovascular effects, cellular differentiation, and proliferation. Thus, although the CaSR is targeted clinically by the positive allosteric modulators (PAMs) cinacalcet, evocalcet, and etelcalcetide in hyperparathyroidism, it is also a putative therapeutic target in diabetes, asthma, cardiovascular disease, and cancer. The CaSR is somewhat unique in possessing multiple ligand binding sites, including at least five putative sites for the "orthosteric" agonist Ca2+ o, an allosteric site for endogenous L-amino acids, two further allosteric sites for small molecules and the peptide PAM, etelcalcetide, and additional sites for other cations and anions. The CaSR is promiscuous in its G protein-coupling preferences, and signals via Gq/11, Gi/o, potentially G12/13, and even Gs in some cell types. Not surprisingly, the CaSR is subject to biased agonism, in which distinct ligands preferentially stimulate a subset of the CaSR's possible signaling responses, to the exclusion of others. The CaSR thus serves as a model receptor to study natural bias and allostery. SIGNIFICANCE STATEMENT: The calcium-sensing receptor (CaSR) is a complex G protein-coupled receptor that possesses multiple orthosteric and allosteric binding sites, is subject to biased signaling via several different G proteins, and has numerous (patho)physiological roles. Understanding the complexities of CaSR structure, function, and biology will aid future drug discovery efforts seeking to target this receptor for a diversity of diseases. This review summarizes what is known to date regarding key structural, pharmacological, and physiological features of the CaSR.
Collapse
Affiliation(s)
- Katie Leach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Fadil M Hannan
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Tracy M Josephs
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Andrew N Keller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Thor C Møller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Donald T Ward
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Enikö Kallay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rebecca S Mason
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Rajesh V Thakker
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Daniela Riccardi
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Arthur D Conigrave
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| | - Hans Bräuner-Osborne
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Australia (K.L., T.M.J., A.N.K.); Nuffield Department of Women's & Reproductive Health (F.M.H.) and Academic Endocrine Unit, Radcliffe Department of Clinical Medicine (F.M.H., R.V.T.), University of Oxford, Oxford, United Kingdom; Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark (T.C.M., H.B.-O.); Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom (D.T.W.); Department of Pathophysiology and Allergy Research, Medical University of Vienna, Vienna, Austria (E.K.); Physiology, School of Medical Sciences and Bosch Institute (R.S.M.) and School of Life & Environmental Sciences, Charles Perkins Centre (A.D.C.), University of Sydney, Sydney, Australia; and School of Biosciences, Cardiff University, Cardiff, United Kingdom (D.R.)
| |
Collapse
|
9
|
Huang H, Pu Y, Liao D, Zhu Z, Wang J, Cui Y. The expression of calcium-sensing receptor during rotavirus induced diarrhea in neonatal mice. GAZZETTA MEDICA ITALIANA ARCHIVIO PER LE SCIENZE MEDICHE 2019. [DOI: 10.23736/s0393-3660.18.03910-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Renal Ca 2+ and Water Handling in Response to Calcium Sensing Receptor Signaling: Physiopathological Aspects and Role of CaSR-Regulated microRNAs. Int J Mol Sci 2019; 20:ijms20215341. [PMID: 31717830 PMCID: PMC6862519 DOI: 10.3390/ijms20215341] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/17/2019] [Accepted: 10/23/2019] [Indexed: 12/31/2022] Open
Abstract
Calcium (Ca2+) is a universal and vital intracellular messenger involved in a diverse range of cellular and biological processes. Changes in the concentration of extracellular Ca2+ can disrupt the normal cellular activities and the physiological function of these systems. The calcium sensing receptor (CaSR) is a unique G protein-coupled receptor (GPCR) activated by extracellular Ca2+ and by other physiological cations, aminoacids, and polyamines. CaSR is the main controller of the extracellular Ca2+ homeostatic system by regulating parathyroid hormone (PTH) secretion and, in turn, Ca2+ absorption and resorption. Recent advances highlight novel signaling pathways activated by CaSR signaling involving the regulation of microRNAs (miRNAs). miRNAs are naturally-occurring small non-coding RNAs that regulate post-transcriptional gene expression and are involved in several diseases. We previously described that high luminal Ca2+ in the renal collecting duct attenuates short-term vasopressin-induced aquaporin-2 (AQP2) trafficking through CaSR activation. Moreover, we demonstrated that CaSR signaling reduces AQP2 abundance via AQP2-targeting miRNA-137. This review summarizes the recent data related to CaSR-regulated miRNAs signaling pathways in the kidney.
Collapse
|
11
|
Lysyy T, Lalani AS, Olek EA, Diala I, Geibel JP. The calcium-sensing receptor: A novel target for treatment and prophylaxis of neratinib-induced diarrhea. Pharmacol Res Perspect 2019; 7:e00521. [PMID: 31523434 PMCID: PMC6743423 DOI: 10.1002/prp2.521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 06/17/2019] [Accepted: 06/23/2019] [Indexed: 11/08/2022] Open
Abstract
Diarrhea is one of the most commonly reported adverse effect of hemotherapy and targeted cancer therapies, such as tyrosine kinase inhibitors (TKI), which often significantly impact patient quality of life, morbidity, and mortality. Neratinib is an oral, irreversible pan-HER tyrosine kinase inhibitor, which is clinically active in HER2-positive breast cancer. Diarrhea is the most common side effect of this potent anticancer drug and the reasons for this adverse effect are still largely unclear. We have recently shown that activation of the calcium-sensing Receptor (CaSR) can inhibit secretagogue-induced diarrhea in the colon, therefore we hypothesized that CaSR activation may also mitigate neratinib-induced diarrhea. Using an established ex vivo model of isolated intestinal segments, we investigated neratinib-induced fluid secretion and the ability of CaSR activation to abate the secretion. In our study, individual segments of the rat intestine (proximal, middle, distal small intestine, and colon) were procured and perfused intraluminally with various concentrations of neratinib (10, 50, 100 nmol L-1). In a second set of comparison experiments, intraluminal calcium concentration was modulated (from 1.0 to 5.0 or 7.0 mmol L-1), both pre- and during neratinib exposure. In a separate series of experiments R-568, a known calcimimetic was used CaSR activation and effect was compared to elevated Ca2+ concentration (5.0 and 7.0 mmol L-1). As a result, CaSR activation with elevated Ca2+ concentration (5.0 and 7.0 mmol L-1) or R-568 markedly reduced neratinib-induced fluid secretion in a dose-dependent manner. Pre-exposure to elevated luminal calcium solutions (5.0 and 7.0 mmol L-1) also prevented neratinib-induced fluid secretion. In conclusion, exposure to luminal neratinib resulted in a pronounced elevation in fluid secretion in the rat intestine. Increasing luminal calcium inhibits the neratinib-associated fluid secretion in a dose-dependent manner. These results suggest that CaSR activation may be a potent therapeutic target to reduce chemotherapy-associated diarrhea.
Collapse
Affiliation(s)
- Taras Lysyy
- Department of SurgeryYale University School of MedicineNew HavenCTUSA
| | | | | | | | - John P. Geibel
- Department of SurgeryYale University School of MedicineNew HavenCTUSA
- Department of Cellular and Molecular PhysiologyYale University School of MedicineNew HavenCTUSA
| |
Collapse
|
12
|
van der Vorst EPC, Peters LJF, Müller M, Gencer S, Yan Y, Weber C, Döring Y. G-Protein Coupled Receptor Targeting on Myeloid Cells in Atherosclerosis. Front Pharmacol 2019; 10:531. [PMID: 31191301 PMCID: PMC6540917 DOI: 10.3389/fphar.2019.00531] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/29/2019] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis, the underlying cause of the majority of cardiovascular diseases (CVDs), is a lipid-driven, inflammatory disease of the large arteries. Gold standard therapy with statins and the more recently developed proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have improved health conditions among CVD patients by lowering low density lipoprotein (LDL) cholesterol. Nevertheless, a substantial part of these patients is still suffering and it seems that 'just' lipid lowering is insufficient. The results of the Canakinumab Anti-inflammatory Thrombosis Outcome Study (CANTOS) have now proven that inflammation is a key driver of atherosclerosis and that targeting inflammation improves CVD outcomes. Therefore, the identification of novel drug targets and development of novel therapeutics that block atherosclerosis-specific inflammatory pathways have to be promoted. The inflammatory processes in atherosclerosis are facilitated by a network of immune cells and their subsequent responses. Cell networking is orchestrated by various (inflammatory) mediators which interact, bind and induce signaling. Over the last years, G-protein coupled receptors (GPCRs) emerged as important players in recognizing these mediators, because of their diverse functions in steady state but also and specifically during chronic inflammatory processes - such as atherosclerosis. In this review, we will therefore highlight a selection of these receptors or receptor sub-families mainly expressed on myeloid cells and their role in atherosclerosis. More specifically, we will focus on chemokine receptors, both classical and atypical, formyl-peptide receptors, the chemerin receptor 23 and the calcium-sensing receptor. When information is available, we will also describe the consequences of their targeting which may hold promising options for future treatment of CVD.
Collapse
Affiliation(s)
- Emiel P. C. van der Vorst
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- Department of Pathology, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
- Institute for Molecular Cardiovascular Research/Interdisciplinary Center for Clinical Research, RWTH Aachen University, Aachen, Germany
- Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| | - Linsey J. F. Peters
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Madeleine Müller
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Selin Gencer
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Yi Yan
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Christian Weber
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Yvonne Döring
- Institute for Cardiovascular Prevention, Ludwig-Maximilians-University Munich, Munich, Germany
- Munich Heart Alliance, German Centre for Cardiovascular Research, Munich, Germany
| |
Collapse
|
13
|
Zhou H, Huang H, You Z, Shadhu K, Ramlagun D, Qiang C, Li P, Qi L, Shen Y, Zhou M, Chen Y, Fei S, Wang X. Genetic polymorphism (rs6776158) in CaSR gene is associated with risk of nephrolithiasis in Chinese population. Medicine (Baltimore) 2018; 97:e13037. [PMID: 30407299 PMCID: PMC6250535 DOI: 10.1097/md.0000000000013037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The objective of this study is to find about the association between calcium-sensing receptor (CaSR) genetic variants and susceptibility to nephrolithiasis in the Chinese Han population.This hospital-based case-control study included 319 nephrolithiasis cases and 378 healthy controls subjects. Two SNPs in CaSR were genotyped using the TaqMan assay.We found that subjects carrying the G allele of rs6776158 (AG and GG) had significantly higher risk of nephrolithiasis compared to the AA genotype (P = .015 and .009, respectively).Our results indicate that rs6776158 polymorphism that might elevate the risk of nephrolithiasis in the Chinese population.
Collapse
Affiliation(s)
- Hai Zhou
- Department of Urology, Yangzhou No.1 People's Hospital, Yangzhou
| | - Huaxing Huang
- First Clinical College, Nanjing Medical University, Nanjing
| | - Zebin You
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kamleshsingh Shadhu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dadhija Ramlagun
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Cao Qiang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pu Li
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lezhong Qi
- Department of Urology, Yangzhou No.1 People's Hospital, Yangzhou
| | - Yuyong Shen
- Department of Urology, Yangzhou No.1 People's Hospital, Yangzhou
| | - Ming Zhou
- Department of Urology, Yangzhou No.1 People's Hospital, Yangzhou
| | - Yuming Chen
- Department of Urology, Yangzhou No.1 People's Hospital, Yangzhou
| | - Shangchun Fei
- Department of Urology, Yangzhou No.1 People's Hospital, Yangzhou
| | - Xiaoxiang Wang
- Department of Urology, Yangzhou No.1 People's Hospital, Yangzhou
| |
Collapse
|
14
|
Calcium-sensing receptor in nutrient sensing: an insight into the modulation of intestinal homoeostasis. Br J Nutr 2018; 120:881-890. [DOI: 10.1017/s0007114518002088] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AbstractThe animal gut effectively prevents the entry of hazardous substances and microbes while permitting the transfer of nutrients, such as water, electrolytes, vitamins, proteins, lipids, carbohydrates, minerals and microbial metabolites, which are intimately associated with intestinal homoeostasis. The gut maintains biological functions through its nutrient-sensing receptors, including the Ca-sensing receptor (CaSR), which activates a variety of signalling pathways, depending on cellular context. CaSR coordinates food digestion and nutrient absorption, promotes cell proliferation and differentiation, regulates energy metabolism and immune response, stimulates hormone secretion, mitigates secretory diarrhoea and enhances intestinal barrier function. Thus, CaSR is crucial to the maintenance of gut homoeostasis and protection of intestinal health. In this review, we focused on the emerging roles of CaSR in the modulation of intestinal homoeostasis including related underlying mechanisms. By elucidating the relationship between CaSR and animal gut homoeostasis, effective and inexpensive methods for treating intestinal health imbalance through nutritional manipulation can be developed. This article is expected to provide experimental data of the effects of CaSR on animal or human health.
Collapse
|
15
|
Tang L, Jiang L, McIntyre ME, Petrova E, Cheng SX. Calcimimetic acts on enteric neuronal CaSR to reverse cholera toxin-induced intestinal electrolyte secretion. Sci Rep 2018; 8:7851. [PMID: 29777154 PMCID: PMC5959902 DOI: 10.1038/s41598-018-26171-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/08/2018] [Indexed: 01/19/2023] Open
Abstract
Treatment of acute secretory diarrheal illnesses remains a global challenge. Enterotoxins produce secretion through direct epithelial action and indirectly by activating enteric nervous system (ENS). Using a microperfused colonic crypt technique, we have previously shown that R568, a calcimimetic that activates the calcium-sensing receptor (CaSR), can act on intestinal epithelium and reverse cholera toxin-induced fluid secretion. In the present study, using the Ussing chamber technique in conjunction with a tissue-specific knockout approach, we show that the effects of cholera toxin and CaSR agonists on electrolyte secretion by the intestine can also be attributed to opposing actions of the toxin and CaSR on the activity of the ENS. Our results suggest that targeting intestinal CaSR might represent a previously undescribed new approach for treating secretory diarrheal diseases and other conditions with ENS over-activation.
Collapse
Affiliation(s)
- Lieqi Tang
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Lingli Jiang
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Megan E McIntyre
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Ekaterina Petrova
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA
| | - Sam X Cheng
- Department of Pediatrics, University of Florida, Gainesville, FL, 32610, USA. .,Department of Pediatrics, Division of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
16
|
RNA-seq analysis of the kidneys of broiler chickens fed diets containing different concentrations of calcium. Sci Rep 2017; 7:11740. [PMID: 28924246 PMCID: PMC5603577 DOI: 10.1038/s41598-017-11379-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/23/2017] [Indexed: 01/13/2023] Open
Abstract
Calcium (Ca) is required for normal growth and is involved in cellular physiology, signal transduction, and bone mineralization. In humans, inadequate Ca intake causes hypocalcaemia, and excessive Ca intake causes hypercalcemia. In chicken, Ca is also required for body weight gain and eggshell formation. However, transcriptomic responses to low/high Ca intake, and mechanisms affecting body weight have not been explored. In this study, we performed comparative RNA sequencing (RNA-seq) using the kidney of broiler chickens fed diets containing 0.8, 1.0, and 1.2% Ca. Annotation of RNA-seq data revealed a significant number of differentially expressed genes (DEGs) in the kidney via pairwise comparison using Cufflinks and edgeR. Using edgeR, we identified 12 DEGs; seven overlapped with those found by cufflinks. Seven DEGs were validated by real-time quantitative-PCR (qRT-PCR) in Ca-supplemented kidneys, and the results correlated with the RNA-seq data. DEGs identified by cufflinks/edgeR were subjected to pathway enrichment, protein/protein interaction, and co-occurrence analyses to determine their involvement in disease. The National Research Council (NRC) recommended Ca intake for 21-day post-hatch broilers is about 1.0%. Our findings suggest that higher-than-recommended Ca intake (1.2%) could reduce body weight gain in broilers, and that affected DEGs are related to stress-induced diseases, such as hypertension.
Collapse
|
17
|
Conigrave AD. The Calcium-Sensing Receptor and the Parathyroid: Past, Present, Future. Front Physiol 2016; 7:563. [PMID: 28018229 PMCID: PMC5156698 DOI: 10.3389/fphys.2016.00563] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 11/07/2016] [Indexed: 12/13/2022] Open
Abstract
Parathyroid hormone (PTH) defends the extracellular fluid from hypocalcemia and has powerful and well-documented actions on the skeleton and renal tubular system. To achieve a satisfactory stable plasma calcium level, the secretion of PTH, and the resulting serum PTH level, is titrated carefully to the prevailing plasma ionized Ca2+ concentration via a Ca2+ sensing mechanism that mediates feedback inhibition of PTH secretion. Herein, I consider the properties of the parathyroid Ca2+ sensing mechanism, the identity of the Ca2+ sensor, the intracellular biochemical mechanisms that it controls, the manner of its integration with other components of the PTH secretion control mechanism, and its modulation by other nutrients. Together the well-established, recently elucidated, and yet-to-be discovered elements of the story constitute the past, present, and future of the parathyroid and its calcium-sensing receptor (CaSR).
Collapse
Affiliation(s)
- Arthur D Conigrave
- Faculties of Science and Medicine, School of Life and Environmental Sciences, Charles Perkins Centre, University of Sydney Sydney, NSW, Australia
| |
Collapse
|
18
|
Vorob'ev VN, Mirziev SI, Alexandrov EA, Sibgatullin TA. Characteristics of water and ion exchange of Elodea nuttallii cells at high concentrations of lanthanides. CHEMOSPHERE 2016; 165:329-334. [PMID: 27664522 DOI: 10.1016/j.chemosphere.2016.09.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/09/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
Changes of diffusive permeability of membranes of Elodea nuttallii cells following a short-term (60 min) treatment with high concentrations of lanthanides were recorded by the 1H NMR-diffusometry and conductometry methods. The 1-h infiltration of segments of Elodea nuttallii internodes in 10 mM solutions of nitrates of La, Nd and Lu resulted in the increased leakage of electrolytes from cells, but has no effect on a water diffusive permeability of membranes. In samples subjected to a 30 min pretreatment with a water channel inhibitor HgCl2 the water diffusive permeability of membranes (Pd) drops down under the influence of lanthanides, as well as an outcome of electrolytes. To explain the observed effects the change of spontaneous curvature of membrane lipid layer has been taken into consideration. The interaction of lanthanides with lipids of plasmalemma leads to the negative spontaneous curvature of lipid layer at which membrane channels are unclosed. Blocking of the ionic and water channels by mercury ions compensate the effect of change of spontaneous curvature of lipid layer.
Collapse
Affiliation(s)
- Vladimir N Vorob'ev
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Center, Russian Academy of Sciences, P.O. Box 30, Lobachevsky st. 2/13, Kazan, 420111, Russia; Kazan (Volga) Federal University, Kremlevsky st. 16, Kazan, 420008, Russia
| | - Samat I Mirziev
- Kazan (Volga) Federal University, Kremlevsky st. 16, Kazan, 420008, Russia
| | | | - Timur A Sibgatullin
- Kazan Institute of Biochemistry and Biophysics, Kazan Science Center, Russian Academy of Sciences, P.O. Box 30, Lobachevsky st. 2/13, Kazan, 420111, Russia.
| |
Collapse
|
19
|
Papadopoulou A, Gole E, Melachroinou K, Meristoudis C, Siahanidou T, Papadimitriou A. Identification and Functional Characterization of a Calcium-Sensing Receptor Mutation in an Infant with Familial Hypocalciuric Hypercalcemia. J Clin Res Pediatr Endocrinol 2016; 8:341-6. [PMID: 27087013 PMCID: PMC5096500 DOI: 10.4274/jcrpe.2800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Familial hypocalciuric hypercalcemia (FHH) is an autosomal dominant disorder, associated with inactivating mutations of the calcium-sensing receptor (CaSR). To evaluate the functional significance of a CaSR mutation, identified in a young infant who presented with hypercalcemia and hypocalciuria. The CaSR gene coding sequences were analyzed by polymerase chain reaction amplification and direct sequencing analysis. The mutation identified was introduced by site-directed mutagenesis into a wild-type (WT) CaSR plasmid, and human embryonic kidney 293 T cells were transfected with either the WT or mutant CaSR. The function of the mutated CaSR protein was analyzed by evaluating the free intracellular calcium [(Ca2+)i] response after challenge with extracellular calcium (Ca2+). We identified a heterozygous mutation c.772_773delGTinsA in exon 4 resulting in the substitution of amino acid valine (Val) with amino acid arginine (Arg) and the premature pause of the translation 46 amino acids later (Val258ArgfsTer47). Functional assay showed that cells transfected with the mutant CaSR had a significantly poorer response to extracellular Ca2+ stimulation compared with the WT. We have shown that the c.772_773delGTinsA mutation causes a significant alteration of CaSR function leading to features of FHH in an affected young infant since the first months of life.
Collapse
Affiliation(s)
- Anna Papadopoulou
- Athens University Medical School, University General Hospital "Attikon", Third Department of Pediatrics, Athens, Greece, Phone: +30 2105832228 E-mail:
| | - Evangelia Gole
- Athens University Medical School, University General Hospital “Attikon”, Third Department of Pediatrics, Athens, Greece
| | - Katerina Melachroinou
- Biomedical Research Foundation of the Academy of Athens, Division of Basic Neurosciences, Athens, Greece
| | - Christos Meristoudis
- University of Ioannina, Department of Biological Applications and Technology, Ioannina, Greece
| | - Tania Siahanidou
- Athens University Medical School, “Aghia Sophia” Children’s Hospital, First Department of Pediatrics, Athens, Greece
| | - Anastasios Papadimitriou
- Athens University Medical School, University General Hospital “Attikon”, Third Department of Pediatrics, Athens, Greece
| |
Collapse
|
20
|
Gamba G. The evolving field of salt transport regulation in the Steve Hebert Lecture. Am J Physiol Renal Physiol 2016; 311:F68-70. [PMID: 27147671 DOI: 10.1152/ajprenal.00229.2016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Gerardo Gamba
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| |
Collapse
|
21
|
Díaz-Soto G, Rocher A, García-Rodríguez C, Núñez L, Villalobos C. The Calcium-Sensing Receptor in Health and Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:321-369. [PMID: 27692178 DOI: 10.1016/bs.ircmb.2016.05.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The extracellular calcium-sensing receptor (CaSR) is a unique G protein-coupled receptor (GPCR) activated by extracellular Ca2+ and by other physiological cations including Mg2+, amino acids, and polyamines. CaSR is the most important master controller of the extracellular Ca2+ homeostatic system being expressed at high levels in the parathyroid gland, kidney, gut and bone, where it regulates parathyroid hormone (PTH) secretion, vitamin D synthesis, and Ca2+ absorption and resorption, respectively. Gain and loss of function mutations in the CaSR are responsible for severe disturbances in extracellular Ca2+ metabolism. CaSR agonists (calcimimetics) and antagonists (calcilytics) are in use or under intense research for treatment of hyperparathyroidism secondary to kidney failure and hypocalcemia with hypercalciuria, respectively. Expression of the CaSR extends to other tissues and systems beyond the extracellular Ca2+ homeostatic system including the cardiovascular system, the airways, and the nervous system where it may play physiological functions yet to be fully understood. As a consequence, CaSR has been recently involved in different pathologies including uncontrolled blood pressure, vascular calcification, asthma, and Alzheimer's disease. Finally, the CaSR has been shown to play a critical role in cancer either contributing to bone metastasis and/or acting as a tumor suppressor in some forms of cancer (parathyroid cancer, colon cancer, and neuroblastoma) and as oncogene in others (breast and prostate cancers). Here we review the role of CaSR in health and disease in calciotropic tissues and others beyond the extracellular calcium homeostatic system.
Collapse
Affiliation(s)
- G Díaz-Soto
- Endocrinology and Nutrition, Valladolid University Hospital, Valladolid, Spain
| | - A Rocher
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, Valladolid, Spain; Institute of Molecular Biology and Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain
| | - C García-Rodríguez
- Institute of Molecular Biology and Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain
| | - L Núñez
- Department of Biochemistry and Molecular Biology and Physiology, University of Valladolid, Valladolid, Spain; Institute of Molecular Biology and Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain
| | - C Villalobos
- Institute of Molecular Biology and Genetics (IBGM), University of Valladolid and National Research Council (CSIC), Valladolid, Spain.
| |
Collapse
|
22
|
Tang L, Cheng CY, Sun X, Pedicone AJ, Mohamadzadeh M, Cheng SX. The Extracellular Calcium-Sensing Receptor in the Intestine: Evidence for Regulation of Colonic Absorption, Secretion, Motility, and Immunity. Front Physiol 2016; 7:245. [PMID: 27458380 PMCID: PMC4914593 DOI: 10.3389/fphys.2016.00245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 06/03/2016] [Indexed: 12/14/2022] Open
Abstract
Different from other epithelia, the intestinal epithelium has the complex task of providing a barrier impeding the entry of toxins, food antigens, and microbes, while at the same time allowing for the transfer of nutrients, electrolytes, water, and microbial metabolites. These molecules/organisms are transported either transcellularly, crossing the apical and basolateral membranes of enterocytes, or paracellularly, passing through the space between enterocytes. Accordingly, the intestinal epithelium can affect energy metabolism, fluid balance, as well as immune response and tolerance. To help accomplish these complex tasks, the intestinal epithelium has evolved many sensing receptor mechanisms. Yet, their roles and functions are only now beginning to be elucidated. This article explores one such sensing receptor mechanism, carried out by the extracellular calcium-sensing receptor (CaSR). In addition to its established function as a nutrient sensor, coordinating food digestion, nutrient absorption, and regulating energy metabolism, we present evidence for the emerging role of CaSR in the control of intestinal fluid homeostasis and immune balance. An additional role in the modulation of the enteric nerve activity and motility is also discussed. Clearly, CaSR has profound effects on many aspects of intestinal function. Nevertheless, more work is needed to fully understand all functions of CaSR in the intestine, including detailed mechanisms of action and specific pathways involved. Considering the essential roles CaSR plays in gastrointestinal physiology and immunology, research may lead to a translational opportunity for the development of novel therapies that are based on CaSR's unique property of using simple nutrients such as calcium, polyamines, and certain amino acids/oligopeptides as activators. It is possible that, through targeting of intestinal CaSR with a combination of specific nutrients, oral solutions that are both inexpensive and practical may be developed to help in conditioning the gut microenvironment and in maintaining digestive health.
Collapse
Affiliation(s)
- Lieqi Tang
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida Gainesville, FL, USA
| | - Catherine Y Cheng
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida Gainesville, FL, USA
| | - Xiangrong Sun
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida Gainesville, FL, USA
| | - Alexandra J Pedicone
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida Gainesville, FL, USA
| | - Mansour Mohamadzadeh
- Department of Medicine, Center for Inflammation and Mucosal Immunology, University of Florida Gainesville, FL, USA
| | - Sam X Cheng
- Department of Pediatrics, Gastroenterology, Hepatology, and Nutrition, University of Florida Gainesville, FL, USA
| |
Collapse
|
23
|
Moor MB, Bonny O. Ways of calcium reabsorption in the kidney. Am J Physiol Renal Physiol 2016; 310:F1337-50. [PMID: 27009338 DOI: 10.1152/ajprenal.00273.2015] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 03/17/2016] [Indexed: 11/22/2022] Open
Abstract
The role of the kidney in calcium homeostasis has been reshaped from a classic view in which the kidney was regulated by systemic calcitropic hormones such as vitamin D3 or parathyroid hormone to an organ actively taking part in the regulation of calcium handling. With the identification of the intrinsic renal calcium-sensing receptor feedback system, the regulation of paracellular calcium transport involving claudins, and new paracrine regulators such as klotho, the kidney has emerged as a crucial modulator not only of calciuria but also of calcium homeostasis. This review summarizes recent molecular and endocrine contributors to renal calcium handling and highlights the tight link between calcium and sodium reabsorption in the kidney.
Collapse
Affiliation(s)
- Matthias B Moor
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and
| | - Olivier Bonny
- Department of Pharmacology and Toxicology, University of Lausanne, Lausanne, Switzerland; and Service of Nephrology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
24
|
Tang H, Yamamura A, Yamamura H, Song S, Fraidenburg DR, Chen J, Gu Y, Pohl NM, Zhou T, Jiménez-Pérez L, Ayon RJ, Desai AA, Goltzman D, Rischard F, Khalpey Z, Black SM, Garcia JGN, Makino A, Yuan JXJ. Pathogenic role of calcium-sensing receptors in the development and progression of pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2016; 310:L846-59. [PMID: 26968768 DOI: 10.1152/ajplung.00050.2016] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/08/2016] [Indexed: 01/19/2023] Open
Abstract
An increase in cytosolic free Ca(2+) concentration ([Ca(2+)]cyt) in pulmonary arterial smooth muscle cells (PASMC) is a major trigger for pulmonary vasoconstriction and a critical stimulation for PASMC proliferation and migration. Previously, we demonstrated that expression and function of calcium sensing receptors (CaSR) in PASMC from patients with idiopathic pulmonary arterial hypertension (IPAH) and animals with experimental pulmonary hypertension (PH) were greater than in PASMC from normal subjects and control animals. However, the mechanisms by which CaSR triggers Ca(2+) influx in PASMC and the implication of CaSR in the development of PH remain elusive. Here, we report that CaSR functionally interacts with TRPC6 to regulate [Ca(2+)]cyt in PASMC. Downregulation of CaSR or TRPC6 with siRNA inhibited Ca(2+)-induced [Ca(2+)]cyt increase in IPAH-PASMC (in which CaSR is upregulated), whereas overexpression of CaSR or TRPC6 enhanced Ca(2+)-induced [Ca(2+)]cyt increase in normal PASMC (in which CaSR expression level is low). The upregulated CaSR in IPAH-PASMC was also associated with enhanced Akt phosphorylation, whereas blockade of CaSR in IPAH-PASMC attenuated cell proliferation. In in vivo experiments, deletion of the CaSR gene in mice (casr(-/-)) significantly inhibited the development and progression of experimental PH and markedly attenuated acute hypoxia-induced pulmonary vasoconstriction. These data indicate that functional interaction of upregulated CaSR and upregulated TRPC6 in PASMC from IPAH patients and animals with experimental PH may play an important role in the development and progression of sustained pulmonary vasoconstriction and pulmonary vascular remodeling. Blockade or downregulation of CaSR and/or TRPC6 with siRNA or miRNA may be a novel therapeutic strategy to develop new drugs for patients with pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Haiyang Tang
- Department of Medicine, Division of Translational and Regenerative Medicine
| | - Aya Yamamura
- Kinjo Gakuin University School of Pharmacy, Nagoya, Japan
| | - Hisao Yamamura
- Nagoya City University Graduate School of Pharmaceutical Sciences, Nagoya, Japan; and
| | - Shanshan Song
- Department of Medicine, Division of Translational and Regenerative Medicine
| | - Dustin R Fraidenburg
- Departments of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Jiwang Chen
- Departments of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Yali Gu
- Department of Medicine, Division of Translational and Regenerative Medicine
| | - Nicole M Pohl
- Departments of Medicine and Pharmacology, University of Illinois at Chicago, Chicago, Illinois
| | - Tong Zhou
- Department of Medicine, Division of Translational and Regenerative Medicine
| | | | - Ramon J Ayon
- Department of Medicine, Division of Translational and Regenerative Medicine
| | - Ankit A Desai
- Department of Medicine, Division of Translational and Regenerative Medicine
| | - David Goltzman
- Department of Medicine and Physiology, Royal Victoria Hospital, Montreal, Quebec, Canada
| | - Franz Rischard
- Department of Medicine, Division of Translational and Regenerative Medicine
| | - Zain Khalpey
- Department of Surgery, University of Arizona College of Medicine, Tucson, Arizona
| | - Stephan M Black
- Department of Medicine, Division of Translational and Regenerative Medicine, Department of Physiology, and
| | - Joe G N Garcia
- Department of Medicine, Division of Translational and Regenerative Medicine
| | - Ayako Makino
- Department of Medicine, Division of Translational and Regenerative Medicine, Department of Physiology, and
| | - Jason X J Yuan
- Department of Medicine, Division of Translational and Regenerative Medicine, Department of Physiology, and
| |
Collapse
|
25
|
Design and synthesis of calindol derivatives as potent and selective calcium sensing receptor agonists. Bioorg Med Chem 2016; 24:554-69. [DOI: 10.1016/j.bmc.2015.12.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/13/2015] [Accepted: 12/10/2015] [Indexed: 01/04/2023]
|
26
|
Graca JAZ, Schepelmann M, Brennan SC, Reens J, Chang W, Yan P, Toka H, Riccardi D, Price SA. Comparative expression of the extracellular calcium-sensing receptor in the mouse, rat, and human kidney. Am J Physiol Renal Physiol 2015; 310:F518-33. [PMID: 26661650 DOI: 10.1152/ajprenal.00208.2015] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 11/30/2015] [Indexed: 11/22/2022] Open
Abstract
The calcium-sensing receptor (CaSR) was cloned over 20 years ago and functionally demonstrated to regulate circulating levels of parathyroid hormone by maintaining physiological serum ionized calcium concentration ([Ca(2+)]). The receptor is highly expressed in the kidney; however, intrarenal and intraspecies distribution remains controversial. Recently, additional functions of the CaSR receptor in the kidney have emerged, including parathyroid hormone-independent effects. It is therefore critical to establish unequivocally the localization of the CaSR in the kidney to relate this to its proposed physiological roles. In this study, we determined CaSR expression in mouse, rat, and human kidneys using in situ hybridization, immunohistochemistry (using 8 different commercially available and custom-made antibodies), and proximity ligation assays. Negative results in mice with kidney-specific CaSR ablation confirmed the specificity of the immunohistochemistry signal. Both in situ hybridization and immunohistochemistry showed CaSR expression in the thick ascending limb, distal tubule, and collecting duct of all species, with the thick ascending limb showing the highest levels. Within the collecting ducts, there was significant heterogeneity of expression between cell types. In the proximal tubule, lower levels of immunoreactivity were detected by immunohistochemistry and proximity ligation assays. Proximity ligation assays were the only technique to demonstrate expression within glomeruli. This study demonstrated CaSR expression throughout the kidney with minimal discrepancy between species but with significant variation in the levels of expression between cell and tubule types. These findings clarify the intrarenal distribution of the CaSR and enable elucidation of the full physiological roles of the receptor within this organ.
Collapse
Affiliation(s)
- J A Z Graca
- Pathology Sciences, AstraZeneca R&D, Macclesfield, United Kingdom; School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - M Schepelmann
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - S C Brennan
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - J Reens
- Pathology Sciences, AstraZeneca R&D, Macclesfield, United Kingdom
| | - W Chang
- Department of Medicine, UCSF School of Medicine, San Francisco, California
| | - P Yan
- Division of Nephrology, Beth Israel Deaconess Medical Center, Boston, Massachusetts; and
| | - H Toka
- Division of Nephrology and Hyperension, Eastern Virginia Medical School, Norfolk, Virginia
| | - D Riccardi
- School of Biosciences, Cardiff University, Cardiff, United Kingdom;
| | - S A Price
- Pathology Sciences, AstraZeneca R&D, Macclesfield, United Kingdom
| |
Collapse
|
27
|
Pipino C, Di Tomo P, Mandatori D, Cianci E, Lanuti P, Cutrona MB, Penolazzi L, Pierdomenico L, Lambertini E, Antonucci I, Sirolli V, Bonomini M, Romano M, Piva R, Marchisio M, Pandolfi A. Calcium sensing receptor activation by calcimimetic R-568 in human amniotic fluid mesenchymal stem cells: correlation with osteogenic differentiation. Stem Cells Dev 2015; 23:2959-71. [PMID: 25036254 DOI: 10.1089/scd.2013.0627] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human amniotic fluid mesenchymal stem cells (hAFMSCs) are promising for therapeutic applications in bone damage. Calcium sensing receptor (CaSR), a G protein-coupled receptor, plays a physiological role in the regulation of bone metabolism. Thus, the bone CaSR could be targeted by calcimimetic agonists, which may be potentially helpful in treating bone diseases. The aim of our study was to characterize CaSR expression in hAFMSCs and to assess the activity of calcimimetic R-568 during in vitro osteogenesis. Using western blotting, immunofluorescence, and flow cytometry, we consistently observed constitutive CaSR in osteo-differentiating hAFMSCs. Notably, both R-568 and calcium significantly enhanced hAFMSC osteogenic differentiation after exposure to osteogenic medium. To provide further evidence of the involvement of CaSR in osteogenesis, we correlated its expression with that of established osteogenic markers, that is, alkaline phosphatase (ALP), runt-related transcription factor 2 (Runx2), and osteopontin (OPN), and novel, not yet completely defined regulators of osteogenesis. Among these are β-catenin and Slug, which are mediators of Wnt signaling, and nuclear factor of activated T cells c1 (NFATc1), which plays a critical role in calcium/calcineurin signaling. Taken together, our results demonstrate that CaSR is expressed in hAFMSCs, positively correlates with osteogenic markers, and is activated by R-568. Notably, downregulation of CaSR by RNA interference supports the conclusion that CaSR activation plays a central role in hAFMSC osteogenesis. Thus, this study provides significant information on the mechanisms of hAFMSC osteogenesis, which could provide additional molecular basis for the use of calcimimetics in bone regenerative medicine.
Collapse
Affiliation(s)
- Caterina Pipino
- 1 Department of Experimental and Clinical Sciences, School of Medicine and Health Sciences, "G. d'Annunzio" University Chieti-Pescara , Chieti, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hudali T, Takkar C. Hypocalcemia and hyperkalemia during magnesium infusion therapy in a pre-eclamptic patient. Clin Case Rep 2015; 3:827-31. [PMID: 26509017 PMCID: PMC4614650 DOI: 10.1002/ccr3.356] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/16/2015] [Accepted: 07/25/2015] [Indexed: 11/23/2022] Open
Abstract
We present a case of prominent hypocalcemia and hyperkalemia attributed to magnesium infusion in a preeclamptic patient. Iatrogenic hypermagnesemia is an underrecognized cause of hypocalcemia and hyperkalemia. Our report illustrates the effects of magnesium therapy on serum calcium and potassium, necessitating close electrolytes monitoring when used.
Collapse
Affiliation(s)
- Tamer Hudali
- Southern Illinois University Springfield, Illinois
| | | |
Collapse
|
29
|
Tang L, Peng M, Liu L, Chang W, Binder HJ, Cheng SX. Calcium-sensing receptor stimulates Cl(-)- and SCFA-dependent but inhibits cAMP-dependent HCO3(-) secretion in colon. Am J Physiol Gastrointest Liver Physiol 2015; 308:G874-83. [PMID: 25792563 PMCID: PMC4437021 DOI: 10.1152/ajpgi.00341.2014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 03/10/2015] [Indexed: 02/07/2023]
Abstract
Colonic bicarbonate (HCO3(-)) secretion is a well-established physiological process that is closely linked to overall fluid and electrolyte movement in the mammalian colon. These present studies show that extracellular calcium-sensing receptor (CaSR), a fundamental mechanism for sensing and regulating ionic and nutrient compositions of extracellular milieu in the small and large intestine, regulates HCO3(-) secretion. Basal and induced HCO3(-) secretory responses to CaSR agonists were determined by pH stat techniques used in conjunction with short-circuit current measurements in mucosa from rat distal colon mounted in Ussing chambers. R568, a specific CaSR activator, stimulated lumen Cl(-)- and short-chain fatty acid (SCFA)-dependent HCO3(-) secretion but inhibited cyclic nucleotide-activated HCO3(-) secretion. Consequently, at physiological conditions (either at basal or during lumen acid challenge) when electroneutral Cl(-)/HCO3(-) and SCFA/HCO3(-) exchangers dominate, CaSR stimulates HCO3(-) secretion; in contrast, in experimental conditions that stimulate fluid and HCO3(-) secretion, e.g., when forskolin activates electrogenic cystic fibrosis transmembrane conductance regulator-mediated HCO3(-) conductance, CaSR activation inhibits HCO3(-) secretion. Corresponding changes in JHCO3 (μeq·h(-1)·cm(-2), absence vs. presence of R568) were 0.18 ± 0.03 vs. 0.31 ± 0.08 under basal nonstimulated conditions and 1.85 ± 0.23 vs. 0.45 ± 0.06 under forskolin-stimulated conditions. Similarly, activation of CaSR by R568 stimulated Cl(-)- and SCFA-dependent HCO3(-) secretion and inhibited cAMP-dependent HCO3(-) secretion in colon mucosa of wild-type mice; such effects were abolished in CaSR-null mice. These results suggest a new paradigm for regulation of intestinal ion transport in which HCO3(-) secretion may be fine-tuned by CaSR in accordance with nutrient availability and state of digestion and absorption. The ability of CaSR agonists to inhibit secretagogue-induced intestinal HCO3(-) secretion suggests that modulation of CaSR activity may provide a new therapeutic approach to correct HCO3(-) deficit and metabolic acidosis, a primary cause of morbidity and mortality in acute infectious diarrheal illnesses.
Collapse
Affiliation(s)
- Lieqi Tang
- 1Division of Gastroenterology, Nutrition and Hepatology, Department of Pediatrics, University of Florida, Gainesville, Florida;
| | - Minzhi Peng
- 1Division of Gastroenterology, Nutrition and Hepatology, Department of Pediatrics, University of Florida, Gainesville, Florida;
| | - Li Liu
- 2Department of Pediatrics, Guangzhou Women and Children's Medical Center, Guangzhou, Guangdong, People's Republic of China;
| | - Wenhan Chang
- 3Endocrine Research, VA Medical Center, University of California at San Francisco, San Francisco, California;
| | - Henry J. Binder
- 4Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Sam X. Cheng
- 1Division of Gastroenterology, Nutrition and Hepatology, Department of Pediatrics, University of Florida, Gainesville, Florida;
| |
Collapse
|
30
|
Di Mise A, Tamma G, Ranieri M, Svelto M, Heuvel BVD, Levtchenko EN, Valenti G. Conditionally immortalized human proximal tubular epithelial cells isolated from the urine of a healthy subject express functional calcium-sensing receptor. Am J Physiol Renal Physiol 2015; 308:F1200-6. [PMID: 25656364 DOI: 10.1152/ajprenal.00352.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 02/03/2015] [Indexed: 02/08/2023] Open
Abstract
The calcium-sensing receptor (CaSR) is a G protein-coupled receptor, which plays an essential role in regulating Ca(2+) homeostasis. Here we show that conditionally immortalized proximal tubular epithelial cell line (ciPTEC) obtained by immortalizing and subcloning cells exfoliated in the urine of a healthy subject expresses functional endogenous CaSR. Immunolocalization studies of polarized ciPTEC revealed the apical localization of the receptor. By Western blotting of ciPTEC lysates, both monomeric and dimeric forms of CaSR at 130 and ∼250 kDa, respectively, were detected. Functional studies indicated that both external calcium and the positive CaSR allosteric modulator, NPS-R568, induced a significant increase in cytosolic calcium, proving a high sensitivity of the endogenous receptor to its agonists. Calcium depletion from the endoplasmic reticulum using cyclopiazonic acid abolished the increase in cytosolic calcium elicited by NPS-R568, confirming calcium exit from intracellular stores. Activation of CaSR by NPS-R significantly reduced the increase in cAMP elicited by forskolin (FK), a direct activator of adenylate cyclase, further confirming the functional expression of the receptor in this cell line. CaSR expressed in ciPTEC was found to interact with Gq as a downstream effector, which in turn can cause release of calcium from intracellular stores via phospholipase C activation. We conclude that human proximal tubular ciPTEC express functional CaSR and respond to its activation with a release of calcium from intracellular stores. These cell lines represent a valuable tool for research into the disorder associated with gain or loss of function of the CaSR by producing cell lines from patients.
Collapse
Affiliation(s)
- Annarita Di Mise
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Aldo Moro, Italy
| | - Grazia Tamma
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Aldo Moro, Italy
| | - Marianna Ranieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Aldo Moro, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Aldo Moro, Italy; Center of Excellence in Comparative Genomics(CEGBA), Bari, Italy
| | - Bert van den Heuvel
- Department of Pediatric Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; and
| | - Elena N Levtchenko
- Department of Pediatric Nephrology, University Hospital Gasthuisberg, Leuven, Belgium
| | - Giovanna Valenti
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Aldo Moro, Italy; Center of Excellence in Comparative Genomics(CEGBA), Bari, Italy;
| |
Collapse
|
31
|
The renin-angiotensin-aldosterone system and calcium-regulatory hormones. J Hum Hypertens 2015; 29:515-21. [PMID: 25631218 DOI: 10.1038/jhh.2014.125] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 12/01/2014] [Accepted: 12/09/2014] [Indexed: 12/13/2022]
Abstract
There is increasing evidence of a clinically relevant interplay between the renin-angiotensin-aldosterone system and calcium-regulatory systems. Classically, the former is considered a key regulator of sodium and volume homeostasis, while the latter is most often associated with skeletal health. However, emerging evidence suggests an overlap in regulatory control. Hyperaldosteronism and hyperparathyroidism represent pathophysiologic conditions that may contribute to or perpetuate each other; aldosterone regulates parathyroid hormone and associates with adverse skeletal complications, and parathyroid hormone regulates aldosterone and associates with adverse cardiovascular complications. As dysregulation in both systems is linked to poor cardiovascular and skeletal health, it is increasingly important to fully characterize how they interact to more precisely understand their impact on human health and potential therapies to modulate these interactions. This review describes the known clinical interactions between these two systems including observational and interventional studies. Specifically, we review studies describing the inhibition of renin activity by calcium and vitamin D, and a potentially bidirectional and stimulatory relationship between aldosterone and parathyroid hormone. Deciphering these relationships might clarify variability in outcomes research, inform the design of future intervention studies and provide insight into the results of prior and ongoing intervention studies. However, before these opportunities can be addressed, more effort must be placed on shifting observational data to the proof of concept phase. This will require reallocation of resources to conduct interventional studies and secure the necessary talent.
Collapse
|
32
|
Shaman AM, Kowalski SR. Hyperphosphatemia Management in Patients with Chronic Kidney Disease. Saudi Pharm J 2015; 24:494-505. [PMID: 27330380 PMCID: PMC4908098 DOI: 10.1016/j.jsps.2015.01.009] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/01/2015] [Indexed: 01/07/2023] Open
Abstract
Hyperphosphatemia in chronic kidney disease (CKD) patients is a potentially life altering condition that can lead to cardiovascular calcification, metabolic bone disease (renal osteodystrophy) and the development of secondary hyperparathyroidism (SHPT). It is also associated with increased prevalence of cardiovascular diseases and mortality rates. To effectively manage hyperphosphatemia in CKD patients it is important to not only consider pharmacological and nonpharmacological treatment options but also to understand the underlying physiologic pathways involved in phosphorus homoeostasis. This review will therefore provide both a background into phosphorus homoeostasis and the management of hyperphosphatemia in CKD patients. In addition, it will cover some of the most important reasons for failure to control hyperphosphatemia with emphasis on the effect of the gastric pH on phosphate binders efficiency.
Collapse
Affiliation(s)
- Ahmed M Shaman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Stefan R Kowalski
- School of Pharmacy and Medical Sciences, University of South Australia, South Australia, Australia
| |
Collapse
|
33
|
Zhang C, Miller CL, Brown EM, Yang JJ. The calcium sensing receptor: from calcium sensing to signaling. SCIENCE CHINA-LIFE SCIENCES 2015; 58:14-27. [DOI: 10.1007/s11427-014-4779-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Accepted: 10/21/2014] [Indexed: 12/14/2022]
|
34
|
Yasuoka Y, Sato Y, Healy JM, Nonoguchi H, Kawahara K. pH-sensitive expression of calcium-sensing receptor (CaSR) in type-B intercalated cells of the cortical collecting ducts (CCD) in mouse kidney. Clin Exp Nephrol 2014; 19:771-82. [PMID: 25500736 DOI: 10.1007/s10157-014-1063-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/22/2014] [Indexed: 12/18/2022]
Abstract
BACKGROUND The localization and role of the calcium-sensing receptor (CaSR) along the nephron including the collecting ducts is still open to debate. METHODS Using the quantitative, highly sensitive in situ hybridization technique and a double-staining immunohistochemistry technique, we investigated the axial distribution and expression of CaSR along the nephron in mice (C57B/6J) treated for 6 days with acid or alkali diets. RESULTS Under control condition, CaSR was specifically localized in the cortical and medullary thick ascending limb of Henle's loop (CTAL and MTAL), macula densa (MD), distal convoluted tubule (DCT), and CCD (TALs, MD > DCT, CCD). Along the CCD, CaSR was co-localized with an anion exchanger type 4 (AE4), a marker of the basolateral membrane of type-B intercalated cell (IC-B) in mice. On the contrary, CaSR was not detected either in principal cells (PC) or in type-A intercalated cell (IC-A). CaSR expression levels in IC-B significantly (P < 0.005) decreased when mice were fed NH4Cl (acid) diets and increased when animals were given NaHCO3 (alkali) diets. As expected, cell heights of IC-A and IC-B significantly (P < 0.005) increased in the above experimental conditions. Surprisingly, single infusion (ip) of neomycin, an agonist of CaSR, significantly (P < 0.005) increased urinary Ca excretion without further increasing the hourly urine volume and significantly (P < 0.05) decreased urine pH. CONCLUSION CaSR, cloned from rat kidney, was localized in the basolateral membrane of IC-B and was more expressed during alkali-loading. Its alkali-sensitive expression may promote urinary alkali secretion for body acid-base balance.
Collapse
Affiliation(s)
- Yukiko Yasuoka
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan.,Department of Cellular and Molecular Physiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, 252-0374, Japan
| | - Yuichi Sato
- Department of Molecular Diagnostics, Kitasato University School of Allied Health Sciences, Sagamihara, 252-0374, Japan
| | - Jillian M Healy
- ALESS Program, Komaba Organizational for Educational Excellence, College of Art and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hiroshi Nonoguchi
- Division of Internal Medicine, Kitasato University Medical Center, 6-100 Arai, Kitamoto, 364-8501, Japan
| | - Katsumasa Kawahara
- Department of Physiology, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0374, Japan. .,Department of Cellular and Molecular Physiology, Kitasato University Graduate School of Medical Sciences, Sagamihara, 252-0374, Japan.
| |
Collapse
|
35
|
Cheng SX, Lightfoot YL, Yang T, Zadeh M, Tang L, Sahay B, Wang GP, Owen JL, Mohamadzadeh M. Epithelial CaSR deficiency alters intestinal integrity and promotes proinflammatory immune responses. FEBS Lett 2014; 588:4158-66. [PMID: 24842610 PMCID: PMC4234694 DOI: 10.1016/j.febslet.2014.05.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/22/2022]
Abstract
The intestinal epithelium is equipped with sensing receptor mechanisms that interact with luminal microorganisms and nutrients to regulate barrier function and gut immune responses, thereby maintaining intestinal homeostasis. Herein, we clarify the role of the extracellular calcium-sensing receptor (CaSR) using intestinal epithelium-specific Casr(-/-) mice. Epithelial CaSR deficiency diminished intestinal barrier function, altered microbiota composition, and skewed immune responses towards proinflammatory. Consequently, Casr(-/-) mice were significantly more prone to chemically induced intestinal inflammation resulting in colitis. Accordingly, CaSR represents a potential therapeutic target for autoinflammatory disorders, including inflammatory bowel diseases.
Collapse
Affiliation(s)
- Sam X Cheng
- Division of Gastroenterology, Department of Pediatrics, University of Florida, Gainesville, FL 32607, USA
| | - Yaíma L Lightfoot
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32608, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Tao Yang
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32608, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mojgan Zadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32608, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Lieqi Tang
- Division of Gastroenterology, Department of Pediatrics, University of Florida, Gainesville, FL 32607, USA
| | - Bikash Sahay
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32608, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Gary P Wang
- Division of Infectious Diseases and Global Medicine, Department of Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Jennifer L Owen
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mansour Mohamadzadeh
- Department of Infectious Diseases and Pathology, University of Florida, Gainesville, FL 32608, USA; Division of Gastroenterology, Hepatology & Nutrition, Department of Medicine, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
36
|
Xie R, Dong X, Wong C, Vallon V, Tang B, Sun J, Yang S, Dong H. Molecular mechanisms of calcium-sensing receptor-mediated calcium signaling in the modulation of epithelial ion transport and bicarbonate secretion. J Biol Chem 2014; 289:34642-53. [PMID: 25331955 DOI: 10.1074/jbc.m114.592774] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Epithelial ion transport is mainly under the control of intracellular cAMP and Ca(2+) signaling. Although the molecular mechanisms of cAMP-induced epithelial ion secretion are well defined, those induced by Ca(2+) signaling remain poorly understood. Because calcium-sensing receptor (CaSR) activation results in an increase in cytosolic Ca(2+) ([Ca(2+)]cyt) but a decrease in cAMP levels, it is a suitable receptor for elucidating the mechanisms of [Ca(2+)]cyt-mediated epithelial ion transport and duodenal bicarbonate secretion (DBS). CaSR proteins have been detected in mouse duodenal mucosae and human intestinal epithelial cells. Spermine and Gd(3+), two CaSR activators, markedly stimulated DBS without altering duodenal short circuit currents in wild-type mice but did not affect DBS and duodenal short circuit currents in cystic fibrosis transmembrane conductance regulator (CFTR) knockout mice. Clotrimazole, a selective blocker of intermediate conductance Ca(2+)-activated K(+) channels but not chromanol 293B, a selective blocker of cAMP-activated K(+) channels (KCNQ1), significantly inhibited CaSR activator-induced DBS, which was similar in wild-type and KCNQ1 knockout mice. HCO3 (-) fluxes across epithelial cells were activated by a CFTR activator, but blocked by a CFTR inhibitor. CaSR activators induced HCO3 (-) fluxes, which were inhibited by a receptor-operated channel (ROC) blocker. Moreover, CaSR activators dose-dependently raised cellular [Ca(2+)]cyt, which was abolished in Ca(2+)-free solutions and inhibited markedly by selective CaSR antagonist calhex 231, and ROC blocker in both animal and human intestinal epithelial cells. Taken together, CaSR activation triggers Ca(2+)-dependent DBS, likely through the ROC, intermediate conductance Ca(2+)-activated K(+) channels, and CFTR channels. This study not only reveals that [Ca(2+)]cyt signaling is critical to modulate DBS but also provides novel insights into the molecular mechanisms of CaSR-mediated Ca(2+)-induced DBS.
Collapse
Affiliation(s)
- Rui Xie
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China, the Department of Gastroenterology, Affiliated Hospital, Zunyi Medical College, Zunyi 563003, China, and
| | - Xiao Dong
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Chase Wong
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Volker Vallon
- the Department of Medicine, University of California, San Diego, La Jolla, California 92093, the Veterans Affairs San Diego Healthcare System, La Jolla, California 92161
| | - Bo Tang
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Jun Sun
- the Departments of Biochemistry, Internal Medicine (GI), and Microbiology/Immunology, Rush University, Chicago, Illinois 60612
| | - Shiming Yang
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China,
| | - Hui Dong
- From the Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China, the Department of Medicine, University of California, San Diego, La Jolla, California 92093,
| |
Collapse
|
37
|
Alfadda TI, Saleh AMA, Houillier P, Geibel JP. Calcium-sensing receptor 20 years later. Am J Physiol Cell Physiol 2014; 307:C221-31. [PMID: 24871857 PMCID: PMC4121584 DOI: 10.1152/ajpcell.00139.2014] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/23/2014] [Indexed: 12/19/2022]
Abstract
The calcium-sensing receptor (CaSR) has played an important role as a target in the treatment of a variety of disease states over the past 20 plus years. In this review, we give an overview of the receptor at the cellular level and then provide details as to how this receptor has been targeted to modulate cellular ion transport mechanisms. As a member of the G protein-coupled receptor (GPCR) family, it has a high degree of homology with a variety of other members in this class, which could explain why this receptor has been identified in so many different tissues throughout the body. This diversity of locations sets it apart from other members of the family and may explain how the receptor interacts with so many different organ systems in the body to modulate the physiology and pathophysiology. The receptor is unique in that it has two large exofacial lobes that sit in the extracellular environment and sense changes in a wide variety of environmental cues including salinity, pH, amino acid concentration, and polyamines to name just a few. It is for this reason that there has been a great deal of research associated with normal receptor physiology over the past 20 years. With the ongoing research, in more recent years a focus on the pathophysiology has emerged and the effects of receptor mutations on cellular and organ physiology have been identified. We hope that this review will enhance and update the knowledge about the importance of this receptor and stimulate future potential investigations focused around this receptor in cellular, organ, and systemic physiology and pathophysiology.
Collapse
Affiliation(s)
- Tariq I Alfadda
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Ahmad M A Saleh
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut
| | - Pascal Houillier
- INSERM UMR_S1138, Paris, France; Paris Descartes University, Paris, France; Assistance Publique-Hopitaux de Paris, Hopital Europeen Georges Pompidou, Paris, France
| | - John P Geibel
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut; Department of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, Connecticut; and
| |
Collapse
|
38
|
Calcium sensing receptor in pregnancies complicated by gestational diabetes mellitus. Placenta 2014; 35:632-8. [DOI: 10.1016/j.placenta.2014.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 11/21/2022]
|
39
|
Lin CH, Su CH, Hwang PP. Calcium-sensing receptor mediates Ca(2+) homeostasis by modulating expression of PTH and stanniocalcin. Endocrinology 2014; 155:56-67. [PMID: 24169558 DOI: 10.1210/en.2013-1608] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Regulation of the synthesis and/or secretion of hypocalcemic and hypercalcemic hormones by the calcium-sensing receptor (CaSR) is believed to be a major pathway for maintaining Ca(2+) homeostasis in vertebrates, based primarily on findings in mammals. However, understanding the evolution of this physiological process requires that it be described in nonmammalian species. Here, we describe the use of zebrafish as a model to investigate whether CaSR contributes to body fluid Ca(2+) homeostasis by regulating synthesis of hypercalcemic (PTH1 and PTH2) and hypocalcemic (stanniocalcin [STC]) hormones. We report that PTH1, but not PTH2, increases Ca(2+) uptake through stimulation of the expression of the gene encoding the epithelial Ca(2+) channel (ecac). Furthermore, we demonstrate that CaSR, as a Ca(2+) sensor, may affect stc-1 and pth1 expressions differently, thereby suppressing ecac expression and Ca(2+) uptake. Finally, we show that CaSR knockdown has time-dependent effects on STC-1 and PTH1 expression, and these 2 hormones have mutual effects on the expression, thus forming a possible counterbalance. These findings enhance our understanding of CaSR-PTH-STC control of Ca(2+) homeostasis in vertebrates.
Collapse
Affiliation(s)
- Chia-Hao Lin
- Institute of Cellular and Organismic Biology (C.-H.L., C.-H.S., P.-P.H), Academia Sinica, Taipei 11529, Taiwan, Republic of China; and Institute of Fishery Science (C.-H.S., P.-P.H), National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | | | | |
Collapse
|
40
|
Brennan SC, Finney BA, Lazarou M, Rosser AE, Scherf C, Adriaensen D, Kemp PJ, Riccardi D. Fetal calcium regulates branching morphogenesis in the developing human and mouse lung: involvement of voltage-gated calcium channels. PLoS One 2013; 8:e80294. [PMID: 24282533 PMCID: PMC3840017 DOI: 10.1371/journal.pone.0080294] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/01/2013] [Indexed: 11/18/2022] Open
Abstract
Airway branching morphogenesis in utero is essential for optimal postnatal lung function. In the fetus, branching morphogenesis occurs during the pseudoglandular stage (weeks 9–17 of human gestation, embryonic days (E)11.5–16.5 in mouse) in a hypercalcaemic environment (∼1.7 in the fetus vs. ∼1.1–1.3 mM for an adult). Previously we have shown that fetal hypercalcemia exerts an inhibitory brake on branching morphogenesis via the calcium-sensing receptor. In addition, earlier studies have shown that nifedipine, a selective blocker of L-type voltage-gated Ca2+ channels (VGCC), inhibits fetal lung growth, suggesting a role for VGCC in lung development. The aim of this work was to investigate the expression of VGCC in the pseudoglandular human and mouse lung, and their role in branching morphogenesis. Expression of L-type (CaV1.2 and CaV1.3), P/Q type (CaV2.1), N-type (CaV2.2), R-type (CaV2.3), and T-type (CaV3.2 and CaV3.3) VGCC was investigated in paraffin sections from week 9 human fetal lungs and E12.5 mouse embryos. Here we show, for the first time, that Cav1.2 and Cav1.3 are expressed in both the smooth muscle and epithelium of the developing human and mouse lung. Additionally, Cav2.3 was expressed in the lung epithelium of both species. Incubating E12.5 mouse lung rudiments in the presence of nifedipine doubled the amount of branching, an effect which was partly mimicked by the Cav2.3 inhibitor, SNX-482. Direct measurements of changes in epithelial cell membrane potential, using the voltage-sensitive fluorescent dye DiSBAC2(3), demonstrated that cyclic depolarisations occur within the developing epithelium and coincide with rhythmic occlusions of the lumen, driven by the naturally occurring airway peristalsis. We conclude that VGCC are expressed and functional in the fetal human and mouse lung, where they play a role in branching morphogenesis. Furthermore, rhythmic epithelial depolarisations evoked by airway peristalsis would allow for branching to match growth and distension within the developing lung.
Collapse
Affiliation(s)
- Sarah C Brennan
- Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Di Tomo P, Pipino C, Lanuti P, Morabito C, Pierdomenico L, Sirolli V, Bonomini M, Miscia S, Mariggiò MA, Marchisio M, Barboni B, Pandolfi A. Calcium sensing receptor expression in ovine amniotic fluid mesenchymal stem cells and the potential role of R-568 during osteogenic differentiation. PLoS One 2013; 8:e73816. [PMID: 24040082 PMCID: PMC3767786 DOI: 10.1371/journal.pone.0073816] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 07/24/2013] [Indexed: 02/07/2023] Open
Abstract
Amniotic fluid-derived stem (AFS) cells have been identified as a promising source for cell therapy applications in bone traumatic and degenerative damage. Calcium Sensing Receptor (CaSR), a G protein-coupled receptor able to bind calcium ions, plays a physiological role in regulating bone metabolism. It is expressed in different kinds of cells, as well as in some stem cells. The bone CaSR could potentially be targeted by allosteric modulators, in particular by agonists such as calcimimetic R-568, which may potentially be helpful for the treatment of bone disease. The aim of our study was first to investigate the presence of CaSR in ovine Amniotic Fluid Mesenchymal Stem Cells (oAFMSCs) and then the potential role of calcimimetics in in vitro osteogenesis. oAFMSCs were isolated, characterized and analyzed to examine the possible presence of CaSR by western blotting and flow cytometry analysis. Once we had demonstrated CaSR expression, we worked out that 1 µM R-568 was the optimal and effective concentration by cell viability test (MTT), cell number, Alkaline Phosphatase (ALP) and Alizarin Red S (ARS) assays. Interestingly, we observed that basal diffuse CaSR expression in oAFMSCs increased at the membrane when cells were treated with R-568 (1 µM), potentially resulting in activation of the receptor. This was associated with significantly increased cell mineralization (ALP and ARS staining) and augmented intracellular calcium and Inositol trisphosphate (IP3) levels, thus demonstrating a potential role for calcimimetics during osteogenic differentiation. Calhex-231, a CaSR allosteric inhibitor, totally reversed R-568 induced mineralization. Taken together, our results demonstrate for the first time that CaSR is expressed in oAFMSCs and that calcimimetic R-568, possibly through CaSR activation, can significantly improve the osteogenic process. Hence, our study may provide useful information on the mechanisms regulating osteogenesis in oAFMSCs, perhaps prompting the use of calcimimetics in bone regenerative medicine.
Collapse
Affiliation(s)
- Pamela Di Tomo
- Department of Experimental and Clinical Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Caterina Pipino
- Department of Experimental and Clinical Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Paola Lanuti
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Science, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Caterina Morabito
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Laura Pierdomenico
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Science, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Vittorio Sirolli
- Department of Medicine and Aging Science, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Mario Bonomini
- Department of Medicine and Aging Science, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Sebastiano Miscia
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Science, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Maria Addolorata Mariggiò
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Neuroscience and Imaging, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Marco Marchisio
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Medicine and Aging Science, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
| | - Barbara Barboni
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Department of Comparative Biomedical Science, University of Teramo, Teramo, Italy
| | - Assunta Pandolfi
- Department of Experimental and Clinical Sciences, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- Aging Research Center, Ce.S.I., “University G. d’Annunzio” Foundation Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- StemTeCh Group Chieti, University “G. d’Annunzio” Chieti-Pescara, Chieti, Italy
- * E-mail:
| |
Collapse
|
42
|
The calcium sensing receptor modulates fluid reabsorption and acid secretion in the proximal tubule. Kidney Int 2013; 84:277-84. [DOI: 10.1038/ki.2013.137] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 02/05/2013] [Accepted: 02/07/2013] [Indexed: 01/05/2023]
|
43
|
Calcium receptors located in fibrotic septa: a new target to reduce portal pressure in liver cirrhosis. Clin Sci (Lond) 2013; 125:67-75. [PMID: 23384153 DOI: 10.1042/cs20120476] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In rats with experimental liver cirrhosis, the kidney contains reduced amounts of membrane-bound CaRs (calcium-sensing receptors), and the specific stimulation of CaRs causes the generation of PGE2 (prostaglandin E2), renal vasodilation and increased natriuresis. CaR content and function in the liver of cirrhotic rats are unknown. To assess the activity of this Ca2+-dependent vasomotor system, we evaluated the effects of intravenous administration of PolyAg (poly-L-arginine), a selective CaR agonist, on hormonal status, portal haemodynamics, MAP (mean arterial pressure) in rats with liver cirrhosis induced by chronic CCl4 (carbon tetrachloride) administration. Two groups of eight control rats received intravenously 1 ml of 5% (w/v) glucose solution alone or containing 0.5 mg of PolyAg; two groups of ten cirrhotic rats were administered vehicle or PolyAg. Compared with controls, at baseline cirrhotic rats showed higher portal pressure (P<0.01), lower estimated functional liver plasma flow, measured as CICG (Indocyanine Green clearance) (P<0.03) and reduced hepatic protein content of CaRs (P<0.03), which were located mainly in sub-endothelial layers of portal venules and in myofibroblasts of fibrotic septa (immunohistochemistry and indirect immunofluorescence staining of liver sections). In cirrhotic animals, 0.5 mg of PolyAg decreased portal pressure (P<0.01) and increased CICG (P<0.05), without effects on arterial pressure and hormonal status. In conclusion, the present study provides evidence that in experimental cirrhosis agonists of liver CaRs elicit beneficial portal hypotensive effects by reducing intrahepatic resistance to portal flow. Moreover, these drugs are devoid of effects on systemic haemodynamics.
Collapse
|
44
|
Quinn SJ, Thomsen ARB, Pang JL, Kantham L, Bräuner-Osborne H, Pollak M, Goltzman D, Brown EM. Interactions between calcium and phosphorus in the regulation of the production of fibroblast growth factor 23 in vivo. Am J Physiol Endocrinol Metab 2013; 304:E310-20. [PMID: 23233539 PMCID: PMC3566433 DOI: 10.1152/ajpendo.00460.2012] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 12/04/2012] [Indexed: 11/22/2022]
Abstract
Calcium and phosphorus homeostasis are highly interrelated and share common regulatory hormones, including FGF23. However, little is known about calcium's role in the regulation of FGF23. We sought to investigate the regulatory roles of calcium and phosphorus in FGF23 production using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR; PTH-CaSR DKO). In wild-type, PTH KO, and PTH-CaSR DKO mice, elevation of either serum calcium or phosphorus by intraperitoneal injection increased serum FGF23 levels. In PTH KO and PTH-CaSR DKO mice, however, increases in serum phosphorus by dietary manipulation were accompanied by severe hypocalcemia, which appeared to blunt stimulation of FGF23 release. Increases in dietary phosphorus in PTH-CaSR DKO mice markedly decreased serum 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] despite no change in FGF23, suggesting direct regulation of 1,25(OH)(2)D(3) synthesis by serum phosphorus. Calcium-mediated increases in serum FGF23 required a threshold level of serum phosphorus of about 5 mg/dl. Analogously, phosphorus-elicited increases in FGF23 were markedly blunted if serum calcium was less than 8 mg/dl. The best correlation between calcium and phosphorus and serum FGF23 was found between FGF23 and the calcium × phosphorus product. Since calcium stimulated FGF23 production in the PTH-CaSR DKO mice, this effect cannot be mediated by the full-length CaSR. Thus the regulation of FGF23 by both calcium and phosphorus appears to be fundamentally important in coordinating the serum levels of both mineral ions and ensuring that the calcium × phosphorus product remains within a physiological range.
Collapse
Affiliation(s)
- Stephen J Quinn
- Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Tonack S, Tang C, Offermanns S. Endogenous metabolites as ligands for G protein-coupled receptors modulating risk factors for metabolic and cardiovascular disease. Am J Physiol Heart Circ Physiol 2012; 304:H501-13. [PMID: 23241321 DOI: 10.1152/ajpheart.00641.2012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
During the last decade, several G protein-coupled receptors activated by endogenous metabolites have been described. These receptors respond to fatty acids, mono- and disaccharides, amino acids, or various intermediates and products of metabolism, including ketone bodies, lactate, succinate, or bile acids. Receptors of endogenous metabolites are expressed in taste cells, the gastrointestinal tract, adipose tissue, endocrine glands, immune cells, or the kidney and are therefore in a position to sense food intake in the gastrointestinal tract or to link metabolite levels to the appropriate responses of metabolic organs. Some of the receptors appear to provide a link between metabolic and neuronal or immune functions. Given that many of these metabolic processes are dysregulated under pathological conditions, including diabetes, dyslipidemia, and obesity, receptors of endogenous metabolites have also been recognized as potential drug targets to prevent and/or treat metabolic and cardiovascular diseases. This review describes G protein-coupled receptors activated by endogenous metabolites and summarizes their physiological, pathophysiological, and potential pharmacological roles.
Collapse
Affiliation(s)
- Sarah Tonack
- Department of Pharmacology, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | | | | |
Collapse
|
46
|
|
47
|
Thomsen ARB, Worm J, Jacobsen SE, Stahlhut M, Latta M, Bräuner-Osborne H. Strontium is a biased agonist of the calcium-sensing receptor in rat medullary thyroid carcinoma 6-23 cells. J Pharmacol Exp Ther 2012; 343:638-49. [PMID: 22942242 PMCID: PMC11047797 DOI: 10.1124/jpet.112.197210] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/30/2012] [Indexed: 09/23/2023] Open
Abstract
The calcium-sensing receptor (CaSR)-specific allosteric modulator cinacalcet has revolutionized the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. However, its application is limited to patients with end-stage renal disease because of hypocalcemic side effects presumably caused by CaSR-mediated calcitonin secretion from thyroid parafollicular C-cells. These hypocalcemic side effects might be dampened by compounds that bias the signaling of CaSR, causing similar therapeutic effects as cinacalcet without stimulating calcitonin secretion. Because biased signaling of CaSR is poorly understood, the objective of the present study was to investigate biased signaling of CaSR by using rat medullary thyroid carcinoma 6-23 cells as a model of thyroid parafollicular C-cells. By doing concentration-response experiments we focused on the ability of two well known CaSR agonists, calcium and strontium, to activate six different signaling entities: G(q/11) signaling, G(i/o) signaling, G(s) signaling, extracellular signal-regulated kinases 1 and 2 (ERK1/2) signaling, intracellular calcium ([Ca(2+)](i)) mobilization, and calcitonin secretion. The experiments showed that strontium biases CaSR signaling toward ERK1/2 signaling and possibly another pathway independent of G(q/11) signaling and [Ca(2+)](i) mobilization. It is noteworthy that the potency of strontium-stimulated calcitonin secretion was elevated compared with calcium. Combining these results with experiments investigating signaling pathway components involved in calcitonin secretion, we found that the enhanced potency of strontium-mediated calcitonin secretion was caused by a different signaling pattern than that produced by calcium. Together, our results suggest that calcitonin secretion can be affected by CaSR-stimulated signaling bias, which may be used to develop novel drugs for the treatment of secondary hyperparathyroidism.
Collapse
Affiliation(s)
- Alex Rojas Bie Thomsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Calcium is an important participant in many physiologic processes including coagulation, cell membrane transfer, hormone release, neuromuscular activation, and myocardial contraction. The body cooperates in a sophisticated web of hormonally mediated interactions to maintain stable extracellular calcium levels. Calcium is vital for skeletal mineralization, and perturbations in extracellular calcium may be corrected at the expense of bone strength and integrity. The aim of this review is to delineate our current understanding of idiopathic hypercalciuria in the context of bone health, specifically its definition, etiology, epidemiology, laboratory evaluation, and potential therapeutic management.
Collapse
Affiliation(s)
- Laura E Ryan
- Center for Women's Health, Division of Endocrinology, Diabetes and Metabolism, The Ohio State University, Columbus, 43210, USA.
| | | |
Collapse
|
49
|
Riccardi D. Parathyroid hormone-independent role for the calcium-sensing receptor in the control of urinary calcium excretion. J Am Soc Nephrol 2012; 23:1766-8. [PMID: 23085632 DOI: 10.1681/asn.2012090955] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
|
50
|
Cheng SX. Calcium-sensing receptor inhibits secretagogue-induced electrolyte secretion by intestine via the enteric nervous system. Am J Physiol Gastrointest Liver Physiol 2012; 303:G60-70. [PMID: 22517767 PMCID: PMC3404579 DOI: 10.1152/ajpgi.00425.2011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Bacterial toxins such as cholera toxin induce diarrhea by both direct epithelial cell generation of cyclic nucleotides as well as stimulation of the enteric nervous system (ENS). Agonists of the extracellular calcium-sensing receptor (CaSR) can reduce toxin-stimulated fluid secretion in ENS-absent colonic epithelial crypts by increasing phosphodiesterase-dependent cyclic-nucleotide degradation. Here we show that the CaSR is also highly expressed in tetrodotoxin (TTX)-sensitive neurons comprising the ENS, suggesting that CaSR agonists might also function through neuronal pathways. To test this hypothesis, rat colon segments containing intact ENS were isolated and mounted on Ussing chambers. Basal and cyclic nucleotide-stimulated electrolyte secretions were monitored by measuring changes in short-circuit current (I(sc)). CaSR was activated by R-568 and its effects were compared in the presence and absence of TTX. Consistent with active regulation of anion secretion by the ENS, a significant proportion of I(sc) in the proximal and distal colon was inhibited by serosal TTX, both at basal and under cyclic AMP-stimulated conditions. In the absence of TTX, activation of CaSR with R-568 significantly reduced basal I(sc) and cyclic AMP-stimulated I(sc); it also completely reversed the cAMP-stimulated secretory responses if the drug was applied after the forskolin stimulation. Such inhibitory effects of R-568 were either absent or significantly reduced when serosal TTX was present, suggesting that this agonist exerts its antisecretory effect on the intestine by inhibiting ENS. The present results suggest a new model for regulating intestinal fluid transport in which neuronal and nonneuronal secretagogue actions are modulated by the inhibitory effects of CaSR on the ENS. The ability of a CaSR agonist to reduce secretagogue-stimulated Cl(-) secretion might provide a new therapeutic approach for secretory and other ENS-mediated diarrheal conditions.
Collapse
Affiliation(s)
- Sam X. Cheng
- 1Department of Pediatrics, School of Medicine, Yale University, New Haven, Connecticut; and ,2Department of Pediatrics, School of Medicine, University of Florida, Gainesville, Florida
| |
Collapse
|