1
|
Millan AJ, Allain V, Nayak I, Libang JB, Quijada-Madrid LM, Arakawa-Hoyt JS, Ureno G, Rothrock AG, Shemesh A, Aguilar OA, Eyquem J, Das J, Lanier LL. SYK negatively regulates ITAM-mediated human NK cell signaling and CD19-CAR NK cell efficacy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkaf012. [PMID: 40073103 PMCID: PMC11952873 DOI: 10.1093/jimmun/vkaf012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/10/2025] [Indexed: 03/14/2025]
Abstract
Natural killer (NK) cells express activating receptors that signal through ITAM (immunoreceptor tyrosine-based activation motif)-bearing adapter proteins. The phosphorylation of each ITAM creates binding sites for SYK and ZAP70 protein tyrosine kinases to propagate downstream signaling including the induction of Ca2+ influx. While all immature and mature human NK cells coexpress SYK and ZAP70, clonally driven memory or adaptive NK cells can methylate SYK genes, and signaling is mediated exclusively using ZAP70. Here, we examined the role of SYK and ZAP70 in a clonal human NK cell line KHYG1 by CRISPR-based deletion using a combination of experiments and mechanistic computational modeling. Elimination of SYK resulted in more robust Ca2+ influx after crosslinking of the CD16 and NKp30 receptors and enhanced phosphorylation of downstream proteins, whereas ZAP70 deletion diminished these responses. By contrast, ZAP70 depletion increased proliferation of the NK cells. As immature T cells express both SYK and ZAP70 and mature T cells often express only ZAP70, we transduced the human Jurkat cell line with SYK and found that expression of SYK increased proliferation but diminished T cell receptor-induced Ca2+ flux and activation. We performed transcriptional analysis of the matched sets of variant Jurkat and KHYG1 cells and observed profound alterations caused by SYK expression. As depletion of SYK in NK cells increased their activation, primary human NK cells were transduced with a CD19-targeting chimeric antigen receptor and were CRISPR edited to ablate SYK or ZAP70. Deletion of SYK resulted in more robust cytotoxic activity and cytokine production, providing a new therapeutic strategy of NK cell engineering for cancer immunotherapy.
Collapse
Affiliation(s)
- Alberto J Millan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| | - Vincent Allain
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, United States
- INSERM UMR976, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Indrani Nayak
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Jeremy B Libang
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| | - Lilian M Quijada-Madrid
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| | - Janice S Arakawa-Hoyt
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| | - Gabriella Ureno
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| | - Allison Grace Rothrock
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, United States
| | - Avishai Shemesh
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Oscar A Aguilar
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| | - Justin Eyquem
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
- INSERM UMR976, Hôpital Saint-Louis, Université Paris Cité, Paris, France
| | - Jayajit Das
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, College of Medicine, The Ohio State University, Columbus, OH, United States
- Department of Pediatrics, Nationwide Children’s Hospital, College of Medicine, The Ohio State University, Columbus, OH, United States
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH, United States
- Pelotonia Institute for Immuno-Oncology, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Lewis L Lanier
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, United States
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
2
|
Du F, Ye Z, He A, Yuan J, Su M, Jia Q, Wang H, Yang P, Yang Z, Ning P, Wang Z. An engineered α1β1 integrin-mediated FcγRI signaling component to control enhanced CAR macrophage activation and phagocytosis. J Control Release 2025; 377:689-703. [PMID: 39617174 DOI: 10.1016/j.jconrel.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/23/2024]
Abstract
Treatment of solid tumors remains difficult, and therefore there has been increased focus on chimeric antigen receptor macrophages (CAR-M) to challenge solid tumors. However, CAR domain design of of adoptive cell therapy, which leads to differences in antitumor activity and triggered antitumor potential, remains poorly understood for macrophages. We developed an α1β1 integrin-mediated Fc-gamma receptor I (FcγRI) signaling component for CAR-M specific activation and its antitumor potential. We evaluated CAR-M effects with α1β1 integrin-mediated FcγRI signaling (ACT CAR-M) on the activation and antitumor phagocytic response of macrophages in vitro. Subcutaneous tumor model in BALB/c mice and carcinomatosis model in immunodeficient mice were used to test the antitumor effect of ACT CAR-M compared with CD3ζ CAR-M. The α1β1 integrin-mediated FcγRI signaling engagement of CAR-M was associated with enhanced macrophage activation and specific phagocytosis in primary human macrophages, and significantly improved tumor control and survival in multiple cancer models when compared to CD3ζ CAR-M. RNA-sequencing suggested that α1β1 integrin-mediated FcγRI engagement increased antitumor immunity by enhancing pro-inflammatory M1 phenotype-associated pathways, such as Toll-like receptor signaling, tumor necrosis factor signaling, and IL-17 signaling. α1β1 integrin-mediated FcγRI signaling engagement markedly enhanced antitumor effects of CAR-M immunotherapy, which is proposed as an advanced engineering CAR domain material to expand the clinical application of CAR-M.
Collapse
Affiliation(s)
- Fuyu Du
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Zixuan Ye
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Anna He
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Jingtong Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Maozhi Su
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Qingan Jia
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an 710038, China
| | - Huaiyu Wang
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Peng Yang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Zuo Yang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China
| | - Pengbo Ning
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| | - Zhongliang Wang
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710071, PR China; Engineering Research Center of Molecular & Neuroimaging, Ministry of Education, Xi'an, Shaanxi 710071, PR China.
| |
Collapse
|
3
|
Yang X, Rocks JW, Jiang K, Walters AJ, Rai K, Liu J, Nguyen J, Olson SD, Mehta P, Collins JJ, Daringer NM, Bashor CJ. Engineering synthetic phosphorylation signaling networks in human cells. Science 2025; 387:74-81. [PMID: 39745956 DOI: 10.1126/science.adm8485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/24/2024] [Indexed: 01/04/2025]
Abstract
Protein phosphorylation signaling networks have a central role in how cells sense and respond to their environment. We engineered artificial phosphorylation networks in which reversible enzymatic phosphorylation cycles were assembled from modular protein domain parts and wired together to create synthetic phosphorylation circuits in human cells. Our design scheme enabled model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, and downstream connections can regulate gene expression. We engineered cell-based cytokine controllers that dynamically sense and suppress activated T cells. Our work introduces a generalizable approach that allows the design of signaling circuits that enable user-defined sense-and-respond function for diverse biosensing and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
| | - Jason W Rocks
- Department of Physics, Boston University, Boston, MA, USA
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Andrew J Walters
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
- Graduate Program in Bioengineering, Rice University, Houston, TX, USA
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kshitij Rai
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
| | - Jing Liu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jason Nguyen
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA
| | - James J Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
4
|
Bradshaw WJ, Harris G, Gileadi O, Katis VL. The mechanism of allosteric activation of SYK kinase derived from multiple phospho-ITAM-bound structures. Structure 2024; 32:2337-2351.e4. [PMID: 39442513 PMCID: PMC11625004 DOI: 10.1016/j.str.2024.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/30/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Spleen tyrosine kinase (SYK) is central to adaptive and innate immune signaling. It features a regulatory region containing tandem SH2 (tSH2) domains separated by a helical "hinge" segment keeping SYK inactive by associating with the kinase domain. SYK activation is triggered when the tSH2 domains bind to a phosphorylated immunoreceptor tyrosine-based activation motif (ITAM) found on receptor tails. Past mutational studies have indicated that ITAM binding disrupts the hinge-kinase interaction, leading to SYK phosphorylation and activation. However, the mechanism of this process is unclear, as the ITAM interaction occurs far from the hinge region. We have determined crystal structures of three phospho-ITAMs in complex with the tSH2 domains, revealing a highly conserved binding mechanism. These structures, together with mutational studies and biophysical analyses, reveal that phospho-ITAM binding restricts SH2 domain movement and causes allosteric changes in the hinge region. These changes are not compatible with the association of the kinase domain, leading to kinase activation.
Collapse
Affiliation(s)
- William J Bradshaw
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Gemma Harris
- Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell Campus, Didcot OX11 0FA, UK
| | - Opher Gileadi
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK
| | - Vittorio L Katis
- Alzheimer's Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine Research Building, Old Road Campus, University of Oxford, Oxford OX3 7FZ, UK.
| |
Collapse
|
5
|
Marcano-García LF, Zaza C, Dalby OPL, Joseph MD, Cappellari MV, Simoncelli S, Aramendía PF. Quantitative Analysis of Protein-Protein Equilibrium Constants in Cellular Environments Using Single-Molecule Localization Microscopy. NANO LETTERS 2024; 24:13834-13842. [PMID: 39432814 PMCID: PMC11528428 DOI: 10.1021/acs.nanolett.4c04394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024]
Abstract
Current methods for determining equilibrium constants often operate in three-dimensional environments, which may not accurately reflect interactions with membrane-bound proteins. With our technique, based on single-molecule localization microscopy (SMLM), we directly determine protein-protein association (Ka) and dissociation (Kd) constants in cellular environments by quantifying associated and isolated molecules and their interaction area. We introduce Kernel Surface Density (ks-density,) a novel method for determining the accessible area for interacting molecules, eliminating the need for user-defined parameters. Simulation studies validate our method's accuracy across various density and affinity conditions. Applying this technique to T cell signaling proteins, we determine the 2D association constant of T cell receptors (TCRs) in resting cells and the pseudo-3D dissociation constant of pZAP70 molecules from phosphorylated intracellular tyrosine-based activation motifs on the TCR-CD3 complex. We address challenges of multiple detection and molecular labeling efficiency. This method enhances our understanding of protein interactions in cellular environments, advancing our knowledge of complex biological processes.
Collapse
Affiliation(s)
- Luis F. Marcano-García
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| | - Cecilia Zaza
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
| | - Olivia P. L. Dalby
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Megan D. Joseph
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - M. Victoria Cappellari
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| | - Sabrina Simoncelli
- London
Centre for Nanotechnology, University College
London, 19 Gordon Street, WC1H 0AH London, United Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, United Kingdom
| | - Pedro F. Aramendía
- Centro
de Investigaciones en Bionanociencias - “Elizabeth Jares-Erijman”
(CIBION), CONICET, Godoy
Cruz 2390, 1425 Ciudad de Buenos Aires, Argentina
| |
Collapse
|
6
|
Feng F, Shen J, Qi Q, Zhang Y, Ni S. Empowering brain tumor management: chimeric antigen receptor macrophage therapy. Theranostics 2024; 14:5725-5742. [PMID: 39310093 PMCID: PMC11413779 DOI: 10.7150/thno.98290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Brain tumors pose formidable challenges in oncology due to the intricate biology and the scarcity of effective treatment modalities. The emergence of immunotherapy has opened new avenues for innovative therapeutic strategies. Chimeric antigen receptor, originally investigated in T cell-based therapy, has now expanded to encompass macrophages, presenting a compelling avenue for augmenting anti-tumor immune surveillance. This emerging frontier holds promise for advancing the repertoire of therapeutic options against brain tumors, offering potential breakthroughs in combating the formidable malignancies of the central nervous system. Tumor-associated macrophages constitute a substantial portion, ranging from 30% to 50%, of the tumor tissue and exhibit tumor-promoting phenotypes within the immune-compromised microenvironment. Constructing CAR-macrophages can effectively repolarize M2-type macrophages towards an M1-type phenotype, thereby eliciting potent anti-tumor effects. CAR-macrophages can recruit T cells to the brain tumor site, thereby orchestrating a remodeling of the immune niche to effectively inhibit tumor growth. In this review, we explore the potential limitations as well as strategies for optimizing CAR-M therapy, offering insights into the future direction of this innovative therapeutic approach.
Collapse
Affiliation(s)
| | | | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| |
Collapse
|
7
|
Sadri M, Heidari S, Faridzadeh A, Roozbehani M, Toosi S, Mahmoudian RA, Hoseinzadeh A, Salmani Fard MT, Arab FL, Fard SR, Faraji F. Potential applications of macrophages in cancer immunotherapy. Biomed Pharmacother 2024; 178:117161. [PMID: 39047419 DOI: 10.1016/j.biopha.2024.117161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024] Open
Abstract
Immunotherapy has improved cancer treatment based on investigations of tumor immune escape. Manipulation of the immune system stimulates antitumor immune responses and blocks tumor immune escape routes. Genetically adoptive cell therapy, such as T cells, has yielded promising results for hematologic malignancies, but their application to solid tumors has been challenging. Macrophages have a wide broad of capabilities in regulating immune responses, homeostasis, and tissue development, as well as the ability to phagocyte, present antigens, and infiltrate the tumor microenvironment (TME). Given the importance of macrophages in cancer development, they could serve as novel tool for tumor treatment. Therefore, macrophages are used in different formats for direct and indirect targeting of tumor cells. This review summarized the available data on the various applications of macrophages in cancer immunotherapy.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 1449614535, Tehran, Iran.
| | - Sahel Heidari
- Department of Immunology, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 1449614535, Tehran, Iran.
| | - Arezoo Faridzadeh
- Department of Immunology and Allergy, School of Medicine, Mashhad University of Medical Sciences, Mashhad 1313199137, Iran.
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Shahid Hemmat Highway, P.O. Box: 1449614535, Tehran, Iran.
| | - Shirin Toosi
- Stem Cell and Regenerative Medicine Center, Mashhad University of Medical Science, Mashhad 1313199137, Iran.
| | | | - Akram Hoseinzadeh
- Department of Immunology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan 3513119111, Iran.
| | - Mohammad Taha Salmani Fard
- School of Biology, College of Science, University of Tehran, Faculty of Sciences, Enqelab Square, Tehran 1417614411, Iran.
| | - Fahimeh Lavi Arab
- Immunology Research center, Mashhad University of Medical Sciences, Mashhad 1313199137, Iran.
| | - Soheil Rahmani Fard
- Antimicrobial Resistance Research Center, Institute of Immunology and Infection Diseases Iran University of Medical Sciences, Floor 3, Building no. 3, Hazrat-e Rasool General Hospital, Niyayesh St, Sattar Khan St, P.O. Box: 1445613131, Tehran, Iran.
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infection Diseases Iran University of Medical Sciences, Floor 3, Building no. 3, Hazrat-e Rasool General Hospital, Niyayesh St, Sattar Khan St, P.O. Box: 1445613131, Tehran, Iran.
| |
Collapse
|
8
|
Millan AJ, Allain V, Nayak I, Aguilar OA, Arakawa-Hoyt JS, Ureno G, Rothrock AG, Shemesh A, Eyquem J, Das J, Lanier LL. Spleen Tyrosine Kinase (SYK) negatively regulates ITAM-mediated human NK cell signaling and CD19-CAR NK cell efficacy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602676. [PMID: 39026749 PMCID: PMC11257556 DOI: 10.1101/2024.07.09.602676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
NK cells express activating receptors that signal through ITAM-bearing adapter proteins. The phosphorylation of each ITAM creates binding sites for SYK and ZAP70 protein tyrosine kinases to propagate downstream signaling including the induction ofCa 2 + influx. While all immature and mature human NK cells co-express SYK and ZAP70, clonally driven memory or adaptive NK cells can methylate SYK genes and signaling is mediated exclusively using ZAP70. Here, we examined the role of SYK and ZAP70 in a clonal human NK cell line KHYG1 by CRISPR-based deletion using a combination of experiments and mechanistic computational modeling. Elimination of SYK resulted in more robustCa + + influx after cross-linking of the CD16 and NKp30 receptors and enhanced phosphorylation of downstream proteins, whereas ZAP70 deletion diminished these responses. By contrast, ZAP70 depletion increased proliferation of the NK cells. As immature T cells express both SYK and ZAP70 but mature T cells often express only ZAP70, we transduced the human Jurkat cell line with SYK and found that expression of SYK increased proliferation but diminished TCR-inducedCa 2 + flux and activation. We performed transcriptional analysis of the matched sets of variant Jurkat and KHYG1 cells and observed profound alterations caused by SYK expression. As depletion of SYK in NK cells increased their activation, primary human NK cells were transduced with a CD19-targeting CAR and were CRISPR edited to ablate SYK or ZAP70. Deletion of SYK resulted in more robust cytotoxic activity and cytokine production, providing a new therapeutic strategy of NK cell engineering for cancer immunotherapy.
Collapse
Affiliation(s)
- Alberto J. Millan
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Vincent Allain
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Université Paris Cité, INSERM UMR976, Hôpital Saint-Louis, Paris, France
| | - Indrani Nayak
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Biomedical Sciences Graduate Program, Department of Pediatrics, Pelotonia Institute for Immuno-Oncology, College of Medicine, The Ohio State University, Columbus OH
| | - Oscar A. Aguilar
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Janice S. Arakawa-Hoyt
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Gabriella Ureno
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| | - Allison Grace Rothrock
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Avishai Shemesh
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Justin Eyquem
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Jayajit Das
- Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children’s Hospital, Biomedical Sciences Graduate Program, Department of Pediatrics, Pelotonia Institute for Immuno-Oncology, College of Medicine, The Ohio State University, Columbus OH
| | - Lewis L. Lanier
- Department of Microbiology and Immunology and the Parker Institute for Cancer Immunotherapy, University of California-San Francisco, San Francisco, CA, USA
| |
Collapse
|
9
|
Yu T, Lu Y, Fang J, Jiang X, Lu Y, Zheng J, Shang X, Shen H, Fu P. Chimeric antigen receptor-based immunotherapy in breast cancer: Recent progress in China. Cancer 2024; 130:1378-1391. [PMID: 37950749 DOI: 10.1002/cncr.35096] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 11/13/2023]
Abstract
Breast cancer (BC) is the fourth most prevalent cancer in China. Despite conventional treatment strategies, BC patients often have poor therapeutic outcomes, leading to significant global cancer mortality rates. Chimeric antigen receptor (CAR)-based immunotherapy is a promising and innovative approach for cancer treatment that redirects immune cells to attack tumor cells expressing selected tumor antigens (TAs). T cells, natural killer (NK) cells, and macrophages, key components of the immune system, are used in CAR-based immunotherapies. Although remarkable progress has been made with CAR-T cells in hematologic malignancies, the application of CAR-based immunotherapy to BC has lagged. This is partly due to obstacles such as tumor heterogeneity, which is further associated with the TA and BC subtypes, and the immunosuppressive tumor microenvironment (TME). Several combinatorial approaches, including the use of immune checkpoint inhibitors, oncolytic viruses, and antitumor drugs, have been proposed to overcome these obstacles in BC treatment. Furthermore, several CAR-based immunotherapies for BC have been translated into clinical trials. This review provides an overview of the recent progress in CAR-based immunotherapy for BC treatment, including targeting of TAs, consideration of BC subtypes, assessment of the TME, and exploration of combinatorial therapies. The authors focused on preclinical studies and clinical trials of CAR-T cells, CAR-NK cells, and CAR-macrophages especially conducted in China, followed by an internal comparison and discussion of current limits. In conclusion, this review elucidates China's contribution to CAR-based immunotherapies for BC and provides inspiration for further research. PLAIN LANGUAGE SUMMARY: Despite conventional treatment strategies, breast cancer (BC) patients in China often have poor therapeutic outcomes. Chimeric antigen receptor (CAR)-based immunotherapy, a promising approach, can redirect immune cells to kill tumor cells expressing selected tumor antigens (TAs). However, obstacles such as TA selection, BC subtypes, and immunosuppressive tumor microenvironment still exist. Therefore, various combinatorial approaches have been proposed. This article elucidates several Chinese CAR-based preclinical and clinical studies in BC treatment with comparisons of foreign research, and CAR-immune cells are analyzed, providing inspiration for further research.
Collapse
Affiliation(s)
- Tianze Yu
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuexin Lu
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianwen Fang
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaocong Jiang
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yue Lu
- Department of Breast and Thyroid Surgery, First Affiliated Hospital of Huzhou University, Huzhou, China
| | - Jingyan Zheng
- Department of Breast and Thyroid Surgery, Lishui People's Hospital, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, China
| | - Xi Shang
- Department of Breast and Thyroid Surgery, Taizhou Hospital, Zhejiang University, Taizhou, China
| | - Haixing Shen
- Department of Breast and Thyroid Surgery, Cixi People's Hospital, Cixi, China
| | - Peifen Fu
- Department of Breast Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Yu X, Li W, Li Z, Wu Q, Sun S. Influence of Microbiota on Tumor Immunotherapy. Int J Biol Sci 2024; 20:2264-2294. [PMID: 38617537 PMCID: PMC11008264 DOI: 10.7150/ijbs.91771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
The role of the microbiome in immunotherapy has recently garnered substantial attention, with molecular studies and clinical trials providing emerging evidence on the pivotal influence of the microbiota in enhancing therapeutic outcomes via immune response modulation. However, the impact of microbial communities can considerably vary across individuals and different immunotherapeutic approaches, posing prominent challenges in harnessing their potential. In this comprehensive review, we outline the current research applications in tumor immunotherapy and delve into the possible mechanisms through which immune function is influenced by microbial communities in various body sites, encompassing those in the gut, extraintestinal barrier, and intratumoral environment. Furthermore, we discuss the effects of diverse microbiome-based strategies, including probiotics, prebiotics, fecal microbiota transplantation, and the targeted modulation of specific microbial taxa, and antibiotic treatments on cancer immunotherapy. All these strategies potentially have a profound impact on immunotherapy and pave the way for personalized therapeutic approaches and predictive biomarkers.
Collapse
Affiliation(s)
- Xin Yu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Wenge Li
- Department of Oncology, Shanghai Artemed Hospital, Shanghai, P. R. China
| | - Zhi Li
- Department of Orthopedics, Affiliated Provincial Hospital of Anhui Medical University, Hefei, Anhui, P. R. China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, P. R. China
| | - Shengrong Sun
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| |
Collapse
|
11
|
Ji S, Shi Y, Yin B. Macrophage barrier in the tumor microenvironment and potential clinical applications. Cell Commun Signal 2024; 22:74. [PMID: 38279145 PMCID: PMC10811890 DOI: 10.1186/s12964-023-01424-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/05/2023] [Indexed: 01/28/2024] Open
Abstract
The tumor microenvironment (TME) constitutes a complex microenvironment comprising a diverse array of immune cells and stromal components. Within this intricate context, tumor-associated macrophages (TAMs) exhibit notable spatial heterogeneity. This heterogeneity contributes to various facets of tumor behavior, including immune response modulation, angiogenesis, tissue remodeling, and metastatic potential. This review summarizes the spatial distribution of macrophages in both the physiological environment and the TME. Moreover, this paper explores the intricate interactions between TAMs and diverse immune cell populations (T cells, dendritic cells, neutrophils, natural killer cells, and other immune cells) within the TME. These bidirectional exchanges form a complex network of immune interactions that influence tumor immune surveillance and evasion strategies. Investigating TAM heterogeneity and its intricate interactions with different immune cell populations offers potential avenues for therapeutic interventions. Additionally, this paper discusses therapeutic strategies targeting macrophages, aiming to uncover novel approaches for immunotherapy. Video Abstract.
Collapse
Affiliation(s)
- Shuai Ji
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China
| | - Yuqing Shi
- Department of Respiratory Medicine, Shenyang 10th People's Hospital, Shenyang, 110096, China
| | - Bo Yin
- Department of Urinary Surgery, The Shengjing Hospital of China Medical University, Shenyang, 110022, China.
| |
Collapse
|
12
|
Hadiloo K, Taremi S, Heidari M, Esmaeilzadeh A. The CAR macrophage cells, a novel generation of chimeric antigen-based approach against solid tumors. Biomark Res 2023; 11:103. [PMID: 38017494 PMCID: PMC10685521 DOI: 10.1186/s40364-023-00537-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 11/30/2023] Open
Abstract
Today, adoptive cell therapy has many successes in cancer therapy, and this subject is brilliant in using chimeric antigen receptor T cells. The CAR T cell therapy, with its FDA-approved drugs, could treat several types of hematological malignancies and thus be very attractive for treating solid cancer. Unfortunately, the CAR T cell cannot be very functional in solid cancers due to its unique features. This treatment method has several harmful adverse effects that limit their applications, so novel treatments must use new cells like NK cells, NKT cells, and macrophage cells. Among these cells, the CAR macrophage cells, due to their brilliant innate features, are more attractive for solid tumor therapy and seem to be a better candidate for the prior treatment methods. The CAR macrophage cells have vital roles in the tumor microenvironment and, with their direct effect, can eliminate tumor cells efficiently. In addition, the CAR macrophage cells, due to being a part of the innate immune system, attended the tumor sites. With the high infiltration, their therapy modulations are more effective. This review investigates the last achievements in CAR-macrophage cells and the future of this immunotherapy treatment method.
Collapse
Affiliation(s)
- Kaveh Hadiloo
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Department of Immunology, Zanjan, Iran
| | - Siavash Taremi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mahmood Heidari
- School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Abdolreza Esmaeilzadeh
- Department of Immunology, Zanjan University of Medical Sciences, Zanjan, Iran.
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
13
|
Liang Y, Xu Q, Gao Q. Advancing CAR-based immunotherapies in solid tumors: CAR- macrophages and neutrophils. Front Immunol 2023; 14:1291619. [PMID: 38090576 PMCID: PMC10715261 DOI: 10.3389/fimmu.2023.1291619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
Macrophages and neutrophils are the main components of the innate immune system and play important roles in promoting angiogenesis, extracellular matrix remodeling, cancer cell proliferation, and metastasis in the tumor microenvironment (TME). They can also be harnessed to mediate cytotoxic tumor killing effects and orchestrate effective anti-tumor immune responses with proper stimulation and modification. Therefore, macrophages and neutrophils have strong potential in cancer immunotherapy. In this review, we briefly outlined the applications of macrophages or neutrophils in adoptive cell therapies, and focused on chimeric antigen receptor (CAR)-engineered macrophages (CAR-Ms) and neutrophils (CAR-Ns). We summarized the construction strategies, the preclinical and clinical studies of CAR-Ms and CAR-Ns. In the end, we briefly discussed the limitations and challenges of CAR-Ms and CAR-Ns, as well as future research directions to extend their applications in treating solid tumors.
Collapse
Affiliation(s)
- Yanling Liang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Qumiao Xu
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| | - Qianqian Gao
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, China
| |
Collapse
|
14
|
Cutting-Edge CAR Engineering: Beyond T Cells. Biomedicines 2022; 10:biomedicines10123035. [PMID: 36551788 PMCID: PMC9776293 DOI: 10.3390/biomedicines10123035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
Chimeric antigen receptor (CAR)-T adoptive cell therapy is one of the most promising advanced therapies for the treatment of cancer, with unprecedented outcomes in haematological malignancies. However, it still lacks efficacy in solid tumours, possibly because engineered T cells become inactive within the immunosuppressive tumour microenvironment (TME). In the TME, cells of the myeloid lineage (M) are among the immunosuppressive cell types with the highest tumour infiltration rate. These cells interact with other immune cells, mediating immunosuppression and promoting angiogenesis. Recently, the development of CAR-M cell therapies has been put forward as a new candidate immunotherapy with good efficacy potential. This alternative CAR strategy may increase the efficacy, survival, persistence, and safety of CAR treatments in solid tumours. This remains a critical frontier in cancer research and opens up a new possibility for next-generation personalised medicine to overcome TME resistance. However, the exact mechanisms of action of CAR-M and their effect on the TME remain poorly understood. Here, we summarise the basic, translational, and clinical results of CAR-innate immune cells and CAR-M cell immunotherapies, from their engineering and mechanistic studies to preclinical and clinical development.
Collapse
|
15
|
Gangopadhyay K, Roy A, Chandradasan AC, Roy S, Debnath O, SenGupta S, Chowdhury S, Das D, Das R. An evolutionary divergent thermodynamic brake in ZAP-70 fine-tunes the kinetic proofreading in T cells. J Biol Chem 2022; 298:102376. [PMID: 35970395 PMCID: PMC9486129 DOI: 10.1016/j.jbc.2022.102376] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
T cell signaling starts with assembling several tyrosine kinases and adaptor proteins to the T cell receptor (TCR), following the antigen-binding to the TCR. The stability of the TCR-antigen complex and the delay between the recruitment and activation of each kinase determines the T cell response. Integration of such delays constitutes a kinetic proofreading mechanism to regulate T cell response to the antigen binding. However, the mechanism of these delays is not fully understood. Combining biochemical experiments and kinetic modelling, here we report a thermodynamic brake in the regulatory module of the tyrosine kinase ZAP-70, which determines the ligand selectivity, and may delay the ZAP-70 activation upon antigen binding to TCR. The regulatory module of ZAP-70 comprises of a tandem SH2 (tSH2) domain that binds to its ligand, doubly-phosphorylated ITAM peptide (ITAM-Y2P), in two kinetic steps: a fast step and a slow step. We show the initial encounter complex formation between the ITAM-Y2P and tSH2 domain follows a fast-kinetic step, whereas the conformational transition to the holo-state follows a slow-kinetic step. We further observed a thermodynamic penalty imposed during the second phosphate-binding event reduces the rate of structural transition to the holo-state. Phylogenetic analysis revealed the evolution of the thermodynamic brake coincides with the divergence of the adaptive immune system to the cell-mediated and humoral responses. In addition, the paralogous kinase Syk expressed in B cells does not possess such a functional thermodynamic brake, which may explain the higher basal activation and lack of ligand selectivity in Syk.
Collapse
Affiliation(s)
- Kaustav Gangopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Arnab Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Athira C Chandradasan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Swarnendu Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Olivia Debnath
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Soumee SenGupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Subhankar Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India
| | - Dipjyoti Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India.
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, India; Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur, India.
| |
Collapse
|
16
|
Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan CX, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res 2022; 41:119. [PMID: 35361234 PMCID: PMC8969382 DOI: 10.1186/s13046-022-02327-z] [Citation(s) in RCA: 367] [Impact Index Per Article: 122.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/11/2021] [Indexed: 12/13/2022] Open
Abstract
Adoptive cell therapy with chimeric antigen receptor (CAR) immunotherapy has made tremendous progress with five CAR T therapies approved by the US Food and Drug Administration for hematological malignancies. However, CAR immunotherapy in solid tumors lags significantly behind. Some of the major hurdles for CAR immunotherapy in solid tumors include CAR T cell manufacturing, lack of tumor-specific antigens, inefficient CAR T cell trafficking and infiltration into tumor sites, immunosuppressive tumor microenvironment (TME), therapy-associated toxicity, and antigen escape. CAR Natural Killer (NK) cells have several advantages over CAR T cells as the NK cells can be manufactured from pre-existing cell lines or allogeneic NK cells with unmatched major histocompatibility complex (MHC); can kill cancer cells through both CAR-dependent and CAR-independent pathways; and have less toxicity, especially cytokine-release syndrome and neurotoxicity. At least one clinical trial showed the efficacy and tolerability of CAR NK cell therapy. Macrophages can efficiently infiltrate into tumors, are major immune regulators and abundantly present in TME. The immunosuppressive M2 macrophages are at least as efficient as the proinflammatory M1 macrophages in phagocytosis of target cells; and M2 macrophages can be induced to differentiate to the M1 phenotype. Consequently, there is significant interest in developing CAR macrophages for cancer immunotherapy to overcome some major hurdles associated with CAR T/NK therapy, especially in solid tumors. Nevertheless, both CAR NK and CAR macrophages have their own limitations. This comprehensive review article will discuss the current status and the major hurdles associated with CAR T and CAR NK therapy, followed by the structure and cutting-edge research of developing CAR macrophages as cancer-specific phagocytes, antigen presenters, immunostimulators, and TME modifiers.
Collapse
Affiliation(s)
- Kevin Pan
- Vanderbilt University, 2201 West End Ave, Nashville, TN, 37235, USA
| | - Hizra Farrukh
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Huihong Xu
- Boston University, Boston, MA, USA.,VA Boston Healthcare System, West Roxbury, MA, USA
| | - Chong-Xian Pan
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,VA Boston Healthcare System, West Roxbury, MA, USA. .,Harvard Medical School, 1400 VFW Parkway Building 3, Room 2B-110, West Roxbury, MA, 02132, USA.
| | - Zheng Zhu
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Harvard Medical School, 1400 VFW Parkway Building 3, Room 2B-110, West Roxbury, MA, 02132, USA.
| |
Collapse
|
17
|
Gangopadhyay K, Roy S, Sen Gupta S, Chandradasan A, Chowdhury S, Das R. Regulating the discriminatory response to antigen by T-cell receptor. Biosci Rep 2022; 42:BSR20212012. [PMID: 35260878 PMCID: PMC8965820 DOI: 10.1042/bsr20212012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
The cell-mediated immune response constitutes a robust host defense mechanism to eliminate pathogens and oncogenic cells. T cells play a central role in such a defense mechanism and creating memories to prevent any potential infection. T cell recognizes foreign antigen by its surface receptors when presented through antigen-presenting cells (APCs) and calibrates its cellular response by a network of intracellular signaling events. Activation of T-cell receptor (TCR) leads to changes in gene expression and metabolic networks regulating cell development, proliferation, and migration. TCR does not possess any catalytic activity, and the signaling initiates with the colocalization of several enzymes and scaffold proteins. Deregulation of T cell signaling is often linked to autoimmune disorders like severe combined immunodeficiency (SCID), rheumatoid arthritis, and multiple sclerosis. The TCR remarkably distinguishes the minor difference between self and non-self antigen through a kinetic proofreading mechanism. The output of TCR signaling is determined by the half-life of the receptor antigen complex and the time taken to recruit and activate the downstream enzymes. A longer half-life of a non-self antigen receptor complex could initiate downstream signaling by activating associated enzymes. Whereas, the short-lived, self-peptide receptor complex disassembles before the downstream enzymes are activated. Activation of TCR rewires the cellular metabolic response to aerobic glycolysis from oxidative phosphorylation. How does the early event in the TCR signaling cross-talk with the cellular metabolism is an open question. In this review, we have discussed the recent developments in understanding the regulation of TCR signaling, and then we reviewed the emerging role of metabolism in regulating T cell function.
Collapse
Affiliation(s)
- Kaustav Gangopadhyay
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Swarnendu Roy
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Soumee Sen Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Athira C. Chandradasan
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Subhankar Chowdhury
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| | - Rahul Das
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
- Centre for Advanced Functional Materials, Indian Institute of Science Education and Research Kolkata, Mohanpur campus, Mohanpur 741246, India
| |
Collapse
|
18
|
Goyette J, Depoil D, Yang Z, Isaacson SA, Allard J, van der Merwe PA, Gaus K, Dustin ML, Dushek O. Dephosphorylation accelerates the dissociation of ZAP70 from the T cell receptor. Proc Natl Acad Sci U S A 2022; 119:e2116815119. [PMID: 35197288 PMCID: PMC8892339 DOI: 10.1073/pnas.2116815119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/11/2021] [Indexed: 11/20/2022] Open
Abstract
Protein-protein binding domains are critical in signaling networks. Src homology 2 (SH2) domains are binding domains that interact with sequences containing phosphorylated tyrosines. A subset of SH2 domain-containing proteins has tandem domains, which are thought to enhance binding affinity and specificity. However, a trade-off exists between long-lived binding and the ability to rapidly reverse signaling, which is a critical requirement of noise-filtering mechanisms such as kinetic proofreading. Here, we use modeling to show that the unbinding rate of tandem, but not single, SH2 domains can be accelerated by phosphatases. Using surface plasmon resonance, we show that the phosphatase CD45 can accelerate the unbinding rate of zeta chain-associated protein kinase 70 (ZAP70), a tandem SH2 domain-containing kinase, from biphosphorylated peptides from the T cell receptor (TCR). An important functional prediction of accelerated unbinding is that the intracellular ZAP70-TCR half-life in T cells will not be fixed but rather, dependent on the extracellular TCR-antigen half-life, and we show that this is the case in both cell lines and primary T cells. The work highlights that tandem SH2 domains can break the trade-off between signal fidelity (requiring long half-life) and signal reversibility (requiring short half-life), which is a key requirement for T cell antigen discrimination mediated by kinetic proofreading.
Collapse
Affiliation(s)
- Jesse Goyette
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia;
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, NSW, Australia
| | - David Depoil
- The Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom
| | - Zhengmin Yang
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia
| | - Samuel A Isaacson
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215
| | - Jun Allard
- Center for Complex Biological Systems, University of California, Irvine, CA 92697
| | - P Anton van der Merwe
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| | - Katharina Gaus
- European Molecular Biology Laboratory Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney 2052, NSW, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney 2052, NSW, Australia
| | - Michael L Dustin
- The Kennedy Institute of Rheumatology, University of Oxford, OX3 7FY Oxford, United Kingdom;
| | - Omer Dushek
- Sir William Dunn School of Pathology, University of Oxford, OX1 3RE Oxford, United Kingdom
| |
Collapse
|
19
|
Shah K, Al-Haidari A, Sun J, Kazi JU. T cell receptor (TCR) signaling in health and disease. Signal Transduct Target Ther 2021; 6:412. [PMID: 34897277 PMCID: PMC8666445 DOI: 10.1038/s41392-021-00823-w] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 11/02/2021] [Accepted: 11/02/2021] [Indexed: 12/18/2022] Open
Abstract
Interaction of the T cell receptor (TCR) with an MHC-antigenic peptide complex results in changes at the molecular and cellular levels in T cells. The outside environmental cues are translated into various signal transduction pathways within the cell, which mediate the activation of various genes with the help of specific transcription factors. These signaling networks propagate with the help of various effector enzymes, such as kinases, phosphatases, and phospholipases. Integration of these disparate signal transduction pathways is done with the help of adaptor proteins that are non-enzymatic in function and that serve as a scaffold for various protein-protein interactions. This process aids in connecting the proximal to distal signaling pathways, thereby contributing to the full activation of T cells. This review provides a comprehensive snapshot of the various molecules involved in regulating T cell receptor signaling, covering both enzymes and adaptors, and will discuss their role in human disease.
Collapse
Affiliation(s)
- Kinjal Shah
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Amr Al-Haidari
- Clinical Genetics and Pathology, Skåne University Hospital, Region Skåne, Lund, Sweden
- Clinical Sciences Department, Surgery Research Unit, Lund University, Malmö, Sweden
| | - Jianmin Sun
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden
- NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Science and Technology center, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, China
| | - Julhash U Kazi
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden.
- Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, Lund, Sweden.
| |
Collapse
|
20
|
T-Cell Dysfunction as a Limitation of Adoptive Immunotherapy: Current Concepts and Mitigation Strategies. Cancers (Basel) 2021; 13:cancers13040598. [PMID: 33546277 PMCID: PMC7913380 DOI: 10.3390/cancers13040598] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary T cells are immune cells that can be used to target infections or cancers. Adoptive T-cell immunotherapy leverages these properties and/or confers new features to T cells through ex vivo manipulations prior to their use in patients. However, as a “living drug,” the function of these cells can be hampered by several built-in physiological constraints and external factors that limit their efficacy. Manipulating T cells ex vivo can impart dysfunctional features to T cells through repeated stimulations and expansion, but it also offers many opportunities to improve the therapeutic potential of these cells, including emerging interventions to prevent or reverse T-cell dysfunction developing ex vivo or after transfer in patients. This review outlines the various forms of T-cell dysfunction, emphasizes how it affects various types of T-cell immunotherapy approaches, and describes current and anticipated strategies to limit T-cell dysfunction. Abstract Over the last decades, cellular immunotherapy has revealed its curative potential. However, inherent physiological characteristics of immune cells can limit the potency of this approach. Best defined in T cells, dysfunction associated with terminal differentiation, exhaustion, senescence, and activation-induced cell death, undermine adoptive cell therapies. In this review, we concentrate on how the multiple mechanisms that articulate the various forms of immune dysfunction impact cellular therapies primarily involving conventional T cells, but also other lymphoid subtypes. The repercussions of immune cell dysfunction across the full life cycle of cell therapy, from the source material, during manufacturing, and after adoptive transfer, are discussed, with an emphasis on strategies used during ex vivo manipulations to limit T-cell dysfunction. Applicable to cellular products prepared from native and unmodified immune cells, as well as genetically engineered therapeutics, the understanding and potential modulation of dysfunctional features are key to the development of improved cellular immunotherapies.
Collapse
|
21
|
An allosteric hot spot in the tandem-SH2 domain of ZAP-70 regulates T-cell signaling. Biochem J 2020; 477:1287-1308. [PMID: 32203568 DOI: 10.1042/bcj20190879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/18/2020] [Accepted: 03/23/2020] [Indexed: 12/28/2022]
Abstract
T-cell receptor (TCR) signaling is initiated by recruiting ZAP-70 to the cytosolic part of TCR. ZAP-70, a non-receptor tyrosine kinase, is composed of an N-terminal tandem SH2 (tSH2) domain connected to the C-terminal kinase domain. The ZAP-70 is recruited to the membrane through binding of tSH2 domain and the doubly phosphorylated ITAM motifs of CD3 chains in the TCR complex. Our results show that the tSH2 domain undergoes a biphasic structural transition while binding to the doubly phosphorylated ITAM-ζ1 peptide. The C-terminal SH2 domain binds first to the phosphotyrosine residue of ITAM peptide to form an encounter complex leading to subsequent binding of second phosphotyrosine residue to the N-SH2 domain. We decipher a network of noncovalent interactions that allosterically couple the two SH2 domains during binding to doubly phosphorylated ITAMs. Mutation in the allosteric network residues, for example, W165C, uncouples the formation of encounter complex to the subsequent ITAM binding thus explaining the altered recruitment of ZAP-70 to the plasma membrane causing autoimmune arthritis in mice. The proposed mechanism of allosteric coupling is unique to ZAP-70, which is fundamentally different from Syk, a close homolog of ZAP-70 expressed in B-cells.
Collapse
|
22
|
Recent insights of T cell receptor-mediated signaling pathways for T cell activation and development. Exp Mol Med 2020; 52:750-761. [PMID: 32439954 PMCID: PMC7272404 DOI: 10.1038/s12276-020-0435-8] [Citation(s) in RCA: 265] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/26/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
T cell activation requires extracellular stimulatory signals that are mainly mediated by T cell receptor (TCR) complexes. The TCR recognizes antigens on major histocompatibility complex molecules with the cooperation of CD4 or CD8 coreceptors. After recognition, TCR-induced signaling cascades that propagate signals via various molecules and second messengers are induced. Consequently, many features of T cell-mediated immune responses are determined by these intracellular signaling cascades. Furthermore, differences in the magnitude of TCR signaling direct T cells toward distinct effector linages. Therefore, stringent regulation of T cell activation is crucial for T cell homeostasis and proper immune responses. Dysregulation of TCR signaling can result in anergy or autoimmunity. In this review, we summarize current knowledge on the pathways that govern how the TCR complex transmits signals into cells and the roles of effector molecules that are involved in these pathways.
Collapse
|
23
|
Seitz O. Templated chemistry for bioorganic synthesis and chemical biology. J Pept Sci 2019; 25:e3198. [PMID: 31309674 PMCID: PMC6771651 DOI: 10.1002/psc.3198] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/24/2022]
Abstract
In light of the 2018 Max Bergmann Medal, this review discusses advancements on chemical biology-driven templated chemistry developed in the author's laboratories. The focused review introduces the template categories applied to orient functional units such as functional groups, chromophores, biomolecules, or ligands in space. Unimolecular templates applied in protein synthesis facilitate fragment coupling of unprotected peptides. Templating via bimolecular assemblies provides control over proximity relationships between functional units of two molecules. As an instructive example, the coiled coil peptide-templated labelling of receptor proteins on live cells will be shown. Termolecular assemblies provide the opportunity to put the proximity of functional units on two (bio)molecules under the control of a third party molecule. This allows the design of conditional bimolecular reactions. A notable example is DNA/RNA-triggered peptide synthesis. The last section shows how termolecular and multimolecular assemblies can be used to better characterize and understand multivalent protein-ligand interactions.
Collapse
Affiliation(s)
- Oliver Seitz
- Department of ChemistryHumboldt University BerlinBerlinGermany
| |
Collapse
|
24
|
Yuan T, Qi B, Jiang Z, Dong W, Zhong L, Bai L, Tong R, Yu J, Shi J. Dual FLT3 inhibitors: Against the drug resistance of acute myeloid leukemia in recent decade. Eur J Med Chem 2019; 178:468-483. [PMID: 31207462 DOI: 10.1016/j.ejmech.2019.06.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/16/2019] [Accepted: 06/02/2019] [Indexed: 01/18/2023]
Abstract
Acute myeloid leukemia (AML) is a malignant disease characterized by abnormal growth and differentiation of hematopoietic stem cells. Although the pathogenesis has not been fully elucidated, many specific gene mutations have been found in AML. Fms-like tyrosine kinase 3 (FLT3) is recognized as a drug target for the treatment of AML, and the activation mutations of FLT3 were found in about 30% of AML patients. Targeted inhibition of FLT3 receptor tyrosine kinase has shown promising results in the treatment of FLT3 mutation AML. Unfortunately, the therapeutic effects of FLT3 tyrosine kinase inhibitors used as AML monotherapy are usually accompanied by the high risk of resistance development within a few months after treatment. FLT3 dual inhibitors were generated with the co-inhibition of FLT3 and another target, such as CDK4, JAK2, MEK, Mer, Pim, etc., to solve the problems mentioned above. As a result, the therapeutic effect of the drug is significantly improved, while the toxic and side effects are reduced. Besides, the life quality of AML patients with FLT3 mutation has been effectively improved. In this paper, we reviewed the studies of dual FLT3 inhibitors that have been discovered in recent years for the treatment of AML.
Collapse
Affiliation(s)
- Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Baowen Qi
- College of Pharmacy and Biological Engineering, Chengdu University, Chengdu, 610106, China
| | - Zhongliang Jiang
- Miller School of Medicine, University of Miami, Miami, Florida, 33136, USA
| | - Wenjuan Dong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lei Zhong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Lan Bai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Jiying Yu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Jianyou Shi
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
25
|
Feng C, Roy A, Post CB. Entropic allostery dominates the phosphorylation-dependent regulation of Syk tyrosine kinase release from immunoreceptor tyrosine-based activation motifs. Protein Sci 2018; 27:1780-1796. [PMID: 30051939 PMCID: PMC6225982 DOI: 10.1002/pro.3489] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/05/2018] [Accepted: 07/05/2018] [Indexed: 01/15/2023]
Abstract
Spleen tyrosine kinase (Syk) is an essential player in immune signaling through its ability to couple multiple classes of membrane immunoreceptors to intracellular signaling pathways. Ligand binding leads to the recruitment of Syk to a phosphorylated cytoplasmic region of the receptors called ITAM. Syk binds to ITAM with high-affinity (nanomolar Kd ) via its tandem pair of SH2 domains. The affinity between Syk and ITAM is allosterically regulated by phosphorylation at Y130 in a linker connecting the tandem SH2 domains; when Y130 is phosphorylated, the binding affinity decreases (micromolar Kd ). Previous equilibrium binding studies attribute the increase in the binding free energy to an intra-molecular binding (isomerization) step of the tandem SH2 and ITAM, but a physical basis for the increased free energy is unknown. Here, we provide evidence that Y130 phosphorylation imposes an entropy penalty to isomerization, but surprisingly, has negligible effect on the SH2 binding interactions with ITAM and thus on the binding enthalpy. An analysis of NMR chemical shift differences characterized conformational effects of ITAM binding, and binding thermodynamics were measured from isothermal titration calorimetry. Together the data support a previously unknown mechanism for the basis of regulating protein-protein interactions through protein phosphorylation. The decreased affinity for Syk association with immune receptor ITAMs by Y130 phosphorylation is an allosteric mechanism driven by an increased entropy penalty, likely contributed by conformational disorder in the SH2-SH2 inter-domain structure, while SH2-ITAM binding contacts are not affected, and binding enthalpy is unchanged.
Collapse
Affiliation(s)
- Chao Feng
- Department of Medicinal Chemistry and Molecular PharmacologyMarkey Center for Structural Biology, and Purdue Center for Cancer Research, Purdue UniversityWest Lafayette, Indiana, 47907
| | - Amitava Roy
- Bioinformatics and Computational Biosciences Branch, Rocky Mountain Laboratories, NIAIDNational Institutes of HealthHamilton, Montana, 59840
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular PharmacologyMarkey Center for Structural Biology, and Purdue Center for Cancer Research, Purdue UniversityWest Lafayette, Indiana, 47907
| |
Collapse
|
26
|
Morrissey MA, Williamson AP, Steinbach AM, Roberts EW, Kern N, Headley MB, Vale RD. Chimeric antigen receptors that trigger phagocytosis. eLife 2018; 7:36688. [PMID: 29862966 PMCID: PMC6008046 DOI: 10.7554/elife.36688] [Citation(s) in RCA: 250] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/26/2018] [Indexed: 12/14/2022] Open
Abstract
Chimeric antigen receptors (CARs) are synthetic receptors that reprogram T cells to kill cancer. The success of CAR-T cell therapies highlights the promise of programmed immunity and suggests that applying CAR strategies to other immune cell lineages may be beneficial. Here, we engineered a family of Chimeric Antigen Receptors for Phagocytosis (CAR-Ps) that direct macrophages to engulf specific targets, including cancer cells. CAR-Ps consist of an extracellular antibody fragment, which can be modified to direct CAR-P activity towards specific antigens. By screening a panel of engulfment receptor intracellular domains, we found that the cytosolic domains from Megf10 and FcRɣ robustly triggered engulfment independently of their native extracellular domain. We show that CAR-Ps drive specific engulfment of antigen-coated synthetic particles and whole human cancer cells. Addition of a tandem PI3K recruitment domain increased cancer cell engulfment. Finally, we show that CAR-P expressing murine macrophages reduce cancer cell number in co-culture by over 40%. Our immune system constantly patrols our body, looking to eliminate cancerous cells and harmful microbes. It can spot these threats because it recognizes certain signals at the surface of dangerous cells. However, cancer cells often find ways to ‘hide’ from our immune system. Chimeric antigen receptors, or CARs, are receptors designed in a laboratory to attach to specific proteins that are found on a cancer cell. These receptors tell immune cells, such as T cells, to attack cancers. T cells that carry CARs are already used to treat people with blood cancers. Yet, these immune cells are not good at penetrating a solid tumor to kill the cells inside, which limits their use. Macrophages are a group of immune cells that can make their way inside tumors and travel to cancers that the rest of the immune system cannot reach. They defend our body by ‘swallowing’ harmful cells. Would it then be possible to use CARs to program macrophages to ‘eat’ cancer cells? Morrissey, Williamson et al. created a new type of CARs, named CAR-P, and introduced it in macrophages. These cells were then able to recognize and attack beads covered in proteins found on cancer cells. The modified macrophages could also limit the growth of live cancer cells in a dish by ‘biting’ and even ‘eating’ them. While these results are promising in the laboratory, the next step is to test whether these reprogrammed macrophages can recognize and fight cancers in living animals.
Collapse
Affiliation(s)
- Meghan A Morrissey
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Adam P Williamson
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Adriana M Steinbach
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Edward W Roberts
- Department of Pathology, University of California, San Francisco, San Francisco, United States
| | - Nadja Kern
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Mark B Headley
- Department of Pathology, University of California, San Francisco, San Francisco, United States
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States.,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
27
|
Milbradt J, Sonntag E, Wagner S, Strojan H, Wangen C, Lenac Rovis T, Lisnic B, Jonjic S, Sticht H, Britt WJ, Schlötzer-Schrehardt U, Marschall M. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97. Viruses 2018; 10:v10010035. [PMID: 29342872 PMCID: PMC5795448 DOI: 10.3390/v10010035] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/05/2018] [Accepted: 01/10/2018] [Indexed: 02/07/2023] Open
Abstract
The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.
Collapse
Affiliation(s)
- Jens Milbradt
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Eric Sonntag
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Sabrina Wagner
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Hanife Strojan
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Christina Wangen
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - Tihana Lenac Rovis
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Berislav Lisnic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Stipan Jonjic
- Department of Histology and Embryology, Faculty of Medicine, University of Rijeka, Rijeka 51000, Croatia.
| | - Heinrich Sticht
- Division of Bioinformatics, Institute of Biochemistry, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| | - William J Britt
- Departments of Pediatrics and Microbiology, School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | | | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen 91054, Germany.
| |
Collapse
|
28
|
Marczynke M, Gröger K, Seitz O. Selective Binders of the Tandem Src Homology 2 Domains in Syk and Zap70 Protein Kinases by DNA-Programmed Spatial Screening. Bioconjug Chem 2017; 28:2384-2392. [PMID: 28767218 DOI: 10.1021/acs.bioconjchem.7b00382] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Members of the Syk family of tyrosine kinases arrange Src homology 2 (SH2) domains in tandem to allow the firm binding of immunoreceptor tyrosine-based interaction motifs (ITAMs). While the advantages provided by the bivalency enhanced interactions are evident, the impact on binding specificity is less-clear. For example, the spleen tyrosine kinase (Syk) and the ζ-chain-associated protein kinase (ZAP-70) recognize the consensus sequence pYXXI/L(X)6-8 pYXXI/L with near-identical nanomolar affinity. The nondiscriminatory recognition, on the one hand, poses a specificity challenge for the design of subtype selective protein binders and, on the other hand, raises the question as to how differential activation of Syk and ZAP-70 is ensured when both kinases are co-expressed. Herein, we identified the criteria for the design of binders that specifically address either the Syk or the Zap-70 tSH2 domain. Our approach is based on DNA-programmed spatial screening. Tyrosine-phosphorylated peptides containing the pYXXI/L motif were attached to oligonucleotides and aligned in tandem on a DNA template by means of nucleic acid hybridization. The distance between the pYXXI/L motifs and the orientation of strands were varied. The exploration exposed remarkably different recognition characteristics. While Syk tSH2 has a rather broad substrate scope, ZAP-70 tSH2 required a proximal arrangement of the phosphotyrosine ligands in defined strand orientation. The spatial screen led to the design of mutually selective, DNA-free binders, which discriminate Zap-70 and Syk tSH2 by 1 order of magnitude in affinity.
Collapse
Affiliation(s)
- Michaela Marczynke
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| | - Katharina Gröger
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| | - Oliver Seitz
- Institut für Chemie, Humboldt-Universität zu Berlin , Brook-Taylor-Straße 2, D-12489 Berlin, Germany
| |
Collapse
|
29
|
Davey NE, Morgan DO. Building a Regulatory Network with Short Linear Sequence Motifs: Lessons from the Degrons of the Anaphase-Promoting Complex. Mol Cell 2017; 64:12-23. [PMID: 27716480 DOI: 10.1016/j.molcel.2016.09.006] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The anaphase-promoting complex or cyclosome (APC/C) is a ubiquitin ligase that polyubiquitinates specific substrates at precise times in the cell cycle, thereby triggering the events of late mitosis in a strict order. The robust substrate specificity of the APC/C prevents the potentially deleterious degradation of non-APC/C substrates and also averts the cell-cycle errors and genomic instability that could result from mistimed degradation of APC/C targets. The APC/C recognizes short linear sequence motifs, or degrons, on its substrates. The specific and timely modification and degradation of APC/C substrates is likely to be modulated by variations in degron sequence and context. We discuss the extensive affinity, specificity, and selectivity determinants encoded in APC/C degrons, and we describe some of the extrinsic mechanisms that control APC/C-substrate recognition. As an archetype for protein motif-driven regulation of cell function, the APC/C-substrate interaction provides insights into the general properties of post-translational regulatory systems.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| | - David O Morgan
- Departments of Physiology and Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
30
|
Weisberg EL, Puissant A, Stone R, Sattler M, Buhrlage SJ, Yang J, Manley PW, Meng C, Buonopane M, Daley JF, Lazo S, Wright R, Weinstock DM, Christie AL, Stegmaier K, Griffin JD. Characterization of midostaurin as a dual inhibitor of FLT3 and SYK and potentiation of FLT3 inhibition against FLT3-ITD-driven leukemia harboring activated SYK kinase. Oncotarget 2017; 8:52026-52044. [PMID: 28881711 PMCID: PMC5581010 DOI: 10.18632/oncotarget.19036] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/12/2017] [Indexed: 01/13/2023] Open
Abstract
Oncogenic FLT3 kinase is a clinically validated target in acute myeloid leukemia (AML), and both multi-targeted and selective FLT3 inhibitors have been developed. Spleen tyrosine kinase (SYK) has been shown to be activated and increased in FLT3-ITD-positive AML patients, and has further been shown to be critical for transformation and maintenance of the leukemic clone in these patients. Further, over-expression of constitutively activated SYK causes resistance to highly selective FLT3 tyrosine kinase inhibitors (TKI). Up to now, the activity of the multi-targeted FLT3 inhibitor, midostaurin, against cells expressing activated SYK has not been explored in the context of leukemia, although SYK has been identified as a target of midostaurin in systemic mastocytosis. We compared the ability of midostaurin to inhibit activated SYK in mutant FLT3-positive AML cells with that of inhibitors displaying dual SYK/FLT3 inhibition, targeted SYK inhibition, and targeted FLT3 inhibition. Our findings suggest that dual FLT3/SYK inhibitors and FLT3-targeted drugs potently kill oncogenic FLT3-transformed cells, while SYK-targeted small molecule inhibition displays minimal activity. However, midostaurin and other dual FLT3/SYK inhibitors display superior anti-proliferative activity when compared to targeted FLT3 inhibitors, such as crenolanib and quizartinib, against cells co-expressing FLT3-ITD and constitutively activated SYK-TEL. Interestingly, additional SYK suppression potentiated the effects of dual FLT3/SYK inhibitors and targeted FLT3 inhibitors against FLT3-ITD-driven leukemia, both in the absence and presence of activated SYK. Taken together, our findings have important implications for the design of drug combination studies in mutant FLT3-positive patients and for the design of future generations of FLT3 inhibitors.
Collapse
Affiliation(s)
- Ellen L Weisberg
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandre Puissant
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Richard Stone
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Martin Sattler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara J Buhrlage
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Biological Chemistry and Molecular Pharmacology, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jing Yang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul W Manley
- Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Chengcheng Meng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael Buonopane
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - John F Daley
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Suzan Lazo
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Renee Wright
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - David M Weinstock
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Amanda L Christie
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - James D Griffin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
31
|
Katz ZB, Novotná L, Blount A, Lillemeier BF. A cycle of Zap70 kinase activation and release from the TCR amplifies and disperses antigenic stimuli. Nat Immunol 2017; 18:86-95. [PMID: 27869819 PMCID: PMC5490839 DOI: 10.1038/ni.3631] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 10/28/2016] [Indexed: 12/14/2022]
Abstract
Cell-surface-receptor pathways amplify weak, rare and local stimuli to induce cellular responses. This task is accomplished despite signaling components that segregate into nanometer-scale membrane domains. Here we describe a 'catch-and-release' mechanism that amplified and dispersed stimuli by releasing activated kinases from receptors lacking intrinsic catalytic activity. Specifically, we discovered a cycle of recruitment, activation and release for Zap70 kinases at phosphorylated T cell antigen receptors (TCRs). This turned the TCR into a 'catalytic unit' that amplified antigenic stimuli. Zap70 released from the TCR remained at the membrane, translocated, and phosphorylated spatially distinct substrates. The mechanisms described here are based on widely used protein domains and post-translational modifications; therefore, many membrane-associated pathways might employ similar mechanisms for signal amplification and dispersion.
Collapse
Affiliation(s)
- Zachary B Katz
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lucie Novotná
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Amy Blount
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Björn F Lillemeier
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
32
|
Visperas PR, Wilson CG, Winger JA, Yan Q, Lin K, Arkin MR, Weiss A, Kuriyan J. Identification of Inhibitors of the Association of ZAP-70 with the T Cell Receptor by High-Throughput Screen. SLAS DISCOVERY 2016; 22:324-331. [PMID: 27932698 DOI: 10.1177/1087057116681407] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
ZAP-70 is a critical molecule in the transduction of T cell antigen receptor signaling and the activation of T cells. Upon activation of the T cell antigen receptor, ZAP-70 is recruited to the intracellular ζ-chains of the T cell receptor, where ZAP-70 is activated and colocalized with its substrates. Inhibitors of ZAP-70 could potentially function as treatments for autoimmune diseases or organ transplantation. In this work, we present the design, optimization, and implementation of a screen for inhibitors that would disrupt the interaction between ZAP-70 and the T cell antigen receptor. The screen is based on a fluorescence polarization assay for peptide binding to ZAP-70.
Collapse
Affiliation(s)
- Patrick R Visperas
- 1 Department of Molecular and Cell Biology and Department of Chemistry, California Institute of Quantitative Biosciences and Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Plexxikon Inc., Berkeley, CA, USA
| | - Christopher G Wilson
- 3 Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA, USA
| | - Jonathan A Winger
- 1 Department of Molecular and Cell Biology and Department of Chemistry, California Institute of Quantitative Biosciences and Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Omniox Inc., San Carlos, CA, USA
| | - Qingrong Yan
- 1 Department of Molecular and Cell Biology and Department of Chemistry, California Institute of Quantitative Biosciences and Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Janssen Pharmaceuticals Inc., Titusville, NJ, USA
| | - Kevin Lin
- 1 Department of Molecular and Cell Biology and Department of Chemistry, California Institute of Quantitative Biosciences and Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Michelle R Arkin
- 3 Department of Pharmaceutical Chemistry, Small Molecule Discovery Center, University of California, San Francisco, CA, USA
| | - Arthur Weiss
- 4 Department of Medicine, Rosalind Russell and Ephrain P. Engleman Rheumatology Research Center for Arthritis and Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - John Kuriyan
- 1 Department of Molecular and Cell Biology and Department of Chemistry, California Institute of Quantitative Biosciences and Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- 2 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
33
|
Feng C, Post CB. Insights into the allosteric regulation of Syk association with receptor ITAM, a multi-state equilibrium. Phys Chem Chem Phys 2016; 18:5807-18. [PMID: 26468009 PMCID: PMC4758936 DOI: 10.1039/c5cp05417f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The phosphorylation of interdomain A (IA), a linker region between tandem SH2 domains of Syk tyrosine kinase, regulates the binding affinity for association of Syk with doubly-phosphorylated ITAM regions of the B cell receptor. The mechanism of this allosteric regulation has been suggested to be a switch from the high-affinity bifunctional binding, mediated through both SH2 domains binding two phosphotyrosine residues of ITAM, to a substantially lower-affinity binding of only one SH2 domain. IA phosphorylation triggers the switch by inducing disorder in IA and weakening the SH2-SH2 interaction. The postulated switch to a single-SH2-domain binding mode is examined using NMR to monitor site-specific binding to each SH2 domain of Syk variants engineered to have IA regions that differ in conformational flexibility. The combined analysis of titration curves and NMR line-shapes provides sufficient information to determine the energetics of inter-molecular binding at each SH2 site along with an intra-molecular binding or isomerization step. A less favorable isomerization equilibrium associated with the changes in the SH2-SH2 conformational ensemble and IA flexibility accounts for the inhibition of Syk association with membrane ITAM regions when IA is phosphorylated, and refutes the proposed switch to single-SH2-domain binding. Syk localizes in the cell through its SH2 interactions, and this basis for allosteric regulation of ITAM association proposes for the first time a phosphorylation-dependent model to regulate Syk binding to alternate receptors and other signaling proteins that differ either in the number of residues separating ITAM phosphotyrosines or by having only one phosphotyrosine, a half ITAM.
Collapse
Affiliation(s)
- Chao Feng
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA.
| | - Carol Beth Post
- Department of Medicinal Chemistry and Molecular Pharmacology, Markey Center for Structural Biology, Purdue Center for Cancer Research, Purdue University, West Lafayette, Indiana 47907, USA.
| |
Collapse
|
34
|
Van Roey K, Davey NE. Motif co-regulation and co-operativity are common mechanisms in transcriptional, post-transcriptional and post-translational regulation. Cell Commun Signal 2015; 13:45. [PMID: 26626130 PMCID: PMC4666095 DOI: 10.1186/s12964-015-0123-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/24/2015] [Indexed: 01/01/2023] Open
Abstract
A substantial portion of the regulatory interactions in the higher eukaryotic cell are mediated by simple sequence motifs in the regulatory segments of genes and (pre-)mRNAs, and in the intrinsically disordered regions of proteins. Although these regulatory modules are physicochemically distinct, they share an evolutionary plasticity that has facilitated a rapid growth of their use and resulted in their ubiquity in complex organisms. The ease of motif acquisition simplifies access to basal housekeeping functions, facilitates the co-regulation of multiple biomolecules allowing them to respond in a coordinated manner to changes in the cell state, and supports the integration of multiple signals for combinatorial decision-making. Consequently, motifs are indispensable for temporal, spatial, conditional and basal regulation at the transcriptional, post-transcriptional and post-translational level. In this review, we highlight that many of the key regulatory pathways of the cell are recruited by motifs and that the ease of motif acquisition has resulted in large networks of co-regulated biomolecules. We discuss how co-operativity allows simple static motifs to perform the conditional regulation that underlies decision-making in higher eukaryotic biological systems. We observe that each gene and its products have a unique set of DNA, RNA or protein motifs that encode a regulatory program to define the logical circuitry that guides the life cycle of these biomolecules, from transcription to degradation. Finally, we contrast the regulatory properties of protein motifs and the regulatory elements of DNA and (pre-)mRNAs, advocating that co-regulation, co-operativity, and motif-driven regulatory programs are common mechanisms that emerge from the use of simple, evolutionarily plastic regulatory modules.
Collapse
Affiliation(s)
- Kim Van Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany.
- Health Services Research Unit, Operational Direction Public Health and Surveillance, Scientific Institute of Public Health (WIV-ISP), 1050, Brussels, Belgium.
| | - Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
35
|
Davey NE, Cyert MS, Moses AM. Short linear motifs - ex nihilo evolution of protein regulation. Cell Commun Signal 2015; 13:43. [PMID: 26589632 PMCID: PMC4654906 DOI: 10.1186/s12964-015-0120-z] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 11/13/2015] [Indexed: 12/12/2022] Open
Abstract
Short sequence motifs are ubiquitous across the three major types of biomolecules: hundreds of classes and thousands of instances of DNA regulatory elements, RNA motifs and protein short linear motifs (SLiMs) have been characterised. The increase in complexity of transcriptional, post-transcriptional and post-translational regulation in higher Eukaryotes has coincided with a significant expansion of motif use. But how did the eukaryotic cell acquire such a vast repertoire of motifs? In this review, we curate the available literature on protein motif evolution and discuss the evidence that suggests SLiMs can be acquired by mutations, insertions and deletions in disordered regions. We propose a mechanism of ex nihilo SLiM evolution – the evolution of a novel SLiM from “nothing” – adding a functional module to a previously non-functional region of protein sequence. In our model, hundreds of motif-binding domains in higher eukaryotic proteins connect simple motif specificities with useful functions to create a large functional motif space. Accessible peptides that match the specificity of these motif-binding domains are continuously created and destroyed by mutations in rapidly evolving disordered regions, creating a dynamic supply of new interactions that may have advantageous phenotypic novelty. This provides a reservoir of diversity to modify existing interaction networks. Evolutionary pressures will act on these motifs to retain beneficial instances. However, most will be lost on an evolutionary timescale as negative selection and genetic drift act on deleterious and neutral motifs respectively. In light of the parallels between the presented model and the evolution of motifs in the regulatory segments of genes and (pre-)mRNAs, we suggest our understanding of regulatory networks would benefit from the creation of a shared model describing the evolution of transcriptional, post-transcriptional and post-translational regulation.
Collapse
Affiliation(s)
- Norman E Davey
- Conway Institute of Biomolecular and Biomedical Sciences, University College Dublin, Dublin 4, Ireland.
| | - Martha S Cyert
- Department of Biology, Stanford University, Stanford, CA, 94305, USA.
| | - Alan M Moses
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada. .,Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada.
| |
Collapse
|
36
|
Klammt C, Novotná L, Li DT, Wolf M, Blount A, Zhang K, Fitchett JR, Lillemeier BF. T cell receptor dwell times control the kinase activity of Zap70. Nat Immunol 2015; 16:961-9. [PMID: 26237552 DOI: 10.1038/ni.3231] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 06/22/2015] [Indexed: 12/15/2022]
Abstract
Kinase recruitment to membrane receptors is essential for signal transduction. However, the underlying regulatory mechanisms are poorly understood. We investigated how conformational changes control T cell receptor (TCR) association and activity of the kinase Zap70. Structural analysis showed that TCR binding or phosphorylation of Zap70 triggers a transition from a closed, autoinhibited conformation to an open conformation. Using Zap70 mutants with defined conformations, we found that TCR dwell times controlled Zap70 activity. The closed conformation minimized TCR dwell times and thereby prevented activation by membrane-associated kinases. Parallel recruitment of coreceptor-associated Lck kinase to the TCR ensured Zap70 phosphorylation and stabilized Zap70 TCR binding. Our study suggests that the dynamics of cytosolic enzyme recruitment to the plasma membrane regulate the activity and function of receptors lacking intrinsic catalytic activity.
Collapse
Affiliation(s)
- Christian Klammt
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Lucie Novotná
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Dongyang T Li
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Miriam Wolf
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Amy Blount
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Kai Zhang
- Eli Lilly Inc., Lilly Biotechnology Center, San Diego, California, USA
| | | | - Björn F Lillemeier
- Nomis Center for Immunobiology and Microbial Pathogenesis &Waitt Advanced Biophotonics Center, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
37
|
Modification by covalent reaction or oxidation of cysteine residues in the tandem-SH2 domains of ZAP-70 and Syk can block phosphopeptide binding. Biochem J 2015; 465:149-61. [PMID: 25287889 DOI: 10.1042/bj20140793] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Zeta-chain associated protein of 70 kDa (ZAP-70) and spleen tyrosine kinase (Syk) are non-receptor tyrosine kinases that are essential for T-cell and B-cell antigen receptor signalling respectively. They are recruited, via their tandem-SH2 (Src-homology domain 2) domains, to doubly phosphorylated immunoreceptor tyrosine-based activation motifs (ITAMs) on invariant chains of immune antigen receptors. Because of their critical roles in immune signalling, ZAP-70 and Syk are targets for the development of drugs for autoimmune diseases. We show that three thiol-reactive small molecules can prevent the tandem-SH2 domains of ZAP-70 and Syk from binding to phosphorylated ITAMs. We identify a specific cysteine residue in the phosphotyrosine-binding pocket of each protein (Cys39 in ZAP-70, Cys206 in Syk) that is necessary for inhibition by two of these compounds. We also find that ITAM binding to ZAP-70 and Syk is sensitive to the presence of H2O2 and these two cysteine residues are also necessary for inhibition by H2O2. Our findings suggest a mechanism by which the reactive oxygen species generated during responses to antigen could attenuate signalling through these kinases and may also inform the development of ZAP-70 and Syk inhibitors that bind covalently to their SH2 domains.
Collapse
|
38
|
Sprissler C, Belenki D, Maurer H, Aumann K, Pfeifer D, Klein C, Müller TA, Kissel S, Hülsdünker J, Alexandrovski J, Brummer T, Jumaa H, Duyster J, Dierks C. Depletion of STAT5 blocks TEL-SYK-induced APMF-type leukemia with myelofibrosis and myelodysplasia in mice. Blood Cancer J 2014; 4:e240. [PMID: 25148222 PMCID: PMC4219468 DOI: 10.1038/bcj.2014.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 05/27/2014] [Accepted: 06/12/2014] [Indexed: 12/16/2022] Open
Abstract
The spleen tyrosine kinase (SYK) was identified as an oncogenic driver in a broad spectrum of hematologic malignancies. The in vivo comparison of three SYK containing oncogenes, SYK(wt), TEL-SYK and IL-2-inducible T-cell kinase (ITK)-SYK revealed a general myeloexpansion and the establishment of three different hematologic (pre)diseases. SYK(wt) enhanced the myeloid and T-cell compartment, without leukemia/lymphoma development. ITK-SYK caused lethal T-cell lymphomas and the cytoplasmic TEL-SYK fusion induced an acute panmyelosis with myelofibrosis-type acute myeloid leukemia (AML) with up to 50% immature megakaryoblasts infiltrating bone marrow, spleen and liver, additional MPN features (myelofibrosis and granulocyte expansion) and MDS stigmata with megakaryocytic and erythroid dysplasia. LKS cells were reduced and all subsets (LT/ST/MPP) showed reduced proliferation rates. SYK inhibitor treatment (R788) of diseased TEL-SYK mice reduced leukocytosis, spleen and liver infiltration, enhanced the hematocrit and prolonged survival time, but could not significantly reduce myelofibrosis. Stat5 was identified as a major downstream mediator of TEL-SYK in vitro as well as in vivo. Consequently, targeted deletion of Stat5 in vivo completely abrogated TEL-SYK-induced AML and myelofibrosis development, proving Stat5 as a major driver of SYK-induced transformation. Our experiments highlight the important role of SYK in AML and myelofibrosis and prove SYK and STAT5 inhibitors as potent treatment options for those diseases.
Collapse
MESH Headings
- Animals
- Cell Line
- Gene Deletion
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/prevention & control
- Male
- Mice
- Mice, Inbred BALB C
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/metabolism
- Myelodysplastic Syndromes/pathology
- Myelodysplastic Syndromes/prevention & control
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Primary Myelofibrosis/genetics
- Primary Myelofibrosis/metabolism
- Primary Myelofibrosis/pathology
- Primary Myelofibrosis/prevention & control
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-ets/genetics
- Proto-Oncogene Proteins c-ets/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- STAT5 Transcription Factor/genetics
- STAT5 Transcription Factor/metabolism
- Syk Kinase
- ETS Translocation Variant 6 Protein
Collapse
Affiliation(s)
- C Sprissler
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
- University of Freiburg, Schaenzlestrasse 1, Freiburg, Germany
| | - D Belenki
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - H Maurer
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - K Aumann
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
| | - D Pfeifer
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - C Klein
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - T A Müller
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - S Kissel
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - J Hülsdünker
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - J Alexandrovski
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - T Brummer
- Institut für Molekulare Medizin und Zellforschung, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, Freiburg, Germany
| | - H Jumaa
- Department of Pathology, University Medical Center Freiburg, Freiburg, Germany
- Institut für Molekulare Medizin und Zellforschung, University of Freiburg, Stefan-Meier-Str. 17, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, Freiburg, Germany
| | - J Duyster
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
| | - C Dierks
- Department of Hematology/Oncology, University Medical Center Freiburg, Freiburg, Germany
- Centre for Biological Signaling Studies BIOSS, Freiburg, Germany
| |
Collapse
|
39
|
Borroto A, Abia D, Alarcón B. Crammed signaling motifs in the T-cell receptor. Immunol Lett 2014; 161:113-7. [PMID: 24877875 DOI: 10.1016/j.imlet.2014.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/07/2014] [Accepted: 05/15/2014] [Indexed: 11/30/2022]
Abstract
Although the T cell antigen receptor (TCR) is long known to contain multiple signaling subunits (CD3γ, CD3δ, CD3ɛ and CD3ζ), their role in signal transduction is still not well understood. The presence of at least one immunoreceptor tyrosine-based activation motif (ITAM) in each CD3 subunit has led to the idea that the multiplication of such elements essentially serves to amplify signals. However, the evolutionary conservation of non-ITAM sequences suggests that each CD3 subunit is likely to have specific non-redundant roles at some stage of development or in mature T cell function. The CD3ɛ subunit is paradigmatic because in a relatively short cytoplasmic sequence (∼55 amino acids) it contains several docking sites for proteins involved in intracellular trafficking and signaling, proteins whose relevance in T cell activation is slowly starting to be revealed. In this review we will summarize our current knowledge on the signaling effectors that bind directly to the TCR and we will propose a hierarchy in their response to TCR triggering.
Collapse
Affiliation(s)
- Aldo Borroto
- TCR Signal Transduction Laboratory, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - David Abia
- Bioinformatics Unit, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Balbino Alarcón
- TCR Signal Transduction Laboratory, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain.
| |
Collapse
|
40
|
Novel disulfide bond-mediated dimerization of the CARD domain was revealed by the crystal structure of CARMA1 CARD. PLoS One 2013; 8:e79778. [PMID: 24224005 PMCID: PMC3818214 DOI: 10.1371/journal.pone.0079778] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/25/2013] [Indexed: 12/23/2022] Open
Abstract
CARMA1, BCL10 and MALT1 form a large molecular complex known as the CARMA1 signalosome during lymphocyte activation. Lymphocyte activation via the CARMA1 signalosome is critical to immune response and linked to many immune diseases. Despite the important role of the CARMA1 signalosome during lymphocyte activation and proliferation, limited structural information is available. Here, we report the dimeric structure of CARMA1 CARD at a resolution of 3.2 Å. Interestingly, although CARMA1 CARD has a canonical six helical-bundles structural fold similar to other CARDs, CARMA1 CARD shows the first homo-dimeric structure of CARD formed by a disulfide bond and reveals a possible biologically important homo-dimerization mechanism.
Collapse
|
41
|
Hu L, Yang L, Lipchik AM, Geahlen RL, Parker LL, Tao WA. A quantitative proteomics-based competition binding assay to characterize pITAM-protein interactions. Anal Chem 2013; 85:5071-7. [PMID: 23611696 PMCID: PMC3715304 DOI: 10.1021/ac400359t] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Characterization of ligand-protein binding is of crucial importance in drug discovery. Classical competition binding assays measure the binding of a labeled ligand in the presence of various concentrations of unlabeled ligand and typically use single purified proteins. Here, we introduce a high-throughput approach to study ligand-protein interactions by coupling competition binding assays with mass spectrometry-based quantitative proteomics. With the use of a phosphorylated immunoreceptor tyrosine-based activation motif (pITAM) peptide as a model, we characterized pITAM-interacting partners in human lymphocytes. The shapes of competition binding curves of various interacting partners constructed in a single set of quantitative proteomics experiments reflect relative affinities for the pITAM peptide. This strategy can provide an efficient approach to distinguish specific interacting partners, including two signaling kinases possessing tandem SH2 domains, SYK and ZAP-70, as well as other SH2 domain-containing proteins such as CSK and PI3K, from contaminants and to measure relative binding affinities of multiple proteins in a single experiment.
Collapse
Affiliation(s)
- Lianghai Hu
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907
- College of Life Science, Jilin University, Changchun 130012, PR China
| | - Li Yang
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907
| | - Andrew M. Lipchik
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907
| | - Robert L. Geahlen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907
- Purdue Center for Cancer Research, West Lafayette, IN, 47907
| | - Laurie L. Parker
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907
- Purdue Center for Cancer Research, West Lafayette, IN, 47907
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907
- Purdue Center for Cancer Research, West Lafayette, IN, 47907
- Department of Chemistry, Purdue University, West Lafayette, IN 47907
| |
Collapse
|
42
|
Van Roey K, Dinkel H, Weatheritt RJ, Gibson TJ, Davey NE. The switches.ELM resource: a compendium of conditional regulatory interaction interfaces. Sci Signal 2013; 6:rs7. [PMID: 23550212 DOI: 10.1126/scisignal.2003345] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Short linear motifs (SLiMs) are protein interaction sites that play an important role in cell regulation by controlling protein activity, localization, and local abundance. The functionality of a SLiM can be modulated in a context-dependent manner to induce a gain, loss, or exchange of binding partners, which will affect the function of the SLiM-containing protein. As such, these conditional interactions underlie molecular decision-making in cell signaling. We identified multiple types of pre- and posttranslational switch mechanisms that can regulate the function of a SLiM and thereby control its interactions. The collected examples of experimentally characterized SLiM-based switch mechanisms were curated in the freely accessible switches.ELM resource (http://switches.elm.eu.org). On the basis of these examples, we defined and integrated rules to analyze SLiMs for putative regulatory switch mechanisms. We applied these rules to known validated SLiMs, providing evidence that more than half of these are likely to be pre- or posttranslationally regulated. In addition, we showed that posttranslationally modified sites are enriched around SLiMs, which enables cooperative and integrative regulation of protein interaction interfaces. We foresee switches.ELM complementing available resources to extend our knowledge of the molecular mechanisms underlying cell signaling.
Collapse
Affiliation(s)
- Kim Van Roey
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
43
|
Systems model of T cell receptor proximal signaling reveals emergent ultrasensitivity. PLoS Comput Biol 2013; 9:e1003004. [PMID: 23555234 PMCID: PMC3610635 DOI: 10.1371/journal.pcbi.1003004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Accepted: 02/05/2013] [Indexed: 01/25/2023] Open
Abstract
Receptor phosphorylation is thought to be tightly regulated because phosphorylated receptors initiate signaling cascades leading to cellular activation. The T cell antigen receptor (TCR) on the surface of T cells is phosphorylated by the kinase Lck and dephosphorylated by the phosphatase CD45 on multiple immunoreceptor tyrosine-based activation motifs (ITAMs). Intriguingly, Lck sequentially phosphorylates ITAMs and ZAP-70, a cytosolic kinase, binds to phosphorylated ITAMs with differential affinities. The purpose of multiple ITAMs, their sequential phosphorylation, and the differential ZAP-70 affinities are unknown. Here, we use a systems model to show that this signaling architecture produces emergent ultrasensitivity resulting in switch-like responses at the scale of individual TCRs. Importantly, this switch-like response is an emergent property, so that removal of multiple ITAMs, sequential phosphorylation, or differential affinities abolishes the switch. We propose that highly regulated TCR phosphorylation is achieved by an emergent switch-like response and use the systems model to design novel chimeric antigen receptors for therapy. Recognition of antigen by the T cell antigen receptor (TCR) is a central event in the initiation of adaptive immune responses and for this reason the TCR has been extensively studied. Multiple studies performed over the past 20 years have revealed intriguing findings that include the observation that the TCR has multiple phosphorylation sites that are sequentially phosphorylated by the kinase Lck and that ZAP-70, a cytosolic kinase, binds to these sites with different affinities. The purpose of multiple sites, their sequential phosphorylation by Lck, and the differential binding affinities of ZAP-70 are unknown. Using a novel mechanistic model that incorporates a high level of molecular detail, we find, unexpectedly, that all factors are critical for producing ultrasensitivity (switch-like response) and therefore this signaling architecture exhibits systems-level emergent ultrasensitivity. We use the model to study existing therapeutic chimeric antigen receptors and in the design of novel ones. The work also has direct implications to the study of many other immune receptors.
Collapse
|
44
|
Grädler U, Schwarz D, Dresing V, Musil D, Bomke J, Frech M, Greiner H, Jäkel S, Rysiok T, Müller-Pompalla D, Wegener A. Structural and biophysical characterization of the Syk activation switch. J Mol Biol 2012; 425:309-33. [PMID: 23154170 DOI: 10.1016/j.jmb.2012.11.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 11/05/2012] [Accepted: 11/06/2012] [Indexed: 11/28/2022]
Abstract
Syk is an essential non-receptor tyrosine kinase in intracellular immunological signaling, and the control of Syk kinase function is considered as a valuable target for pharmacological intervention in autoimmune or inflammation diseases. Upon immune receptor stimulation, the kinase activity of Syk is regulated by binding of phosphorylated immune receptor tyrosine-based activating motifs (pITAMs) to the N-terminal tandem Src homology 2 (tSH2) domain and by autophosphorylation with consequences for the molecular structure of the Syk protein. Here, we present the first crystal structures of full-length Syk (fl-Syk) as wild type and as Y348F,Y352F mutant forms in complex with AMP-PNP revealing an autoinhibited conformation. The comparison with the crystal structure of the truncated Syk kinase domain in complex with AMP-PNP taken together with ligand binding studies by surface plasmon resonance (SPR) suggests conformational differences in the ATP sites of autoinhibited and activated Syk forms. This hypothesis was corroborated by studying the thermodynamic and kinetic interaction of three published Syk inhibitors with isothermal titration calorimetry and SPR, respectively. We further demonstrate the modulation of inhibitor binding affinities in the presence of pITAM and discuss the observed differences of thermodynamic and kinetic signatures. The functional relevance of pITAM binding to fl-Syk was confirmed by a strong stimulation of in vitro autophosphorylation. A structural feedback mechanism on the kinase domain upon pITAM binding to the tSH2 domain is discussed in analogy of the related family kinase ZAP-70 (Zeta-chain-associated protein kinase 70). Surprisingly, we observed distinct conformations of the tSH2 domain and the activation switch including Tyr348 and Tyr352 in the interdomain linker of Syk in comparison to ZAP-70.
Collapse
Affiliation(s)
- Ulrich Grädler
- Merck KGaA, Merck Serono Research, Small Molecule Platform/MIB, Frankfurter Str. 250, 64293 Darmstadt, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Gelkop S, Weisman B, Pulak RN, Zharhary D, Isakov N. Development of unique antibodies directed against each of the six different phosphotyrosine residues within the T cell receptor CD3ζ chain. J Immunol Methods 2012; 375:129-37. [PMID: 22020291 DOI: 10.1016/j.jim.2011.10.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Revised: 10/02/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
Signal transduction from the T cell antigen receptor (TCR)/CD3 complex involves six different immunoreceptor tyrosine-based activation motifs (ITAM) located within the cytoplasmic tails of the CD3 chains. Each ITAM possesses two conserved tyrosine residues that can undergo phosphorylation upon TCR/CD3 crosslinking and become a docking site for SH2-containing effector molecules. Specificity of the SH2 domains is determined by their ability to bind a phosphorylated tyrosine in the context of a longer peptide motif within the target protein. As a result, phosphorylation of different tyrosines within the CD3 cytoplasmic tails creates docking sites for distinct SH2-containing signaling proteins that differentially impact on the quality of the T cell response. In the present study, we prepared antibodies specific for each of the six different phosphotyrosines of the mouse CD3ζ chain. The antibodies were characterized with respect to their cross-reactivity, ability to recognize the phosphorylated versus non-phosphorylated forms of tyrosine-containing motifs, and cross-reactivity with the homologous phospho-motifs on the human CD3ζ protein. The antibodies were found to be specific and selective for phospho-CD3ζ. They can serve as useful tools for distinguishing between the six potential tyrosine phosphorylation sites on the CD3ζ chain, and for correlating the phosphorylation of specific CD3ζ tyrosine residues with activation of signaling pathways that dictate T cell differentiation into responding, anergic, or apoptotic cells.
Collapse
Affiliation(s)
- Sigal Gelkop
- Cell Biology, Department of Research & Development, Sigma-Aldrich Israel, Rehovot 76100, Israel
| | | | | | | | | |
Collapse
|
46
|
Bond PJ, Faraldo-Gómez JD. Molecular mechanism of selective recruitment of Syk kinases by the membrane antigen-receptor complex. J Biol Chem 2011; 286:25872-81. [PMID: 21602568 DOI: 10.1074/jbc.m111.223321] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
ZAP-70 and Syk are essential tyrosine kinases in intracellular immunological signaling. Both contain an inhibitory SH2 domain tandem, which assembles onto the catalytic domain. Upon binding to doubly phosphorylated ITAM motifs on activated antigen receptors, the arrangement of the SH2 domains changes. From available structures, this event is not obviously conducive to dissociation of the autoinhibited complex, yet it ultimately translates into kinase activation through a mechanism not yet understood. We present a comprehensive theoretical study of this molecular mechanism, using atomic resolution simulations and free-energy calculations, totaling >10 μs of simulation time. Through these, we dissect the microscopic mechanism coupling stepwise ITAM engagement and SH2 tandem structural change and reveal key differences between ZAP-70 and Syk. Importantly, we show that a subtle conformational bias in the inter-SH2 connector causes ITAM to bind preferentially to kinase-dissociated tandems. We thus propose that phosphorylated antigen receptors selectively recruit kinases that are uninhibited and that the resulting population shift in the membrane vicinity sustains signal transduction.
Collapse
Affiliation(s)
- Peter J Bond
- Max Planck Institute of Biophysics and the Cluster of Excellence Macromolecular Complexes, 60438 Frankfurt am Main, Germany
| | | |
Collapse
|
47
|
Kerrigan AM, Brown GD. Syk-coupled C-type lectin receptors that mediate cellular activation via single tyrosine based activation motifs. Immunol Rev 2010; 234:335-52. [PMID: 20193029 DOI: 10.1111/j.0105-2896.2009.00882.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Different dendritic cell (DC) subsets have distinct specialized functions contributed in part by their differential expression of pattern recognition receptors (PRRs). C-type lectin receptors (CLRs) are a group of PRRs expressed by DCs and other myeloid cells that can recognize endogenous ligands as well as a wide range of exogenous structures present on pathogens. Dual roles in homeostasis and immunity have been demonstrated for some members of this receptor family. Largely due to their endocytic ability and subset specific expression, DC-expressed CLRs have been the focus of significant antigen-targeting studies. A number of CLRs function on the basis of signaling via association with immunoreceptor tyrosine-based activation motif (ITAM)-containing adapter proteins. Others contain ITAM-related motifs or immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their cytoplasmic tails. Here we review CLRs that induce intracellular signaling via a single tyrosine-based ITAM-like motif and highlight their relevance in terms of DC function.
Collapse
Affiliation(s)
- Ann M Kerrigan
- Section of Infection and Immunity, Institute of Molecular Sciences, School of Medicine and Dentistry, University of Aberdeen, Aberdeen, UK
| | | |
Collapse
|
48
|
Fischer A, Picard C, Chemin K, Dogniaux S, le Deist F, Hivroz C. ZAP70: a master regulator of adaptive immunity. Semin Immunopathol 2010; 32:107-16. [DOI: 10.1007/s00281-010-0196-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 12/29/2009] [Indexed: 10/24/2022]
|
49
|
Abstract
The series of events leading to T-cell activation following antigen recognition has been extensively investigated. Although the exact mechanisms of ligand binding and transmission of this extracellular interaction into a productive intracellular signaling sequence remains incomplete, it has been known for many years that the immunoreceptor tyrosine activation motifs (ITAMs) of the T-cell receptor (TCR):CD3 complex are required for initiation of this signaling cascade because of the recruitment and activation of multiple protein tyrosine kinases, signaling intermediates, and adapter molecules. It however remains unclear why the TCR:CD3 complex requires 10 ITAMs, while many other ITAM-containing immune receptors, such as Fc receptors (FcRs) and the B cell receptor (BCR), contain far fewer ITAMs. We have recently demonstrated that various parameters of T cell development and activation are influenced by the number, as well as location and type, of ITAMs within the TCR:CD3 complex and hence propose that the TCR is capable of 'scalable signaling' that facilitates the initiation and orchestration of diverse T-cell functions. While many of the underlying mechanisms remain hypothetical, this review intends to amalgamate what we have learned from conventional biochemical analyses regarding initiation and diversification of T-cell signaling, with more recent evidence from molecular and fluorescent microscopic analyses, to propose a broader purpose for the TCR:CD3 ITAMs. Rather than simply signal initiation, individual ITAMs may also be responsible for the differential recruitment of signaling and regulatory molecules which ultimately affects T-cell development, activation and differentiation.
Collapse
Affiliation(s)
- Clifford S Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
50
|
Lu HK, Rentero C, Raftery MJ, Borges L, Bryant K, Tedla N. Leukocyte Ig-like receptor B4 (LILRB4) is a potent inhibitor of FcgammaRI-mediated monocyte activation via dephosphorylation of multiple kinases. J Biol Chem 2009; 284:34839-48. [PMID: 19833736 DOI: 10.1074/jbc.m109.035683] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The leukocyte immunoglobulin-like receptor (LILR) B4 belongs to a family of cell surface receptors that possesses cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs). LILRB4 is believed to down-regulate activation signals mediated by non-receptor tyrosine kinase cascades through the recruitment of SHP-1. However, the exact mechanisms of LILRB4-mediated inhibition are not fully elucidated. In this study, we demonstrate high level surface expression of LILRB4 on THP-1 cells and primary peripheral blood monocytes, which profoundly inhibited production of a key pro-inflammatory cytokine (TNFalpha) induced by FcgammaRI (CD64). We also report that LILRB4 aggregated to sites of activation upon co-ligation with CD64 and that this may enhance its inhibitory effects. Cross-linking of CD64 on THP-1 cells markedly increased phosphorylation of multiple proteins including tyrosine kinases and signaling molecules (Lck, Syk, LAT, and Erk), an adaptor protein that targets protein-tyrosine kinases for degradation (c-Cbl) and a protein involved in the formation of actin cytoskeletal rearrangement (alpha-actinin-4). Co-ligation of LILRB4 considerably reduced CD64-mediated phosphorylation of Lck, Syk, LAT, Erk, and c-Cbl but not alpha-actinin-4, suggesting selective inhibition of signaling molecules. Treatment of cells with a broad-spectrum phosphatase inhibitor, sodium pervanadate (SP), significantly reversed LILRB4-mediated inhibition of TNFalpha production and protein tyrosine phosphorylation. In comparison, treatment with an SHP-1 specific inhibitor, sodium stibogluconate (SS) has no effects indicating involvement of phosphatase(s) other than SHP-1 in LILRB4 signaling. Collectively, our data show LILRB4 is a potent inhibitor of monocytes activation. This may provide a new potential therapeutic strategy for inflammatory conditions characterized by excessive TNFalpha production.
Collapse
Affiliation(s)
- Hao Kim Lu
- Centre for Infection and Inflammation Research, University of New South Wales, Sydney, New South Wales 2052, Australia
| | | | | | | | | | | |
Collapse
|