1
|
Qin S, Bo X, Liu H, Zhang Z, Zhao Z, Xia Q. Cell therapies and liver organogenesis technologies: Promising strategies for end-stage liver disease. Hepatology 2025:01515467-990000000-01231. [PMID: 40178487 DOI: 10.1097/hep.0000000000001321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/14/2025] [Indexed: 04/05/2025]
Abstract
End-stage liver disease represents a critical hepatic condition with high mortality, for which liver transplantation remains the only effective treatment. However, the scarcity of suitable donors results in numerous patients dying while awaiting transplantation. Novel strategies, including cell therapies and technologies mimicking liver organogenesis, offer promising alternatives for treating end-stage liver disease by potentially providing new sources of liver grafts. Recently, significant progress has been made in this field, including stem cell transplantation, hepatocyte transplantation, in vitro liver tissue generation, and liver replacement technologies. Several clinical studies have demonstrated that stem cell transplantation and hepatocyte transplantation can prolong patient survival and serve as a bridge to liver transplantation. Furthermore, in vitro liver tissue generation technologies, such as liver organoids and three-dimensional bioprinting, can generate hepatic tissues with sophisticated structures and functions, making them promising transplantation materials. Notably, liver replacement technologies hold considerable potential for producing biologically functional and transplantable liver grafts. In this review, we discuss the fundamental principles and recent advancements in cell therapies and liver organogenesis technologies while also addressing the challenges and future prospects in this rapidly evolving field.
Collapse
Affiliation(s)
- Shaoyang Qin
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiaochen Bo
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongyuan Liu
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhishuo Zhang
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhicong Zhao
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-German Gene and Cell Therapy Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qiang Xia
- Department of Liver Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Sino-German Gene and Cell Therapy Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Engineering Research Centre of Transplantation and Immunology, Shanghai, China
- Shanghai Institute of Transplantation, Shanghai, China
| |
Collapse
|
2
|
Lai F, Wee CYY, Chen Q. Establishment of Humanized Mice for the Study of HBV. Front Immunol 2021; 12:638447. [PMID: 33679796 PMCID: PMC7933441 DOI: 10.3389/fimmu.2021.638447] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
Viral hepatitis particularly Hepatitis B Virus (HBV) is still an ongoing health issue worldwide. Despite the vast technological advancements in research and development, only HBV vaccines, typically given during early years, are currently available as a preventive measure against acquiring the disease from a secondary source. In general, HBV can be cleared naturally by the human immune system if detected at low levels early. However, long term circulation of HBV in the peripheral blood may be detrimental to the human liver, specifically targeting human hepatocytes for cccDNA integration which inevitably supports HBV life cycle for the purpose of reinfection in healthy cells. Although there is some success in using nucleoside analogs or polyclonal antibodies targeting HBV surface antigens (HBsAg) in patients with acute or chronic HBV+ (CHB), majority of them would either respond only partially or succumb to the disease entirely unless they undergo liver transplants from a fully matched healthy donor and even so may not necessarily guarantee a 100% chance of survival. Indeed, in vitro/ex vivo cultures and various transgenic animal models have already provided us with a good understanding of HBV but they primarily lack human specificity or virus-host interactions in the presence of human immune surveillance. Therefore, the demand of utilizing humanized mice has increased over the last decade as a pre-clinical platform for investigating human-specific immune responses against HBV as well as identifying potential immunotherapeutic strategies in eradicating the virus. Basically, this review covers some of the recent developments and key advantages of humanized mouse models over other conventional transgenic mice platforms.
Collapse
Affiliation(s)
- Fritz Lai
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cherry Yong Yi Wee
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
3
|
Michalopoulos GK, Bhushan B. Liver regeneration: biological and pathological mechanisms and implications. Nat Rev Gastroenterol Hepatol 2021; 18:40-55. [PMID: 32764740 DOI: 10.1038/s41575-020-0342-4] [Citation(s) in RCA: 557] [Impact Index Per Article: 139.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/24/2020] [Indexed: 02/08/2023]
Abstract
The liver is the only solid organ that uses regenerative mechanisms to ensure that the liver-to-bodyweight ratio is always at 100% of what is required for body homeostasis. Other solid organs (such as the lungs, kidneys and pancreas) adjust to tissue loss but do not return to 100% of normal. The current state of knowledge of the regenerative pathways that underlie this 'hepatostat' will be presented in this Review. Liver regeneration from acute injury is always beneficial and has been extensively studied. Experimental models that involve partial hepatectomy or chemical injury have revealed extracellular and intracellular signalling pathways that are used to return the liver to equivalent size and weight to those prior to injury. On the other hand, chronic loss of hepatocytes, which can occur in chronic liver disease of any aetiology, often has adverse consequences, including fibrosis, cirrhosis and liver neoplasia. The regenerative activities of hepatocytes and cholangiocytes are typically characterized by phenotypic fidelity. However, when regeneration of one of the two cell types fails, hepatocytes and cholangiocytes function as facultative stem cells and transdifferentiate into each other to restore normal liver structure. Liver recolonization models have demonstrated that hepatocytes have an unlimited regenerative capacity. However, in normal liver, cell turnover is very slow. All zones of the resting liver lobules have been equally implicated in the maintenance of hepatocyte and cholangiocyte populations in normal liver.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Bharat Bhushan
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
4
|
Burm R, Collignon L, Mesalam AA, Meuleman P. Animal Models to Study Hepatitis C Virus Infection. Front Immunol 2018; 9:1032. [PMID: 29867998 PMCID: PMC5960670 DOI: 10.3389/fimmu.2018.01032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 04/25/2018] [Indexed: 12/18/2022] Open
Abstract
With more than 71 million chronically infected people, the hepatitis C virus (HCV) is a major global health concern. Although new direct acting antivirals have significantly improved the rate of HCV cure, high therapy cost, potential emergence of drug-resistant viral variants, and unavailability of a protective vaccine represent challenges for complete HCV eradication. Relevant animal models are required, and additional development remains necessary, to effectively study HCV biology, virus–host interactions and for the evaluation of new antiviral approaches and prophylactic vaccines. The chimpanzee, the only non-human primate susceptible to experimental HCV infection, has been used extensively to study HCV infection, particularly to analyze the innate and adaptive immune response upon infection. However, financial, practical, and especially ethical constraints have urged the exploration of alternative small animal models. These include different types of transgenic mice, immunodeficient mice of which the liver is engrafted with human hepatocytes (humanized mice) and, more recently, immunocompetent rodents that are susceptible to infection with viruses that are closely related to HCV. In this review, we provide an overview of the currently available animal models that have proven valuable for the study of HCV, and discuss their main benefits and weaknesses.
Collapse
Affiliation(s)
- Rani Burm
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Laura Collignon
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| | - Ahmed Atef Mesalam
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium.,Therapeutic Chemistry Department, National Research Centre (NRC), Cairo, Egypt
| | - Philip Meuleman
- Laboratory of Liver Infectious Diseases, Department of Clinical Chemistry, Microbiology and Immunology, Faculty of Medicine and Health Sciences, Ghent University, Gent, Belgium
| |
Collapse
|
5
|
Abstract
Mice with humanized chimeric liver are promising in vivo tools to evaluate the efficacy of novel compounds or vaccine induced antibodies directed against pathogens that infect the human liver. In addition they can be used to study the human-type metabolism of medicinal compounds and hepatotoxicity.
Collapse
|
6
|
Inhibition of lysosomal protease cathepsin D reduces renal fibrosis in murine chronic kidney disease. Sci Rep 2016; 6:20101. [PMID: 26831567 PMCID: PMC4735715 DOI: 10.1038/srep20101] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/18/2015] [Indexed: 11/08/2022] Open
Abstract
During chronic kidney disease (CKD) there is a dysregulation of extracellular matrix (ECM) homeostasis leading to renal fibrosis. Lysosomal proteases such as cathepsins (Cts) regulate this process in other organs, however, their role in CKD is still unknown. Here we describe a novel role for cathepsins in CKD. CtsD and B were located in distal and proximal tubular cells respectively in human disease. Administration of CtsD (Pepstatin A) but not B inhibitor (Ca074-Me), in two mouse CKD models, UUO and chronic ischemia reperfusion injury, led to a reduction in fibrosis. No changes in collagen transcription or myofibroblasts numbers were observed. Pepstatin A administration resulted in increased extracellular urokinase and collagen degradation. In vitro and in vivo administration of chloroquine, an endo/lysosomal inhibitor, mimicked Pepstatin A effect on renal fibrosis. Therefore, we propose a mechanism by which CtsD inhibition leads to increased collagenolytic activity due to an impairment in lysosomal recycling. This results in increased extracellular activity of enzymes such as urokinase, triggering a proteolytic cascade, which culminates in more ECM degradation. Taken together these results suggest that inhibition of lysosomal proteases, such as CtsD, could be a new therapeutic approach to reduce renal fibrosis and slow progression of CKD.
Collapse
|
7
|
Mouse liver repopulation with hepatocytes generated from human fibroblasts. Nature 2014; 508:93-7. [PMID: 24572354 PMCID: PMC4161230 DOI: 10.1038/nature13020] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 01/10/2014] [Indexed: 12/14/2022]
Abstract
Human induced pluripotent stem cells (iPSCs) have the capability of revolutionizing research and therapy of liver diseases by providing a source of hepatocytes for autologous cell therapy and disease modelling. However, despite progress in advancing the differentiation of iPSCs into hepatocytes (iPSC-Heps) in vitro, cells that replicate the ability of human primary adult hepatocytes (aHeps) to proliferate extensively in vivo have not been reported. This deficiency has hampered efforts to recreate human liver diseases in mice, and has cast doubt on the potential of iPSC-Heps for liver cell therapy. The reason is that extensive post-transplant expansion is needed to establish and sustain a therapeutically effective liver cell mass in patients, a lesson learned from clinical trials of aHep transplantation. Here, as a solution to this problem, we report the generation of human fibroblast-derived hepatocytes that can repopulate mouse livers. Unlike current protocols for deriving hepatocytes from human fibroblasts, ours did not generate iPSCs but cut short reprogramming to pluripotency to generate an induced multipotent progenitor cell (iMPC) state from which endoderm progenitor cells and subsequently hepatocytes (iMPC-Heps) could be efficiently differentiated. For this purpose we identified small molecules that aided endoderm and hepatocyte differentiation without compromising proliferation. After transplantation into an immune-deficient mouse model of human liver failure, iMPC-Heps proliferated extensively and acquired levels of hepatocyte function similar to those of aHeps. Unfractionated iMPC-Heps did not form tumours, most probably because they never entered a pluripotent state. Our results establish the feasibility of significant liver repopulation of mice with human hepatocytes generated in vitro, which removes a long-standing roadblock on the path to autologous liver cell therapy.
Collapse
|
8
|
Meznarich J, Malchodi L, Helterline D, Ramsey SA, Bertko K, Plummer T, Plawman A, Gold E, Stempien-Otero A. Urokinase plasminogen activator induces pro-fibrotic/m2 phenotype in murine cardiac macrophages. PLoS One 2013; 8:e57837. [PMID: 23536772 PMCID: PMC3594198 DOI: 10.1371/journal.pone.0057837] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/26/2013] [Indexed: 01/08/2023] Open
Abstract
Objective Inflammation and fibrosis are intertwined in multiple disease processes. We have previously found that over-expression of urokinase plasminogen activator in macrophages induces spontaneous macrophage accumulation and fibrosis specific to the heart in mice. Understanding the relationship between inflammation and fibrosis in the heart is critical to developing therapies for diverse myocardial diseases. Therefore, we sought to determine if uPA induces changes in macrophage function that promote cardiac collagen accumulation. Methods and Results We analyzed the effect of the uPA transgene on expression of pro-inflammatory (M1) and pro-fibrotic (M2) genes and proteins in hearts and isolated macrophages of uPA overexpressing mice. We found that although there was elevation of the pro-inflammatory cytokine IL-6 in hearts of transgenic mice, IL-6 is not a major effector of uPA induced cardiac fibrosis. However, uPA expressing bone marrow-derived macrophages are polarized to express M2 genes in response to IL-4 stimulation, and these M2 genes are upregulated in uPA expressing macrophages following migration to the heart. In addition, while uPA expressing macrophages express a transcriptional profile that is seen in tumor–associated macrophages, these macrophages promote collagen expression in cardiac but not embryonic fibroblasts. Conclusions Urokinase plasminogen activator induces an M2/profibrotic phenotype in macrophages that is fully expressed after migration of macrophages into the heart. Understanding the mechanisms by which uPA modulates macrophage function may reveal insights into diverse pathologic processes.
Collapse
Affiliation(s)
- Jessica Meznarich
- University of Washington School of Medicine, Division of Cardiology, Seattle, Washington, United States of America
| | - Laura Malchodi
- University of Washington School of Medicine, Division of Cardiology, Seattle, Washington, United States of America
| | - Deri Helterline
- University of Washington School of Medicine, Division of Cardiology, Seattle, Washington, United States of America
| | - Stephen A. Ramsey
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - Kate Bertko
- University of Washington School of Medicine, Division of Cardiology, Seattle, Washington, United States of America
| | - Tabitha Plummer
- University of Washington School of Medicine, Division of Cardiology, Seattle, Washington, United States of America
| | - Abigail Plawman
- University of Washington School of Medicine, Division of Cardiology, Seattle, Washington, United States of America
| | - Elizabeth Gold
- Seattle Biomedical Research Institute, Seattle, Washington, United States of America
| | - April Stempien-Otero
- University of Washington School of Medicine, Division of Cardiology, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
9
|
Abstract
Liver regeneration is perhaps the most studied example of compensatory growth aimed to replace loss of tissue in an organ. Hepatocytes, the main functional cells of the liver, manage to proliferate to restore mass and to simultaneously deliver all functions hepatic functions necessary to maintain body homeostasis. They are the first cells to respond to regenerative stimuli triggered by mitogenic growth factor receptors MET (the hepatocyte growth factor receptor] and epidermal growth factor receptor and complemented by auxiliary mitogenic signals induced by other cytokines. Termination of liver regeneration is a complex process affected by integrin mediated signaling and it restores the organ to its original mass as determined by the needs of the body (hepatostat function). When hepatocytes cannot proliferate, progenitor cells derived from the biliary epithelium transdifferentiate to restore the hepatocyte compartment. In a reverse situation, hepatocytes can also transdifferentiate to restore the biliary compartment. Several hormones and xenobiotics alter the hepatostat directly and induce an increase in liver to body weight ratio (augmentative hepatomegaly). The complex challenges of the liver toward body homeostasis are thus always preserved by complex but unfailing responses involving orchestrated signaling and affecting growth and differentiation of all hepatic cell types.
Collapse
Affiliation(s)
- George K Michalopoulos
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
10
|
Mercer DF. Animal models for studying hepatitis C and alcohol effects on liver. World J Gastroenterol 2011; 17:2515-9. [PMID: 21633656 PMCID: PMC3103809 DOI: 10.3748/wjg.v17.i20.2515] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/08/2011] [Accepted: 03/15/2011] [Indexed: 02/06/2023] Open
Abstract
Chronic consumption of ethanol has a dramatic effect on the clinical outcome of patients with hepatitis C virus (HCV) infection, but the mechanism linking these two pathologies is unknown. Presently, in vitro systems are limited in their ability to study the interaction between a productive wild-type HCV infection and chronic ethanol exposure. Mouse models are potentially very useful in dissecting elements of the HCV-ethanol relationship. Experiments in mice that transgenically express HCV proteins are outlined, as are experiments for the generation of mice with chimeric human livers. The latter models appear to have the most promise for accurately modeling the effects of chronic ethanol intake in HCV-infected human livers.
Collapse
|
11
|
Atta HM. Gene therapy for liver regeneration: experimental studies and prospects for clinical trials. World J Gastroenterol 2010; 16:4019-30. [PMID: 20731015 PMCID: PMC2928455 DOI: 10.3748/wjg.v16.i32.4019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 03/03/2010] [Accepted: 03/10/2010] [Indexed: 02/06/2023] Open
Abstract
The liver is an exceptional organ, not only because of its unique anatomical and physiological characteristics, but also because of its unlimited regenerative capacity. Unfolding of the molecular mechanisms that govern liver regeneration has allowed researchers to exploit them to augment liver regeneration. Dramatic progress in the field, however, was made by the introduction of the powerful tool of gene therapy. Transfer of genetic materials, such as hepatocyte growth factor, using both viral and non-viral vectors has proved to be successful in augmenting liver regeneration in various animal models. For future clinical studies, ongoing research aims at eliminating toxicity of viral vectors and increasing transduction efficiency of non-viral vectors, which are the main drawbacks of these systems. Another goal of current research is to develop gene therapy that targets specific liver cells using receptors that are unique to and highly expressed by different liver cell types. The outcome of such investigations will, undoubtedly, pave the way for future successful clinical trials.
Collapse
|
12
|
Grasso S, Santi L. Viral nanoparticles as macromolecular devices for new therapeutic and pharmaceutical approaches. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2010; 2:161-178. [PMID: 21383892 PMCID: PMC3047266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 06/28/2010] [Indexed: 05/30/2023]
Abstract
Viral nanoparticles are molecular cages derived from the assembly of viral structural proteins. They bear several peculiar features as proper dimensions for nanoscale applications, size homogeneity, an intrinsic robustness, a large surface area to mass ratio and a defined, repetitive and symmetric macromolecular organization. A number of expression strategies, using various biological systems, efficiently enable the production of significant quantities of viral nanoparticles, which can be easily purified. Genetic engineering and in vitro chemical modification consent to manipulate of the outer and inner surface of these nanocages, allowing specific changes of the original physico-chemical and biological properties. Moreover, several studies have focused on the in vitro disassembly/reassembly and gating of viral nanoparticles, with the aim of encapsulating exogenous molecules inside and therefore improving their potential as containment delivery devices. These technological progresses have led research to a growing variety of applications in different fields such as biomedicine, pharmacology, separation science, catalytic chemistry, crop pest control and material science. In this review we will focus on the strategies used to modify the characteristics of viral nanoparticles and on their use in biomedicine and pharmacology.
Collapse
Affiliation(s)
- Simone Grasso
- Department of Biology, University of Rome Tor Vergata Rome, Italy
| | | |
Collapse
|
13
|
Song X, Guo Y, Duo S, Che J, Wu C, Ochiya T, Ding M, Deng H. A mouse model of inducible liver injury caused by tet-on regulated urokinase for studies of hepatocyte transplantation. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:1975-83. [PMID: 19808649 DOI: 10.2353/ajpath.2009.090349] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Mouse models of liver injury provide useful tools for studying hepatocyte engraftment and proliferation. A representative model of liver injury is the albumin-urokinase (Alb-uPA) transgenic model, but neonatal lethality hampers its widespread application. To overcome this problem, we generated a transgenic mouse in which transcription of the reverse tetracycline transactivator was (rtTA) driven by the mouse albumin promoter, and backcrossed the rtTA mice onto severe combined immunodeficient (SCID)/bg mice to generate immunodeficient rtTA/SCID mice. We then produced recombinant adenoviruses Ad.TRE-uPA, in which the urokinase was located downstream of the tetracycline response element (TRE). The rtTA/SCID mouse hepatocytes were then infected with Ad.TRE-uPA to establish an inducible liver injury mouse model. In the presence of doxycycline, uPA was exclusively expressed in endogenous hepatocytes and caused extensive liver injury. Enhanced green fluorescent protein-labeled mouse hepatocytes selectively repopulated the rtTA/SCID mouse liver and replaced over 80% of the recipient liver mass after repeated administration of Ad.TRE-uPA. Compared with the original uPA mice, rtTA/SCID mice did not exhibit problems regarding breeding efficiency, and the time window for transplantation was flexible. In addition, we could control the extent of liver injury to facilitate transplantation surgery by regulating the dose of Ad.TRE-uPA. Our inducible mouse model will be convenient for studies of hepatocyte transplantation and hepatic regeneration, and this system will facilitate screening for potential genetic factors critical for engraftment and proliferation of hepatocytes in vivo.
Collapse
|
14
|
Suda T, Kamimura K, Kubota T, Tamura Y, Igarashi M, Kawai H, Aoyagi Y, Liu D. Progress toward liver-based gene therapy. Hepatol Res 2009; 39:325-340. [PMID: 19207594 DOI: 10.1111/j.1872-034x.2008.00479.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The liver is involved in the synthesis of serum proteins, regulation of metabolism and maintenance of homeostasis and provides a variety of opportunities for gene therapy. The enriched vasculature and blood circulation, fenestrated endothelium, abundant receptors on the plasma membranes of the liver cells, and effective transcription and translation machineries in the hepatocytes are some unique features that have been explored for delivery, and functional analysis, of genetic sequences in the liver. Both viral and non-viral methods have been developed for effective gene delivery and liver-based gene therapy. This review describes the fundamentals of gene delivery, and the preclinical and clinical progress that has been made toward gene therapy using the liver as a target.
Collapse
Affiliation(s)
- Takeshi Suda
- Division of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Niigata, Japan
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M, Ellis E, Strom S, Kay MA, Finegold M, Grompe M. Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nat Biotechnol 2007; 25:903-10. [PMID: 17664939 PMCID: PMC3404624 DOI: 10.1038/nbt1326] [Citation(s) in RCA: 644] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2007] [Accepted: 07/13/2007] [Indexed: 12/17/2022]
Abstract
Mice that could be highly repopulated with human hepatocytes would have many potential uses in drug development and research applications. The best available model of liver humanization, the uroplasminogen-activator transgenic model, has major practical limitations. To provide a broadly useful hepatic xenorepopulation system, we generated severely immunodeficient, fumarylacetoacetate hydrolase (Fah)-deficient mice. After pretreatment with a urokinase-expressing adenovirus, these animals could be highly engrafted (up to 90%) with human hepatocytes from multiple sources, including liver biopsies. Furthermore, human cells could be serially transplanted from primary donors and repopulate the liver for at least four sequential rounds. The expanded cells displayed typical human drug metabolism. This system provides a robust platform to produce high-quality human hepatocytes for tissue culture. It may also be useful for testing the toxicity of drug metabolites and for evaluating pathogens dependent on human liver cells for replication.
Collapse
Affiliation(s)
- Hisaya Azuma
- Oregon Stem Cell Center, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Yamaguchi I, Lopez-Guisa JM, Cai X, Collins SJ, Okamura DM, Eddy AA. Endogenous urokinase lacks antifibrotic activity during progressive renal injury. Am J Physiol Renal Physiol 2007; 293:F12-9. [PMID: 17356128 DOI: 10.1152/ajprenal.00380.2006] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Interstitial fibrosis is a universal feature of progressive kidney disease. Urokinase-type plasminogen activator (uPA) is thought to participate for several reasons: 1) uPA is produced predominantly in kidney, 2) its inhibitor plasminogen activator inhibitor-1 (PAI-1) is a strong promoter of interstitial fibrosis, whereas its receptor (uPAR) attenuates renal fibrosis, 3) uPA reduces fibrosis in liver and lung, and 4) uPA can activate hepatocyte growth factor (HGF), a potent antifibrotic growth factor. The present study tested the hypothesis that endogenous uPA reduces fibrosis severity by investigating the unilateral ureteral obstruction (UUO) model in wild-type (WT) and uPA-/- mice. Several outcomes were measured: renal collagen 3-21 days after UUO, macrophage accumulation (F4/80 Western blotting), interstitial myofibroblast density (alpha-smooth muscle actin immunostaining), and tubular injury (E-cadherin and Ksp-cadherin Western blotting). None of these measures differed significantly between WT and uPA-/- mice. uPA genetic deficiency was not associated with compensatory changes in renal uPAR mRNA levels, PAI-1 protein levels, or tissue plasminogen activator activity levels after UUO. Despite the known ability of uPA to activate latent HGF, immunoblotting failed to detect significant differences in levels of the active HGF alpha-chain and phosphorylated cMET (the activated HGF receptor) between the WT and uPA-/- groups. These findings suggest that the profibrotic actions of PAI-1 are uPA independent and that an alternative pathway must activate HGF in kidney. Finally, these results highlight a significant organ-specific difference in basic fibrogenic pathways, as enhanced uPA activity has been reported to attenuate pulmonary and hepatic fibrosis.
Collapse
Affiliation(s)
- Ikuyo Yamaguchi
- Department of Pediatrics, Children's Hospital and Regional Medical Center, University of Washington, Seattle, WA 98105-0371, USA
| | | | | | | | | | | |
Collapse
|
17
|
Borgnon J, Djamouri F, Lorand I, Rico VD, Loux N, Pages JC, Franco D, Capron F, Weber A. Follistatin allows efficient retroviral-mediated gene transfer into rat liver. Biochem Biophys Res Commun 2005; 328:937-43. [PMID: 15707968 DOI: 10.1016/j.bbrc.2005.01.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Indexed: 10/25/2022]
Abstract
Retroviral vectors are widely used tools for gene therapy. However, in vivo gene transfer is only effective in dividing cells, which, in liver, requires a regenerative stimulus. Follistatin is effective in promoting liver regeneration after 90% and 70% hepatectomy in rats. We studied its efficacy on liver regeneration and retroviral-mediated gene delivery in 50% hepatectomized rats. When human recombinant follistatin was infused into the portal vein immediately after 50% hepatectomy, hepatocyte proliferation was significantly higher than in control 50% hepatectomized rats. A single injection of virus particles administered 23 h after follistatin infusion resulted in more than 20% gene transduction efficiency in hepatocytes compared to 3% in control rats. It is concluded that a single injection of follistatin induces onset of proliferation in 50% hepatectomized rats and allows efficient retroviral-mediated gene transfer to the liver.
Collapse
Affiliation(s)
- Josephine Borgnon
- INSERM EMI 00-20 and University Paris XI, Bicêtre Hospital, Kremlin-Bicêtre, France
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Jenkins DD, Streetz K, Tataria M, Sahar D, Kurobe M, Longaker MT, Kay MA, Sylvester KG. Donor-Derived, Liver-Specific Protein Expression after Bone Marrow Transplantation. Transplantation 2004; 78:530-6. [PMID: 15446311 DOI: 10.1097/01.tp.0000130180.42573.b1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Bone marrow transplantation (BMT) may represent a novel mechanism to deliver a functional gene to a deficient liver. Bone marrow-derived hepatocytes are rare and without a defined contribution to liver function. Consequently, the clinical significance of BMT to treat liver disease is unclear. We sought to quantify bone marrow-derived hepatocyte protein expression after BMT and determine whether the process is inducible with liver injury. METHODS Mice transgenic for human alpha-1 antitrypsin (hAAT) under a hepatocyte-specific promoter were used as bone marrow donors. Adenoviral transduction of modified urokinase plasminogen activator (Ad-muPA) was used to induce liver injury. Eight weeks after lethal irradiation and BMT, recipients were stratified into two groups: BMT alone (n = 5) and BMT + Ad-muPA (n= 10). Both groups of animals were bled before (t = 0) and at 2, 4, 8, and 16 weeks after Ad-muPA administration, and the serum samples were assessed for hAAT by enzyme-linked immunosorbent assay. RESULTS Transgenic donor mice expressed 5 to 10 mg/mL of hAAT. Recipients of BMT alone expressed less than 80 ng/mL of hAAT over all time periods. Animals receiving BMT + Ad-muPA showed sustained and stable hAAT expression of approximately 200 ng/mL. Differences were statistically significant at each time point. CONCLUSION Serum protein levels from liver-specific transgene expression are detectable and persist after BMT. Expression is low, but inducible with liver injury. We are currently developing strategies to augment donor-derived, liver-specific protein expression after BMT.
Collapse
Affiliation(s)
- D Denison Jenkins
- Department of Surgery, Stanford University School of Medicine, Stanford, California 94305-5733, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Shofuda T, Shofuda KI, Ferri N, Kenagy RD, Raines EW, Clowes AW. Cleavage of Focal Adhesion Kinase in Vascular Smooth Muscle Cells Overexpressing Membrane-Type Matrix Metalloproteinases. Arterioscler Thromb Vasc Biol 2004; 24:839-44. [PMID: 15044209 DOI: 10.1161/01.atv.0000126680.78500.4c] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Membrane-type matrix metalloproteinases (MT-MMPs) were initially identified as cell surface activators of MMP-2 (gelatinase A). We have reported that MT1-MMPs and MT3-MMPs are expressed by activated vascular smooth muscle cells (SMCs) and play a role in the regulation of cell function. Overexpression of MT-MMPs results in cell rounding, decreased adherence, and increased migration. Because integrin-mediated cell adhesion regulates these events, we have investigated the functional relationship between MT-MMPs and focal adhesion assembly. METHODS AND RESULTS Using adenoviral vectors we show that overexpression of MT-MMPs reduces the number of focal contacts, whereas the cell surface expression of integrin subunits remains unchanged. The 125-kDa focal adhesion kinase (FAK) is cleaved resulting in a 90-kDa fragment under these conditions, and paxillin is partially dissociated from FAK after its cleavage. Pretreatment of cells with BB94, a synthetic MMP inhibitor, rescues cell adhesion and prevents changes in focal adhesions, supporting a potential role for MT-MMP enzymatic activities. CONCLUSIONS This study provides the first evidence that MT-MMPs are not only important in matrix degradation but also may affect the function of focal adhesions through FAK cleavage.
Collapse
Affiliation(s)
- Tomoko Shofuda
- Division of Vascular Surgery, Department of Surgery, University of Washington School of Medicine, Seattle, Wash 98195-6410, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kühnel F, Fritsch C, Krause S, Mundt B, Wirth T, Paul Y, Malek NP, Zender L, Manns MP, Kubicka S. Doxycycline regulation in a single retroviral vector by an autoregulatory loop facilitates controlled gene expression in liver cells. Nucleic Acids Res 2004; 32:e30. [PMID: 14966262 PMCID: PMC373428 DOI: 10.1093/nar/gnh034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The tetracycline system has limitations in liver cells, such as toxic effects and low controllability. We generated different retroviral vectors for controlled gene expression in liver cells, in which the regulatory elements were arranged in different patterns. Only the organization of the tetracycline system in an autoregulatory loop in the sense orientation results in high retroviral titres and in tight regulation of gene expression in highly differentiated hepatoma cells. Because of the toxicity of the transactivator tTA, it was impossible to establish doxycycline-dependent stable HepG2 cell lines. To avoid sequelching-related toxicity in liver cells, we replaced tTA with new non-toxic transactivators. By using tTA2, tTA3 and tTA4, we observed tight doxycycline-dependent gene expression in 23, 49 and 45% of the isolated clones. The tTA4 vector was used to transduce hepatocytes of mice in vivo. Tight doxycycline-controllable gene regulation was also observed in the liver of mice, confirming our hypothesis that retroviral vectors with autoregulatory loops of the tetracycline system facilitate inducible gene expression in the liver in vivo. Our new retroviral vector system allows rapid isolation of controllable clones in a very high yield and should make the tetracycline system more applicable to liver-derived cells and in liver gene therapy in vivo.
Collapse
Affiliation(s)
- Florian Kühnel
- Department of Gastroenterology and Hepatology, Medical School Hannover, Carl Neuberg Str. 1, D-30625 Hannover, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
High KA. Theodore E. Woodward Award. AAV-mediated gene transfer for hemophilia. TRANSACTIONS OF THE AMERICAN CLINICAL AND CLIMATOLOGICAL ASSOCIATION 2003; 114:337-352. [PMID: 12813929 PMCID: PMC2194524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Our research efforts have been focussed on developing a gene transfer strategy for the treatment of the hemophilias. Hemophilia is an attractive target for studies in gene transfer because even small amounts of clotting factor can improve the clinical symptoms of the disease, the factor can be expressed in almost any tissue as long as it gains access to the circulation, and there are large and small animal models of the disease, so that promising approaches can be assessed for efficacy before moving into clinical studies (1). We have developed recombinant adeno-associated viral (AAV) vectors expressing blood coagulation Factor IX. AAV has a number of advantages as a gene transfer vector including: 1) the absence of viral coding sequences in the recombinant vector; 2) the ability to transduce a variety of non-dividing target cells, including liver, muscle and nervous system; 3) the ability to direct long-term expression of the transgene in immunocompetent animals. We have introduced AAV-F.IX vectors into skeletal muscle and liver, and shown long-term correction of the bleeding diatheses in both small and large animal models of hemophilia B (2-5). In the initial clinical trial, rAAV was introduced into skeletal muscle of subjects with severe hemophilia B. Results showed that the general characteristics of transduction were similar in mouse, canine and human muscle, and muscle biopsies of injected sites showed evidence of gene transfer and expression, but circulating levels of F.IX failed to reach the desired target of 3-10%. There were no serious adverse events associated with rAAV injection in skeletal muscle (6). Work has also proceeded on development of a liver-directed approach. Engineering of the expression cassette has resulted in better expression per particle, and circulating F.IX levels of 4-12% have now been achieved in hemophilia B dogs treated with vector doses lower than those already administered in the clinical study in skeletal muscle (5). After extensive safety studies in mice, rats, hemophilic dogs and non-human primates, a Phase I study of an AAV-mediated, liver-directed approach to treating hemophilia B has begun. There were no acute toxicities associated with administration of vector to the first two subjects, but subsequently a PCR assay on the subjects' semen was found to be positive for vector sequences. After a period of weeks, the positive signal disappeared. These findings were distinct from those seen in pre-clinical animal studies. To gain a clearer understanding of the biodistribution of vector to the gonads, we undertook additional studies in rabbits and mice. These showed that, following intravascular delivery of vector, there is hematogenous dissemination to the gonads and gradual washout of vector over time. Direct transduction of germ cells does not appear to occur (7). Based on these and other safety studies, the clinical trial has now resumed. A goal of this work will be to determine whether the therapeutic levels achieved in a large animal model of hemophilia can be realized in humans.
Collapse
|
22
|
Aubert D, Ménoret S, Chiari E, Pichard V, Durand S, Tesson L, Moullier P, Anegon I, Ferry N. Cytotoxic immune response blunts long-term transgene expression after efficient retroviral-mediated hepatic gene transfer in rat. Mol Ther 2002; 5:388-96. [PMID: 11945065 DOI: 10.1006/mthe.2002.0561] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vectors derived from oncoretroviruses can transduce a small proportion of hepatocytes when injected in the regenerating liver. Transgene expression may be sustained for months without immune response. In striking contrast, we observed a rapid extinction when the intravenous injection of a high input of nuclear beta-galactosidase (beta-gal) expression vector, one day after partial hepatectomy, led to a significant proportion of transduced cells in the liver. Extinction was associated with liver inflammation on tissue sections and appearance of antibodies against the transgene product, while vector genomes became undetectable in liver tissue by PCR. These observations suggested the elimination of transduced cells by an immune response. Transgenic rats tolerant for cytoplasmic beta-gal, or normal rats depleted in CD8 T lymphocytes, steadily expressed the beta-gal vector. In the spleen of normal rats, we detected cytotoxic cells directed against cells expressing beta-gal after the injection of the beta-gal vector. In jaundiced Gunn rats deficient in bilirubin glucuronosyl transferase (BGT1) and treated with a human BGT1 cDNA expression vector, we observed the same kinetics of extinction as well as the appearance of anti-BGT1 antibodies. This study demonstrates that retrovirus-mediated gene transfer may induce cytotoxic T lymphocytes specifically directed against transgene-expressing cells.
Collapse
|
23
|
Li ZY, Otto K, Richard RE, Ni S, Kirillova I, Fausto N, Blau CA, Lieber A. Dimerizer-induced proliferation of genetically modified hepatocytes. Mol Ther 2002; 5:420-6. [PMID: 11945069 DOI: 10.1006/mthe.2002.0565] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stable gene transfer to the liver by viral vectors is inefficient. In an attempt to stimulate expansion of retrovirally transduced hepatocytes, we employed a synthetic drug (AP20187) that can reversibly dimerize and activate fusion proteins that contain a growth factor receptor signaling domain. Signaling domains derived from receptors for interleukin-6 (gp130), hepatocyte growth factor (c-met), epithelial growth factor (EGF-R), and thrombopoietin (mpl) triggered monkey hepatocytes to enter the cell cycle. However, mitosis occurred only upon activation of the gp130 and c-met signaling domains. Primary mouse hepatocytes expressing the gp130 fusion proliferated transiently in response to AP20187. AP20187-triggered activation of gp130 also stimulated the selective (>2-fold) expansion of retrovirally transduced hepatocytes in vivo, as shown by immunohistochemical staining and quantitative proviral DNA analysis. Drug-inducible in vivo expansion of genetically modified hepatocytes may have potential applications in hepatic gene transfer or in liver repopulation by transplanted hepatocytes or their progenitors. (c)2002 Elsevier Science (USA).
Collapse
Affiliation(s)
- Zong-Yi Li
- Division of Medical Genetics, Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhang HJ, Drake VJ, Xu L, Hu J, Domann FE, Oberley LW, Kregel KC. Redox regulation of adenovirus-induced AP-1 activation by overexpression of manganese-containing superoxide dismutase. J Virol 2002; 76:355-63. [PMID: 11739700 PMCID: PMC135732 DOI: 10.1128/jvi.76.1.355-363.2002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2001] [Accepted: 09/20/2001] [Indexed: 11/20/2022] Open
Abstract
Adenovirus gene therapy is a promising tool in the clinical treatment of many genetic and acquired diseases. However, it has also caused pathogenic effects in organs such as the liver. The redox-sensitive transcription factors AP-1 and NF-kappaB have been implicated in these effects. To study the mechanisms of adenovirus-mediated AP-1 and NF-kappaB activation and the possible involvement of oxidative stress in adenovirus transduction, rats were injected with either replication-defective recombinant adenovirus with DNA containing the cytomegalovirus promoter region only (AdCMV), adenovirus containing human manganese-containing superoxide dismutase (MnSOD) cDNA (AdMnSOD), or vehicle. Compared to vehicle and AdCMV transduction, MnSOD gene transfer yielded a fivefold increase in liver MnSOD activity 7 days postinjection. Gel shift assay showed that AdCMV transduction induced DNA binding activity for AP-1 but not NF-kappaB. MnSOD overexpression abolished this activation. Western blotting analysis of c-Fos and c-Jun suggested that up-regulation of c-fos and c-jun gene expression does not directly contribute to the induction of AP-1 activation. Glutathione/glutathione disulfide ratios were decreased by adenovirus transduction and restored by MnSOD overexpression. The AP-1 binding activity that was induced by AdCMV was decreased by immunoprecipitation of Ref-1 protein. Ref-1 involvement was confirmed by restoration of AP-1 binding activity after the immunoprecipitated Ref-1 protein had been added back. AP-1 DNA binding activity was also elevated in control and AdMnSOD-injected rats after addition of the immunoprecipitated Ref-1 protein. These data indicate that cellular transduction by recombinant adenovirus stimulates AP-1 DNA binding activity. Furthermore, our results suggest that MnSOD overexpression decreases AP-1 DNA binding activity by regulating intracellular redox status, with the possible involvement of Ref-1 in this redox-sensitive pathway.
Collapse
Affiliation(s)
- Hannah J Zhang
- Department of Exercise Science, Free Radical and Radiation Biology Program. Department of Radiation Oncology, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Pichard V, Aubert D, Ferry N. Efficient retroviral gene transfer to the liver in vivo using nonpolypeptidic mitogens. Biochem Biophys Res Commun 2001; 286:929-35. [PMID: 11527388 DOI: 10.1006/bbrc.2001.5495] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recombinant retroviral vectors are attractive tools for achieving sustained expression of a therapeutic gene in the liver. However, cell division is required for efficient transduction with these vectors. Here we report that two widely used liver mitogens, triiodothyronin (T3) and cyproterone acetate (CPA), enable hepatocyte transduction with recombinant retroviral vectors delivered in vivo into the bloodstream. Treatment with T3 as well as CPA, alone or in combination, resulted in an increase in hepatocyte replication predominantly around the portal tract. The mitogenic activity made it possible to transduce hepatocytes in the same location. Moreover, when administered together, the two drugs synergized and the transduction level reached 5% of hepatocytes. This transduction level is compatible with clinical applications for a number of inherited liver diseases. Since these two compounds have a long history of safe clinical use, we propose that these liver mitogens may have potential for clinical application in liver-directed gene therapy.
Collapse
Affiliation(s)
- V Pichard
- Laboratoire de Thérapie Génique, Hôtel-Dieu, Centre Hospitalier Universitaire de Nantes, Nantes cedex 01, 44035, France
| | | | | |
Collapse
|
26
|
Shofuda KI, Hasenstab D, Kenagy RD, Shofuda T, Li ZY, Lieber A, Clowes AW. Membrane-type matrix metalloproteinase-1 and -3 activity in primate smooth muscle cells. FASEB J 2001; 15:2010-2. [PMID: 11511522 DOI: 10.1096/fj.00-0871fje] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Membrane-type matrix metalloproteinases-1 and -3 (MT1- and MT3-MMPs) are expressed by activated smooth muscle cells (SMCs) both in vitro and in vivo (19). To define their functions in SMCs, we transduced MT1- and MT3-MMP cDNAs into baboon SMCs by using adenoviral vectors. Overexpression of MT1-MMP increased the conversion of proMMP-2 to the intermediate and active forms. In contrast, in MT3-MMP-overexpressing cells, MMP-2 was activated partially. Immunoblot analyses revealed that MT1-MMP protein was present in the SMCs and accumulated in the presence of the synthetic MMP inhibitor, BB94, or tissue inhibitor of metalloproteinase-2 (TIMP-2). However, MT3-MMP protein was detectable only when BB94, but not TIMP-2, was present. Zymographic analyses showed that MT3-MMP had much stronger casein- and gelatin-degrading activities than did MT1-MMP. Furthermore, when MT3-MMP and MT1-MMP were coexpressed, MT1-MMP degradation was enhanced; this result supports the possibility that MT3-MMP can degrade MT1-MMP. SMCs overexpressing either MT1- or MT3-MMP exhibited altered morphology, without changing their proliferation. This alteration was prevented by BB94 addition. The cells, which underwent this change, showed reduced adhesion to both collagen and fibronectin and increased migration in a Boyden chamber. The present study demonstrates that MT1- and MT3-MMPs have different enzymatic activities but may nevertheless affect SMC function in the same way.
Collapse
Affiliation(s)
- K I Shofuda
- Division of Vascular Surgery, Department of Surgery, University of Washington School of Medicine, 1959 NE Pacific St., Seattle, WA 98195-6410, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Neuroblastomas are heterogeneous tumors arising from sympathetic precursors in the neural crest. Growth factor stimulation of neuroblastomas promote diverse biological responses (mitogenesis, differentiation, cell death) depending on the particular tumor studied. Here we show that brief treatment with retinoic acid (RA) rendered the human neuroblastoma lines SY5Y, NGP, SMS-KCNR, and SK-N-SH dependent on brain-derived neurotrophic factor (BDNF) for survival. The BDNF- and trkB-expressing line SMS-KCN was dependent on an autocrine BDNF/trkB survival without exposure to RA. We conclude that the BDNF/trkB pathway plays an important role in neuroblastoma survival and speculate on a possible role in tumor pathogenesis.
Collapse
Affiliation(s)
- X Feng
- Department of Neurology, University of Chicago, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
28
|
Zahler MH, Irani A, Malhi H, Reutens AT, Albanese C, Bouzahzah B, Joyce D, Gupta S, Pestell RG. The application of a lentiviral vector for gene transfer in fetal human hepatocytes. J Gene Med 2000; 2:186-93. [PMID: 10894264 DOI: 10.1002/(sici)1521-2254(200005/06)2:3<186::aid-jgm100>3.0.co;2-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The applications of traditional retroviral vectors are limited because proviral integrations into the host genome require DNA synthesis. Lentiviruses are considered to be advantageous because of their ability to infect non-dividing cells. METHODS To demonstrate the potential of lentiviral vectors, we used a human immunodeficiency virus (HIV)-1 virus encoding the green fluorescence protein (GFP) to infect fetal human hepatocytes. GFP-expressing cells were transplanted into the liver of Balb/C SCID mice via intrasplenic injection. RESULTS Primary fetal hepatocytes incorporated the GFP reporter with high (30-40%) efficiency. A cell line derived from human fetal liver (HFL) exhibited similar transduction efficiency to the lentiviral vector. To demonstrate the relationship between lentiviral gene transfer and cell proliferation, cells were subjected to gamma-irradiation, which attenuated the replication of primary fetal hepatocytes. However, lentiviral gene transfer was unaffected by this decrease in cell proliferation. GFP expression in transduced cells was preserved during multiple passages in cell culture. When GFP-expressing cells were transplanted into the liver of Balb/C SCID mice via intrasplenic injection, GFP expression was observed throughout the 3 week duration of the study. CONCLUSION These studies establish that human hepatocytes are amenable to lentiviral gene transfer with sustained transgene expression. Incorporation of lentiviral vectors will be helpful in testing strategies for hepatic gene therapy.
Collapse
Affiliation(s)
- M H Zahler
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Forbes SJ, Themis M, Alison MR, Shiota A, Kobayashi T, Coutelle C, Hodgson HJ. Tri-iodothyronine and a deleted form of hepatocyte growth factor act synergistically to enhance liver proliferation and enable in vivo retroviral gene transfer via the peripheral venous system. Gene Ther 2000; 7:784-9. [PMID: 10822305 DOI: 10.1038/sj.gt.3301143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Retroviral vectors integrate into the target cell genome in a stable manner and therefore offer the potential for permanent correction of the genetic diseases that affect the liver. These vectors, however, usually require cell division to occur in order to allow provirus entry into the nucleus. We have explored clinically acceptable methods to improve the efficiency of retroviral gene transfer to the liver, which avoid the need for liver damage. Tri-iodothyronine (T3) and recombinant hepatocyte growth factor have previously been used to induce hepatocyte proliferation in rat livers and allow in vivo retroviral gene transfer. We investigated the combined effects of these growth factors, with their differing mechanisms of action, on hepatocyte proliferation in vivo and assessed their effectiveness in priming cells for retroviral gene transfer. During the phase of hepatocyte proliferation retrovirus was administered via either the portal or tail vein. Acting synergistically, T3 and a truncated form of recombinant hepatocyte growth factor (dHGF) induced 30% of hepatocytes in normal rat liver to enter DNA synthesis at 24 h. This increased proliferation enabled the liver to be transduced in vivo by retroviral vectors via either the portal or peripheral venous system, achieving transduction efficiencies of 6.9 +/- 1.6% and 4.3 +/- 0.4% respectively. Thus, the liver can be simply and conveniently transduced in vivo with integrating vectors, introduced via the peripheral venous system during a wave of growth factor-induced proliferation, pointing the way to clinically applicable gene transfer techniques.
Collapse
Affiliation(s)
- S J Forbes
- Department of Gastroenterology, St Mary's Hospital, London, UK
| | | | | | | | | | | | | |
Collapse
|
30
|
Sarkar R, Gao GP, Chirmule N, Tazelaar J, Kazazian HH. Partial correction of murine hemophilia A with neo-antigenic murine factor VIII. Hum Gene Ther 2000; 11:881-94. [PMID: 10779165 DOI: 10.1089/10430340050015491] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We have previously reported a factor VIII knockout (FVIII KO) mouse model for hemophilia A. Here we demonstrate the presence of nonfunctional heavy chain factor VIII protein in the mouse, making it an excellent model for cross-reacting material (CRM)-positive hemophilia A patients, who express normal levels of a dysfunctional FVIII protein. We attempted to correct these mice phenotypically by transduction of wild-type mouse factor VIII cDNA delivered in an E1/E3-deleted adenoviral vector by tail vein injection. All treated mice displayed initial high-level FVIII expression that diminished after 1 month. Ten of 12 mice administered between 6 x 10(9) and 1 x 10(11) particles/mouse along with anti-CD4 antibody showed long-term FVIII activity (0.03-0.05 IU/ml, equivalent to 3-5% of normal FVIII) that corrected the phenotype. Wild-type murine FVIII was a neo-antigen to the KO mice, generating both cytotoxic and humoral immune responses. Immune suppression with anti-CD4 antibody abrogated these immune responses. These data demonstrate that despite the presence of endogenous FVIII protein the immune system still recognizes a species-specific transgene protein as a neo-antigen, eliciting a cytotoxic T cell response. This phenomenon may exist in the treatment of other genetic disorders by gene therapy.
Collapse
Affiliation(s)
- R Sarkar
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia 19104-6145, USA
| | | | | | | | | |
Collapse
|
31
|
Kühnel F, Zender L, Paul Y, Tietze MK, Trautwein C, Manns M, Kubicka S. NFkappaB mediates apoptosis through transcriptional activation of Fas (CD95) in adenoviral hepatitis. J Biol Chem 2000; 275:6421-7. [PMID: 10692445 DOI: 10.1074/jbc.275.9.6421] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NFkappaB is an essential survival factor in several physiological conditions such as embryonal liver development and liver regeneration. However, NFkappaB is also a main mediator of the cellular response to a variety of extracellular stress stimuli, and it has been shown that some viral-induced host cell apoptosis appears to be dependent on NFkappaB activation. The activation of NFkappaB upon viral infection may be a rapid way of initiating an innate immune response against the viral particles. We have assessed the role of NFkB during the early phase of adenoviral hepatitis in a nude mouse model using an adenoviral vector expressing a mutant form of IkappaBalpha. Administration of a LacZ-expressing adenoviral vector induces NFkB DNA and correlates with the up-regulation of Fas (CD95) mRNA, but not FasL (CD95L) mRNA, during the early phase of adenoviral hepatitis. The rapid increase in NFkappaB DNA binding after adenoviral infection of the liver could be very effectively inhibited by IkappaBalpha. Compared with the LacZ control virus, the IkappaBalpha-expressing adenoviral vector inhibits the increase of Fas (CD95) mRNA expression, in particular in the very early phase of the hepatitis. Reporter gene experiments in hepatoma cell lines with a Fas promoter-luciferase construct indicated that the repression of Fas (CD95) mRNA by IkappaBalpha was transcriptionally mediated. The functional relevance of the NFkappaB-dependent increase in Fas (CD95) transcription was assessed by caspase 3 assays and terminal dUTP nick-end labeling tests. Compared with the control, IkappaBalpha adenoviral infection resulted in reduced caspase 3 activity during the early phase of viral hepatitis and in a prevention of liver cell apoptosis 24 h after adenoviral administration. Therefore our study demonstrates a new pro-apoptotic function of NFkappaB in Fas (CD95)-mediated apoptosis of hepatocytes. Interestingly, NFkappaB mediates liver cell apoptosis upon viral infection even in a phase where tumor necrosis factor-alpha is already induced, as shown by the time curves of tumor necrosis factor-alpha serum levels. Therefore, the pro- or anti-apoptotic role of NFkappaB appears to be more determined by the nature of the death stimulus than by the origin of the tissue.
Collapse
Affiliation(s)
- F Kühnel
- Department of Gastroenterology and Hepatology, Medizinische Hochschule, 30625 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
32
|
Forbes SJ, Themis M, Alison MR, Sarosi I, Coutelle C, Hodgson HJ. Synergistic growth factors enhance rat liver proliferation and enable retroviral gene transfer via a peripheral vein. Gastroenterology 2000; 118:591-8. [PMID: 10702211 DOI: 10.1016/s0016-5085(00)70266-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Genetic diseases reflecting abnormal hepatocyte function are potentially curable through gene therapy. Retroviral vectors offer the potential for permanent correction of such conditions. These vectors generally require cell division to occur to allow provirus entry into the nucleus, initiated in many experimental protocols by partial hepatectomy. We have explored methods to improve the efficiency of retroviral gene transfer that avoid the need for liver damage. METHODS Triiodothyronine (T3) and keratinocyte growth factor (KGF) were used to induce hepatic proliferation in rats. The effects of intraportal and peripheral administration of a modified retrovirus that encoded the Lac Z gene during growth factor-induced liver hyperplasia were analyzed. RESULTS T3 initiated hepatocyte proliferation midzonally; after KGF, proliferation was more diffuse. Optimal concentrations of T3 and KGF acted synergistically to induce proliferation in 61% of hepatocytes in the intact liver. This enabled in vivo hepatocyte transduction, leading to gene expression by up to 7.3% of hepatocytes after intraportal retroviral vector administration and 7. 1% after peripheral venous administration. CONCLUSIONS T3 and KGF act synergistically to induce hepatocyte proliferation in undamaged liver. The liver can be simply transduced with integrating vectors via the peripheral venous system during a wave of growth factor-induced proliferation.
Collapse
Affiliation(s)
- S J Forbes
- Liver Group Laboratory, Imperial College School of Medicine, London, England
| | | | | | | | | | | |
Collapse
|
33
|
Izembart A, Aguado E, Gauthier O, Aubert D, Moullier P, Ferry N. In vivo retrovirus-mediated gene transfer to the liver of dogs results in transient expression and induction of a cytotoxic immune response. Hum Gene Ther 1999; 10:2917-25. [PMID: 10609653 DOI: 10.1089/10430349950016339] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Gene transfer in regenerating dog liver using high-titer recombinant retroviral vectors carrying the E. coli beta-galactosidase gene was studied. Supernatants containing amphotropic or gibbon ape pseudotyped recombinant retroviruses were infused into a peripheral vein in beagle dogs after partial hepatectomy. The kinetics of liver regeneration were determined in the animals and daily infusions were carried out for 4 or 5 days during the regeneration period. Up to 2.8% of hepatocytes were beta-galactosidase positive at the end of the procedure. However, the number of positive cells declined rapidly and few positive hepatocytes were detected after 3 weeks. PCR demonstrated the disappearance of the provirus. Histologically, inflammatory lesions were observed in the transduced livers. Finally, we demonstrated the presence of a cytotoxic T lymphocyte immune response directed against beta-galactosidase-expressing cells, which could explain the disappearance of the transgene. This work suggests that the efficiency of in vivo gene delivery using high-titer retroviral vectors directly infused into the circulation may be hampered by a cytotoxic immune response against the infected cells.
Collapse
Affiliation(s)
- A Izembart
- Laboratoire de Thérapie Génique, CHU Hôtel-Dieu, Nantes, France
| | | | | | | | | | | |
Collapse
|
34
|
Pakkanen TM, Laitinen M, Hippeläinen M, Hiltunen MO, Lehtolainen P, Leppänen P, Luoma JS, Alhava E, Ylä-Herttuala S. Improved gene transfer efficiency in liver with vesicular stomatitis virus G-protein pseudotyped retrovirus after partial liver resection and thymidine kinase-ganciclovir pre-treatment. Pharmacol Res 1999; 40:451-7. [PMID: 10527661 DOI: 10.1006/phrs.1999.0537] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Liver-directed gene therapy is a promising alternative for the treatment of various liver diseases. Pseudotyped (VSV-G) retroviruses can be produced in high titres which is essential to overcome the problem of low gene transfer efficiency detected previously with first generation Moloney murine (MMLV) retroviruses and plasmid vectors. We compared the lacZ gene transfer efficiency of MMLV retroviruses and VSV-G retroviruses in Watanabe heritable hyperlipidaemic rabbit liver using an intraportal administration route. Hepatocyte proliferation was stimulated by a partial (10%) liver resection and a thymidine kinase-ganciclovir treatment. We also studied the safety of the gene transfer by clinical chemistry, tissue pathology and PCR analysis of lung, kidney, spleen and gonads. Gene transfer efficiency with the VSV-G retrovirus was significantly higher than with the traditional MMLV-based retrovirus (9.5+/-5.26 vs 0.21+/-0.10 positive hepatocytes mm(-2), P<0.05). After a 12-month follow-up period no lacZ expression was detected in liver samples. No transgene was detected in plasma or in lung, kidney, spleen and gonads by PCR analysis 7 days after gene transfer. Transient increases were found in plasma c-reactive protein, aspartyl aminotransferase and alanine aminotransferase levels shortly after the operation with both types of retroviruses. VSV-G retrovirus was well tolerated and may become an efficient new tool in liver gene therapy. The absence of transgene in systemic circulation or in extrahepatic tissues including gonads is an important safety feature required for in vivo gene therapy.
Collapse
Affiliation(s)
- T M Pakkanen
- A.I. Virtanen Institute, Department of Surgery, University of Kuopio, Kuopio, FIN 70211, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Chang CC, Hsiao KJ, Lee YM, Lin CM. Towards metabolic sink therapy for mut methylmalonic acidaemia: correction of methylmalonyl-CoA mutase deficiency in T lymphocytes from a mut methylmalonic acidaemia child by retroviral-mediated gene transfer. J Inherit Metab Dis 1999; 22:773-87. [PMID: 10518277 DOI: 10.1023/a:1005593605399] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The pathology associated with mut methylmalonic acidaemia (MMA) is caused by systemic accumulation of methylmalonate. Therefore, removal of methylmalonate from the circulation of affected individuals by an engineered metabolic system is proposed as a potential treatment. The haematopoietic cell is a potential site for such a metabolic system because of its direct contact with the accumulated metabolite and the demonstrated safety and ease in utilizing this cell. In this study, we assessed the feasibility of developing a haematopoietic cell-based methylmalonate sink by analysing propionate/methylmalonate metabolism in a variety of haematopoietic cells. The results show that propionate metabolism and methylmalonyl-CoA mutase (MCM) activity are intact in primary T cells, EBV-B cells, and CD34+ haematopoietic stem cell-derived granulocytes, whereas they are defective in those from a mut MMA child. Moreover, normal T and EBV-B cells clear methylmalonate from the medium at a significant rate. Transduction of MCM-deficient T cells with a recombinant retrovirus encoding the human MCM cDNA results in correction of propionate metabolism. These results establish the basis for developing haematopoietic cell-based metabolic sink therapy for mut MMA by T lymphocyte/haematopoietic stem cell-directed gene transfer.
Collapse
Affiliation(s)
- C C Chang
- Department of Microbiology, Soochow University, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
36
|
Zen K, Karsan A, Stempien-Otero A, Yee E, Tupper J, Li X, Eunson T, Kay MA, Wilson CB, Winn RK, Harlan JM. NF-kappaB activation is required for human endothelial survival during exposure to tumor necrosis factor-alpha but not to interleukin-1beta or lipopolysaccharide. J Biol Chem 1999; 274:28808-15. [PMID: 10497254 DOI: 10.1074/jbc.274.40.28808] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the presence of a protein synthesis inhibitor, cycloheximide, tumor necrosis factor-alpha (TNF-alpha), interleukin 1-beta (IL-1beta), or lipopolysaccharide (LPS) induces human umbilical vein endothelial cells (HUVECs) to undergo apoptosis, suggesting that constitutive or inducible cytoprotective pathways are required for cell survival. We studied the correlation between nuclear factor-kappaB (NF-kappaB) activation and cell death induced by TNF-alpha, IL-1beta, or LPS. Adenovirus-mediated overexpression of a dominant-negative IkappaBalpha (inhibitor of kappaB) mutant blocked NF-kappaB activation by gel shift assay and blocked induction of vascular cell adhesion molecule-1 protein by TNF-alpha, IL-1beta, and LPS, a NF-kappaB-dependent response. In cells overexpressing the IkappaBalpha mutant, TNF-alpha induced cell death, whereas IL-1beta or LPS did not. We conclude that cell survival following TNF-alpha stimulation is NF-kappaB-dependent but that a constitutive or inducible NF-kappaB-independent pathway(s) protects IL-1beta- or LPS-treated HUVECs from cell death.
Collapse
Affiliation(s)
- K Zen
- Department of Medicine, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gagandeep S, Ott M, Sokhi RP, Gupta S. Rapid clearance of syngeneic transplanted hepatocytes following transduction with E-1-deleted adenovirus indicates early host immune responses and offers novel ways for studying viral vector, target cell and host interactions. Gene Ther 1999; 6:729-36. [PMID: 10505095 DOI: 10.1038/sj.gt.3300871] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To distinguish between transduced cell clearance and transgene regulation following adenoviral gene transfer, we infected F344 rat hepatocytes with an E-1-deleted adenovirus (Ad beta gal) and studied cell survival in the liver of dipeptidyl peptidase IV-deficient (DPPIV-) F344 rats. Transplanted cells were localized with histochemical staining for DPPIV and transgene expression localized with staining for beta-galactosidase (lacZ). The transgene was expressed in 90-100% hepatocytes without impairment in cell viability in vitro, although transplanted cells were cleared mostly within 1 day by infiltrates containing activated macrophages, CD4+ or CD8+ lymphocytes, and phagocytes. When Ad beta gal-transduced hepatocytes were transplanted repeatedly at 14-day intervals, transplanted cells were cleared rapidly each time. LacZ expression following Ad beta gal administration to intact animals was associated with apoptosis and unscheduled DNA synthesis in the liver. To determine whether adenoviral antigen expression activated consequential MHC-restricted liver injury, we transplanted Ad beta gal-hepatocytes followed subsequently by transplantation of nontransduced hepatocytes. Transplanted cells expressing Ad beta gal were rapidly cleared as before, whereas nontransduced hepatocytes engrafted with progressive liver repopulation. The findings indicated that adenovirally transduced cells are cleared early in the host liver. Use of ex vivo strategies will facilitate analysis of modified adenoviral vectors in the context of immunoregulatory, cellular and viral mechanisms.
Collapse
Affiliation(s)
- S Gagandeep
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | |
Collapse
|
38
|
Gao C, Jokerst R, Gondipalli P, Cai SR, Kennedy S, Ponder KP. Intramuscular injection of an adenoviral vector expressing hepatocyte growth factor facilitates hepatic transduction with a retroviral vector in mice. Hum Gene Ther 1999; 10:911-22. [PMID: 10223725 DOI: 10.1089/10430349950018319] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Retroviral vectors can result in therapeutic and stable levels of expression of proteins from the liver. However, most retroviral vectors transduce only dividing cells, and hepatocytes are normally quiescent. The goal of this study was to determine if an adenoviral vector could transiently express hepatocyte growth factor (HGF) in order to induce hepatocyte replication and facilitate retroviral vector transduction of the liver. Intramuscular injection of an adenoviral vector that expressed human HGF from the cytomegalovirus promoter (Ad.CMV.HGF) resulted in moderate levels of HGF in blood and liver, and replication of 3 to 12% of hepatocytes. No cytopathic effect was observed in the liver, and a control adenoviral vector induced no or lower levels of replication. When a retroviral vector expressing beta-galactosidase cDNA was injected into a peripheral vein during the peak period of hepatocyte replication induced by intramuscularly administered Ad.CMV.HGF, 8% of hepatocytes were transduced. We conclude that intramuscular injection of Ad.CMV.HGF is a safe and effective way to induce transient systemic expression of HGF and hepatocyte replication, and to facilitate transduction of hepatocytes with a retroviral vector.
Collapse
Affiliation(s)
- C Gao
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
39
|
Duncan JR, Hicks ME, Cai SR, Brunt EM, Ponder KP. Embolization of portal vein branches induces hepatocyte replication in swine: a potential step in hepatic gene therapy. Radiology 1999; 210:467-77. [PMID: 10207431 DOI: 10.1148/radiology.210.2.r99fe10467] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE To determine whether embolization of portal vein branches would stimulate hepatocyte replication in pigs. MATERIALS AND METHODS The portal vein branches supplying 50%-70% of the liver were embolized in eight pigs by using a combination of coils and polyvinyl alcohol particles. The extent of embolization was assessed at portography in all animals and at computed tomography in one animal. Hepatocyte replication was determined by calculating the percentage of cells that incorporated bromodeoxyuridine into their nuclei. Animals survived up to 35 days after the procedure. RESULTS Embolization of the portal vein branches supplying the left and median lobes caused transient increases of less than 70% in portal vein pressures and of less than 100% in liver enzyme levels. Indocyanine green clearance was measured in two animals and decreased less than 50%. The percentage of replicating hepatocytes in the nonembolized lobe was 0% on day 0, 7% on day 2, 14% on day 7, and 2% on day 12. CONCLUSION Substantial hepatocyte replication occurred 2-7 days after embolization of portal vein branches. Further research will help determine if this procedure can facilitate retroviral transduction in large animals. If successful, the low morbidity of this method may allow its use in humans for gene therapy.
Collapse
Affiliation(s)
- J R Duncan
- Mallinckrodt Institute of Radiology, Washington Univ School of Medicine, St Louis, Mo., USA
| | | | | | | | | |
Collapse
|
40
|
Pakkanen TM, Laitinen M, Hippeläinen M, Kallionpää H, Lehtolainen P, Leppänen P, Luoma JS, Tarvainen R, Alhava E, Ylä-Herttuala S. Enhanced plasma cholesterol lowering effect of retrovirus-mediated LDL receptor gene transfer to WHHL rabbit liver after improved surgical technique and stimulation of hepatocyte proliferation by combined partial liver resection and thymidine kinase--ganciclovir treatment. Gene Ther 1999; 6:34-41. [PMID: 10341873 DOI: 10.1038/sj.gt.3300796] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In this study we report an improved method for in vivo gene transfer to liver. Repeated injections of Moloney murine leukemia virus-derived retroviruses containing LDL receptor cDNA were given to the portal vein in combination with a 10% partial liver resection and stimulation of hepatocyte proliferation by plasmid/liposome-mediated thymidine kinase gene transfer and ganciclovir treatment. The method was used for the treatment of LDL receptor deficiency in Watanabe heritable hyperlipidemic rabbits. We demonstrate an increase in hepatocyte proliferation index by thymidine kinase and ganciclovir treatment from 0.9 to 1.35% and a maximum of 35% decrease in total plasma cholesterol level 2-3 months after the gene transfer. A 20% decline was still present after a 52-week follow-up period. A 50% decrease was also observed in plasma triglycerides. Liver function tests indicated a transient increase in plasma alkaline phosphatase level up to 12 weeks after the gene transfer. In situ PCR and RT-PCR analyses indicated that the transgene was present in periportal areas and was transcribed to mRNA 1 week after the gene transfer. Because of the relatively simple and controllable technique we suggest that repeated retrovirus injections via a portal vein catheter together with the limited partial liver resection and plasmid/liposome-mediated thymidine kinase gene transfer-ganciclovir treatment may be used to improve the results of retrovirus-mediated liver gene therapy.
Collapse
Affiliation(s)
- T M Pakkanen
- AI Virtanen Institute, University of Kuopio, Finland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Roselli HT, Su M, Washington K, Kerins DM, Vaughan DE, Russell WE. Liver regeneration is transiently impaired in urokinase-deficient mice. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G1472-9. [PMID: 9843786 DOI: 10.1152/ajpgi.1998.275.6.g1472] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To test the hypothesis that urokinase-type plasminogen activator (uPA) plays an important role in liver regeneration in vivo, partial hepatectomy was performed on wild-type and uPA-deficient (uPA-/-) mice. Mice were studied at 24, 44, and 96 h and at 8 days and 4 wk post-partial hepatectomy for evidence of regeneration, as measured by mitotic indexes and [3H]thymidine incorporation. In wild-type mice, thymidine incorporation peaked at 44 h and this index was reduced by 47% in uPA-/- mice (P = 0.02). By 8 days, however, liver mass was comparable in both groups. Histological analysis revealed the presence of focal areas of fibrin deposition and cellular loss by 24 h that were more severe and prevalent in uPA-/- mice than in wild-type mice (62 and 23%, respectively; chi2 = 3.939, P = 0.047). In contrast, regeneration was not impaired in uPA receptor (uPAR)-deficient mice at 24 and 44 h. Taken together, these data indicate that uPA, independent of its interaction with the uPAR, plays an important role in liver regeneration in vivo.
Collapse
Affiliation(s)
- H T Roselli
- Department of Pharmacology, Vanderbilt University Medical Center and Veterans Affairs Medical Center, Nashville, Tennessee 37232, USA
| | | | | | | | | | | |
Collapse
|
42
|
Abstract
The ultimate goal of liver-directed gene therapy for genetic diseases is the stable expression of a therapeutic transgene in a significant proportion of hepatocytes. This article considers the various liver-directed gene transfer procedures studied so far. Performances and limitations of currently available vector systems are discussed with respect to their clinical relevance. Although some improvements have been reported, naked DNA and nonviral gene transfer vectors induce transient expression in only a limited number of cells. Clinical applications of retrovirus-mediated gene transfer are hampered by the need to induce hepatocyte division. First-generation adenovirus vectors are highly efficient; however, they induce an immune response leading to the rapid rejection of transduced cells. Promising new vector systems have emerged, including gutless adenovirus vectors, adeno-associated vectors, and lentivirus vectors. However, these systems are still poorly documented and their relevance to liver-directed gene therapy must be confirmed.
Collapse
Affiliation(s)
- N Ferry
- Laboratoire de Thérapie Génique, Nantes, France
| | | |
Collapse
|
43
|
Patijn GA, Lieber A, Schowalter DB, Schwall R, Kay MA. Hepatocyte growth factor induces hepatocyte proliferation in vivo and allows for efficient retroviral-mediated gene transfer in mice. Hepatology 1998; 28:707-16. [PMID: 9731563 DOI: 10.1002/hep.510280317] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Recombinant retroviral vectors are an attractive means of transferring genes into the liver because they integrate into the host cell genome and result in permanent gene expression. However, efficient in vivo gene transfer is limited by the requirement of active cell division for integration. Traditional approaches to induce liver proliferation have the disadvantage of inducing hepatocellular injury by delivery of toxins or by surgical partial hepatectomy. As a nontraumatic alternative, we show that exogenous hepatocyte growth factor (HGF) is a powerful and safe mitogen for the mature intact murine liver when delivered continuously into the portal vein. A 5-day infusion of human HGF (5 mg/kg/d) resulted in > 140% increase in relative liver mass, which returned to normal in 4 to 5 weeks. This clearly shows that an exogenous growth factor can induce robust liver proliferation in vivo. In addition, we show that the HGF-induced proliferation was independent of interleukin-6, an essential cytokine involved in liver regeneration after partial hepatectomy. When recombinant retroviral vectors were infused in combination with HGF, 30% of hepatocytes were stably transduced with no indication of hepatic injury or histopathology. These results show the ability to obtain a clinically relevant transduction efficiency with retroviral vectors in vivo without the prior induction of liver injury. The level of hepatic gene transfer achieved has the potential to be curative for a large number of genetic liver diseases.
Collapse
Affiliation(s)
- G A Patijn
- Markey Molecular Medicine Center, Department of Medicine, University of Washington, Seattle, USA
| | | | | | | | | |
Collapse
|
44
|
O'Neal WK, Zhou H, Morral N, Aguilar-Cordova E, Pestaner J, Langston C, Mull B, Wang Y, Beaudet AL, Lee B. Toxicological comparison of E2a-deleted and first-generation adenoviral vectors expressing alpha1-antitrypsin after systemic delivery. Hum Gene Ther 1998; 9:1587-98. [PMID: 9694157 DOI: 10.1089/hum.1998.9.11-1587] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Second-generation adenoviral vectors, mutated in E2a, have been proposed to decrease host immune responses against transduced cells, reduce toxicity, and increase duration of expression as compared with first-generation vectors deleted only in E1. To test these hypotheses further, we have developed an E2a-deleted adenoviral vector expressing human alpha1-antitrypsin (hAAT). Toxicity of first-generation and E2a-deleted vectors, as determined by hematological indices, liver function tests, and histological analyses, was evaluated in C3H mice for 21 days after vector administration at increasing doses starting at 1 x 10(12) particles/kg. Both vectors induced dose-dependent abnormalities including transient thrombocytopenia, elevated ALT levels in serum, and increased hepatocyte proliferation followed by inflammation and then hypertrophy. Differences in the ratio of particles to plaque-forming units among vector preparations led to differences in hAAT expression at similar particle doses. There were no differences in toxicity between the two vectors when measured at matching levels of hAAT expression. However, the E2a-deleted vector was demonstrated to have slightly reduced hepatocyte toxicity at an intermediate particle dose. This suggests that hepatocyte toxicity is related primarily to viral entry and expression, rather than to the presence of noninfectious particles, and implies that vectors with complete elimination of viral gene expression, such as vectors with all viral coding sequences deleted, are likely to have substantial advantages in terms of safety and toxicity.
Collapse
Affiliation(s)
- W K O'Neal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Patijn GA, Lieber A, Meuse L, Winther B, Kay MA. High-efficiency retrovirus-mediated gene transfer into the livers of mice. Hum Gene Ther 1998; 9:1449-56. [PMID: 9681416 DOI: 10.1089/hum.1998.9.10-1449] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recombinant retroviral vectors represent an attractive means of transferring genes into the liver because they integrate in the host cell genome and result in permanent gene expression. However, efficient gene transfer is limited by the requirement of active cell division for integration. Surgical partial hepatectomy has been the traditional method of inducing hepatocellular proliferation, but this invasive approach would be difficult to justify in clinical gene therapy. As an alternative, we used a recombinant adenovirus expressing a nonsecreted form of urokinase plaminogen activator (Ad.PGKmuPA), which results in liver regeneration over a period of 8 days. When a high-titer retroviral vector was continuously infused into the portal vein of mice during this period of hepatocyte proliferation, 33.5% of hepatocytes were stably transduced. In addition, high-level expression of a secreted transgene reporter was sustained for at least 48 weeks (length of experiment). We investigated the influence of vector titer on the in vivo transduction efficiency in our system, and found that the total number of infectious retroviral particles delivered per target cell is a critical factor. The results presented here demonstrate the ability to obtain a high gene transfer efficiency and long-term gene expression in hepatocytes in vivo without the need for surgical hepatectomy. The two-vector system described here may be of clinical relevance, as the level of hepatic gene transfer achieved has potential to be curative for a large number of genetic liver diseases.
Collapse
Affiliation(s)
- G A Patijn
- Markey Molecular Medicine Center, Department of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | | | |
Collapse
|
46
|
Abstract
Early retroviral-mediated factor IX gene transfer into deficient dogs showed that constitutive expression of low levels of factor IX which has led to persistent improvement of clinically relevant parameters such as the WBCT and PTT. Conversely, in vivo adenoviral mediated delivery of the factor IX cDNA into hepatocytes of haemophilia B dogs has resulted in greater than wild-type plasma concentrations of clotting factor with complete, albeit transient normalization of haemostasis for a short time. An immune response directed against the vector transduced cells presented a big obstacle to clinical application. However, the future of gene therapy for factor IX deficiency appears bright with the development of fully adenoviral-gene deleted vectors, rAAV and lentiviral vectors which seem to offer safety, therapeutic levels of factor IX and relatively long-term persistence. We must proceed with cautious optimism as these vector systems undergo further scrutiny.
Collapse
Affiliation(s)
- M A Kay
- Markey Molecular Medicine Center, Department of Medicine, University of Washington, Seattle 98195, USA
| |
Collapse
|
47
|
Kosai KI, Finegold MJ, Thi-Huynh BT, Tewson M, Ou CN, Bowles N, Woo SL, Schwall RH, Darlington GJ. Retrovirus-mediated in vivo gene transfer in the replicating liver using recombinant hepatocyte growth factor without liver injury or partial hepatectomy. Hum Gene Ther 1998; 9:1293-301. [PMID: 9650614 DOI: 10.1089/hum.1998.9.9-1293] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Retrovirus-mediated gene delivery into hepatocytes in vivo provides long-term gene expression, which is of great importance for treating most genetic and metabolic disorders. However, clinical application has not been realized because of the requirement for prior 70% partial hepatectomy or chemical (toxic) liver injury to initiate hepatocyte replication at the time of retroviral gene transduction. In this paper, we describe a novel gene delivery system that uses recombinant hepatocyte growth factor (rHGF) prior to retrovirus-mediated in vivo gene transfer in the liver without partial hepatectomy or liver injury. A single retroviral infusion through the portal vein following five systemic injections (via the tail vein) of 100 microg/kg rHGF resulted in a 10.4% 5-bromo-2'-deoxyuridine (BrdU) labeling index (BLI) and 0.14% retroviral gene transduction efficiency (RGTE) in hepatocytes, which were 6.3- and 12.9-fold higher than those of controls, respectively. Modest additional increases in BLI and RGTE (13.4% and 0.22%, respectively) were seen after five systemic injections of 500 microg/kg rHGF. The correlation between BLI and RGTE was statistically confirmed regardless of treatment. When rats received multiple retroviral infusions through a cannulated portal vein following five portal injections of 100 microg/kg rHGF, RGTE was dramatically increased (1.3%) and in some areas of the liver exceeded more than 10%. There was no evidence of liver injury in any animal. This approach has great potential for clinical application in terms of avoiding invasive procedures or liver injury.
Collapse
Affiliation(s)
- K I Kosai
- Department of Pathology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Ott M, Stockert RJ, Ma Q, Gagandeep S, Gupta S. Simultaneous up-regulation of viral receptor expression and DNA synthesis is required for increasing efficiency of retroviral hepatic gene transfer. J Biol Chem 1998; 273:11954-61. [PMID: 9565624 DOI: 10.1074/jbc.273.19.11954] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the relative contribution of viral receptor expression and cell proliferation in retroviral gene transfer, we created human hepatocyte-derived HuH-7.MCAT-1 cell lines. These cells constitutively express the murine ecotropic retroviral receptor MCAT-1 without changes in morphology or proliferation states. The MCAT-1 receptor is also a cationic amino acid transporter, and the HuH-7.MCAT-1.7 cells showed increased Vmax of uptake and steady-state accumulation of the cationic amino acids L-arginine and L-lysine. In HuH-7.MCAT-1 cells, L-arginine uptake was significantly up-regulated by norepinephrine and dexamethasone, and hepatocyte growth factor also increased L-arginine uptake along with cellular DNA synthesis. Gene transfer was also markedly increased in HuH-7. MCAT-1.7 cells incubated with an ecotropic LacZ retrovirus, and this further increased with hormones and hepatocyte growth factor. To define whether viral receptor up-regulation by itself increased gene transfer, cell cycling was inhibited by a recombinant adenovirus expressing the Mad transcription factor (AdMad), which is a dominant-negative c-Myc regulator. This restricted cells in G0/G1, without attenuating MCAT-1 activity, as shown by flow cytometry and L-arginine uptake analysis, respectively. When asynchronously cycling HuH-7.MCAT-1.7 cells were first infected with the AdMad virus and then exposed to the ecotropic LacZ virus, gene transfer was virtually abolished. The data indicate that while up-regulation of viral receptors can greatly enhance retrovirally mediated gene transfer, DNA synthesis remains an absolute requirement for hepatic gene therapy with this approach.
Collapse
Affiliation(s)
- M Ott
- Marion Bessin Liver Research Center, Gastroenterology Division, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
49
|
Lieber A, He CY, Meuse L, Schowalter D, Kirillova I, Winther B, Kay MA. The role of Kupffer cell activation and viral gene expression in early liver toxicity after infusion of recombinant adenovirus vectors. J Virol 1997; 71:8798-807. [PMID: 9343240 PMCID: PMC192346 DOI: 10.1128/jvi.71.11.8798-8807.1997] [Citation(s) in RCA: 336] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Systemic application of first-generation adenovirus induces pathogenic effects in the liver. To begin unraveling the mechanisms underlying early liver toxicity after adenovirus infusion, particularly the role of macrophage activation and expression of viral genes in transduced target cells, first-generation adenovirus or adenovirus vectors that lacked most early and late gene expression were administered to C3H/HeJ mice after transient depletion of Kupffer cells by gadolinium chloride treatment. Activation of NF-kappaB, and the serum levels of the proinflammatory cytokines tumor necrosis factor (TNF) and interleukin-6 (IL-6) were studied in correlation with liver damage, apoptosis, and hepatocellular DNA synthesis. While Kupffer cell depletion nearly eliminated adenovirus-induced TNF release, it resulted in a more robust IL-6 release. These responses were greatly reduced in animals receiving the deleted adenovirus. Although there were quantitative differences, NF-kappaB activation was observed within minutes of first-generation or deleted adenovirus vector administration regardless of the status of the Kupffer cells, suggesting that the induction is related to a direct effect of the virus particle on the hepatocyte. Early liver toxicity as determined by serum glutamic-pyruvic transaminase elevation and inflammatory cell infiltrates appeared to be dependent on adenovirus-mediated early gene expression and intact Kupffer cell function. Kupffer cell depletion had little effect on adenovirus-mediated hepatocyte apoptosis but did increase hepatocellular DNA synthesis. Finally, Kupffer cell depletion decreased the persistence of transgene (human alpha1-antitrypsin [hAAT]) expression that was associated with a more pronounced humoral immune response against hAAT. The elucidation of these events occurring after intravenous adenovirus injection will be important in developing new vectors and transfer techniques with reduced toxicity.
Collapse
Affiliation(s)
- A Lieber
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Adenovirus-Mediated Transfer of Tissue-Type Plasminogen Activator Augments Thrombolysis in Tissue-Type Plasminogen Activator–Deficient and Plasminogen Activator Inhibitor-1–Overexpressing Mice. Blood 1997. [DOI: 10.1182/blood.v90.4.1527.1527_1527_1534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Impaired fibrinolysis, resulting from increased plasminogen activator inhibitor-1 (PAI-1) or reduced tissue-type plasminogen activator (t-PA) plasma levels, may predispose the individual to subacute thrombosis in sepsis and inflammation. The objective of these studies was to show that adenovirus-mediated gene transfer could increase systemic plasma t-PA levels and thrombolytic capacity in animal model systems. Recombinant adenovirus vectors were constructed that express either human wild type or PAI-1–resistant t-PA from the cytomegalovirus (CMV) promoter. Both t-PA-deficient (t-PA−/−) and PAI-1–overexpressing transgenic mice were infected by intravenous injection of these viruses. Intravenous injection of recombinant adenovirus resulted in liver gene transfer, t-PA synthesis, and secretion into the plasma. Virus dose, human t-PA antigen, and activity concentrations in plasma and extent of lysis of a 125I-fibrin–labeled pulmonary embolism were all closely correlated. Plasma t-PA antigen and activity were increased approximately 1,000-fold above normal levels. Clot lysis was significantly increased in mice injected with a t-PA–expressing virus, but not in mice injected with saline or an irrelevant adenovirus. Comparable levels of enzyme activity and clot lysis were obtained with wild type and inhibitor-resistant t-PA viruses. Adenovirus-mediated t-PA gene transfer was found to augment clot lysis as early as 4 hours after infection, but expression levels subsided within 7 days. Adenovirus-mediated transfer of a t-PA gene can effectively increase plasma fibrinolytic activity and either restore (in t-PA–deficient mice) or augment (in PAI-1–overexpressing mice) the thrombolytic capacity in simple animal models of defective fibrinolysis.
Collapse
|