1
|
Wang Y, Chen Y, Xiao Z, Shi Y, Fu C, Cao Y. Fecal microbiota transplantation modulates myeloid-derived suppressor cells and attenuates renal fibrosis in a murine model. Ren Fail 2025; 47:2480749. [PMID: 40141007 PMCID: PMC11951334 DOI: 10.1080/0886022x.2025.2480749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/07/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Renal fibrosis is a hallmark of progressive chronic kidney disease (CKD), with emerging evidence linking gut microbiota dysbiosis to disease progression. Myeloid-derived suppressor cells (MDSCs) have demonstrated renoprotective effects, yet the impact of fecal microbiota transplantation (FMT) on MDSC-mediated modulation of renal fibrosis remains unclear. METHODS C57BL/6J mice underwent unilateral ureteral obstruction (UUO) to induce renal fibrosis, followed by FMT administration via gavage. Flow cytometry was used to quantify granulocytic (G-MDSCs) and monocytic (M-MDSCs) MDSC populations in peripheral blood, kidney, and spleen. To elucidate the role of MDSCs in FMT-mediated effects, MDSCs were depleted or adoptively transferred in vivo. Renal fibrosis severity and inflammatory cytokine expression were subsequently analyzed. RESULTS FMT altered MDSC distribution, increasing M-MDSC accumulation in the blood and kidney. This was associated with downregulation of proinflammatory cytokines and attenuation of renal fibrosis. Adoptive MDSC transfer similarly produced anti-inflammatory and antifibrotic effects, reinforcing their therapeutic role in FMT-mediated renal protection. CONCLUSIONS FMT enhances M-MDSC-mediated immunomodulation, reducing inflammation and renal fibrosis in UUO-induced CKD. These findings suggest a potential therapeutic strategy targeting the gut-kidney axis in CKD management.
Collapse
Affiliation(s)
- Yajie Wang
- Department of Nephrology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anesthesia Laboratory and Training Center of Wannan Medical College, Wuhu, Anhui, China
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution (Wannan Medical College), Wuhu, Anhui, China
| | - Yuye Chen
- Department of Nephrology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Zihao Xiao
- Department of Nephrology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yuanhui Shi
- Department of Nephrology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Cong Fu
- Department of Cardiology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Yuhan Cao
- Department of Nephrology, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| |
Collapse
|
2
|
Wolf SP, Leisegang M, Steiner M, Wallace V, Kiyotani K, Hu Y, Rosenberger L, Huang J, Schreiber K, Nakamura Y, Schietinger A, Schreiber H. CD4 + T cells with convergent TCR recombination reprogram stroma and halt tumor progression in adoptive therapy. Sci Immunol 2024; 9:eadp6529. [PMID: 39270007 PMCID: PMC11560124 DOI: 10.1126/sciimmunol.adp6529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024]
Abstract
Cancers eventually kill hosts even when infiltrated by cancer-specific T cells. We examined whether cancer-specific T cell receptors of CD4+ T cells (CD4TCRs) from tumor-bearing hosts can be exploited for adoptive TCR therapy. We focused on CD4TCRs targeting an autochthonous mutant neoantigen that is only presented by stroma surrounding the MHC class II-negative cancer cells. The 11 most common tetramer-sorted CD4TCRs were tested using TCR-engineered CD4+ T cells. Three TCRs were characterized by convergent recombination for which multiple T cell clonotypes differed in their nucleotide sequences but encoded identical TCR α and β chains. These preferentially selected TCRs destroyed tumors equally well and halted progression through reprogramming of the tumor stroma. TCRs represented by single T cell clonotypes were similarly effective only if they shared CDR elements with preferentially selected TCRs in both α and β chains. Selecting candidate TCRs on the basis of these characteristics can help identify TCRs that are potentially therapeutically effective.
Collapse
Affiliation(s)
- Steven P. Wolf
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Matthias Leisegang
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Institute of Immunology, Campus Buch, Charité - Universitätsmedizin Berlin; Berlin, Germany
- German Cancer Consortium (DKTK), partner site Berlin, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Madeline Steiner
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Veronika Wallace
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Kazuma Kiyotani
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research; Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Yifei Hu
- Pritzker School of Molecular Engineering, University of Chicago; Chicago, USA
- Pritzker School of Medicine, University of Chicago; Chicago, USA
| | - Leonie Rosenberger
- Institute of Immunology, Campus Buch, Charité - Universitätsmedizin Berlin; Berlin, Germany
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago; Chicago, USA
- Committees on Cancer Biology and Immunology and the Cancer Center, The University of Chicago; Chicago, USA
| | - Karin Schreiber
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
| | - Yusuke Nakamura
- Project for Immunogenomics, Cancer Precision Medicine Center, Japanese Foundation for Cancer Research; Tokyo, Japan
- Laboratory of Immunogenomics, Center for Intractable Diseases and ImmunoGenomics (CiDIG), National Institute of Biomedical Innovation, Health and Nutrition (NIBIOHN), Ibaraki-shi, Osaka, Japan
| | - Andrea Schietinger
- Immunology Program, Memorial Sloan Kettering Cancer Center; New York, USA
| | - Hans Schreiber
- David and Etta Jonas Center for Cellular Therapy, The University of Chicago; Chicago, USA
- Department of Pathology, The University of Chicago; Chicago, USA
- Committees on Cancer Biology and Immunology and the Cancer Center, The University of Chicago; Chicago, USA
| |
Collapse
|
3
|
WANG ZHENGYI, ZHOU LIANG, WU XIAOYING. Influencing factors and solution strategies of chimeric antigen receptor T-cell therapy (CAR-T) cell immunotherapy. Oncol Res 2024; 32:1479-1516. [PMID: 39220130 PMCID: PMC11361912 DOI: 10.32604/or.2024.048564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/28/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T-cesll therapy (CAR-T) has achieved groundbreaking advancements in clinical application, ushering in a new era for innovative cancer treatment. However, the challenges associated with implementing this novel targeted cell therapy are increasingly significant. Particularly in the clinical management of solid tumors, obstacles such as the immunosuppressive effects of the tumor microenvironment, limited local tumor infiltration capability of CAR-T cells, heterogeneity of tumor targeting antigens, uncertainties surrounding CAR-T quality, control, and clinical adverse reactions have contributed to increased drug resistance and decreased compliance in tumor therapy. These factors have significantly impeded the widespread adoption and utilization of this therapeutic approach. In this paper, we comprehensively analyze recent preclinical and clinical reports on CAR-T therapy while summarizing crucial factors influencing its efficacy. Furthermore, we aim to identify existing solution strategies and explore their current research status. Through this review article, our objective is to broaden perspectives for further exploration into CAR-T therapy strategies and their clinical applications.
Collapse
Affiliation(s)
- ZHENGYI WANG
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - LIANG ZHOU
- Department of Institute of Laboratory Animal Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - XIAOYING WU
- Ministry of Education and Training, Chengdu Second People’s Hospital, Chengdu, China
| |
Collapse
|
4
|
Surico PL, Lee S, Singh RB, Naderi A, Bhullar S, Blanco T, Chen Y, Dana R. Local administration of myeloid-derived suppressor cells prevents progression of immune-mediated dry eye disease. Exp Eye Res 2024; 242:109871. [PMID: 38527580 PMCID: PMC11055659 DOI: 10.1016/j.exer.2024.109871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/12/2024] [Accepted: 03/18/2024] [Indexed: 03/27/2024]
Abstract
Myeloid derived suppressor cells (MDSCs) are a heterogenous population of immature hematopoietic precursors with known immunoregulatory functions. The immunosuppressive role of MDSCs has been highlighted in several inflammatory ophthalmic disorders; however, their therapeutic application in suppressing the immune-mediated changes in dry eye disease (DED) has not been studied. We observed significant reduction in antigen presenting cell (APC) frequencies and their maturation in the presence of MDSCs. Moreover, co-culturing MDSCs with T helper 17 cells (Th17) resulted in reduced Th17 frequencies and their IL-17 expression. On the contrary, MDSCs maintained regulatory T cell frequencies and enhanced their function in-vitro. Furthermore, we delineated the role of interleukin-10 (IL-10) secreted by MDSCs in their immunoregulatory functions. We confirmed these results by flow cytometry analysis and observed that treatment with MDSCs in DED mice effectively suppressed the maturation of APCs, pathogenic Th17 response, and maintained Treg function and significantly ameliorated the disease. The results in this study highlight the potential therapeutic application of MDSCs in treating refractory DED.
Collapse
Affiliation(s)
- Pier Luigi Surico
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Seokjoo Lee
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Rohan Bir Singh
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Amirreza Naderi
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Shilpy Bhullar
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Tomas Blanco
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yihe Chen
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Reza Dana
- Laboratory of Ocular Immunology, Transplantation and Regeneration, Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Wang M, Zhang L, Chang W, Zhang Y. The crosstalk between the gut microbiota and tumor immunity: Implications for cancer progression and treatment outcomes. Front Immunol 2023; 13:1096551. [PMID: 36726985 PMCID: PMC9885097 DOI: 10.3389/fimmu.2022.1096551] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
The gastrointestinal tract is inhabited by trillions of commensal microorganisms that constitute the gut microbiota. As a main metabolic organ, the gut microbiota has co-evolved in a symbiotic relationship with its host, contributing to physiological homeostasis. Recent advances have provided mechanistic insights into the dual role of the gut microbiota in cancer pathogenesis. Particularly, compelling evidence indicates that the gut microbiota exerts regulatory effects on the host immune system to fight against cancer development. Some microbiota-derived metabolites have been suggested as potential activators of antitumor immunity. On the contrary, the disequilibrium of intestinal microbial communities, a condition termed dysbiosis, can induce cancer development. The altered gut microbiota reprograms the hostile tumor microenvironment (TME), thus allowing cancer cells to avoid immunosurvelliance. Furthermore, the gut microbiota has been associated with the effects and complications of cancer therapy given its prominent immunoregulatory properties. Therapeutic measures that aim to manipulate the interplay between the gut microbiota and tumor immunity may bring new breakthroughs in cancer treatment. Herein, we provide a comprehensive update on the evidence for the implication of the gut microbiota in immune-oncology and discuss the fundamental mechanisms underlying the influence of intestinal microbial communities on systemic cancer therapy, in order to provide important clues toward improving treatment outcomes in cancer patients.
Collapse
|
6
|
Tang Y, Zhou C, Li Q, Cheng X, Huang T, Li F, He L, Zhang B, Tu S. Targeting depletion of myeloid-derived suppressor cells potentiates PD-L1 blockade efficacy in gastric and colon cancers. Oncoimmunology 2022; 11:2131084. [PMID: 36268178 PMCID: PMC9578486 DOI: 10.1080/2162402x.2022.2131084] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) have been demonstrated to suppress antitumor immunity and induce resistance to PD-1/PD-L1 blockade immunotherapy in gastric and colon cancer patients. Herein, we found that MDSCs accumulate in mice bearing syngeneic gastric cancer and colon cancer. Death receptor 5 (DR5), a receptor of TNF-related apoptosis-inducing ligand (TRAIL), was highly expressed on MDSCs and cancer cells; targeting DR5 using agonistic anti-DR5 antibody (MD5-1) specifically depleted MDSCs and induced enrichment of CD8+ T lymphocytes in tumors and exhibited stronger tumor inhibition efficacy in immune-competent mice than in T-cell-deficient nude mice. Importantly, the combination of MD5-1 and anti-PD-L1 antibody showed synergistic antitumor effects in gastric and colon tumor-bearing mice, resulting in significantly suppressed tumor growth and extended mice survival, whereas single-agent treatment had limited effect. Moreover, the combination therapy induced sustained memory immunity in mice that exhibited complete tumor regression. The enhanced antitumor effect was associated with increased intratumoral CD8+ T-cell infiltration and activation, and a more vigorous tumor-inhibiting microenvironment. In summary, our findings highlight the therapeutic potential of combining PD-L1 blockade therapy with agonistic anti-DR5 antibody that targets MDSCs in gastric and colon cancers.
Collapse
Affiliation(s)
- Yao Tang
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Cong Zhou
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Qingli Li
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaojiao Cheng
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Tinglei Huang
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Fuli Li
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Lina He
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Baiweng Zhang
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shuiping Tu
- State Key Laboratory of Oncogenesis and Related Genes, Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Harris BHL, Macaulay VM, Harris DA, Klenerman P, Karpe F, Lord SR, Harris AL, Buffa FM. Obesity: a perfect storm for carcinogenesis. Cancer Metastasis Rev 2022; 41:491-515. [PMID: 36038791 PMCID: PMC9470699 DOI: 10.1007/s10555-022-10046-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 06/08/2022] [Indexed: 12/14/2022]
Abstract
Obesity-related cancers account for 40% of the cancer cases observed in the USA and obesity is overtaking smoking as the most widespread modifiable risk factor for carcinogenesis. Here, we use the hallmarks of cancer framework to delineate how obesity might influence the carcinogenic hallmarks in somatic cells. We discuss the effects of obesity on (a) sustaining proliferative signaling; (b) evading growth suppressors; (c) resisting cell death; (d) enabling replicative immortality; (e) inducing angiogenesis; (f) activating invasion and metastasis; (g) reprogramming energy metabolism; and (h) avoiding immune destruction, together with its effects on genome instability and tumour-promoting inflammation. We present the current understanding and controversies in this evolving field, and highlight some areas in need of further cross-disciplinary focus. For instance, the relative importance of the many potentially causative obesity-related factors is unclear for each type of malignancy. Even within a single tumour type, it is currently unknown whether one obesity-related factor consistently plays a predominant role, or if this varies between patients or, even in a single patient with time. Clarifying how the hallmarks are affected by obesity may lead to novel prevention and treatment strategies for the increasingly obese population.
Collapse
Affiliation(s)
- Benjamin H L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK.
- St Anne's College, 56 Woodstock Rd, Oxford, OX2 6HS, UK.
| | - Valentine M Macaulay
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, OX3 9DU, UK
| | | | - Paul Klenerman
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, OX1 3SY, UK
| | - Fredrik Karpe
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Department of Medicine, University of Oxford, Oxford, OX3 7LE, UK
| | - Simon R Lord
- Early Phase Clinical Trials Unit, Churchill Hospital, Oxford, OX3 7LE, UK
| | - Adrian L Harris
- Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | | |
Collapse
|
8
|
Ben‐Meir K, Twaik N, Meirow Y, Baniyash M. An In Vivo Mouse Model for Chronic Inflammation-Induced Immune Suppression: A "Factory" for Myeloid-Derived Suppressor Cells (MDSCs). Curr Protoc 2022; 2:e558. [PMID: 36239438 PMCID: PMC11648823 DOI: 10.1002/cpz1.558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of immature myeloid cells known to play a role in perpetuating a wide range of pathologies, such as chronic infections, autoimmune diseases, and cancer. MDSCs were first identified in mice by the markers CD11b+ Gr1+ , and later, based on their morphology, they were classified into two subsets: polymorphonuclear MDSCs, identified by the markers CD11b+ Ly6G+ Ly6CLow , and monocytic MDSCs, detected as being CD11b+ Ly6G- Ly6CHi . MDSCs are studied as immunosuppressive cells in various diseases characterized by chronic inflammation and are associated with disease causes/triggers such as pathogens, autoantigens, and cancer. Therefore, different diseases may diversely affect MDSC metabolism, migration, and differentiation, thus influencing the generated MDSC functional features and ensuing suppressive environment. In order to study MDSCs in a pathology-free environment, we established and calibrated a highly reproducible mouse model that results in the development of chronic inflammation, which is the major cause of MDSC accumulation and immune suppression. The model presented can be used to study MDSC phenotypes, functional diversity, and plasticity. It also permits study of MDSC migration from the bone marrow to peripheral lymphatic and non-lymphatic organs and MDSC crosstalk with extrinsic factors, both in vivo and ex vivo. Furthermore, this model can serve as a platform to assess the effects of anti-MDSC modalities. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Repetitive M.tb immunizations for the induction of chronic inflammation Alternate Protocol 1: Creating a lower grade of inflammation by changing the site of immunization Alternate Protocol 2: In vivo evaluation of immune status Support Protocol 1: Preparation of reconstituted M.tb aliquots and M.tb-IFA emulsions for each of the three injections Support Protocol 2: Preparation of an ovalbumin lentiviral expression vector Support Protocol 3: Fluorescence titering assay for the lentiviral expression vector Support Protocol 4: Spleen excision, tissue dissociation, and preparation of a single-cell suspension Support Protocol 5: Labeling of splenocytes with CFSE proliferation dye.
Collapse
Affiliation(s)
- Kerem Ben‐Meir
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Israel‐Canada Medical Research Institute, Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - Nira Twaik
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Israel‐Canada Medical Research Institute, Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - Yaron Meirow
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Israel‐Canada Medical Research Institute, Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| | - Michal Baniyash
- The Concern Foundation Laboratories at the Lautenberg Center for Immunology and Cancer Research, Israel‐Canada Medical Research Institute, Faculty of MedicineThe Hebrew UniversityJerusalemIsrael
| |
Collapse
|
9
|
Schroeter A, Roesel MJ, Matsunaga T, Xiao Y, Zhou H, Tullius SG. Aging Affects the Role of Myeloid-Derived Suppressor Cells in Alloimmunity. Front Immunol 2022; 13:917972. [PMID: 35874716 PMCID: PMC9296838 DOI: 10.3389/fimmu.2022.917972] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are defined as a group of myeloid cells with potent immunoregulatory functions that have been shown to be involved in a variety of immune-related diseases including infections, autoimmune disorders, and cancer. In organ transplantation, MDSC promote tolerance by modifying adaptive immune responses. With aging, however, substantial changes occur that affect immune functions and impact alloimmunity. Since the vast majority of transplant patients are elderly, age-specific modifications of MDSC are of relevance. Furthermore, understanding age-associated changes in MDSC may lead to improved therapeutic strategies. Here, we provide a comprehensive update on the effects of aging on MDSC and discuss potential consequences on alloimmunity.
Collapse
Affiliation(s)
- Andreas Schroeter
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Regenerative Medicine and Experimental Surgery, Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Maximilian J. Roesel
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Institute of Medical Immunology, Charite Universitaetsmedizin Berlin, Berlin, Germany
| | - Tomohisa Matsunaga
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Japan
| | - Yao Xiao
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Hao Zhou
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Stefan G. Tullius
- Transplant Surgery Research Laboratory and Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
10
|
Holterhus M, Altvater B, Kailayangiri S, Rossig C. The Cellular Tumor Immune Microenvironment of Childhood Solid Cancers: Informing More Effective Immunotherapies. Cancers (Basel) 2022; 14:cancers14092177. [PMID: 35565307 PMCID: PMC9105669 DOI: 10.3390/cancers14092177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
Common pediatric solid cancers fail to respond to standard immuno-oncology agents relying on preexisting adaptive antitumor immune responses. The adoptive transfer of tumor-antigen specific T cells, such as CAR-gene modified T cells, is an attractive strategy, but its efficacy has been limited. Evidence is accumulating that local barriers in the tumor microenvironment prevent the infiltration of T cells and impede therapeutic immune responses. A thorough understanding of the components of the functional compartment of the tumor microenvironment and their interaction could inform effective combination therapies and novel engineered therapeutics, driving immunotherapy towards its full potential in pediatric patients. This review summarizes current knowledge on the cellular composition and significance of the tumor microenvironment in common extracranial solid cancers of childhood and adolescence, such as embryonal tumors and bone and soft tissue sarcomas, with a focus on myeloid cell populations that are often present in abundance in these tumors. Strategies to (co)target immunosuppressive myeloid cell populations with pharmacological anticancer agents and with selective antagonists are presented, as well as novel concepts aiming to employ myeloid cells to cooperate with antitumor T cell responses.
Collapse
|
11
|
Peña-Romero AC, Orenes-Piñero E. Dual Effect of Immune Cells within Tumour Microenvironment: Pro- and Anti-Tumour Effects and Their Triggers. Cancers (Basel) 2022; 14:1681. [PMID: 35406451 PMCID: PMC8996887 DOI: 10.3390/cancers14071681] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Our body is constantly exposed to pathogens or external threats, but with the immune response that our body can develop, we can fight off and defeat possible attacks or infections. Nevertheless, sometimes this threat comes from an internal factor. Situations such as the existence of a tumour also cause our immune system (IS) to be put on alert. Indeed, the link between immunology and cancer is evident these days, with IS being used as one of the important targets for treating cancer. Our IS is able to eliminate those abnormal or damaged cells found in our body, preventing the uncontrolled proliferation of tumour cells that can lead to cancer. However, in several cases, tumour cells can escape from the IS. It has been observed that immune cells, the extracellular matrix, blood vessels, fat cells and various molecules could support tumour growth and development. Thus, the developing tumour receives structural support, irrigation and energy, among other resources, making its survival and progression possible. All these components that accompany and help the tumour to survive and to grow are called the tumour microenvironment (TME). Given the importance of its presence in the tumour development process, this review will focus on one of the components of the TME: immune cells. Immune cells can support anti-tumour immune response protecting us against tumour cells; nevertheless, they can also behave as pro-tumoural cells, thus promoting tumour progression and survival. In this review, the anti-tumour and pro-tumour immunity of several immune cells will be discussed. In addition, the TME influence on this dual effect will be also analysed.
Collapse
Affiliation(s)
| | - Esteban Orenes-Piñero
- Department of Biochemistry and Molecular Biology-A, University of Murcia, 30120 Murcia, Spain;
| |
Collapse
|
12
|
Andrea AE, Chiron A, Mallah S, Bessoles S, Sarrabayrouse G, Hacein-Bey-Abina S. Advances in CAR-T Cell Genetic Engineering Strategies to Overcome Hurdles in Solid Tumors Treatment. Front Immunol 2022; 13:830292. [PMID: 35211124 PMCID: PMC8861853 DOI: 10.3389/fimmu.2022.830292] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/18/2022] [Indexed: 12/15/2022] Open
Abstract
During this last decade, adoptive transfer of T lymphocytes genetically modified to express chimeric antigen receptors (CARs) emerged as a valuable therapeutic strategy in hematological cancers. However, this immunotherapy has demonstrated limited efficacy in solid tumors. The main obstacle encountered by CAR-T cells in solid malignancies is the immunosuppressive tumor microenvironment (TME). The TME impedes tumor trafficking and penetration of T lymphocytes and installs an immunosuppressive milieu by producing suppressive soluble factors and by overexpressing negative immune checkpoints. In order to overcome these hurdles, new CAR-T cells engineering strategies were designed, to potentiate tumor recognition and infiltration and anti-cancer activity in the hostile TME. In this review, we provide an overview of the major mechanisms used by tumor cells to evade immune defenses and we critically expose the most optimistic engineering strategies to make CAR-T cell therapy a solid option for solid tumors.
Collapse
Affiliation(s)
- Alain E. Andrea
- Laboratoire de Biochimie et Thérapies Moléculaires, Faculté de Pharmacie, Université Saint Joseph de Beyrouth, Beirut, Lebanon
| | - Andrada Chiron
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| | - Sarah Mallah
- Faculty of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Stéphanie Bessoles
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Guillaume Sarrabayrouse
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
| | - Salima Hacein-Bey-Abina
- Université de Paris, CNRS, INSERM, UTCBS, Unité des technologies Chimiques et Biologiques pour la Santé, Paris, France
- Clinical Immunology Laboratory, Groupe Hospitalier Universitaire Paris-Sud, Hôpital Kremlin-Bicêtre, Assistance Publique-Hôpitaux de Paris, Le-Kremlin-Bicêtre, France
| |
Collapse
|
13
|
Wang S, Tan Q, Hou Y, Dou H. Emerging Roles of Myeloid-Derived Suppressor Cells in Diabetes. Front Pharmacol 2021; 12:798320. [PMID: 34975496 PMCID: PMC8716856 DOI: 10.3389/fphar.2021.798320] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/01/2021] [Indexed: 12/12/2022] Open
Abstract
Diabetes is a syndrome characterized by hyperglycemia with or without insulin resistance. Its etiology is attributed to the combined action of genes, environment and immune cells. Myeloid-derived suppressor cell (MDSC) is a heterogeneous population of immature cells with immunosuppressive ability. In recent years, different studies have debated the quantity, activity changes and roles of MDSC in the diabetic microenvironment. However, the emerging roles of MDSC have not been fully documented with regard to their interactions with diabetes. Here, the manifestations of MDSC and their subsets are reviewed with regard to the incidence of diabetes and diabetic complications. The possible drugs targeting MDSC are discussed with regard to their potential of treating diabetes. We believe that understanding MDSC will offer opportunities to explain pathological characteristics of different diabetes. MDSC also will be used for personalized immunotherapy of diabetes.
Collapse
Affiliation(s)
- Shiqi Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Tan
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
14
|
Huang X, Pan T, Yan L, Jin T, Zhang R, Chen B, Feng J, Duan T, Xiang Y, Zhang M, Chen X, Yang Z, Zhang W, Ding X, Xie T, Sui X. The inflammatory microenvironment and the urinary microbiome in the initiation and progression of bladder cancer. Genes Dis 2021; 8:781-797. [PMID: 34522708 PMCID: PMC8427242 DOI: 10.1016/j.gendis.2020.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 12/24/2022] Open
Abstract
Accumulating evidence suggests that chronic inflammation may play a critical role in various malignancies, including bladder cancer. This hypothesis stems in part from inflammatory cells observed in the urethral microenvironment. Chronic inflammation may drive neoplastic transformation and the progression of bladder cancer by activating a series of inflammatory molecules and signals. Recently, it has been shown that the microbiome also plays an important role in the development and progression of bladder cancer, which can be mediated through the stimulation of chronic inflammation. In effect, the urinary microbiome can play a role in establishing the inflammatory urethral microenvironment that may facilitate the development and progression of bladder cancer. In other words, chronic inflammation caused by the urinary microbiome may promote the initiation and progression of bladder cancer. Here, we provide a detailed and comprehensive account of the link between chronic inflammation, the microbiome and bladder cancer. Finally, we highlight that targeting the urinary microbiome might enable the development of strategies for bladder cancer prevention and personalized treatment.
Collapse
Affiliation(s)
- Xingxing Huang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Pan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Lili Yan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Jin
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ruonan Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Bi Chen
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Jiao Feng
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Ting Duan
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Yu Xiang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Mingming Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xiaying Chen
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Zuyi Yang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Wenzheng Zhang
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| | - Tian Xie
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
| | - Xinbing Sui
- Department of Medical Oncology, the Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 310015, PR China
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou Normal University, Hangzhou, Zhejiang Province, 311121, PR China
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, PR China
| |
Collapse
|
15
|
Immunosuppressive Effects of Myeloid-Derived Suppressor Cells in Cancer and Immunotherapy. Cells 2021; 10:cells10051170. [PMID: 34065010 PMCID: PMC8150533 DOI: 10.3390/cells10051170] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/11/2022] Open
Abstract
The primary function of myeloid cells is to protect the host from infections. However, during cancer progression or states of chronic inflammation, these cells develop into myeloid-derived suppressor cells (MDSCs) that play a prominent role in suppressing anti-tumor immunity. Overcoming the suppressive effects of MDSCs is a major hurdle in cancer immunotherapy. Therefore, understanding the mechanisms by which MDSCs promote tumor growth is essential for improving current immunotherapies and developing new ones. This review explores mechanisms by which MDSCs suppress T-cell immunity and how this impacts the efficacy of commonly used immunotherapies.
Collapse
|
16
|
McFarlane AJ, Fercoq F, Coffelt SB, Carlin LM. Neutrophil dynamics in the tumor microenvironment. J Clin Invest 2021; 131:143759. [PMID: 33720040 PMCID: PMC7954585 DOI: 10.1172/jci143759] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment profoundly influences the behavior of recruited leukocytes and tissue-resident immune cells. These immune cells, which inherently have environmentally driven plasticity necessary for their roles in tissue homeostasis, dynamically interact with tumor cells and the tumor stroma and play critical roles in determining the course of disease. Among these immune cells, neutrophils were once considered much more static within the tumor microenvironment; however, some of these earlier assumptions were the product of the notorious difficulty in manipulating neutrophils in vitro. Technological advances that allow us to study neutrophils in context are now revealing the true roles of neutrophils in the tumor microenvironment. Here we discuss recent data generated by some of these tools and how these data might be synthesized into more elegant ways of targeting these powerful and abundant effector immune cells in the clinic.
Collapse
Affiliation(s)
| | - Frédéric Fercoq
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
| | - Seth B. Coffelt
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Leo M. Carlin
- Cancer Research UK Beatson Institute, Glasgow, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
17
|
Rosowski EE. Determining macrophage versus neutrophil contributions to innate immunity using larval zebrafish. Dis Model Mech 2020; 13:13/1/dmm041889. [PMID: 31932292 PMCID: PMC6994940 DOI: 10.1242/dmm.041889] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The specific roles of the two major innate immune cell types – neutrophils and macrophages – in response to infection and sterile inflammation are areas of great interest. The larval zebrafish model of innate immunity, and the imaging capabilities it provides, is a source of new research and discoveries in this field. Multiple methods have been developed in larval zebrafish to specifically deplete functional macrophages or neutrophils. Each of these has pros and cons, as well as caveats, that often make it difficult to directly compare results from different studies. The purpose of this Review is to (1) explore the pros, cons and caveats of each of these immune cell-depleted models; (2) highlight and place into a broader context recent key findings on the specific functions of innate immune cells using these models; and (3) explore future directions in which immune cell depletion methods are being expanded. Summary: Macrophages and neutrophils are distinct innate immune cells with diverse roles in diverse inflammatory contexts. Recent research in larval zebrafish using cell-specific depletion methods has revealed new insights into these cells' functions.
Collapse
Affiliation(s)
- Emily E Rosowski
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
18
|
Neamah WH, Singh NP, Alghetaa H, Abdulla OA, Chatterjee S, Busbee PB, Nagarkatti M, Nagarkatti P. AhR Activation Leads to Massive Mobilization of Myeloid-Derived Suppressor Cells with Immunosuppressive Activity through Regulation of CXCR2 and MicroRNA miR-150-5p and miR-543-3p That Target Anti-Inflammatory Genes. THE JOURNAL OF IMMUNOLOGY 2019; 203:1830-1844. [PMID: 31492743 DOI: 10.4049/jimmunol.1900291] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 07/30/2019] [Indexed: 12/15/2022]
Abstract
The compound 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), an environmental contaminant, is a potent ligand for aryl hydrocarbon receptor (AhR). In the current study, we made an exciting observation that naive C57BL/6 mice that were exposed i.p. to TCDD showed massive mobilization of myeloid-derived suppressor cells (MDSCs) in the peritoneal cavity. These MDSCs were highly immunosuppressive and attenuated Con A-induced hepatitis upon adoptive transfer. TCDD administration in naive mice also led to induction of several chemokines and cytokines in the peritoneal cavity and serum (CCL2, CCL3, CCL4, CCL11, CXCL1, CXCL2, CXCL5, CXCL9, G-CSF, GM-CSF, VEGF, and M-CSF) and chemokine receptors on MDSCs (CCR1, CCR5, and CXCR2). Treatment with CXCR2 or AhR antagonist in mice led to marked reduction in TCDD-induced MDSCs. TCDD-induced MDSCs had high mitochondrial respiration and glycolytic rate and exhibited differential microRNA (miRNA) expression profile. Specifically, there was significant downregulation of miR-150-5p and miR-543-3p. These two miRNAs targeted and enhanced anti-inflammatory and MDSC-regulatory genes, including IL-10, PIM1, ARG2, STAT3, CCL11 and its receptors CCR3 and CCR5 as well as CXCR2. The role of miRs in MDSC activation was confirmed by transfection studies. Together, the current study demonstrates that activation of AhR in naive mice triggers robust mobilization of MDSCs through induction of chemokines and their receptors and MDSC activation through regulation of miRNA expression. AhR ligands include diverse compounds from environmental toxicants, such as TCDD, that are carcinogenic to dietary indoles that are anti-inflammatory. Our studies provide new insights on how such ligands may regulate health and disease through induction of MDSCs.
Collapse
Affiliation(s)
- Wurood Hantoosh Neamah
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Narendra P Singh
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Hasan Alghetaa
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Osama A Abdulla
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Saurabh Chatterjee
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC 29208
| | - Philip B Busbee
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, Columbia, SC 29208; and
| |
Collapse
|
19
|
Liao Z, Chua D, Tan NS. Reactive oxygen species: a volatile driver of field cancerization and metastasis. Mol Cancer 2019; 18:65. [PMID: 30927919 PMCID: PMC6441160 DOI: 10.1186/s12943-019-0961-y] [Citation(s) in RCA: 163] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 02/20/2019] [Indexed: 12/24/2022] Open
Abstract
Field cancerization and metastasis are the leading causes for cancer recurrence and mortality in cancer patients. The formation of primary, secondary tumors or metastasis is greatly influenced by multifaceted tumor-stroma interactions, in which stromal components of the tumor microenvironment (TME) can affect the behavior of the cancer cells. Many studies have identified cytokines and growth factors as cell signaling molecules that aid cell to cell communication. However, the functional contribution of reactive oxygen species (ROS), a family of volatile chemicals, as communication molecules are less understood. Cancer cells and various tumor-associated stromal cells produce and secrete a copious amount of ROS into the TME. Intracellular ROS modulate cell signaling cascades that aid in the acquisition of several hallmarks of cancers. Extracellular ROS help to propagate, amplify, and effectively create a mutagenic and oncogenic field which facilitate the formation of multifoci tumors and act as a springboard for metastatic tumor cells. In this review, we summarize our current knowledge of ROS as atypical paracrine signaling molecules for field cancerization and metastasis. Field cancerization and metastasis are often discussed separately; we offer a model that placed these events with ROS as the focal instigating agent in a broader "seed-soil" hypothesis.
Collapse
Affiliation(s)
- Zehuan Liao
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
- Department of Microbiology, Tumor, and Cell Biology (MTC), Karolinska Institutet, Biomedicum, Solnavägen 9, SE-17177, Stockholm, Sweden
| | - Damien Chua
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore, 637551, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, 11 Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
20
|
Mabuchi S, Yokoi E, Komura N, Kimura T. Myeloid-derived suppressor cells and their role in gynecological malignancies. Tumour Biol 2018; 40:1010428318776485. [DOI: 10.1177/1010428318776485] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Myeloid-derived suppressor cells are a heterogeneous population of immature myeloid cells that exhibit immunosuppressive activity (they block the proliferation and activity of both T cells and natural killer cells). In addition to their role in suppressing immune responses, myeloid-derived suppressor cells directly stimulate tumor cell proliferation, metastasis, and angiogenesis. In the area of gynecological cancer, increased numbers of circulating myeloid-derived suppressor cells or tumor-infiltrating myeloid-derived suppressor cells have been detected, and the increased frequencies of myeloid-derived suppressor cells are associated with a poor prognosis. Thus, the successful myeloid-derived suppressor cells depletion may hold the key to maximizing existing anti-cancer therapies and improving the prognosis of gynecological cancer. In this review, we summarize current knowledge regarding myeloid-derived suppressor cells biology, clinical significance of myeloid-derived suppressor cells, and the potential myeloid-derived suppressor cells–targeting strategies in gynecological cancer.
Collapse
Affiliation(s)
- Seiji Mabuchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Eriko Yokoi
- Department of Obstetrics and Gynecology, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Naoko Komura
- Department of Obstetrics and Gynecology, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| | - Tadashi Kimura
- Department of Obstetrics and Gynecology, Graduate School of Medicine and Faculty of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
21
|
Hsieh CC, Lin CL, He JT, Chiang M, Wang Y, Tsai YC, Hung CH, Chang PJ. Administration of cytokine-induced myeloid-derived suppressor cells ameliorates renal fibrosis in diabetic mice. Stem Cell Res Ther 2018; 9:183. [PMID: 29973247 PMCID: PMC6032782 DOI: 10.1186/s13287-018-0915-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/17/2018] [Accepted: 05/27/2018] [Indexed: 02/07/2023] Open
Abstract
Background Diabetes is a proinflammatory state. Fibrosis of the renal glomerulus is the most common cause of end-stage renal disease. Glomerulosclerosis is caused by the accumulation of extracellular matrix (ECM) proteins in the mesangial interstitial space. Mesangial cells are unique stromal cells in the renal glomerulus that form the vascular pole of the renal corpuscle along with the mesangial matrix. Myeloid-derived suppressor cells (MDSCs) are heterogeneous immature myeloid cells that rapidly expand to regulate host immunity during inflammation, infection, and cancer. High concentrations of granulocyte–macrophage colony-stimulating factor (GM-CSF) alone or in combination with other molecules represent the most common ex-vivo protocol for differentiating MDSCs from bone marrow or from peripheral blood mononuclear cells. In this study, we analyzed and characterized the functions of MDSCs under the influence of mouse mesangial cells (MMCs) in a hyperglycemic environment and investigated whether cytokine-induced MDSCs ameliorated renal glomerulosclerosis in diabetic mice. Methods Cytokine-induced MDSCs were propagated from bone marrow cells cultured with mouse recombinant GM-CSF, IL-6, and IL-1β. Diabetic mice were induced with streptozotocin (STZ) and maintained at a blood glucose concentration exceeding 350 mg/dl. The ECM of the renal cortex and fibronectin expression of MMCs were analyzed through immunohistochemistry and western blotting. Arginase 1 and inducible NO synthase expressions of MDSCs were evaluated using quantitative reverse-transcriptase PCR. Cytokines released from MMCs were examined using a cytokine array assay. Results MDSCs in the diabetic mice were redistributed from the bone marrow into peripheral organs. An increase in fibronectin production was also observed in the renal glomerulus. MMCs in vitro produced more fibronectin and proinflammatory cytokines, such as macrophage inflammatory protein-2, RANTES, and stromal-cell-derived factor-1, under hyperglycemic conditions. The adoptive transfer of cytokine-induced MDSCs into STZ-induced mice normalized the glomerular filtration rate to reduce the kidney to body weight ratio and decrease fibronectin production in the renal glomerulus, ameliorating renal fibrosis. These results demonstrate the anti-inflammatory properties of cytokine-induced MDSCs and offer an alternative immunotherapy protocol for the management of diabetic nephropathy. Conclusions The application of cytokine-induced MDSCs provides a promising treatment for renal fibrosis and the prevention of diabetic nephropathy. Electronic supplementary material The online version of this article (10.1186/s13287-018-0915-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ching-Chuan Hsieh
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan. .,Department of Surgery, Chang-Gung Memorial Hospital, 6, Sec. West Chia-Pu Road, Pu-Zi City, Chiayi County, 613, Taiwan. .,Kidney and Diabetic Complications Research Team (KDCRT), Chang-Gung Memorial Hospital, Chiayi, Taiwan.
| | - Chun-Liang Lin
- Department of Nephrology, Chang-Gung Memorial Hospital, Chiayi, Taiwan.,Kidney and Diabetic Complications Research Team (KDCRT), Chang-Gung Memorial Hospital, Chiayi, Taiwan
| | - Jie-Teng He
- Department of Surgery, Chang-Gung Memorial Hospital, 6, Sec. West Chia-Pu Road, Pu-Zi City, Chiayi County, 613, Taiwan
| | - Meihua Chiang
- Department of Surgery, Chang-Gung Memorial Hospital, 6, Sec. West Chia-Pu Road, Pu-Zi City, Chiayi County, 613, Taiwan
| | - Yuhsiu Wang
- Department of Surgery, Chang-Gung Memorial Hospital, 6, Sec. West Chia-Pu Road, Pu-Zi City, Chiayi County, 613, Taiwan
| | - Yu-Chin Tsai
- Department of Surgery, Chang-Gung Memorial Hospital, 6, Sec. West Chia-Pu Road, Pu-Zi City, Chiayi County, 613, Taiwan
| | - Chien-Hui Hung
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Pey-Jium Chang
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang-Gung University, Taoyuan, Taiwan.,Kidney and Diabetic Complications Research Team (KDCRT), Chang-Gung Memorial Hospital, Chiayi, Taiwan
| |
Collapse
|
22
|
Epidemiology and biology of relapse after stem cell transplantation. Bone Marrow Transplant 2018; 53:1379-1389. [PMID: 29670211 DOI: 10.1038/s41409-018-0171-z] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 02/07/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022]
|
23
|
Meyer MA, Baer JM, Knolhoff BL, Nywening TM, Panni RZ, Su X, Weilbaecher KN, Hawkins WG, Ma C, Fields RC, Linehan DC, Challen GA, Faccio R, Aft RL, DeNardo DG. Breast and pancreatic cancer interrupt IRF8-dependent dendritic cell development to overcome immune surveillance. Nat Commun 2018; 9:1250. [PMID: 29593283 PMCID: PMC5871846 DOI: 10.1038/s41467-018-03600-6] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/27/2018] [Indexed: 12/18/2022] Open
Abstract
Tumors employ multiple mechanisms to evade immune surveillance. One mechanism is tumor-induced myelopoiesis, whereby the expansion of immunosuppressive myeloid cells can impair tumor immunity. As myeloid cells and conventional dendritic cells (cDCs) are derived from the same progenitors, we postulated that myelopoiesis might impact cDC development. The cDC subset, cDC1, which includes human CD141+ DCs and mouse CD103+ DCs, supports anti-tumor immunity by stimulating CD8+ T-cell responses. Here, to understand how cDC1 development changes during tumor progression, we investigated cDC bone marrow progenitors. We found localized breast and pancreatic cancers induce systemic decreases in cDC1s and their progenitors. Mechanistically, tumor-produced granulocyte-stimulating factor downregulates interferon regulatory factor-8 in cDC progenitors, and thus results in reduced cDC1 development. Tumor-induced reductions in cDC1 development impair anti-tumor CD8+ T-cell responses and correlate with poor patient outcomes. These data suggest immune surveillance can be impaired by tumor-induced alterations in cDC development. Tumors escape the immune system through many mechanisms. Here the authors show that certain tumors inhibit anti-tumor immunity by stopping the production of conventional dendritic cells (cDCs) in the bone marrow, therefore depleting the pool of cDCs available to present antigen to CD8+ T cells.
Collapse
Affiliation(s)
- Melissa A Meyer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - John M Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Brett L Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Timothy M Nywening
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Roheena Z Panni
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Xinming Su
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Katherine N Weilbaecher
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - William G Hawkins
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Cynthia Ma
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Ryan C Fields
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - David C Linehan
- Department of Surgery, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Grant A Challen
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Section of Stem Cell Biology, Division of Oncology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Roberta Faccio
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Rebecca L Aft
- Department of Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA.,John Cochran St. Louis Veterans Administration Hospital, St. Louis, MO, 63106, USA
| | - David G DeNardo
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
24
|
Wang C, Zhang N, Qi L, Yuan J, Wang K, Wang K, Ma S, Wang H, Lou W, Hu P, Awais M, Cao S, Fu ZF, Cui M. Myeloid-Derived Suppressor Cells Inhibit T Follicular Helper Cell Immune Response in Japanese Encephalitis Virus Infection. THE JOURNAL OF IMMUNOLOGY 2017; 199:3094-3105. [DOI: 10.4049/jimmunol.1700671] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/17/2017] [Indexed: 12/23/2022]
|
25
|
Abstract
Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous, immune-suppressive leukocyte population that develops systemically and infiltrates tumors. MDSCs can restrain the immune response through different mechanisms including essential metabolite consumption, reactive oxygen and nitrogen species production, as well as display of inhibitory surface molecules that alter T-cell trafficking and viability. Moreover, MDSCs play a role in tumor progression, acting directly on tumor cells and promoting cancer stemness, angiogenesis, stroma deposition, epithelial-to-mesenchymal transition, and metastasis formation. Many biological and pharmaceutical drugs affect MDSC expansion and functions in preclinical tumor models and patients, often reversing host immune dysfunctions and allowing a more effective tumor immunotherapy.
Collapse
|
26
|
Koehn BH, Blazar BR. Role of myeloid-derived suppressor cells in allogeneic hematopoietic cell transplantation. J Leukoc Biol 2017; 102:335-341. [PMID: 28148718 DOI: 10.1189/jlb.5mr1116-464r] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 01/03/2017] [Accepted: 01/07/2017] [Indexed: 12/21/2022] Open
Abstract
Graft-versus-host disease (GVHD) can be a devastating complication for as many as a third of patients undergoing allogeneic hematopoietic stem cell transplantation (allo-HCT). A role for myeloid cells in the amplification of GVHD has been demonstrated; however, less is understood about a potential regulatory role that myeloid cells play or whether such cells may be manipulated and applied therapeutically. Myeloid-derived suppressor cells (MDSCs) are a naturally occurring immune regulatory population that are engaged and expand shortly after many forms of immune distress, including cancer, trauma, and infection. As MDSCs are often associated with chronic disease, inflammation, and even the promotion of tumor growth (regarding angiogenesis/metastasis), they can appear to be predictors of poor outcomes and therefore, vilified; yet, this association doesn't match with their perceived function of suppressing inflammation. Here, we explore the role of MDSC in GVHD in an attempt to investigate potential synergies that may be promoted, leading to better patient outcomes after allo-HCT.
Collapse
Affiliation(s)
- Brent H Koehn
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota Cancer Center, Minneapolis, Minnesota, USA
| |
Collapse
|
27
|
Anani W, Shurin MR. Targeting Myeloid-Derived Suppressor Cells in Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1036:105-128. [PMID: 29275468 DOI: 10.1007/978-3-319-67577-0_8] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Myeloid derived suppressor cells (MDSC) represent only a minor fraction of circulating blood cells but play an important role in tumor formation and progression. They are a heterogeneous group of cells that influence the tumor microenvironment by depletion of amino acids, oxidative stress, decreased trafficking of antitumor effector cells, and increased regulatory T and regulatory dendritic cell responses. Investigational treatment strategies targeting MDSCs have attempted to inhibit MDSC development and expansion (stem cell factor blockade, modulate of cell signaling, and target MDSC migration and recruitment), inhibit MDSC function (nitric oxide inhibition and reactive oxygen and nitrogen species inhibition), differentiate MDSCs into more mature cells (Vitamins A and D, all-trans retinoic acid, interleukin-2, toll-like receptor 9 inhibitors, taxanes, beta-glucan particles, tumor-derived exosome inhibition, and very small size proteoliposomes), and destroy MDSCs (cytotoxic agents, ephrin A2 degradation, anti-interleukin 13, and histamine blockers). To date, there are no Food and Drug Administration approved therapies selectively targeting MDSCs, but such therapies are likely to be implemented in the future, due to the key role of MDSCs in antitumor immunity.
Collapse
Affiliation(s)
- Waseem Anani
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| | - Michael R Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
28
|
Musolino C, Allegra A, Pioggia G, Gangemi S. Immature myeloid-derived suppressor cells: A bridge between inflammation and cancer (Review). Oncol Rep 2016; 37:671-683. [PMID: 27922687 DOI: 10.3892/or.2016.5291] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 04/29/2015] [Indexed: 11/06/2022] Open
Abstract
Chronic inflammation is considered to be one of the hallmarks of tumor initiation and progression. Changes occurring in the microenvironment of progressing tumors resemble the process of chronic inflammation, which begins with ischemia followed by interstitial and cellular edema, appearance of immune cells, growth of blood vessels and tissue repair, and development of inflammatory infiltrates. Moreover, long‑term production and accumulation of inflammatory factors lead to local and systemic immunosuppression associated with cancer progression. Of the several mechanisms described to explain this anergy, the accumulation of myeloid cells in the tumor, spleen, and peripheral blood of cancer patients has gained considerable interest. A population of suppressive CD11b+Gr-1+ cells has in fact been designated as myeloid-derived suppressor cells (MDSCs). MDSCs are a unique category of the myeloid lineage, and they induce the prevention of the development of cytotoxic T lymphocytes (CTLs) in vitro, and the induction of antigen-specific CD8+ T-cell tolerance in vivo. Therapeutic approaches directed toward the manipulation of the MDSC population and their function may improve chemoimmune-enhancing therapy for advanced malignancies.
Collapse
Affiliation(s)
- Caterina Musolino
- Division of Hematology, Department of General Surgery, Pathological Anatomy and Oncology, University of Messina, Messina, Italy
| | - Alessandro Allegra
- Division of Hematology, Department of General Surgery, Pathological Anatomy and Oncology, University of Messina, Messina, Italy
| | - Govanni Pioggia
- Institute of Clinical Physiology, IFN CNR, Messina Unit, Messina, Italy
| | - Sebastiano Gangemi
- School and Division of Allergy and Clinical Immunology, Department of Clinical and Experimental Medicine, University Hospital 'G. Martino', Messina, Italy
| |
Collapse
|
29
|
Huang X, Cui S, Shu Y. Cisplatin selectively downregulated the frequency and immunoinhibitory function of myeloid-derived suppressor cells in a murine B16 melanoma model. Immunol Res 2016; 64:160-70. [PMID: 26590944 DOI: 10.1007/s12026-015-8734-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The objective of this study was to investigate the immunomodulatory effect of cisplatin (DDP) on the frequency, phenotype and function of myeloid-derived suppressor cells (MDSC) in a murine B16 melanoma model. C57BL/6 mice were inoculated with B16 cells to establish the murine melanoma model and randomly received treatment with different doses of DDP. The percentages and phenotype of MDSC after DDP treatment were detected by flow cytometry. The immunoinhibitory function of MDSC was analyzed by assessing the immune responses of cocultured effector cells through CFSE-labeling assay, detection of interferon-γ production and MTT cytotoxic assay, respectively. Tumor growth and mice survival were monitored to evaluate the antitumor effect of combined DDP and adoptive cytokine-induced killer (CIK) cell therapy. DDP treatment selectively decreased the percentages, modulated the surface molecules and attenuated the immunoinhibitory effects of MDSC in murine melanoma model. The combination of DDP treatment and CIK therapy exerted synergistic antitumor effect against B16 melanoma. DDP treatment selectively downregulated the frequency and immunoinhibitory function of MDSC in B16 melanoma model, indicating the potential mechanisms mediating its immunomodulatory effect.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Medical Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Shiyun Cui
- Department of Medical Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Yongqian Shu
- Department of Medical Oncology, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| |
Collapse
|
30
|
Thapa B, Watkins DN, John T. Immunotherapy for malignant mesothelioma: reality check. Expert Rev Anticancer Ther 2016; 16:1167-1176. [DOI: 10.1080/14737140.2016.1241149] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
31
|
Bhooshan N, Staats PN, Fulton AM, Feliciano JL, Edelman MJ. Prostaglandin E Receptor EP4 expression, survival and pattern of recurrence in locally advanced NSCLC. Lung Cancer 2016; 101:88-91. [PMID: 27794413 DOI: 10.1016/j.lungcan.2016.09.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/01/2016] [Accepted: 09/14/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Elevated COX-2 expression has been correlated with inferior outcome in NSCLC. COX-2 catalyzes the transformation of arachidonate to PGE2. We and others have demonstrated that PGE2 induces proliferation and metastatic spread and immunosuppression through the G protein-coupled EP4 receptor. We hypothesized that EP4 expression on malignant cells would correlate with outcome and patterns of relapse after treatment of LANSCLC stage IIIA (7th edition, N2+). METHODS Tissue specimens from 41 pts treated for LANSC at UMGCC were obtained. A tissue microarray was prepared and examined for EP4 expression. Intensity of staining was scored semi-quantitatively as 0-4 in both the nuclear and cytoplasmic compartments by a pathologist blinded to the clinical data. RESULTS EP4 nuclear staining 0-1 vs. 2+ was associated with overall survival, (OS) (44.3 vs. 18 mo; HR=0.41, p=0.024) and numerically superior progression free survival (PFS) (16.4 vs. 10.2 mo, p=0.16). EP4 cytoplasmic staining did not correlate with OS (0-1 vs. 2+, 23.8 vs. 28.8 mo; HR=1.2, p=0.81). Relapse pattern (no relapse or local vs. systemic) did not correlate with EP nuclear staining (p=1.0, X2). CONCLUSIONS This is the first clinical study of EP4 expression in lung cancer. There was a significant correlation between OS and nuclear EP4 expression, indicating that this is a potential therapeutic target. Studies with AT-007, a specific inhibitor of EP4, are planned to commence this year.
Collapse
Affiliation(s)
- Neha Bhooshan
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD, 21201, USA
| | - Paul N Staats
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD, 21201, USA
| | - Amy M Fulton
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD, 21201, USA; Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA
| | - Josephine L Feliciano
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD, 21201, USA
| | - Martin J Edelman
- University of Maryland Marlene and Stewart Greenebaum Cancer Center, 22 South Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
32
|
Abstract
As a multitargeted kinase inhibitor, sunitinib has carved its way into demonstrating itself as a most effective tyrosine kinase inhibitor in the treatment of metastatic renal cell carcinoma. Mechanistically, sunitinib inhibits multiple receptor tyrosine kinases, especially those involved in angiogenesis, that is, vascular endothelial growth factor receptor, platelet-derived growth factor receptor, and proto-oncogene cKIT. Sunitinib has also been implicated in enhancing cancer invasiveness and metastasis. Mechanisms of resistance are poorly understood, but both intrinsic and acquired mechanisms are thought to be involved. While the side effects are manageable, sunitinib, like many other tyrosine kinase inhibitors, can be associated with serious toxicities that require careful management including frequent dose reductions. Although still in the early stage, emerging evidence points to an immunomodulatory role for sunitinib. It is also likely to contribute to the overall outcomes, especially those seen in metastatic renal cell carcinoma, and such effects are thought to be mediated by the proto-oncogene cKIT receptor. Combination with other modalities such as stereotactic body radiation therapy, therapeutic vaccines, and checkpoint inhibitors is being pursued for improved efficacy.
Collapse
Affiliation(s)
- Zhonglin Hao
- Department of Medicine, Section of Hematology and Oncology, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Ibrahim Sadek
- Department of Medicine, Section of Hematology and Oncology, Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| |
Collapse
|
33
|
Pyzer AR, Cole L, Rosenblatt J, Avigan DE. Myeloid-derived suppressor cells as effectors of immune suppression in cancer. Int J Cancer 2016; 139:1915-26. [PMID: 27299510 DOI: 10.1002/ijc.30232] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 12/11/2022]
Abstract
The tumor microenvironment consists of an immunosuppressive niche created by the complex interactions between cancer cells and surrounding stromal cells. A critical component of this environment are myeloid-derived suppressor cells (MDSCs), a heterogeneous group of immature myeloid cells arrested at different stages of differentiation and expanded in response to a variety of tumor factors. MDSCs exert diverse effects in modulating the interactions between immune effector cells and the malignant cells. An increased presence of MDSCs is associated with tumor progression, poorer outcomes, and decreased effectiveness of immunotherapeutic strategies. In this article, we will review our current understanding of the mechanisms that underlie MDSC expansion and their immune-suppressive function. Finally, we review the preclinical studies and clinical trials that have attempted to target MDSCs, in order to improve responses to cancer therapies.
Collapse
Affiliation(s)
- Athalia Rachel Pyzer
- Bone Marrow Transplant, Beth Israel Deaconess Medical Center, Center for Life Sciences, CLS724, Boston, MA
| | - Leandra Cole
- Bone Marrow Transplant, Beth Israel Deaconess Medical Center, Center for Life Sciences, CLS724, Boston, MA
| | - Jacalyn Rosenblatt
- Bone Marrow Transplant, Beth Israel Deaconess Medical Center, Center for Life Sciences, CLS724, Boston, MA
| | - David E Avigan
- Bone Marrow Transplant, Beth Israel Deaconess Medical Center, Center for Life Sciences, CLS724, Boston, MA
| |
Collapse
|
34
|
Davis RJ, Van Waes C, Allen CT. Overcoming barriers to effective immunotherapy: MDSCs, TAMs, and Tregs as mediators of the immunosuppressive microenvironment in head and neck cancer. Oral Oncol 2016; 58:59-70. [PMID: 27215705 PMCID: PMC4912416 DOI: 10.1016/j.oraloncology.2016.05.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 05/03/2016] [Accepted: 05/04/2016] [Indexed: 01/10/2023]
Abstract
A significant subset of head and neck cancers display a T-cell inflamed phenotype, suggesting that patients with these tumors should respond to therapeutic approaches aimed at strengthening anti-tumor immune responses. A major barrier to the development of an effective anti-tumor immune response, at baseline or in response to immunotherapy, is the development of an immunosuppressive tumor microenvironment. Several well described mechanisms of effector immune cell suppression in the head and neck cancer microenvironment are discussed here, along with updates on current trials designed to translate what we have learned from pre-clinical and correlative clinical studies into improved responses in patients with head and neck cancer following immune activating therapies.
Collapse
Affiliation(s)
- Ruth J Davis
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Carter Van Waes
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States
| | - Clint T Allen
- Tumor Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, United States; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States.
| |
Collapse
|
35
|
Abstract
Neutrophils are indispensable antagonists of microbial infection and facilitators of wound healing. In the cancer setting, a newfound appreciation for neutrophils has come into view. The traditionally held belief that neutrophils are inert bystanders is being challenged by the recent literature. Emerging evidence indicates that tumours manipulate neutrophils, sometimes early in their differentiation process, to create diverse phenotypic and functional polarization states able to alter tumour behaviour. In this Review, we discuss the involvement of neutrophils in cancer initiation and progression, and their potential as clinical biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Seth B Coffelt
- Division of Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Max D Wellenstein
- Division of Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Karin E de Visser
- Division of Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| |
Collapse
|
36
|
Wang JC, Kundra A, Andrei M, Baptiste S, Chen C, Wong C, Sindhu H. Myeloid-derived suppressor cells in patients with myeloproliferative neoplasm. Leuk Res 2016; 43:39-43. [DOI: 10.1016/j.leukres.2016.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 02/10/2016] [Accepted: 02/14/2016] [Indexed: 12/18/2022]
|
37
|
Kapadia CH, Perry JL, Tian S, Luft JC, DeSimone JM. Nanoparticulate immunotherapy for cancer. J Control Release 2015; 219:167-180. [DOI: 10.1016/j.jconrel.2015.09.062] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 12/11/2022]
|
38
|
De Sanctis F, Solito S, Ugel S, Molon B, Bronte V, Marigo I. MDSCs in cancer: Conceiving new prognostic and therapeutic targets. Biochim Biophys Acta Rev Cancer 2015; 1865:35-48. [PMID: 26255541 DOI: 10.1016/j.bbcan.2015.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/31/2015] [Accepted: 08/01/2015] [Indexed: 12/30/2022]
Abstract
The incomplete clinical efficacy of anti-tumor immunotherapy can depend on the presence of an immunosuppressive environment in the host that supports tumor progression. Tumor-derived cytokines and growth factors induce an altered hematopoiesis that modifies the myeloid cell differentiation process, promoting proliferation and expansion of cells with immunosuppressive skills, namely myeloid derived suppressor cells (MDSCs). MDSCs promote tumor growth not only by shaping immune responses towards tumor tolerance, but also by supporting several processes necessary for the neoplastic progression such as tumor angiogenesis, cancer stemness, and metastasis dissemination. Thus, MDSC targeting represents a promising tool to eliminate host immune dysfunctions and increase the efficacy of immune-based cancer therapies.
Collapse
Affiliation(s)
- Francesco De Sanctis
- Immunology Section, Department of Pathology and Diagnostics, University of Verona, 37134 Verona, Italy
| | - Samantha Solito
- Section of Oncology and Immunology, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Stefano Ugel
- Immunology Section, Department of Pathology and Diagnostics, University of Verona, 37134 Verona, Italy
| | - Barbara Molon
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| | - Vincenzo Bronte
- Immunology Section, Department of Pathology and Diagnostics, University of Verona, 37134 Verona, Italy.
| | - Ilaria Marigo
- Veneto Institute of Oncology IOV-IRCCS, 35128 Padova, Italy
| |
Collapse
|
39
|
Liu Y, O'Leary CE, Wang LCS, Bhatti TR, Dai N, Kapoor V, Liu P, Mei J, Guo L, Oliver PM, Albelda SM, Worthen GS. CD11b+Ly6G+ cells inhibit tumor growth by suppressing IL-17 production at early stages of tumorigenesis. Oncoimmunology 2015; 5:e1061175. [PMID: 26942073 PMCID: PMC4760327 DOI: 10.1080/2162402x.2015.1061175] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 06/06/2015] [Accepted: 06/08/2015] [Indexed: 01/16/2023] Open
Abstract
Neutrophils are important innate immune cells involved in microbial clearance at the sites of infection. However, their role in cancer development is unclear. We hypothesized that neutrophils mediate antitumor effects in early tumorigenesis. To test this, we first studied the cytotoxic effects of neutrophils in vitro. Neutrophils were cytotoxic against tumor cells, with neutrophils isolated from tumor-bearing mice trending to have increased cytotoxic activities. We then injected an ELR+ CXC chemokine-producing tumor cell line into C57BL/6 and Cxcr2−/− mice, the latter lacking the receptors for neutrophil chemokines. We observed increased tumor growth in Cxcr2−/− mice. As expected, tumors from Cxcr2−/− mice contained fewer neutrophils. Surprisingly, these tumors also contained fewer CD8+ T cells, but more IL-17-producing cells. Replenishment of functional neutrophils was correlated with decreased IL-17-producing cells, increased CD8+ T cells, and decreased tumor size in Cxcr2−/− mice, while depletion of neutrophils in C57BL/6 mice showed the opposite effects. Results from a non-ELR+ CXC chemokine producing tumor further supported that functional neutrophils indirectly mediate tumor control by suppressing IL-17A production. We further studied the correlation of IL-17A and CD8+ T cells in vitro. IL-17A suppressed proliferation and IFNγ production of CD8+ T cells, while CD11b+Ly6G+ neutrophils did not suppress CD8+ T cell function. Taken together, these data demonstrate that, while neutrophils could control tumor growth by direct cytotoxic effects, the primary mechanism by which neutrophils exert antitumor effects is to regulate IL-17 production, through which they indirectly promote CD8+ T cell responses.
Collapse
Affiliation(s)
- Yuhong Liu
- Division of Neonatology; Children's Hospital of Philadelphia ; Philadelphia, PA USA
| | - Claire E O'Leary
- Perelman School of Medicine; University of Pennsylvania ; Philadelphia, PA USA
| | - Liang-Chuan S Wang
- Division of Pulmonary; Allergy and Critical Care Medicine; Department of Medicine; Perelman School of Medicine at the University of Pennsylvania ; Philadelphia, PA USA
| | - Tricia R Bhatti
- Department of Pathology and Laboratory Medicine; Children's Hospital of Philadelphia ; Philadelphia, PA USA
| | - Ning Dai
- Division of Neonatology; Children's Hospital of Philadelphia ; Philadelphia, PA USA
| | - Veena Kapoor
- Division of Pulmonary; Allergy and Critical Care Medicine; Department of Medicine; Perelman School of Medicine at the University of Pennsylvania ; Philadelphia, PA USA
| | - Peihui Liu
- Department of Pediatrics; Affiliated Shenzhen Maternity & Healthcare Hospital of Southern Medical University ; Shenzhen, China
| | - Junjie Mei
- Division of Neonatology; Children's Hospital of Philadelphia; Philadelphia, PA USA; Institute of Medical Biology; Chinese Academy of Medical Sciences; Peking Union Medical College; Kunming, Yunnan Province, P. R. China
| | - Lei Guo
- Institute of Medical Biology; Chinese Academy of Medical Sciences; Peking Union Medical College ; Kunming, Yunnan Province, P. R. China
| | - Paula M Oliver
- Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA; Cell Pathology Division; Department of Pathology and Laboratory Medicine; Children's Hospital of Philadelphia; Philadelphia, PA USA
| | - Steven M Albelda
- Division of Pulmonary; Allergy and Critical Care Medicine; Department of Medicine; Perelman School of Medicine at the University of Pennsylvania ; Philadelphia, PA USA
| | - G Scott Worthen
- Division of Neonatology; Children's Hospital of Philadelphia; Philadelphia, PA USA; Department of Pediatrics; Perelman School of Medicine; University of Pennsylvania; Philadelphia, PA USA
| |
Collapse
|
40
|
The Role and Potential Therapeutic Application of Myeloid-Derived Suppressor Cells in Allo- and Autoimmunity. Mediators Inflamm 2015; 2015:421927. [PMID: 26078493 PMCID: PMC4452474 DOI: 10.1155/2015/421927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 04/21/2015] [Accepted: 04/28/2015] [Indexed: 12/16/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of cells that consists of myeloid progenitor cells and immature myeloid cells. They have been identified as a cell population that may affect the activation of CD4(+) and CD8(+) T-cells to regulate the immune response negatively, which makes them attractive targets for the treatment of transplantation and autoimmune diseases. Several studies have suggested the potential suppressive effect of MDSCs on allo- and autoimmune responses. Conversely, MDSCs have also been found at various stages of differentiation, accumulating during pathological situations, not only during tumor development but also in a variety of inflammatory immune responses, bone marrow transplantation, and some autoimmune diseases. These findings appear to be contradictory. In this review, we summarize the roles of MDSCs in different transplantation and autoimmune diseases models as well as the potential to target these cells for therapeutic benefit.
Collapse
|
41
|
Clements DR, Sterea AM, Kim Y, Helson E, Dean CA, Nunokawa A, Coyle KM, Sharif T, Marcato P, Gujar SA, Lee PWK. Newly recruited CD11b+, GR-1+, Ly6C(high) myeloid cells augment tumor-associated immunosuppression immediately following the therapeutic administration of oncolytic reovirus. THE JOURNAL OF IMMUNOLOGY 2015; 194:4397-412. [PMID: 25825443 DOI: 10.4049/jimmunol.1402132] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 03/04/2015] [Indexed: 12/31/2022]
Abstract
Tumor-associated immunosuppression aids cancer cells to escape immune-mediated attack and subsequent elimination. Recently, however, many oncolytic viruses, including reovirus, have been reported to overturn such immunosuppression and promote the development of a clinically desired antitumor immunity, which is known to promote favorable patient outcomes. Contrary to this existing paradigm, in this article we demonstrate that reovirus augments tumor-associated immunosuppression immediately following its therapeutic administration. Our data show that reovirus induces preferential differentiation of highly suppressive CD11b(+), Gr-1(+), Ly6C(high) myeloid cells from bone marrow hematopoietic progenitor cells. Furthermore, reovirus administration in tumor-bearing hosts drives time-dependent recruitment of CD11b(+), Gr-1(+), Ly6C(high) myeloid cells in the tumor milieu, which is further supported by virus-induced increased expression of numerous immune factors involved in myeloid-derived suppressor cell survival and trafficking. Most importantly, CD11b(+), Gr-1(+), Ly6C(high) myeloid cells specifically potentiate the suppression of T cell proliferation and are associated with the absence of IFN-γ response in the tumor microenvironment early during oncotherapy. Considering that the qualitative traits of a specific antitumor immunity are largely dictated by the immunological events that precede its development, our findings are of critical importance and must be considered while devising complementary interventions aimed at promoting the optimum efficacy of oncolytic virus-based anticancer immunotherapies.
Collapse
Affiliation(s)
- Derek R Clements
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Andra M Sterea
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Youra Kim
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Erin Helson
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Cheryl A Dean
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Anna Nunokawa
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Krysta Mila Coyle
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Tanveer Sharif
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2
| | - Shashi A Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and Strategy and Organizational Performance, Izaak Walton Killiam Health Centre, Halifax, Nova Scotia, Canada B3K 6R8
| | - Patrick W K Lee
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4R2; and
| |
Collapse
|
42
|
Immune evasion in cancer: Mechanistic basis and therapeutic strategies. Semin Cancer Biol 2015; 35 Suppl:S185-S198. [PMID: 25818339 DOI: 10.1016/j.semcancer.2015.03.004] [Citation(s) in RCA: 1085] [Impact Index Per Article: 108.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 03/10/2015] [Accepted: 03/13/2015] [Indexed: 12/27/2022]
Abstract
Cancer immune evasion is a major stumbling block in designing effective anticancer therapeutic strategies. Although considerable progress has been made in understanding how cancers evade destructive immunity, measures to counteract tumor escape have not kept pace. There are a number of factors that contribute to tumor persistence despite having a normal host immune system. Immune editing is one of the key aspects why tumors evade surveillance causing the tumors to lie dormant in patients for years through "equilibrium" and "senescence" before re-emerging. In addition, tumors exploit several immunological processes such as targeting the regulatory T cell function or their secretions, antigen presentation, modifying the production of immune suppressive mediators, tolerance and immune deviation. Besides these, tumor heterogeneity and metastasis also play a critical role in tumor growth. A number of potential targets like promoting Th1, NK cell, γδ T cell responses, inhibiting Treg functionality, induction of IL-12, use of drugs including phytochemicals have been designed to counter tumor progression with much success. Some natural agents and phytochemicals merit further study. For example, use of certain key polysaccharide components from mushrooms and plants have shown to possess therapeutic impact on tumor-imposed genetic instability, anti-growth signaling, replicative immortality, dysregulated metabolism etc. In this review, we will discuss the advances made toward understanding the basis of cancer immune evasion and summarize the efficacy of various therapeutic measures and targets that have been developed or are being investigated to enhance tumor rejection.
Collapse
|
43
|
Arina A, Bronte V. Myeloid-derived suppressor cell impact on endogenous and adoptively transferred T cells. Curr Opin Immunol 2015; 33:120-5. [PMID: 25728992 DOI: 10.1016/j.coi.2015.02.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/23/2015] [Accepted: 02/10/2015] [Indexed: 12/14/2022]
Abstract
Novel models of autochthonous tumorigenesis and adoptive T cell therapy (ATT) are providing new clues regarding the pro-tumorigenic and immunosuppressive effects of myeloid-derived suppressor cells (MDSC), and their interaction with T cells. New findings are shifting the perception of the main level at which MDSC act, from direct cell-to-cell suppression to others, such as limiting T cell infiltration. Adoptively transferred, high-avidity T cells recognizing peptides with high-affinity for MHC-I eliminated large tumors. However, low-avidity T cells or low-affinity peptides resulted in failure to eradicate tumors. Manipulation of intratumoral myeloid cells improved the outcome of otherwise unsuccessful ATT. Therefore, therapeutic intervention directed at the tumor stroma might be required when using suboptimal T cells for ATT.
Collapse
Affiliation(s)
- Ainhoa Arina
- Department of Radiation and Cellular Oncology, The Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA.
| | - Vincenzo Bronte
- Verona University Hospital, Department of Pathology and Diagnostics, 37134 Verona, Italy.
| |
Collapse
|
44
|
Draghiciu O, Lubbers J, Nijman HW, Daemen T. Myeloid derived suppressor cells-An overview of combat strategies to increase immunotherapy efficacy. Oncoimmunology 2015; 4:e954829. [PMID: 25949858 PMCID: PMC4368153 DOI: 10.4161/21624011.2014.954829] [Citation(s) in RCA: 214] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 07/07/2014] [Indexed: 01/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) contribute to tumor-mediated immune escape and negatively correlate with overall survival of cancer patients. Nowadays, a variety of methods to target MDSCs are being investigated. Based on the intervention stage of MDSCs, namely development, expansion and activation, function and turnover, these methods can be divided into: (I) prevention or differentiation to mature cells, (II) blockade of MDSC expansion and activation, (III) inhibition of MDSC suppressive activity or (IV) depletion of intratumoral MDSCs. This review describes effective mono- or multimodal-therapies that target MDSCs for the benefit of cancer treatment.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- 5-Fluorouracil
- ADAM17, metalloproteinase domain-containing protein 17
- APCs, antigen presenting cells
- ARG1, arginase-1
- ATRA, all-trans retinoic acid
- CCL2, chemokine (C-C motif) ligand 2
- CD62L, L-selectin
- CDDO-Me, bardoxolone methyl
- COX2, cyclooxygenase 2
- CTLs, cytotoxic T lymphocytes
- CXCL12, chemokine (C-X-C motif) ligand 12
- CXCL15, chemokine (C-X-C motif) ligand 15
- DCs, dendritic cells
- ERK1/2, extracellular signal-regulated kinases
- Flt3, Fms-like tyrosine kinase 3
- FoxP3, forkhead box P3
- GITR, anti-glucocorticoid tumor necrosis factor receptor
- GM-CSF/CSF2, granulocyte monocyte colony stimulating factor
- GSH, glutathione
- HIF-1α, hypoxia inducible factor 1α
- HLA, human leukocyte antigen
- HNSCC, head and neck squamous cell carcinoma
- HPV-16, human papillomavirus 16
- HSCs, hematopoietic stem cells
- ICT, 3, 5, 7-trihydroxy-4′-emthoxy-8-(3-hydroxy-3-methylbutyl)-flavone
- IFNγ, interferon γ
- IL-10, interleukin 10
- IL-13, interleukin 13
- IL-1β, interleukin 1 β
- IL-4, interleukin 4
- IL-6, interleukin 6
- IMCs, immature myeloid cells
- JAK2, Janus kinase 2
- MDSCs, myeloid-derived suppressor cells
- MMPs, metalloproteinases (e.g., MMP9)
- Myd88, myeloid differentiation primary response protein 88
- NAC, N-acetyl cysteine
- NADPH, nicotinamide adenine dinucleotide phosphate-oxidase NK cells, natural killer cells
- NO, nitric oxide
- NOHA, N-hydroxy-L-Arginine
- NSAID, nonsteroidal anti-inflammatory drugs
- ODN, oligodeoxynucleotides
- PDE-5, phosphodiesterase type 5
- PGE2, prostaglandin E2
- RNS, reactive nitrogen species
- ROS, reactive oxygen species
- SCF, stem cell factor
- STAT3, signal transducer and activator of transcription 3
- TAMs, tumor-associated macrophages
- TCR, T cell receptor
- TGFβ, transforming growth factor β
- TNFα, tumor necrosis factor α
- Tregs, regulatory T cells
- VEGFR, vascular endothelial growth factor receptor
- WA, withaferin A
- WRE, Withaferin somnifera
- all-trans retinoic acid
- bisphosphonates
- c-kit, Mast/stem cell growth factor receptor
- gemcitabine
- iNOS2, inducible nitric oxid synthase 2
- immune suppressive mechanisms
- mRCC, metastatic renal cell carcinoma
- myeloid-derived suppressor cells
- sunitinib therapeutic vaccination
Collapse
Affiliation(s)
- Oana Draghiciu
- Department of Medical Microbiology; Tumor Virology and Cancer Immunotherapy; University of Groningen; University Medical Center Groningen ; Groningen, The Netherlands
| | - Joyce Lubbers
- Department of Medical Microbiology; Tumor Virology and Cancer Immunotherapy; University of Groningen; University Medical Center Groningen ; Groningen, The Netherlands
| | - Hans W Nijman
- Department of Gynecology; University of Groningen; University Medical Center Groningen ; Groningen, The Netherlands
| | - Toos Daemen
- Department of Medical Microbiology; Tumor Virology and Cancer Immunotherapy; University of Groningen; University Medical Center Groningen ; Groningen, The Netherlands
| |
Collapse
|
45
|
Dai J, El Gazzar M, Li GY, Moorman JP, Yao ZQ. Myeloid-derived suppressor cells: paradoxical roles in infection and immunity. J Innate Immun 2014; 7:116-26. [PMID: 25401944 DOI: 10.1159/000368233] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/09/2014] [Indexed: 12/31/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature suppressor cells that are generated due to aberrant myelopoiesis under pathological conditions. Although MDSCs have been recognized for more than 20 years under the guise of different monikers, these particular populations of myeloid cells gained more attention recently due to their immunosuppressive properties, which halt host immune responses to growing cancers or overwhelming infections. While MDSCs may contribute to immune homeostasis after infection or tissue injury by limiting excessive inflammatory processes, their expansion may be at the expense of pathogen elimination and thus may lead to disease persistence. Therefore, MDSCs may be either damaging or obliging to the host by attenuating, for example, antitumor or anti-infectious immune responses. In this review, we recapitulate the biological and immunological aspects of MDSCs, including their generation, distribution, trafficking and the factors involved in their activation, expansion, suppressive functions, and interplay between MDSCs and regulatory T cells, with a focus on the perspectives of infection and inflammation.
Collapse
Affiliation(s)
- Jun Dai
- Center for Inflammation, Infectious Diseases and Immunity, Quillen College of Medicine, East Tennessee State University, Johnson City, Tenn., USA
| | | | | | | | | |
Collapse
|
46
|
Highfill SL, Cui Y, Giles AJ, Smith JP, Zhang H, Morse E, Kaplan RN, Mackall CL. Disruption of CXCR2-mediated MDSC tumor trafficking enhances anti-PD1 efficacy. Sci Transl Med 2014; 6:237ra67. [PMID: 24848257 DOI: 10.1126/scitranslmed.3007974] [Citation(s) in RCA: 592] [Impact Index Per Article: 53.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Suppression of the host's immune system plays a major role in cancer progression. Tumor signaling of programmed death 1 (PD1) on T cells and expansion of myeloid-derived suppressor cells (MDSCs) are major mechanisms of tumor immune escape. We sought to target these pathways in rhabdomyosarcoma (RMS), the most common soft tissue sarcoma of childhood. Murine RMS showed high surface expression of PD-L1, and anti-PD1 prevented tumor growth if initiated early after tumor inoculation; however, delayed anti-PD1 had limited benefit. RMS induced robust expansion of CXCR2(+)CD11b(+)Ly6G(hi) MDSCs, and CXCR2 deficiency prevented CD11b(+)Ly6G(hi) MDSC trafficking to the tumor. When tumor trafficking of MDSCs was inhibited by CXCR2 deficiency, or after anti-CXCR2 monoclonal antibody therapy, delayed anti-PD1 treatment induced significant antitumor effects. Thus, CXCR2(+)CD11b(+)Ly6G(hi) MDSCs mediate local immunosuppression, which limits the efficacy of checkpoint blockade in murine RMS. Human pediatric sarcomas also produce CXCR2 ligands, including CXCL8. Patients with metastatic pediatric sarcomas display elevated serum CXCR2 ligands, and elevated CXCL8 is associated with diminished survival in this population. We conclude that accumulation of MDSCs in the tumor bed limits the efficacy of checkpoint blockade in cancer. We also identify CXCR2 as a novel target for modulating tumor immune escape and present evidence that CXCR2(+)CD11b(+)Ly6G(hi) MDSCs are an important suppressive myeloid subset in pediatric sarcomas. These findings present a translatable strategy to improve the efficacy of checkpoint blockade by preventing trafficking of MDSCs to the tumor site.
Collapse
Affiliation(s)
- Steven L Highfill
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yongzhi Cui
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Amber J Giles
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jillian P Smith
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hua Zhang
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elizabeth Morse
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Rosandra N Kaplan
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Crystal L Mackall
- Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
47
|
Wu J, Zhang R, Tang N, Gong Z, Zhou J, Chen Y, Chen K, Cai W. Dopamine inhibits the function of Gr-1+CD115+ myeloid-derived suppressor cells through D1-like receptors and enhances anti-tumor immunity. J Leukoc Biol 2014; 97:191-200. [PMID: 25341727 DOI: 10.1189/jlb.5a1113-626rr] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
MDSCs accumulate in tumor-bearing animals and cancer patients and are a major factor responsible for cancer-induced immunosuppression that limits effective cancer immunotherapy. Strategies aimed at effectively inhibiting the function of MDSCs are expected to enhance host anti-tumor immunity and improve cancer immunotherapy significantly. The neurotransmitter DA has been found to have anti-cancer activity, but the underlying mechanism is poorly understood. In this study, we sought to investigate the therapeutic mechanism and efficacy of DA on the inhibition of cancer development via the regulation of MDSC functions. The regulation of the suppressive function of Gr-1(+)CD115(+) MDSCs by DA was determined by use of murine syngeneic LLC and B16 graft models treated with DA in vivo, as well as Gr-1(+)CD115(+) MDSCs isolated from these model treated with DA ex vivo. Here, we show that Gr-1(+)CD115(+) monocytic MDSCs express D1-like DA receptors. DA dramatically attenuated the inhibitory function of tumor-induced monocytic MDSCs on T cell proliferation and IFN-γ production via D1-like DA receptors and retarded tumor growth. DA and other D1 receptor agonists inhibited IFN-γ-induced NO production by MDSCs from tumor-bearing mice and cancer patients. Decreased NO production was, in part, mediated via the suppression of p-ERK and p-JNK. In conclusion, the neurotransmitter DA potently inhibits the suppressive function of MDSC and enhances anti-tumor immunity. Our finding provides a mechanistic basis for the use of DA or D1-like receptor agonists to overcome tumor-induced immunosuppression in cancer immunotherapy.
Collapse
Affiliation(s)
- Jin Wu
- Shanghai Institute for Pediatric Research and
| | | | - Ning Tang
- Shanghai Institute for Pediatric Research and
| | - Zizhen Gong
- Shanghai Institute for Pediatric Research and
| | - Jiefei Zhou
- Shanghai Institute for Pediatric Research and
| | - Yingwei Chen
- Shanghai Institute for Pediatric Research and Department of Gastroenterology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Kang Chen
- Departments of Obstetrics and Gynecology, Immunology and Microbiology, Oncology, Wayne State University, Detroit, Michigan, USA; Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, U.S. National Institutes of Health, Detroit, Michigan, USA; Tumor Biology and Microenvironment Program, Barbara Ann Karmanos Cancer Institute, Detroit, Michigan, USA; and Mucosal Immunology Studies Team, National Institute of Allergy and Infectious Diseases, U.S. National Institutes of Health, Bethesda, Maryland, USA
| | - Wei Cai
- Shanghai Institute for Pediatric Research and
| |
Collapse
|
48
|
Hinrichs CS, Rosenberg SA. Exploiting the curative potential of adoptive T-cell therapy for cancer. Immunol Rev 2014; 257:56-71. [PMID: 24329789 DOI: 10.1111/imr.12132] [Citation(s) in RCA: 358] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Adoptive T-cell therapy (ACT) is a potent and flexible cancer treatment modality that can induce complete, durable regression of certain human malignancies. Long-term follow-up of patients receiving tumor-infiltrating lymphocytes (TILs) for metastatic melanoma reveals a substantial subset that experienced complete, lasting tumor regression - and may be cured. Increasing evidence points to mutated gene products as the primary immunological targets of TILs from melanomas. Recent technological advances permit rapid identification of the neoepitopes resulting from these somatic gene mutations and of T cells with reactivity against these targets. Isolation and adoptive transfer of these T cells may improve TIL therapy for melanoma and permit its broader application to non-melanoma tumors. Extension of ACT to other malignancies may also be possible through antigen receptor gene engineering. Tumor regression has been observed following transfer of T cells engineered to express chimeric antigen receptors against CD19 in B-cell malignancies or a T-cell receptor against NY-ESO-1 in synovial cell sarcoma and melanoma. Herein, we review recent clinical trials of TILs and antigen receptor gene therapy for advanced cancers. We discuss lessons from this experience and consider how they might be applied to realize the full curative potential of ACT.
Collapse
|
49
|
|
50
|
Gallois A, Bhardwaj N. Dendritic cell-targeted approaches to modulate immune dysfunction in the tumor microenvironment. Front Immunol 2013; 4:436. [PMID: 24339825 PMCID: PMC3857536 DOI: 10.3389/fimmu.2013.00436] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 11/22/2013] [Indexed: 12/31/2022] Open
Abstract
There has been enormous progress this past decade in the understanding of the biology of dendritic cells (DCs) along with increasing attention for the development of novel dendritic cell (DC)-based cancer therapies. However, the clinical impact of DC-based vaccines remains to be established. This limited success could be explained by suboptimal conditions for generating potent immunostimulatory DCs as well as immune suppression mediated by the tumor microenvironment (TME). Therefore, strategies that optimize the potency of DC vaccines along with newly described therapies that target the TME in order to overcome immune dysfunction may provide durable tumor-specific immunity. These novel interventions hold the most promise for successful cancer immunotherapies.
Collapse
Affiliation(s)
- Anne Gallois
- Division of Hematology and Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | | |
Collapse
|