1
|
Dasari JB, Soren BC, Ottaviani A, Tesauro C, Marino S, Messina B, Fiorani P. Swapping of The N-Terminal Domain of Human Topoisomerase 1B with the Corresponding Plasmodium Falciparum Counterpart Strongly Impairs Enzyme Activity. Rep Biochem Mol Biol 2020; 8:366-375. [PMID: 32582794 PMCID: PMC7275839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 06/11/2023]
Abstract
BACKGROUND DNA topoisomerases 1B are a class of ubiquitous enzyme that solves the topological problems associated with biological processes such as replication, transcription and recombination. Numerous sequence alignment of topoisomerase 1B from different species shows that the lengths of different domains as well as their amino acids sequences are quite different. In the present study a hybrid enzyme, generated by swapping the N-terminal of Plasmodium falciparum into the corresponding domain of the human, has been characterized. METHODS The chimeric enzyme was generated using different sets of PCR. The in vitro characterization was carried out using different DNA substrate including radio-labelled oligonucleotides. RESULTS The chimeric enzyme displayed slower relaxation activity, cleavage and re-ligation kinetics strongly perturbed when compared to the human enzyme. CONCLUSION These results indicate that the N-terminal domain has a crucial role in modulating topoisomerase activity in different species.
Collapse
Affiliation(s)
- Jagadish Babu Dasari
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Bini Chhetri Soren
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Alessio Ottaviani
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy.
- Institute of Translational Pharmacology, National Research Council, CNR, Via Del Fosso del Cavaliere 100, Rome 00133, Italy.
| | - Cinzia Tesauro
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy.
- Present address: Department of Molecular Biology and Genetics, University of Aarhus, C.F MøllersAllè 3, 8000 Aarhus C, Denmark.
| | - Simona Marino
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Beatrice Messina
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy.
| | - Paola Fiorani
- Department of Biology, University of Rome Tor Vergata, Via Della Ricerca Scientifica 1, 00133 Rome, Italy.
- Institute of Translational Pharmacology, National Research Council, CNR, Via Del Fosso del Cavaliere 100, Rome 00133, Italy.
| |
Collapse
|
2
|
Cuya SM, Comeaux EQ, Wanzeck K, Yoon KJ, van Waardenburg RCAM. Dysregulated human Tyrosyl-DNA phosphodiesterase I acts as cellular toxin. Oncotarget 2018; 7:86660-86674. [PMID: 27893431 PMCID: PMC5349943 DOI: 10.18632/oncotarget.13528] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/09/2016] [Indexed: 11/27/2022] Open
Abstract
Tyrosyl-DNA phosphodiesterase I (TDP1) hydrolyzes the drug-stabilized 3’phospho-tyrosyl bond formed between DNA topoisomerase I (TOPO1) and DNA. TDP1-mediated hydrolysis uses a nucleophilic histidine (Hisnuc) and a general acid/base histidine (Hisgab). A Tdp1Hisgab to Arg mutant identified in patients with the autosomal recessive neurodegenerative disease SCAN1 causes stabilization of the TDP1-DNA intermediate. Based on our previously reported Hisgab-substitutions inducing yeast toxicity (Gajewski et al. J. Mol. Biol. 415, 741-758, 2012), we propose that converting TDP1 into a cellular poison by stabilizing the covalent enzyme-DNA intermediate is a novel therapeutic strategy for cancer treatment. Here, we analyzed the toxic effects of two TDP1 catalytic mutants in HEK293 cells. Expression of human Tdp1HisnucAla and Tdp1HisgabAsn mutants results in stabilization of the covalent TDP1-DNA intermediate and induces cytotoxicity. Moreover, these mutants display reduced in vitro catalytic activity compared to wild type. Co-treatment of Tdp1mutant with topotecan shows more than additive cytotoxicity. Overall, these results support the hypothesis that stabilization of the TDP1-DNA covalent intermediate is a potential anti-cancer therapeutic strategy.
Collapse
Affiliation(s)
- Selma M Cuya
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | - Evan Q Comeaux
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA.,Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Keith Wanzeck
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA.,Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL 35294-0001, USA
| | - Karina J Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294-0019, USA
| | | |
Collapse
|
3
|
Molecular Mechanism of DNA Topoisomerase I-Dependent rDNA Silencing: Sir2p Recruitment at Ribosomal Genes. J Mol Biol 2016; 428:4905-4916. [PMID: 27825925 DOI: 10.1016/j.jmb.2016.10.032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 10/25/2016] [Accepted: 10/30/2016] [Indexed: 11/24/2022]
Abstract
Saccharomyces cerevisiae sir2Δ or top1Δ mutants exhibit similar phenotypes involving ribosomal DNA, including (i) loss of transcriptional silencing, resulting in non-coding RNA hyperproduction from cryptic RNA polymerase II promoters; (ii) alterations in recombination; and (iii) a general increase in histone acetylation. Given the distinct enzymatic activities of Sir2 and Top1 proteins, a histone deacetylase and a DNA topoisomerase, respectively, we investigated whether genetic and/or physical interactions between the two proteins could explain the shared ribosomal RNA genes (rDNA) phenotypes. We employed an approach of complementing top1Δ cells with yeast, human, truncated, and chimeric yeast/human TOP1 constructs and of assessing the extent of non-coding RNA silencing and histone H4K16 deacetylation. Our findings demonstrate that residues 115-125 within the yeast Top1p N-terminal domain are required for the complementation of the top1∆ rDNA phenotypes. In chromatin immunoprecipitation and co-immunoprecipitation experiments, we further demonstrate the physical interaction between Top1p and Sir2p. Our genetic and biochemical studies support a model whereby Top1p recruits Sir2p to the rDNA and clarifies a structural role of DNA topoisomerase I in the epigenetic regulation of rDNA, independent of its known catalytic activity.
Collapse
|
4
|
Coorey NVC, Matthews JH, Bellows DS, Atkinson PH. Pleiotropic drug-resistance attenuated genomic library improves elucidation of drug mechanisms. MOLECULAR BIOSYSTEMS 2016; 11:3129-36. [PMID: 26381459 DOI: 10.1039/c5mb00406c] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Identifying Saccharomyces cerevisiae genome-wide gene deletion mutants that confer hypersensitivity to a xenobiotic aids the elucidation of its mechanism of action (MoA). However, the biological activities of many xenobiotics are masked by the pleiotropic drug resistance (PDR) network which effluxes xenobiotics that are PDR substrates. The PDR network in S. cerevisiae is almost entirely under the control of two functionally homologous transcription factors Pdr1p and Pdr3p. Herein we report the construction of a PDR-attenuated haploid non-essential DMA (PA-DMA), lacking PDR1 and PDR3, which permits the MoA elucidation of xenobiotics that are PDR substrates at low concentrations. The functionality of four key cellular processes commonly activated in response to xenobiotic stress: oxidative stress response, general stress response, unfolded stress response and calcium signalling pathways were assessed in the absence of PDR1 and PDR3 genes and were found to unaltered, therefore, these key chemogenomic signatures are not lost when using the PA-DMA. Efficacy of the PA-DMA was demonstrated using cycloheximide and latrunculin A at low nanomolar concentrations to attain chemical genetic profiles that were more specific to their known main mechanisms. We also found a two-fold increase in the number of compounds that are bioactive in the pdr1Δpdr3Δ compared to the wild type strain in screening the commercially available LOPAC(1280) library. The PA-DMA should be particularly applicable to mechanism determination of xenobiotics that have limited availability, such as natural products.
Collapse
Affiliation(s)
- Namal V C Coorey
- Centre for Biodiscovery, School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Kelburn, Wellington, 6011, New Zealand.
| | | | | | | |
Collapse
|
5
|
Comeaux EQ, Cuya SM, Kojima K, Jafari N, Wanzeck KC, Mobley JA, Bjornsti MA, van Waardenburg RCAM. Tyrosyl-DNA phosphodiesterase I catalytic mutants reveal an alternative nucleophile that can catalyze substrate cleavage. J Biol Chem 2015; 290:6203-14. [PMID: 25609251 DOI: 10.1074/jbc.m114.635284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) catalyzes the repair of 3'-DNA adducts, such as the 3'-phosphotyrosyl linkage of DNA topoisomerase I to DNA. Tdp1 contains two conserved catalytic histidines: a nucleophilic His (His(nuc)) that attacks DNA adducts to form a covalent 3'-phosphohistidyl intermediate and a general acid/base His (His(gab)), which resolves the Tdp1-DNA linkage. A His(nuc) to Ala mutant protein is reportedly inactive, whereas the autosomal recessive neurodegenerative disease SCAN1 has been attributed to the enhanced stability of the Tdp1-DNA intermediate induced by mutation of His(gab) to Arg. However, here we report that expression of the yeast His(nuc)Ala (H182A) mutant actually induced topoisomerase I-dependent cytotoxicity and further enhanced the cytotoxicity of Tdp1 His(gab) mutants, including H432N and the SCAN1-related H432R. Moreover, the His(nuc)Ala mutant was catalytically active in vitro, albeit at levels 85-fold less than that observed with wild type Tdp1. In contrast, the His(nuc)Phe mutant was catalytically inactive and suppressed His(gab) mutant-induced toxicity. These data suggest that the activity of another nucleophile when His(nuc) is replaced with residues containing a small side chain (Ala, Asn, and Gln), but not with a bulky side chain. Indeed, genetic, biochemical, and mass spectrometry analyses show that a highly conserved His, immediately N-terminal to His(nuc), can act as a nucleophile to catalyze the formation of a covalent Tdp1-DNA intermediate. These findings suggest that the flexibility of Tdp1 active site residues may impair the resolution of mutant Tdp1 covalent phosphohistidyl intermediates and provide the rationale for developing chemotherapeutics that stabilize the covalent Tdp1-DNA intermediate.
Collapse
Affiliation(s)
- Evan Q Comeaux
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Selma M Cuya
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kyoko Kojima
- the University of Alabama at Birmingham Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Nauzanene Jafari
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, and
| | - Keith C Wanzeck
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - James A Mobley
- the Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Mary-Ann Bjornsti
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Robert C A M van Waardenburg
- From the Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, Alabama 35294,
| |
Collapse
|
6
|
Gao Y, Li H, Liu S, Zhang X, Sun S. Synergistic effect of fluconazole and doxycycline against Candida albicans biofilms resulting from calcium fluctuation and downregulation of fluconazole-inducible efflux pump gene overexpression. J Med Microbiol 2014; 63:956-961. [PMID: 24809386 DOI: 10.1099/jmm.0.072421-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Candida albicans biofilms are intrinsically resistant to antimicrobial agents. Previous work demonstrated that the antifungal activity of fluconazole against C. albicans biofilms is notably enhanced by doxycycline. In order to explore the synergistic mechanism of fluconazole and doxycycline, we investigated the changes of efflux pump gene expression, intracellular calcium concentration and cell cycle distribution after drug intervention in this study. The expression levels of CDR1, CDR2 and MDR1 were determined by real-time PCR, and the results showed that fluconazole alone could stimulate the high expression of CDR1, CDR2 and MDR1, and the combination of doxycycline and fluconazole downregulated the gene overexpression induced by fluconazole. Intracellular calcium concentration was determined using Fluo-3/AM by observing the fluorescence with flow cytometry. A calcium fluctuation, which started 4 h and peaked 8 h after the treatment with fluconazole, was observed. The combined drugs also initiated a calcium fluctuation after 4 h treatment and showed a peak at 16 h, and the peak was higher than that stimulated by fluconazole alone. The cell cycle was measured using flow cytometry. Fluconazole alone and the combined drugs both induced a reduction in the percentages of S-phase cells and an elevation in the percentages of cells in the G2/M phase. The results of this research showed that the synergism of fluconazole and doxycycline against C. albicans biofilms is associated with blockade of the efflux pump genes CDR1, CDR2 and MDR1, and stimulation of high intracellular calcium concentration. The findings of this study are of great significance in the search for new antifungal mechanisms.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Pharmacy, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, PR China
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, PR China
| | - Hui Li
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, PR China
| | - Shuyuan Liu
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong Province, PR China
| | - Xiang Zhang
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong Province, PR China
| | - Shujuan Sun
- Department of Pharmacy, Qianfoshan Hospital Affiliated to Shandong University, Jinan, Shandong Province, PR China
| |
Collapse
|
7
|
Tesauro C, Morozzo della Rocca B, Ottaviani A, Coletta A, Zuccaro L, Arnò B, D'Annessa I, Fiorani P, Desideri A. Molecular mechanism of the camptothecin resistance of Glu710Gly topoisomerase IB mutant analyzed in vitro and in silico. Mol Cancer 2013; 12:100. [PMID: 24004603 PMCID: PMC3766703 DOI: 10.1186/1476-4598-12-100] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 08/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND DNA topoisomerases are key enzymes that modulate the topological state of DNA through the breaking and rejoining of DNA strands. Human topoisomerase IB can be inhibited by several compounds that act through different mechanisms, including clinically used drugs, such as the derivatives of the natural compound camptothecin that reversibly bind the covalent topoisomerase-DNA complex, slowing down the religation of the cleaved DNA strand, thus inducing cell death. Three enzyme mutations, which confer resistance to irinotecan in an adenocarcinoma cell line, were recently identified but the molecular mechanism of resistance was unclear. METHODS The three resistant mutants have been investigated in S. cerevisiae model system following their viability in presence of increasing amounts of camptothecin. A systematical analysis of the different catalytic steps has been made for one of these mutants (Glu710Gly) and has been correlated with its structural-dynamical properties studied by classical molecular dynamics simulation. RESULTS The three mutants display a different degree of camptothecin resistance in a yeast cell viability assay. Characterization of the different steps of the catalytic cycle of the Glu710Gly mutant indicated that its resistance is related to a high religation rate that is hardly affected by the presence of the drug. Analysis of the dynamic properties through simulation indicate that the mutant displays a much lower degree of correlation in the motion between the different protein domains and that the linker almost completely loses its correlation with the C-terminal domain, containing the active site tyrosine. CONCLUSIONS These results indicate that a fully functional linker is required to confer camptothecin sensitivity to topoisomerase I since the destabilization of its structural-dynamical properties is correlated to an increase of religation rate and drug resistance.
Collapse
Affiliation(s)
- Cinzia Tesauro
- Department of Biology and Interuniversity Consortium, National Institute Biostructures and Biosystems (INBB), University of Rome Tor Vergata, Via Della Ricerca Scientifica, Rome 00133 Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Arnò B, D’Annessa I, Tesauro C, Zuccaro L, Ottaviani A, Knudsen B, Fiorani P, Desideri A. Replacement of the human topoisomerase linker domain with the plasmodial counterpart renders the enzyme camptothecin resistant. PLoS One 2013; 8:e68404. [PMID: 23844196 PMCID: PMC3699648 DOI: 10.1371/journal.pone.0068404] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 05/29/2013] [Indexed: 12/17/2022] Open
Abstract
A human/plasmodial hybrid enzyme, generated by swapping the human topoisomerase IB linker domain with the corresponding domain of the Plasmodium falciparum enzyme, has been produced and characterized. The hybrid enzyme displays a relaxation activity comparable to the human enzyme, but it is characterized by a much faster religation rate. The hybrid enzyme is also camptothecin resistant. A 3D structure of the hybrid enzyme has been built and its structural-dynamical properties have been analyzed by molecular dynamics simulation. The analysis indicates that the swapped plasmodial linker samples a conformational space much larger than the corresponding domain in the human enzyme. The large linker conformational variability is then linked to important functional properties such as an increased religation rate and a low drug reactivity, demonstrating that the linker domain has a crucial role in the modulation of the topoisomerase IB activity.
Collapse
Affiliation(s)
- Barbara Arnò
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Rome, Italy
| | - Ilda D’Annessa
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Tesauro
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Rome, Italy
| | - Laura Zuccaro
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Rome, Italy
| | - Alessio Ottaviani
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Rome, Italy
| | - Birgitta Knudsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Paola Fiorani
- Institute of Translational Pharmacology, National Research Council, CNR, Rome, Italy
| | - Alessandro Desideri
- Department of Biology and Interuniversity Consortium, National Institute Biostructure and Biosystem (INBB), University of Rome Tor Vergata, Rome, Italy
- * E-mail:
| |
Collapse
|
9
|
A small organic compound enhances the religation reaction of human topoisomerase I and identifies crucial elements for the religation mechanism. Biosci Rep 2013; 33:e00025. [PMID: 23368812 PMCID: PMC3590572 DOI: 10.1042/bsr20120118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The different steps of the human Top1 (topoisomerase I) catalytic cycle have been analysed in the presence of a pentacyclic-diquinoid synthetic compound. The experiments indicate that it efficiently inhibits the cleavage step of the enzyme reaction, fitting well into the catalytic site. Surprisingly the compound, when incubated with the binary topoisomerase-DNA cleaved complex, helps the enzyme to remove itself from the cleaved DNA and close the DNA gap, increasing the religation rate. The compound also induces the religation of the stalled enzyme-CPT (camptothecin)-DNA ternary complex. Analysis of the molecule docked over the binary complex, together with its chemical properties, suggests that the religation enhancement is due to the presence on the compound of two oxygen atoms that act as hydrogen acceptors. This property facilitates the deprotonation of the 5' DNA end, suggesting that this is the limiting step in the topoisomerase religation mechanism.
Collapse
|
10
|
Jahan Z, Castelli S, Aversa G, Rufini S, Desideri A, Giovanetti A. Role of human topoisomerase IB on ionizing radiation induced damage. Biochem Biophys Res Commun 2013; 432:545-8. [DOI: 10.1016/j.bbrc.2013.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/10/2013] [Indexed: 10/27/2022]
|
11
|
Stolle C, Storp J, Ivanova BB, Spiteller M. SYNTHESIS, ISOLATION, STRUCTURAL AND SPECTROSCOPIC STUDY OF THIOCAMPTOTHECINS AND THEIR SILVER(I) COMPLEXES—THEORETICAL AND EXPERIMENTAL ELUCIDATION. PHOSPHORUS SULFUR 2013. [DOI: 10.1080/10426507.2013.765423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Cornelia Stolle
- a Institut für Umweltforschung, Universität Dortmund , Otto-Hahn-Strasse 6, 44221 , Dortmund , Germany
| | - Jürgen Storp
- a Institut für Umweltforschung, Universität Dortmund , Otto-Hahn-Strasse 6, 44221 , Dortmund , Germany
| | - Bojidarka B. Ivanova
- a Institut für Umweltforschung, Universität Dortmund , Otto-Hahn-Strasse 6, 44221 , Dortmund , Germany
| | - Michael Spiteller
- a Institut für Umweltforschung, Universität Dortmund , Otto-Hahn-Strasse 6, 44221 , Dortmund , Germany
| |
Collapse
|
12
|
Role of Flexibility in Protein-DNA-Drug Recognition: The Case of Asp677Gly-Val703Ile Topoisomerase Mutant Hypersensitive to Camptothecin. JOURNAL OF AMINO ACIDS 2012; 2012:206083. [PMID: 22315664 PMCID: PMC3270393 DOI: 10.1155/2012/206083] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 10/07/2011] [Indexed: 11/17/2022]
Abstract
Topoisomerases I are ubiquitous enzymes that control DNA topology within the cell. They are the unique target of the antitumor drug camptothecin that selectively recognizes the DNA-topoisomerase covalent complex and reversibly stabilizes it. The biochemical and structural-dynamical properties of the Asp677Gly-Val703Ile double mutant with enhanced CPT sensitivity have been investigated. The mutant displays a lower religation rate of the DNA substrate when compared to the wild-type protein. Analyses of the structural dynamical properties by molecular dynamics simulation show that the mutant has reduced flexibility and an active site partially destructured at the level of the Lys532 residue. These results demonstrate long-range communication mechanism where reduction of the linker flexibility alters the active site geometry with the consequent lowering of the religation rate and increase in drug sensitivity.
Collapse
|
13
|
Gajewski S, Comeaux EQ, Jafari N, Bharatham N, Bashford D, White SW, van Waardenburg RCAM. Analysis of the active-site mechanism of tyrosyl-DNA phosphodiesterase I: a member of the phospholipase D superfamily. J Mol Biol 2011; 415:741-58. [PMID: 22155078 DOI: 10.1016/j.jmb.2011.11.044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 11/21/2011] [Accepted: 11/25/2011] [Indexed: 11/28/2022]
Abstract
Tyrosyl-DNA phosphodiesterase I (Tdp1) is a member of the phospholipase D superfamily that hydrolyzes 3'-phospho-DNA adducts via two conserved catalytic histidines-one acting as the lead nucleophile and the second acting as a general acid/base. Substitution of the second histidine specifically to arginine contributes to the neurodegenerative disease spinocerebellar ataxia with axonal neuropathy (SCAN1). We investigated the catalytic role of this histidine in the yeast protein (His432) using a combination of X-ray crystallography, biochemistry, yeast genetics, and theoretical chemistry. The structures of wild-type Tdp1 and His432Arg both show a phosphorylated form of the nucleophilic histidine that is not observed in the structure of His432Asn. The phosphohistidine is stabilized in the His432Arg structure by the guanidinium group that also restricts the access of nucleophilic water molecule to the Tdp1-DNA intermediate. Biochemical analyses confirm that His432Arg forms an observable and unique Tdp1-DNA adduct during catalysis. Substitution of His432 by Lys does not affect catalytic activity or yeast phenotype, but substitutions with Asn, Gln, Leu, Ala, Ser, and Thr all result in severely compromised enzymes and DNA topoisomerase I-camptothecin dependent lethality. Surprisingly, His432Asn did not show a stable covalent Tdp1-DNA intermediate that suggests another catalytic defect. Theoretical calculations revealed that the defect resides in the nucleophilic histidine and that the pK(a) of this histidine is crucially dependent on the second histidine and on the incoming phosphate of the substrate. This represents a unique example of substrate-activated catalysis that applies to the entire phospholipase D superfamily.
Collapse
Affiliation(s)
- Stefan Gajewski
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Ivanova B, Spiteller M. Structure and properties of camptothecin derivatives, their protonated forms, and model interaction with the topoisomerase I-DNA complex. Biopolymers 2011; 97:134-44. [DOI: 10.1002/bip.21714] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 08/22/2011] [Accepted: 08/24/2011] [Indexed: 11/05/2022]
|
15
|
Correlations between camptothecin and related metabolites in Camptotheca acuminata reveal similar biosynthetic principles and in planta synergistic effects. Fitoterapia 2011; 82:497-507. [DOI: 10.1016/j.fitote.2011.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 01/03/2011] [Accepted: 01/06/2011] [Indexed: 11/20/2022]
|
16
|
Reid RJD, González-Barrera S, Sunjevaric I, Alvaro D, Ciccone S, Wagner M, Rothstein R. Selective ploidy ablation, a high-throughput plasmid transfer protocol, identifies new genes affecting topoisomerase I-induced DNA damage. Genome Res 2010; 21:477-86. [PMID: 21173034 DOI: 10.1101/gr.109033.110] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We have streamlined the process of transferring plasmids into any yeast strain library by developing a novel mating-based, high-throughput method called selective ploidy ablation (SPA). SPA uses a universal plasmid donor strain that contains conditional centromeres on every chromosome. The plasmid-bearing donor is mated to a recipient, followed by removal of all donor-strain chromosomes, producing a haploid strain containing the transferred plasmid. As proof of principle, we used SPA to transfer plasmids containing wild-type and mutant alleles of DNA topoisomerase I (TOP1) into the haploid yeast gene-disruption library. Overexpression of Top1 identified only one sensitive mutation, rpa34, while overexpression of top1-T(722)A allele, a camptothecin mimetic, identified 190 sensitive gene-disruption strains along with rpa34. In addition to known camptothecin-sensitive strains, this set contained mutations in genes involved in the Rpd3 histone deacetylase complex, the kinetochore, and vesicle trafficking. We further show that mutations in several ESCRT vesicle trafficking components increase Top1 levels, which is dependent on SUMO modification. These findings demonstrate the utility of the SPA technique to introduce plasmids into the haploid gene-disruption library to discover new interacting pathways.
Collapse
Affiliation(s)
- Robert J D Reid
- Columbia University Medical Center, Department of Genetics & Development, New York, NY 10032, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Erybraedin C, a natural compound from the plant Bituminaria bituminosa, inhibits both the cleavage and religation activities of human topoisomerase I. Biochem J 2010; 425:531-9. [PMID: 19883377 DOI: 10.1042/bj20091127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The interaction of human topoisomerase I and erybraedin C, a pterocarpan purified from the plant Bituminaria bituminosa, that was shown to have an antitumour activity, was investigated through enzymatic activity assays and molecular docking procedures. Erybraedin C is able to inhibit both the cleavage and the religation steps of the enzyme reaction. In both cases, pre-incubation of the drug with the enzyme is required to produce a complete inhibition. Molecular docking simulations indicate that, when interacting with the enzyme alone, the preferential drug-binding site is localized in proximity to the active Tyr723 residue, with one of the two prenilic groups close to the active-site residues Arg488 and His632, essential for the catalytic reaction. When interacting with the cleavable complex, erybraedin C interacts with both the enzyme and DNA in a way similar to that found for topotecan. This is the first example of a natural compound able to act on both the cleavage and religation reaction of human topoisomerase I.
Collapse
|
18
|
Shweta S, Zuehlke S, Ramesha BT, Priti V, Mohana Kumar P, Ravikanth G, Spiteller M, Vasudeva R, Uma Shaanker R. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. PHYTOCHEMISTRY 2010; 71:117-22. [PMID: 19863979 DOI: 10.1016/j.phytochem.2009.09.030] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 08/21/2009] [Accepted: 09/27/2009] [Indexed: 05/16/2023]
Abstract
Camptothecin and 10-hydroxycamptothecin are two important precursors for the synthesis of the clinically useful anticancer drugs, topotecan and irinotecan. In recent years, efforts have been made to identify novel plant and endophytic fungal sources of camptothecin and 10-hydroxycamptothecin. In this study we have isolated endophytic fungi strains from Apodytes dimidiata (Icacinaceae), a medium sized tree from the Western Ghats, India. The fungi were identified as Fusarium solani using both ITS rDNA sequencing and spore morphology. Two strains, MTCC 9667 and MTCC 9668 were isolated, both of which produced camptothecin and 9-methoxycamptothecin in their mycelia; one of the strains, MTCC 9668 also produced 10-hydroxycamptothecin, though in small amounts. The yields of camptothecin in MTCC 9667 and MTCC 9668 were 37 and 53 microg/100g, respectively, after 4 days of incubation in broth culture. The yields of 10-hydroxycamptothecin and 9-methoxycamptothecin in MTCC 9668 were 8.2 and 44.9 microg/100g, respectively. Further research in optimizing the culture conditions of these fungal strains might permit their application for the production of camptothecin and 10-hydroxycamptothecin.
Collapse
Affiliation(s)
- S Shweta
- School of Ecology and Conservation, University of Agricultural Sciences, GKVK, Bangalore 560065, India
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Fiorani P, Tesauro C, Mancini G, Chillemi G, D'Annessa I, Graziani G, Tentori L, Muzi A, Desideri A. Evidence of the crucial role of the linker domain on the catalytic activity of human topoisomerase I by experimental and simulative characterization of the Lys681Ala mutant. Nucleic Acids Res 2009; 37:6849-58. [PMID: 19767617 PMCID: PMC2777420 DOI: 10.1093/nar/gkp669] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The functional and structural-dynamical properties of the Lys681Ala mutation in the human topoisomerase IB linker domain have been investigated by catalytic assays and molecular dynamics simulation. The mutant is characterized by a comparable cleavage and a strongly reduced religation rate when compared to the wild type protein. The mutant also displays perturbed linker dynamics, as shown by analysis of the principal components of the motion, and a reduced electrostatic interaction with DNA. Inspection of the inter atomic distances in proximity of the active site shows that in the mutant the distance between the amino group of Lys532 side chain and the 5′ OH of the scissile phosphate is longer than the wild type enzyme, providing an atomic explanation for the reduced religation rate of the mutant. Taken together these results indicate the existence of a long range communication between the linker domain and the active site region and points out the crucial role of the linker in the modulation of the catalytic activity.
Collapse
Affiliation(s)
- Paola Fiorani
- Department of Biology, University of Rome Tor Vergata, CNR National Research Council, INFM National Institute for the Physics of Matter, Rome 00133, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Kusari S, Zühlke S, Spiteller M. An endophytic fungus from Camptotheca acuminata that produces camptothecin and analogues. JOURNAL OF NATURAL PRODUCTS 2009; 72:2-7. [PMID: 19119919 DOI: 10.1021/np800455b] [Citation(s) in RCA: 212] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The pentacyclic quinoline alkaloid camptothecin (1) is a potent antineoplastic agent. Two of its analogues, 9-methoxycamptothecin (2) and 10-hydroxycamptothecin (3), exhibit similar potency but do not have the potential therapeutic drawbacks produced by unmodified 1. We have established methodology for the isolation and unequivocal identification and characterization of a novel endophytic fungus isolated from the inner bark of the medicinal plant Camptotheca acuminata, which produced 1-3 in rich mycological medium (Sabouraud dextrose broth), under shake-flask fermentation conditions. The fungus was identified by its morphology and authenticated by ITS analysis (ITS1 and ITS2 regions and the intervening 5.8S rDNA region). Camptothecin (1) and its analogues were identified by 1H NMR spectroscopy and LC-HRMS and confirmed by comparison with authentic standards. The production pattern of the metabolites over seven successive subculture generations of this endophyte was studied. A sharp attenuation in the production of 1 and 2 was observed from the first- through to the seventh-generation subculture. Therefore, these results offer a caution as to the possibility of using endophytic fungi as alternate sources of plant secondary metabolite production. Further studies have been initiated on the analysis of the upstream metabolic intermediates to understand the steps at which the production of the metabolites in question is constrained.
Collapse
Affiliation(s)
- Souvik Kusari
- Institut für Umweltforschung (INFU), Technische UniVersität Dortmund, Otto-Hahn-Strasse 6, D-44221 Dortmund, Germany
| | | | | |
Collapse
|
21
|
Reid RJD, Sunjevaric I, Voth WP, Ciccone S, Du W, Olsen AE, Stillman DJ, Rothstein R. Chromosome-scale genetic mapping using a set of 16 conditionally stable Saccharomyces cerevisiae chromosomes. Genetics 2008; 180:1799-808. [PMID: 18832360 PMCID: PMC2600922 DOI: 10.1534/genetics.108.087999] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 09/23/2008] [Indexed: 11/18/2022] Open
Abstract
We have created a resource to rapidly map genetic traits to specific chromosomes in yeast. This mapping is done using a set of 16 yeast strains each containing a different chromosome with a conditionally functional centromere. Conditional centromere function is achieved by integration of a GAL1 promoter in cis to centromere sequences. We show that the 16 yeast chromosomes can be individually lost in diploid strains, which become hemizygous for the destabilized chromosome. Interestingly, most 2n - 1 strains endoduplicate and become 2n. We also demonstrate how chromosome loss in this set of strains can be used to map both recessive and dominant markers to specific chromosomes. In addition, we show that this method can be used to rapidly validate gene assignments from screens of strain libraries such as the yeast gene disruption collection.
Collapse
Affiliation(s)
- Robert J D Reid
- Department of Pathology, University of Utah Health Sciences Center, Salt Lake City, Utah 84112, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Losasso C, Cretaio E, Fiorani P, D'Annessa I, Chillemi G, Benedetti P. A single mutation in the 729 residue modulates human DNA topoisomerase IB DNA binding and drug resistance. Nucleic Acids Res 2008; 36:5635-44. [PMID: 18772225 PMCID: PMC2553582 DOI: 10.1093/nar/gkn557] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Human DNA topoisomerase I (hTop1p) catalyzes the relaxation of supercoiled DNA and constitutes the cellular target of the antitumor drug camptothecin (CPT). The X-ray crystal structure of the enzyme covalently joined to DNA and bound to the CPT analog Topotecan suggests that there are two classes of mutations that can produce a CPT-resistant enzyme. The first class includes changes in residues that directly interact with the drug, whereas a second class alters interactions with the DNA and thereby destabilizes the drug binding site. The Thr729Ala, that is part of a hydrophobic pocket in the enzyme C-terminal domain, belongs to a third group of mutations that confer CPT resistance, but do not interact directly with the drug or the DNA. To understand the contribution of this residue in drug resistance, we have studied the effect on hTop1p catalysis and CPT sensitivity of four different substitutions in the Thr729 position (Thr729Ala, Thr729Glu, Thr729Lys and Thr729Pro). Tht729Glu and Thr729Lys mutants show severe CPT resistance and furthermore, Thr729Glu shows a remarkable defect in DNA binding. We postulate that the maintenance of the hydrophobic pocket integrity, where Thr729 is positioned, is crucial for drug sensitivity and DNA binding.
Collapse
Affiliation(s)
- Carmen Losasso
- Department of Biology, University of Padova, Via U. Bassi 58/B, Padua 35131, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Palle K, Pattarello L, van der Merwe M, Losasso C, Benedetti P, Bjornsti MA. Disulfide cross-links reveal conserved features of DNA topoisomerase I architecture and a role for the N terminus in clamp closure. J Biol Chem 2008; 283:27767-27775. [PMID: 18693244 DOI: 10.1074/jbc.m804826200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In eukaryotes, DNA topoisomerase I (Top1) catalyzes the relaxation of supercoiled DNA by a conserved mechanism of transient DNA strand breakage, rotation, and religation. The unusual architecture of the monomeric human enzyme comprises a conserved protein clamp, which is tightly wrapped about duplex DNA, and an extended coiled-coil linker domain that appropriately positions the C-terminal active site tyrosine domain against the Top1 core to form the catalytic pocket. A structurally undefined N-terminal domain, dispensable for enzyme activity, mediates protein-protein interactions. Previously, reversible disulfide bonds were designed to assess whether locking the Top1 clamp around duplex DNA would restrict DNA strand rotation within the covalent Top1-DNA intermediate. The active site proximal disulfide bond in full-length Top1-clamp(534) restricted DNA rotation (Woo, M. H., Losasso, C., Guo, H., Pattarello, L., Benedetti, P., and Bjornsti, M. A. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 13767-13772), whereas the more distal disulfide bond of the N-terminally truncated Topo70-clamp(499) did not (Carey, J. F., Schultz, S. J., Sisson, L., Fazzio, T. G., and Champoux, J. J. (2003) Proc. Natl. Acad. Sci. U. S. A. 100, 5640-5645). To assess the contribution of the N-terminal domain to the dynamics of Top1 clamping of DNA, the same disulfide bonds were engineered into full-length Top1 and truncated Topo70, and the activities of these proteins were assessed in vitro and in yeast. Here we report that the N terminus impacts the opening and closing of the Top1 protein clamp. We also show that the architecture of yeast and human Top1 is conserved in so far as cysteine substitutions of the corresponding residues suffice to lock the Top1-clamp. However, the composition of the divergent N-terminal/linker domains impacts Top1-clamp activity and stability in vivo.
Collapse
Affiliation(s)
- Komaraiah Palle
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38015
| | - Luca Pattarello
- Department of Biology, University of Padua, Via U. Bassi 58/B, Padova, PD 35131, Italy
| | - Marié van der Merwe
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38015
| | - Carmen Losasso
- Department of Biology, University of Padua, Via U. Bassi 58/B, Padova, PD 35131, Italy
| | - Piero Benedetti
- Department of Biology, University of Padua, Via U. Bassi 58/B, Padova, PD 35131, Italy.
| | - Mary-Ann Bjornsti
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38015.
| |
Collapse
|
24
|
Almeida B, Silva A, Mesquita A, Sampaio-Marques B, Rodrigues F, Ludovico P. Drug-induced apoptosis in yeast. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2008; 1783:1436-48. [PMID: 18252203 DOI: 10.1016/j.bbamcr.2008.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 12/21/2007] [Accepted: 01/07/2008] [Indexed: 01/04/2023]
Abstract
In order to alter the impact of diseases on human society, drug development has been one of the most invested research fields. Nowadays, cancer and infectious diseases are leading targets for the design of effective drugs, in which the primary mechanism of action relies on the modulation of programmed cell death (PCD). Due to the high degree of conservation of basic cellular processes between yeast and higher eukaryotes, and to the existence of an ancestral PCD machinery in yeast, yeasts are an attractive tool for the study of affected pathways that give insights into the mode of action of both antitumour and antifungal drugs. Therefore, we covered some of the leading reports on drug-induced apoptosis in yeast, revealing that in common with mammalian cells, antitumour drugs induce apoptosis through reactive oxygen species (ROS) generation and altered mitochondrial functions. The evidence presented suggests that yeasts may be a powerful model for the screening/development of PCD-directed drugs, overcoming the problem of cellular specificity in the design of antitumour drugs, but also enabling the design of efficient antifungal drugs, targeted to fungal-specific apoptotic regulators that do not have major consequences for human cells.
Collapse
Affiliation(s)
- B Almeida
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga, Portugal
| | | | | | | | | | | |
Collapse
|
25
|
van der Merwe M, Bjornsti MA. Mutation of Gly721 alters DNA topoisomerase I active site architecture and sensitivity to camptothecin. J Biol Chem 2007; 283:3305-3315. [PMID: 18056711 DOI: 10.1074/jbc.m705781200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase I (Top1p) catalyzes the relaxation of supercoiled DNA via a concerted mechanism of DNA strand cleavage and religation. Top1p is the cellular target of the anti-cancer drug camptothecin (CPT), which reversibly stabilizes a covalent enzyme-DNA intermediate. Top1p clamps around duplex DNA, wherein the core and C-terminal domains are connected by extended alpha-helices (linker domain), which position the active site Tyr of the C-terminal domain within the catalytic pocket. The physical connection of the linker with the Top1p clamp as well as linker flexibility affect enzyme sensitivity to CPT. Crystallographic data reveal that a conserved Gly residue (located at the juncture between the linker and C-terminal domains) is at one end of a short alpha-helix, which extends to the active site Tyr covalently linked to the DNA. In the presence of drug, the linker is rigid and this alpha-helix extends to include Gly and the preceding Leu. We report that mutation of this conserved Gly in yeast Top1p alters enzyme sensitivity to CPT. Mutating Gly to Asp, Glu, Asn, Gln, Leu, or Ala enhanced enzyme CPT sensitivity, with the acidic residues inducing the greatest increase in drug sensitivity in vivo and in vitro. By contrast, Val or Phe substituents rendered the enzyme CPT-resistant. Mutation-induced alterations in enzyme architecture preceding the active site Tyr suggest these structural transitions modulate enzyme sensitivity to CPT, while enhancing the rate of DNA cleavage. We postulate that this conserved Gly residue provides a flexible hinge within the Top1p catalytic pocket to facilitate linker dynamics and the structural alterations that accompany drug binding of the covalent enzyme-DNA intermediate.
Collapse
Affiliation(s)
- Marié van der Merwe
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105
| | - Mary-Ann Bjornsti
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105.
| |
Collapse
|
26
|
He X, van Waardenburg RCAM, Babaoglu K, Price AC, Nitiss KC, Nitiss JL, Bjornsti MA, White SW. Mutation of a Conserved Active Site Residue Converts Tyrosyl-DNA Phosphodiesterase I into a DNA Topoisomerase I-dependent Poison. J Mol Biol 2007; 372:1070-1081. [PMID: 17707402 DOI: 10.1016/j.jmb.2007.07.055] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/17/2007] [Accepted: 07/19/2007] [Indexed: 10/23/2022]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (Tdp1) catalyzes the resolution of 3' and 5' phospho-DNA adducts. A defective mutant, associated with the recessive neurodegenerative disease SCAN1, accumulates Tdp1-DNA complexes in vitro. To assess the conservation of enzyme architecture, a 2.0 A crystal structure of yeast Tdp1 was determined that is very similar to human Tdp1. Poorly conserved regions of primary structure are peripheral to an essentially identical catalytic core. Enzyme mechanism was also conserved, because the yeast SCAN1 mutant (H(432)R) enhanced cell sensitivity to the DNA topoisomerase I (Top1) poison camptothecin. A more severe Top1-dependent lethality of Tdp1H(432)N was drug-independent, coinciding with increased covalent Top1-DNA and Tdp1-DNA complex formation in vivo. However, both H(432) mutants were recessive to wild-type Tdp1. Thus, yeast H(432) acts in the general acid/base catalytic mechanism of Tdp1 to resolve 3' phosphotyrosyl and 3' phosphoamide linkages. However, the distinct pattern of mutant Tdp1 activity evident in yeast cells, suggests a more severe defect in Tdp1H(432)N-catalyzed resolution of 3' phospho-adducts.
Collapse
Affiliation(s)
- Xiaoping He
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Kerim Babaoglu
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Allen C Price
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Karin C Nitiss
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John L Nitiss
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Mary-Ann Bjornsti
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
27
|
Losasso C, Cretaio E, Palle K, Pattarello L, Bjornsti MA, Benedetti P. Alterations in linker flexibility suppress DNA topoisomerase I mutant-induced cell lethality. J Biol Chem 2007; 282:9855-9864. [PMID: 17276985 DOI: 10.1074/jbc.m608200200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology via the formation of a covalent enzyme-DNA intermediate, which is reversibly stabilized by the anticancer agent camptothecin (CPT). Crystallographic studies of the 70-kDa C terminus of human Top1p bound to duplex DNA describe a monomeric protein clamp circumscribing the DNA helix. The structures, which lack the N-terminal domain, comprise the conserved clamp, an extended linker domain, and the conserved C-terminal active site Tyr domain. CPT bound to the covalent Top1p-DNA complex limits linker flexibility, allowing structural determination of this domain. We previously reported that mutation of Ala(653) to Pro in the linker increases the rate of enzyme-catalyzed DNA religation, thereby rendering Top1A653Pp resistant to CPT (Fiorani, P., Bruselles, A., Falconi, M., Chillemi, G., Desideri, A., and Benedetti P. (2003) J. Biol. Chem. 278, 43268-43275). Molecular dynamics studies suggested mutation-induced increases in linker flexibility alter Top1p catalyzed DNA religation. To address the functional consequences of linker flexibility on enzyme catalysis and drug sensitivity, we investigated the interactions of the A653P linker mutation with a self-poisoning T718A mutation within the active site of Top1p. The A653P mutation suppressed the lethal phenotype of Top1T718Ap in yeast, yet did not restore enzyme sensitivity to CPT. However, the specific activity of the double mutant was decreased in vivo and in vitro, consistent with a decrease in DNA binding. These findings support a model where changes in the flexibility or orientation of the linker alter the geometry of the active site and thereby the kinetics of DNA cleavage/religation catalyzed by Top1p.
Collapse
Affiliation(s)
- Carmen Losasso
- Department of Biology, University of Padua, Padua 35131, Italy
| | - Erica Cretaio
- Department of Biology, University of Padua, Padua 35131, Italy
| | - Komaraiah Palle
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38104
| | - Luca Pattarello
- Department of Biology, University of Padua, Padua 35131, Italy
| | - Mary-Ann Bjornsti
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38104
| | - Piero Benedetti
- Department of Biology, University of Padua, Padua 35131, Italy.
| |
Collapse
|
28
|
Fiorani P, Chillemi G, Losasso C, Castelli S, Desideri A. The different cleavage DNA sequence specificity explains the camptothecin resistance of the human topoisomerase I Glu418Lys mutant. Nucleic Acids Res 2006; 34:5093-100. [PMID: 16990249 PMCID: PMC1636438 DOI: 10.1093/nar/gkl670] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Yeast cells expressing the Glu418Lys human topoisomerase I mutant display a camptothecin resistance that slowly decreases as a function of time. Molecular characterization of the single steps of the catalytic cycle of the purified mutant indicates that it has a relaxation activity identical to the wild-type protein but a different DNA sequence specificity for the cleavage sites when compared to the wild-type enzyme, as assayed on several substrates. In particular the mutant has a low specificity for CPT sensitive cleavable sites. In fact, the mutant has, at variance of the wild-type enzyme, a reduced preference for cleavage sites having a thymine base in position −1 of the scissile strand. This preference, together with the strict requirement for a thymine base in position −1 for an efficient camptothecin binding, explains the temporary camptothecin resistance of the yeast cell expressing the mutant and points out the importance of the DNA sequence in the binding of the camptothecin drug.
Collapse
Affiliation(s)
- Paola Fiorani
- CNR National Research Council, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
- INFM National Institute for the Physics of Matter, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
- Department of Biology, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
| | - Giovanni Chillemi
- CASPUR Interuniversities Consortium for Supercomputing Applications, Via dei Tizii 6bRome 00185, Italy
| | - Carmen Losasso
- Department of Biology, University of PaduaVia U. Bassi 58/B, Padua 35131, Italy
| | - Silvia Castelli
- CNR National Research Council, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
- INFM National Institute for the Physics of Matter, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
- Department of Biology, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
| | - Alessandro Desideri
- CNR National Research Council, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
- INFM National Institute for the Physics of Matter, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
- Department of Biology, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
- To whom correspondence should be addressed. Tel: +39 0672594376; Fax: +39 0672594326;
| |
Collapse
|
29
|
Chillemi G, Fiorani P, Castelli S, Bruselles A, Benedetti P, Desideri A. Effect on DNA relaxation of the single Thr718Ala mutation in human topoisomerase I: a functional and molecular dynamics study. Nucleic Acids Res 2005; 33:3339-50. [PMID: 15944452 PMCID: PMC1145191 DOI: 10.1093/nar/gki642] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The functional and dynamical properties of the human topoisomerase I Thr718Ala mutant have been compared to that of the wild-type enzyme using functional assays and molecular dynamics (MD) simulations. At physiological ionic strength, the cleavage and religation rates, evaluated on oligonucleotides containing the preferred topoisomerase I DNA sequence, are almost identical for the wild-type and the mutated enzymes, as is the cleavage/religation equilibrium. On the other hand, the Thr718Ala mutant shows a decreased efficiency in a DNA plasmid relaxation assay. The MD simulation, carried out on the enzyme complexed with its preferred DNA substrate, indicates that the mutant has a different dynamic behavior compared to the wild-type enzyme. Interestingly, no changes are observed in the proximity of the mutation site, whilst a different flexibility is detected in regions contacting the DNA scissile strand, such as the linker and the V-shaped α helices. Taken together, the functional and simulation results indicate a direct communication between the mutation site and regions located relatively far away, such as the linker domain, that with their altered flexibility confer a reduced DNA relaxation efficiency. These results provide evidence that the comprehension of the topoisomerase I dynamical properties are an important element in the understanding of its complex catalytic cycle.
Collapse
Affiliation(s)
- Giovanni Chillemi
- CASPUR Interuniversities Consortium for Supercomputing ApplicationsVia dei Tizii 6b, Rome 00185, Italy
| | - Paola Fiorani
- Department of Biology, National Institute for the Physics of Matter, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
| | - Silvia Castelli
- Department of Biology, National Institute for the Physics of Matter, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
| | - Alessandro Bruselles
- CASPUR Interuniversities Consortium for Supercomputing ApplicationsVia dei Tizii 6b, Rome 00185, Italy
- Department of Biology, National Institute for the Physics of Matter, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
| | - Piero Benedetti
- Department of Biology, University of PaduaVia Ugo Bassi 58/B, Padua 35131, Italy
| | - Alessandro Desideri
- Department of Biology, National Institute for the Physics of Matter, University of Rome Tor VergataVia Della Ricerca Scientifica, Rome 00133, Italy
- To whom correspondence should be addressed. Tel: +39 06 72594376; Fax: +39 06 2022798;
| |
Collapse
|
30
|
Jacquiau HR, van Waardenburg RCAM, Reid RJD, Woo MH, Guo H, Johnson ES, Bjornsti MA. Defects in SUMO (small ubiquitin-related modifier) conjugation and deconjugation alter cell sensitivity to DNA topoisomerase I-induced DNA damage. J Biol Chem 2005; 280:23566-75. [PMID: 15817450 DOI: 10.1074/jbc.m500947200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA topoisomerase I (Top1p) has important functions in DNA replication, transcription, and recombination. This enzyme also constitutes the cellular target of camptothecin (CPT), which induces S-phase-dependent cytotoxicity. To define cellular pathways that regulate cell sensitivity to Top1p-induced DNA lesions, we described a yeast genetic screen for conditional tah (top1T722A-hypersensitive) mutants with enhanced sensitivity to low levels of the CPT mimetic mutant top1T722A (Reid, R. J., Fiorani, P., Sugawara, M., and Bjornsti, M. A. (1999) Proc. Natl. Acad. Sci. U. S. A. 96, 11440-11445; Fiorani, P., Reid, R. J., Schepis, A., Jacquiau, H. R., Guo, H., Thimmaiah, P., Benedetti, P., and Bjornsti, M. A. (2004) J. Biol. Chem. 279, 21271-21281). Here we report that tah mutant ubc9-10 harbors a hypomorphic allele of UBC9, which encodes the essential SUMO (small ubiquitin-related modifier) E2-conjugating enzyme. The same conditional ubc9P123L mutant was also isolated in an independent screen for enhanced sensitivity to a distinct Top1p poison, Top1N726Hp. The ubc9-10 mutant exhibited a decrease in global protein sumoylation and increased sensitivity to a wide range of DNA-damaging agents independent of Top1p. Deletion of the Ulp2 SUMO protease failed to restore ubc9-10 cell resistance to Top1p poisons or hydroxyurea yet adversely affected wild-type TOP1 cell genetic stability and sensitivity to hydroxyurea. Moreover, although mutation of different consensus SUMO sites in the N terminus and linker region of yeast Top1p failed to recapitulate ubc9-10 mutant phenotypes, they revealed distinct and subtle effects on cell sensitivity to CPT. These results provide insights into the complexities of SUMO conjugation and the confounding effects of SUMO modification on Top1p function and cell sensitivity to genotoxic agents.
Collapse
Affiliation(s)
- Hervé R Jacquiau
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Colley WC, van der Merwe M, Vance JR, Burgin AB, Bjornsti MA. Substitution of Conserved Residues within the Active Site Alters the Cleavage Religation Equilibrium of DNA Topoisomerase I. J Biol Chem 2004; 279:54069-78. [PMID: 15489506 DOI: 10.1074/jbc.m409764200] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA topoisomerase I (Top1p) catalyzes the relaxation of supercoiled DNA and constitutes the cellular target of camptothecin (CPT). Mutation of conserved residues in close proximity to the active site tyrosine (Tyr(727) of yeast Top1p) alters the DNA cleavage religation equilibrium, inducing drug-independent cell lethality. Previous studies indicates that yeast Top1T722Ap and Top1N726Hp cytotoxicity results from elevated levels of covalent enzyme-DNA intermediates. Here we show that Top1T722Ap acts as a CPT mimetic by exhibiting reduced rates of DNA religation, whereas increased Top1N726Hp.DNA complexes result from elevated DNA binding and cleavage. We also report that the combination of the T722A and N726H mutations in a single protein potentiates the cytotoxic action of the enzyme beyond that induced by co-expression of the single mutants. Moreover, the addition of CPT to cells expressing the double top1T722A/N726H mutant did not enhance cell lethality. Thus, independent alterations in DNA cleavage and religation contribute to the lethal phenotype. The formation of distinct cytotoxic lesions was also evidenced by the different responses induced by low levels of these self-poisoning enzymes in isogenic strains defective for the Rad9 DNA damage checkpoint, processive DNA replication, or ubiquitin-mediated proteolysis. Substitution of Asn(726) with Phe or Tyr also produces self-poisoning enzymes, implicating stacking interactions in the increased kinetics of DNA cleavage by Top1N726Hp and Top1N726Fp. In contrast, replacing the amide side chain of Asn(726) with Gln renders Top1N726Qp resistant to CPT, suggesting that the orientation of the amide within the active site is critical for effective CPT binding.
Collapse
Affiliation(s)
- William C Colley
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
32
|
Liu C, Pouliot JJ, Nash HA. The role of TDP1 from budding yeast in the repair of DNA damage. DNA Repair (Amst) 2004; 3:593-601. [PMID: 15135727 DOI: 10.1016/j.dnarep.2004.03.030] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2004] [Indexed: 10/26/2022]
Abstract
The TDP1 gene encodes a protein that can hydrolyze certain types of 3'-terminal phosphodiesters, but the relevance of these catalytic activities to gene function has not been previously tested. In this work we engineered a point mutation in TDP1 and present evidence that, as per design, it severely diminishes tyrosyl-DNA phosphodiesterase enzyme activity without affecting protein folding. The phenotypes of yeast strains that express this mutant show that the contribution of TDP1 to the repair of two kinds of damaged termini-induced, respectively, by camptothecin (CPT) and by bleomycin-strongly depends on enzyme activity. In routine assays of cell survival and growth the contribution of this activity is often overshadowed by other repair pathways. However, the value of TDP1 in the economy of the cell is highlighted by our discovery of several phenotypes that are evident even without deliberate inactivation of parallel pathways. These non-redundant mutant phenotypes include increased spontaneous mutation rate, transient accumulation of cells in a mid-anaphase checkpoint after exposure to camptothecin and, in cells that overexpress topoisomerase I (Top1), decreased survival of camptothecin-induced damage. The relationship between the role of TDP1 in Saccharomyces and its role in metazoans is discussed.
Collapse
Affiliation(s)
- Chunyan Liu
- Laboratory of Molecular Biology, National Institute of Mental Health, 9000 Rockville Pike, Bethesda, MD 20892-4034, USA
| | | | | |
Collapse
|
33
|
van Waardenburg RC, de Jong LA, van Delft F, van Eijndhoven MA, Bohlander M, Bjornsti MA, Brouwer J, Schellens JH. Homologous recombination is a highly conserved determinant of the synergistic cytotoxicity between cisplatin and DNA topoisomerase I poisons. Mol Cancer Ther 2004. [DOI: 10.1158/1535-7163.393.3.4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Abstract
Phase I and II clinical trails are currently investigating the antitumor activity of cisplatin and camptothecins (CPTs; DNA topoisomerase I poisons), based on the dramatic synergistic cytotoxicity of these agents in some preclinical models. However, the mechanistic basis for this synergism is poorly understood. By exploiting the evolutionary conservation of DNA repair pathways from genetically tractable organisms such as budding and fission yeasts to mammalian cells, we demonstrate that the synergism of CPT and cisplatin requires homologous recombination. In yeast and mammalian cell lines defective for RAD52 and XRCC2/3, respectively, the combination of these agents proved antagonistic, while greater than additive activity was evident in isogenic wild-type cells. Homologous recombination appears to mediate a similar interaction of X-rays and CPT, but antagonizes the synergism of cytarabine (Ara-C) with CPT. These findings suggest that homologous recombination comprises an evolutionarily conserved determinant of cellular sensitivity when CPTs are used in combination with other therapeutics.
Collapse
Affiliation(s)
| | - Laurina A. de Jong
- 1Department of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Foke van Delft
- 1Department of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | | | - Melanie Bohlander
- 1Department of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Mary-Ann Bjornsti
- 3Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jaap Brouwer
- 2Laboratory of Molecular Genetics, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - Jan H.M. Schellens
- 1Department of Experimental Therapy, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- 4Faculty Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
34
|
Daroui P, Desai SD, Li TK, Liu AA, Liu LF. Hydrogen Peroxide Induces Topoisomerase I-mediated DNA Damage and Cell Death. J Biol Chem 2004; 279:14587-94. [PMID: 14688260 DOI: 10.1074/jbc.m311370200] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species modify DNA, generating various DNA lesions including modified bases such as 8-oxoguanine (8-oxoG). These base-modified DNA lesions have been shown to trap DNA topoisomerase I (TOP1) into covalent cleavage complexes. In this study, we have investigated the role of TOP1 in hydrogen peroxide toxicity. We showed that ectopic expression of TOP1 in Saccharomyces cerevisiae conferred sensitivity to hydrogen peroxide, and this sensitivity was dependent on RAD9 checkpoint function. Moreover, in the mammalian cell culture system, hydrogen peroxide-induced growth inhibition and apoptosis were shown to be partly TOP1-dependent as evidenced by a specific increase in resistance to hydrogen peroxide in TOP1-deficient P388/CPT45 murine leukemia cells as compared with their TOP1-proficient parental cell line P388. In addition, hydrogen peroxide was shown to induce TOP1-DNA cross-links. These results support a model in which hydrogen peroxide promotes the trapping of TOP1 on oxidative DNA lesions to form TOP1-DNA cleavage complexes that contribute to hydrogen peroxide toxicity.
Collapse
Affiliation(s)
- Parima Daroui
- Department of Pharmacology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
35
|
Fiorani P, Reid RJD, Schepis A, Jacquiau HR, Guo H, Thimmaiah P, Benedetti P, Bjornsti MA. The deubiquitinating enzyme Doa4p protects cells from DNA topoisomerase I poisons. J Biol Chem 2004; 279:21271-81. [PMID: 14990574 DOI: 10.1074/jbc.m312338200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
DNA topoisomerase I (Top1p) catalyzes changes in DNA topology via the formation of an enzyme-DNA covalent complex that is reversibly stabilized by the antitumor drug, camptothecin (CPT). During S-phase, collisions with replication forks convert these complexes into cytotoxic DNA lesions that trigger cell cycle arrest and cell death. To investigate cellular responses to CPT-induced DNA damage, a yeast genetic screen identified conditional tah mutants with enhanced sensitivity to self-poisoning DNA topoisomerase I mutant (Top1T722Ap), which mimics the action of CPT. Mutant alleles of three genes, DOA4, SLA1 and SLA2, were recovered. A nonsense mutation in DOA4 eliminated the catalytic residues of the Doa4p deubiquitinating enzyme, yet retained the rhodanase domain. At 36 degrees C, this doa4-10 mutant exhibited increased sensitivity to CPT, osmotic stress, and hydroxyurea, and a reversible petite phenotype. However, the accumulation of pre-vacuolar class E vesicles that was observed in doa4Delta cells was not detected in the doa4-10 mutant. Mutations in SLA1 or SLA2, which alter actin cytoskeleton architecture, induced a conditional synthetic lethal phenotype in combination with doa4-10 in the absence of DNA damage. Here actin cytoskeleton defects coincided with the enhanced fragility of large-budded cells. In contrast, the enhanced sensitivity of doa4-10 mutant cells to Top1T722Ap was unrelated to alterations in endocytosis and was selectively suppressed by increased dosage of the ribonucleotide reductase inhibitor Sml1p. Additional studies suggest a role for Doa4p in the Rad9p checkpoint response to Top1p poisons. These findings indicate a functional link between ubiquitin-mediated proteolysis and cellular resistance to CPT-induced DNA damage.
Collapse
Affiliation(s)
- Paola Fiorani
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fiorani P, Bruselles A, Falconi M, Chillemi G, Desideri A, Benedetti P. Single mutation in the linker domain confers protein flexibility and camptothecin resistance to human topoisomerase I. J Biol Chem 2003; 278:43268-75. [PMID: 12904303 DOI: 10.1074/jbc.m303899200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase I relaxes supercoiled DNA by the formation of a covalent intermediate in which the active-site tyrosine is transiently bound to the cleaved DNA strand. The antineoplastic agent camptothecin specifically targets DNA topoisomerase I, and several mutations have been isolated that render the enzyme camptothecin-resistant. The catalytic and structural dynamical properties of a human DNA topoisomerase I mutant in which Ala-653 in the linker domain was mutated into Pro have been investigated. The mutant is resistant to camptothecin and in the absence of the drug displays a cleavage-religation equilibrium strongly shifted toward religation. The shift is mainly because of an increase in the religation rate relative to the wild type enzyme, indicating that the unperturbed linker is involved in slowing religation. Molecular dynamics simulation indicates that the Ala to Pro mutation increases the linker flexibility allowing it to sample a wider conformational space. The increase in religation rate of the mutant, explained by means of the enhanced linker flexibility, provides an explanation for the mutant camptothecin resistance.
Collapse
Affiliation(s)
- Paola Fiorani
- Department of Biology, University of Padua, Via U. Bassi 58/B, Padua 35131, Italy
| | | | | | | | | | | |
Collapse
|
37
|
Woo MH, Losasso C, Guo H, Pattarello L, Benedetti P, Bjornsti MA. Locking the DNA topoisomerase I protein clamp inhibits DNA rotation and induces cell lethality. Proc Natl Acad Sci U S A 2003; 100:13767-72. [PMID: 14585933 PMCID: PMC283496 DOI: 10.1073/pnas.2235886100] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic DNA topoisomerase I (Top1) is a monomeric protein clamp that functions in DNA replication, transcription, and recombination. Opposable "lip" domains form a salt bridge to complete Top1 protein clamping of duplex DNA. Changes in DNA topology are catalyzed by the formation of a transient phosphotyrosyl linkage between the active-site Tyr-723 and a single DNA strand. Substantial protein domain movements are required for DNA binding, whereas the tight packing of DNA within the covalent Top1-DNA complex necessitates some DNA distortion to allow rotation. To investigate the effects of Top1-clamp closure on enzyme catalysis, molecular modeling was used to design a disulfide bond between residues Gly-365 and Ser-534, to crosslink protein loops more proximal to the active-site tyrosine than the protein loops held by the Lys-369-Glu-497 salt bridge. In reducing environments, Top1-Clamp was catalytically active. However, contrary to crosslinking the salt-bridge loops [Carey, J. F., Schultz, S. J., Sission, L., Fazzio, T. G. & Champoux, J. J. (2003) Proc. Natl. Acad. Sci. USA 100, 5640-5645], crosslinking the active-site proximal loops inhibited DNA rotation. Apparently, subtle alterations in Top1 clamp flexibility impact enzyme catalysis in vitro. Yet, the catalytically active Top1-Clamp was cytotoxic, even in the reducing environment of yeast cells. Remarkably, a shift in redox potential in glr1Delta cells converted the catalytically inactive Top1Y723F mutant clamp into a cellular toxin, which failed to induce an S-phase terminal phenotype. This cytotoxic mechanism is distinct from that of camptothecin chemotherapeutics, which stabilize covalent Top1-DNA complexes, and it suggests that the development of novel therapeutics that promote Top1-clamp closure is possible.
Collapse
Affiliation(s)
- Michael H Woo
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | | | |
Collapse
|
38
|
Zhang H, Siede W. Validation of a novel assay for checkpoint responses: characterization of camptothecin derivatives in Saccharomyces cerevisiae. Mutat Res 2003; 527:37-48. [PMID: 12787912 DOI: 10.1016/s0027-5107(03)00074-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The evolutionary conservation of pathways preserving genetic stability supports the use of a lower eukaryote such as the yeast Saccharomyces cerevisiae in screening for novel anti-neoplastic agents. Yeast is already established as a model system to characterize the cellular effects of the topoisomerase inhibitor and anti-cancer agent camptothecin (CPT). Here, we demonstrate that a recently developed two-hybrid based plate assay that visualizes the DNA damage-induced homomeric complex formation of the yeast checkpoint protein Rad17 correctly predicts the biological activity of the tested camptothecin derivatives. The used criteria for biological activity include lethality, cell cycle arrest and Rad53p phosphorylation, an essential signaling event during checkpoint activation. Surprisingly, although responsive to camptothecin and not without influence on drug sensitivity, Rad17p appears to be dispensable for cell cycle arrest and for Rad53p phosphorylation following treatment with camptothecin. Such a role is only uncovered if double-strand break repair is compromised.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Radiation Oncology and Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | |
Collapse
|
39
|
Abstract
The budding yeast Saccharomyces cerevisiae is a genetically tractable model system with which to establish the cellular target of a given agent and investigate mechanisms of drug action.
Collapse
Affiliation(s)
- Mary Ann Bjornsti
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
40
|
Woo MH, Vance JR, Marcos ARO, Bailly C, Bjornsti MA. Active site mutations in DNA topoisomerase I distinguish the cytotoxic activities of camptothecin and the indolocarbazole, rebeccamycin. J Biol Chem 2002; 277:3813-22. [PMID: 11733535 DOI: 10.1074/jbc.m110484200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
DNA topoisomerase I (Top1p) catalyzes topological changes in DNA and is the cellular target of the antitumor agent camptothecin (CPT). Non-CPT drugs that target Top1p, such as indolocarbazoles, are under clinical development. However, whether the cytotoxicity of indolocarbazoles derives from Top1p poisoning remains unclear. To further investigate indolocarbazole mechanism, rebeccamycin R-3 activity was examined in vitro and in yeast. Using a series of Top1p mutants, where substitution of residues around the active site tyrosine has well-defined effects on enzyme catalysis, we show that catalytically active, CPT-resistant enzymes remain sensitive to R-3. This indolocarbazole did not inhibit yeast Top1p activity, yet was effective in stabilizing Top1p-DNA complexes. Similar results were obtained with human Top1p, when Ser or His were substituted for Asn-722. The mutations altered enzyme function and sensitivity to CPT, yet R-3 poisoning of Top1p was unaffected. Moreover, top1delta, rad52delta yeast cells expressing human Top1p, but not catalytically inactive Top1Y723Fp, were sensitive to R-3. These data support hTop1p as the cellular target of R-3 and indicate that distinct drug-enzyme interactions at the active site are required for efficient poisoning by R-3 or CPT. Furthermore, resistance to one poison may potentiate cell sensitivity to structurally distinct compounds that also target Top1p.
Collapse
Affiliation(s)
- Michael H Woo
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | |
Collapse
|
41
|
Fiorani P, Bjornsti MA. Mechanisms of DNA topoisomerase I-induced cell killing in the yeast Saccharomyces cerevisiae. Ann N Y Acad Sci 2001; 922:65-75. [PMID: 11193926 DOI: 10.1111/j.1749-6632.2000.tb07026.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
DNA topoisomerase I (Top1) catalyzes the relaxation of supercoiled DNA by a mechanism of transient DNA strand cleavage characterized by the formation of a phosphotyrosyl bond between the DNA end and active site tyrosine. Camptothecin reversibly stabilizes the covalent enzyme-DNA intermediate by inhibiting DNA religation. During S-phase, collisions with advancing replication forks convert these complexes into potentially lethal lesions. To define the DNA damage induced by alterations in Top1p catalysis and the cellular processes that mediate the repair of such lesions, the yeast Saccharomyces cerevisiae was used. Substitution of conserved residues N-terminal to the active site tyrosine (Tyr-727) produced alterations in the camptothecin sensitivity or catalytic cycle of DNA Top1. For example, substituting Ala for Thr-722 in Top1T722A increased the stability of the covalent enzyme DNA intermediate. As with camptothecin, Top1T722A-induced cytotoxicity was ascribed to a reduction in DNA religation. By contrast, enhanced covalent complex formation by Top1N726H resulted from a relative increase in the rate of DNA cleavage. Conditional yeast mutants were also selected that exhibit temperature-sensitive growth only in the presence of the self-poisoning Top1T722A enzyme. Subsequent analyses of these tah mutants identified 9 genes whose function suppresses the cytotoxic action of camptothecin and Top1T722A. These include genes encoding essential DNA replication proteins (CDC45 and DPB11) and proteins involved in SUMO- or ubiquitination (UBC9 and DOA4).
Collapse
Affiliation(s)
- P Fiorani
- Department of Molecular Pharmacology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38103, USA
| | | |
Collapse
|
42
|
Fertala J, Vance JR, Pourquier P, Pommier Y, Bjornsti MA. Substitutions of Asn-726 in the active site of yeast DNA topoisomerase I define novel mechanisms of stabilizing the covalent enzyme-DNA intermediate. J Biol Chem 2000; 275:15246-53. [PMID: 10809761 DOI: 10.1074/jbc.275.20.15246] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology and is the cellular target of camptothecin. Recent reports of enzyme structure highlight the importance of conserved amino acids N-terminal to the active site tyrosine and the involvement of Asn-726 in mediating Top1p sensitivity to camptothecin. To investigate the contribution of this residue to enzyme catalysis, we evaluated the effect of substituting His, Asp, or Ser for Asn-726 on yeast Top1p. Top1N726S and Top1N726D mutant proteins were resistant to camptothecin, although the Ser mutant was distinguished by a lack of detectable changes in activity. Thus, a basic residue immediately N-terminal to the active site tyrosine is required for camptothecin cytotoxicity. However, replacing Asn-726 with Asp or His interfered with distinct aspects of the catalytic cycle, resulting in cell lethality. In contrast to camptothecin, which inhibits enzyme-catalyzed religation of DNA, the His substituent enhanced the rate of DNA scission, whereas the Asp mutation diminished the enzyme binding of DNA. Yet, these effects on enzyme catalysis were not mutually exclusive as the His mutant was hypersensitive to camptothecin. These results suggest distinct mechanisms of poisoning DNA topoisomerase I may be explored in the development of antitumor agents capable of targeting different aspects of the Top1p catalytic cycle.
Collapse
Affiliation(s)
- J Fertala
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | |
Collapse
|
43
|
Reid RJ, Fiorani P, Sugawara M, Bjornsti MA. CDC45 and DPB11 are required for processive DNA replication and resistance to DNA topoisomerase I-mediated DNA damage. Proc Natl Acad Sci U S A 1999; 96:11440-5. [PMID: 10500195 PMCID: PMC18052 DOI: 10.1073/pnas.96.20.11440] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The antitumor agent camptothecin targets DNA topoisomerase I by reversibly stabilizing a covalent enzyme-DNA intermediate. The subsequent collision of DNA replication forks with these drug-enzyme-DNA complexes produces the cytotoxic DNA lesions that signal cell cycle arrest and ultimately lead to cell death. Despite intense investigation, the character of the lesions produced and the repair processes that resolve the damage remain poorly defined. A yeast genetic screen was implemented to isolate conditional mutants with enhanced sensitivity to DNA topoisomerase I-mediated DNA damage. Cells exhibiting temperature-sensitive growth in the presence of the DNA topoisomerase I mutant, Top1T722Ap, were selected. Substitution of Ala for Thr722 increases the stability of the covalent Top1T722Ap-DNA intermediate, mimicking the cytotoxic action of camptothecin. Two mutants isolated, cdc45-10 and dpb11-10, exhibited specific defects in DNA replication and a synthetic lethal phenotype in the absence of DNA damaging agents. The accumulation of Okazaki fragments under nonpermissive conditions suggests a common function in promoting processive DNA replication through polymerase switching. These results provide a mechanistic basis for understanding the cellular processes involved in the resolution of DNA damage induced by camptothecin and DNA topoisomerase I.
Collapse
Affiliation(s)
- R J Reid
- Department of Biochemistry, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | |
Collapse
|
44
|
Wan S, Capasso H, Walworth NC. The topoisomerase I poison camptothecin generates a Chk1-dependent DNA damage checkpoint signal in fission yeast. Yeast 1999; 15:821-8. [PMID: 10407262 DOI: 10.1002/(sici)1097-0061(199907)15:10a<821::aid-yea422>3.0.co;2-#] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The protein kinase Chk1 is essential for the DNA damage checkpoint. Cells lacking Chk1 are hypersensitive to DNA-damaging agents such as UV light and gamma-irradiation because they fail to arrest the cell cycle when DNA damage is generated. Phosphorylation of Chk1 occurs after DNA damage and is dependent on the integrity of the DNA damage checkpoint pathway. We have tested whether a topoisomerase I inhibitor, camptothecin (CPT), generates DNA damage in the fission yeast Schizosaccharomyces pombe that results in Chk1 phosphorylation. We demonstrate that Chk1 is phosphorylated in response to CPT treatment in a time- and dose-dependent manner and that phosphorylation is dependent on an intact DNA damage checkpoint pathway. Furthermore, we show that cells must be actively dividing in order for CPT to generate a Chk1-responsive DNA damage signal. This observation is consistent with a model whereby the cytotoxic event caused by CPT treatment is the production of a DNA double-strand break resulting from the collision of a DNA replication fork with a trapped CPT-topoisomerase I cleavable complex. Cells lacking Chk1 are hypersensitive to CPT treatment, suggesting that the DNA damage checkpoint pathway can be an important determinant for CPT sensitivity or resistance. Finally, as a well-characterized, soluble agent that specifically causes DNA damage, CPT will allow a biochemical analysis of the checkpoint pathway that responds to DNA damage.
Collapse
Affiliation(s)
- S Wan
- Department of Pharmacology, UMDNJ-Robert Wood Johnson Medical School, Piscataway, NJ 08854-5635, USA
| | | | | |
Collapse
|
45
|
Walowsky C, Fitzhugh DJ, Castaño IB, Ju JY, Levin NA, Christman MF. The topoisomerase-related function gene TRF4 affects cellular sensitivity to the antitumor agent camptothecin. J Biol Chem 1999; 274:7302-8. [PMID: 10066793 DOI: 10.1074/jbc.274.11.7302] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Camptothecin is an antitumor agent that kills cells by converting DNA topoisomerase I into a DNA-damaging poison. Although camptothecin derivatives are now being used to treat tumors in a variety of clinical protocols, the cellular factors that influence sensitivity to the drug are only beginning to be understood. We report here that two genes required for sister chromatid cohesion, TRF4 and MCD1/SCC1, are also required to repair camptothecin-mediated damage to DNA. The hypersensitivity to camptothecin in the trf4 mutant does not result from elevated expression of DNA topoisomerase I. We show that Trf4 is a nuclear protein whose expression is cell cycle-regulated at a post-transcriptional level. Suppression of camptothecin hypersensitivity in the trf4 mutant by gene overexpression resulted in the isolation of three genes: another member of the TRF4 gene family, TRF5, and two genes that may influence higher order chromosome structure, ZDS1 and ZDS2. We have isolated and sequenced two human TRF4 family members, hTRF4-1 and hTRF4-2. The hTRF4-1 gene maps to chromosome 5p15, a region of frequent copy number alteration in several tumor types. The evolutionary conservation of TRF4 suggests that it may also influence mammalian cell sensitivity to camptothecin.
Collapse
Affiliation(s)
- C Walowsky
- Department of Microbiology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kang JJ, Schaber MD, Srinivasula SM, Alnemri ES, Litwack G, Hall DJ, Bjornsti MA. Cascades of mammalian caspase activation in the yeast Saccharomyces cerevisiae. J Biol Chem 1999; 274:3189-98. [PMID: 9915859 DOI: 10.1074/jbc.274.5.3189] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Caspases (aspartate-specific cysteine proteases) play a critical role in the execution of the mammalian apoptotic program. To address the regulation of human caspase activation, we used the yeast Saccharomyces cerevisiae, which is devoid of endogenous caspases. The apical procaspases, -8beta and -10, were efficiently processed and activated in yeast. Although protease activity, per se, was insufficient to drive cell death, caspase-10 activity had little effect on cell viability, whereas expression of caspase-8beta was cytotoxic. This lethal phenotype was abrogated by co-expression of the pan-caspase inhibitor, baculovirus p35, and by mutation of the active site cysteine of procaspase-8beta. In contrast, autoactivation of the executioner caspase-3 and -6 zymogens was not detected. Procaspase-3 activation required co-expression of procaspase-8 or -10. Surprisingly, activation of procaspase-6 required proteolytic activities other than caspase-8, -10, or -3. Caspase-8beta or -10 activity was insufficient to catalyze the maturation of procaspase-6. Moreover, a constitutively active caspase-3, although cytotoxic in its own right, was unable to induce the processing of wild-type procaspase-6 and vice versa. These results distinguish sequential modes of activation for different caspases in vivo and establish a yeast model system to examine the regulation of caspase cascades. Moreover, the distinct terminal phenotypes induced by various caspases attest to differences in the cellular targets of these apoptotic proteases, which may be defined using this system.
Collapse
Affiliation(s)
- J J Kang
- Department of Biochemistry and Molecular Pharmacology, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Hann CL, Carlberg AL, Bjornsti MA. Intragenic suppressors of mutant DNA topoisomerase I-induced lethality diminish enzyme binding of DNA. J Biol Chem 1998; 273:31519-27. [PMID: 9813066 DOI: 10.1074/jbc.273.47.31519] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic DNA topoisomerase I (Top1p) catalyzes changes in DNA topology and is the cellular target of the antitumor drug camptothecin (Cpt). Mutation of several conserved residues in yeast top1 mutants is sufficient to induce cell lethality in the absence of camptothecin. Despite tremendous differences in catalytic activity, the mutant proteins Top1T722Ap and Top1R517Gp cause cell death via a mechanism similar to that of Cpt, i.e. stabilization of the covalent enzyme-DNA intermediate. To establish the interdomainal interactions required for the catalytic activity of Top1p and how alterations in enzyme structure contribute to the cytotoxic activity of Cpt or specific DNA topoisomerase I mutants, we initiated a genetic screen for intragenic suppressors of the top1T722A-lethal phenotype. Nine single amino acid substitutions were defined that map to the conserved central and C-terminal domains of Top1p as well as the nonconserved linker domain of the protein. All reduced the catalytic activity of the enzyme over 100-fold. However, detailed biochemical analyses of three suppressors, top1C273Y,T722A, top1G295V,T722A, and top1G369D,T722A, revealed this was accomplished via a mechanism of reduced affinity for the DNA substrate. The mechanistic implications of these results are discussed in the context of the known structures of yeast and human DNA topoisomerase I.
Collapse
Affiliation(s)
- C L Hann
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, USA
| | | | | |
Collapse
|
48
|
Reid RJ, Benedetti P, Bjornsti MA. Yeast as a model organism for studying the actions of DNA topoisomerase-targeted drugs. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1400:289-300. [PMID: 9748633 DOI: 10.1016/s0167-4781(98)00142-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The budding yeast Saccharomyces cerevisiae has been exploited to investigate the cytotoxic mechanisms of drugs that target DNA topoisomerases. This model organism has been used to establish eukaryotic DNA topoisomerase I or II as the cellular target of specific antineoplastic agents, to define mutations in these enzymes that confer drug resistance and to elucidate the cellular factors that modulate cell sensitivity to DNA topoisomerase-targeted drugs. These findings have provided valuable insights into the critical activities of these enzymes and how perturbing their functions produces DNA damage and cell death.
Collapse
Affiliation(s)
- R J Reid
- Department of Biochemistry and Molecular Pharmacology, Thomas Jefferson University, 233 S. 10th St., Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
49
|
Pommier Y, Pourquier P, Fan Y, Strumberg D. Mechanism of action of eukaryotic DNA topoisomerase I and drugs targeted to the enzyme. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1400:83-105. [PMID: 9748515 DOI: 10.1016/s0167-4781(98)00129-8] [Citation(s) in RCA: 402] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
DNA topoisomerase I is essential for cellular metabolism and survival. It is also the target of a novel class of anticancer drugs active against previously refractory solid tumors, the camptothecins. The present review describes the topoisomerase I catalytic mechanisms with particular emphasis on the cleavage complex that represents the enzyme's catalytic intermediate and the site of action for camptothecins. Roles of topoisomerase I in DNA replication, transcription and recombination are also reviewed. Because of the importance of topoisomerase I as a chemotherapeutic target, we review the mechanisms of action of camptothecins and the other topoisomerase I inhibitors identified to date.
Collapse
Affiliation(s)
- Y Pommier
- Laboratory of Molecular Pharmacology, Division of Basic Sciences, National Cancer Institute, Bethesda, MD 20892-4255, USA.
| | | | | | | |
Collapse
|
50
|
Champoux JJ. Domains of human topoisomerase I and associated functions. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1998; 60:111-32. [PMID: 9594573 DOI: 10.1016/s0079-6603(08)60891-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Human topoisomerase I can be divided into four domains based on homology alignments, physical properties, sensitivity to limited proteolysis, and fragment complementation studies. Roughly the first 197 amino acids represent the N-terminal domain that appears to be devoid of secondary structure and is likely important for targeting the enzyme to its sites of action within the nucleus of the cell. The core domain encompasses residues approximately 198 to approximately 651, is involved in catalysis, and is important for the preferential binding of the enzyme to supercoiled DNA. The C-terminal domain extends from residue approximately 697 to the end of the protein at residue 765 and contains the catalytically important active site tyrosine at position 723. The core and C-terminal domains are connected by a poorly conserved, protease-sensitive linker domain (residues approximately 652 to approximately 696) that has been implicated in DNA binding and may influence how long the enzyme remains in the nicked stated. Mutations that confer resistance to the topoisomerase I poison camptothecin are located in the core and C-terminal domains and presumably identify residues important for drug binding.
Collapse
Affiliation(s)
- J J Champoux
- Department of Microbiology School of Medicine, University of Washington, Seattle 98195, USA
| |
Collapse
|