1
|
Yu X, Shang J, Kojetin DJ. Molecular basis of ligand-dependent Nurr1-RXRα activation. eLife 2023; 12:e85039. [PMID: 37102494 PMCID: PMC10259986 DOI: 10.7554/elife.85039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 04/26/2023] [Indexed: 04/28/2023] Open
Abstract
Small molecule compounds that activate transcription of Nurr1-retinoid X receptor alpha (RXRα) (NR4A2-NR2B1) nuclear receptor heterodimers are implicated in the treatment of neurodegenerative disorders, but function through poorly understood mechanisms. Here, we show that RXRα ligands activate Nurr1-RXRα through a mechanism that involves ligand-binding domain (LBD) heterodimer protein-protein interaction (PPI) inhibition, a paradigm distinct from classical pharmacological mechanisms of ligand-dependent nuclear receptor modulation. NMR spectroscopy, PPI, and cellular transcription assays show that Nurr1-RXRα transcriptional activation by RXRα ligands is not correlated with classical RXRα agonism but instead correlated with weakening Nurr1-RXRα LBD heterodimer affinity and heterodimer dissociation. Our data inform a model by which pharmacologically distinct RXRα ligands (RXRα homodimer agonists and Nurr1-RXRα heterodimer selective agonists that function as RXRα homodimer antagonists) operate as allosteric PPI inhibitors that release a transcriptionally active Nurr1 monomer from a repressive Nurr1-RXRα heterodimeric complex. These findings provide a molecular blueprint for ligand activation of Nurr1 transcription via small molecule targeting of Nurr1-RXRα.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Skaggs Graduate School of Chemical and Biological Sciences at Scripps ResearchJupiterUnited States
- Department of Integrative Structural and Computational Biology, Scripps Research and UF Scripps Biomedical ResearchJupiterUnited States
| | - Jinsai Shang
- Department of Integrative Structural and Computational Biology, Scripps Research and UF Scripps Biomedical ResearchJupiterUnited States
| | - Douglas J Kojetin
- Department of Integrative Structural and Computational Biology, Scripps Research and UF Scripps Biomedical ResearchJupiterUnited States
- Department of Molecular Medicine, Scripps Research and UF Scripps Biomedical ResearchJupiterUnited States
| |
Collapse
|
2
|
Wang R, Yue X, Zhu J, Hu R, Li Y, Yang Y, Liu M. Mutation of two residues converts the ligand-binding domain of RXRα into a uniform monomer without impairing the binding of retinoic acid and cofactors. Biochem Biophys Res Commun 2023; 642:50-56. [PMID: 36563628 DOI: 10.1016/j.bbrc.2022.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Retinoid X receptor (RXRα) is a nuclear receptor (NR) for retinoic acid (RA) and regulates various NR signaling pathways. Ligand-binding domain (LBD) of RXRα can bind with its ligand 9-cis-RA and cofactors, and mediate the forming of homodimer and homotetramer of RXRα and its heterodimer with other NRs, conferring RXRα the ability to play complicated roles in development and diseases. Due to the coexistence of monomer, dimer and tetramer, there are difficulties to study the structure and interaction of RXRα-LBD with its ligands and cofactors in solution and to distinguish the roles of different forms of RXRα in cell. Here, through analyzing available structures of RXRα-LBD, we selected two residues, D379 and L420, in the homodimer interface to design three mutants of RXRα-LBD. Recombinant proteins of the three mutants showed decreased proportions of dimer and tetramer but unchanged overall structure and binding affinities to 9-cis-RA, corepressor SMRT, and coactivator SRC2. Especially, the double-site mutant RXRα-LBDD379A-L420G existed as a uniform monomer. Furthermore, L420 was found to play a similar role in forming RXRα-LBD homodimer and its heterodimer with various NRs, while the role of D379 varies a lot, as it shows almost no interaction with RARα/β, LXRα/β, and THRα/β. This study provides a new insight into the mechanism for forming RXRα-LBD homodimer and its heterodimer with other NRs, and will facilitate the studies on the structure and interaction of RXRα-LBD with ligands, cofactors and drugs in solution, and the broad physiological functions of RXRα cooperating with various NRs in cell.
Collapse
Affiliation(s)
- Ru Wang
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, China; State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Xiali Yue
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Rui Hu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Li
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunhuang Yang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences - Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
RXR – centralny regulator wielu ścieżek sygnałowych w organizmie. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstrakt
Receptory jądrowe (NRs) tworzą największą nadrodzinę czynników transkrypcyjnych, które odgrywają ważną rolę w regulacji wielu procesów biologicznych. Receptor kwasu 9-cis-retinowego (RXR) wydaje się odgrywać szczególną rolę wśród tej grupy białek, a to ma związek z jego zdolnością do tworzenia dimerów z innymi NRs. Ze względu na kontrolę ekspresji wielu genów, RXR stanowi bardzo dobry cel licznych terapii. Nieprawidłowości w szlakach modulowanych przez RXR są powiązane m.in. z chorobami neurodegeneracyjnymi, otyłością, cukrzycą, a także nowotworami. Istnieje wiele związków mogących regulować aktywność transkrypcyjną RXR. Jednak obecnie dopuszczonych do użytku klinicznego jest tylko kilka z nich. Retinoidy normalizują wzrost i różnicowanie komórek skóry i błon śluzowych, ponadto działają immunomodulująco oraz przeciwzapalnie. Stąd są stosowane przede wszystkim w chorobach skóry i w terapii niektórych chorób nowotworowych. W artykule przedstawiono ogólne wiadomości na temat RXR, jego budowy, ligandów i mechanizmu działania oraz potencjalnej roli w terapii nowotworów i zespołu metabolicznego.
Collapse
|
4
|
A structural signature motif enlightens the origin and diversification of nuclear receptors. PLoS Genet 2021; 17:e1009492. [PMID: 33882063 PMCID: PMC8092661 DOI: 10.1371/journal.pgen.1009492] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 05/03/2021] [Accepted: 03/15/2021] [Indexed: 12/11/2022] Open
Abstract
Nuclear receptors are ligand-activated transcription factors that modulate gene regulatory networks from embryonic development to adult physiology and thus represent major targets for clinical interventions in many diseases. Most nuclear receptors function either as homodimers or as heterodimers. The dimerization is crucial for gene regulation by nuclear receptors, by extending the repertoire of binding sites in the promoters or the enhancers of target genes via combinatorial interactions. Here, we focused our attention on an unusual structural variation of the α-helix, called π-turn that is present in helix H7 of the ligand-binding domain of RXR and HNF4. By tracing back the complex evolutionary history of the π-turn, we demonstrate that it was present ancestrally and then independently lost in several nuclear receptor lineages. Importantly, the evolutionary history of the π-turn motif is parallel to the evolutionary diversification of the nuclear receptor dimerization ability from ancestral homodimers to derived heterodimers. We then carried out structural and biophysical analyses, in particular through point mutation studies of key RXR signature residues and showed that this motif plays a critical role in the network of interactions stabilizing homodimers. We further showed that the π-turn was instrumental in allowing a flexible heterodimeric interface of RXR in order to accommodate multiple interfaces with numerous partners and critical for the emergence of high affinity receptors. Altogether, our work allows to identify a functional role for the π-turn in oligomerization of nuclear receptors and reveals how this motif is linked to the emergence of a critical biological function. We conclude that the π-turn can be viewed as a structural exaptation that has contributed to enlarging the functional repertoire of nuclear receptors. The origin of novelties is a central topic in evolutionary biology. A fundamental question is how organisms constrained by natural selection can divert from existing schemes to set up novel structures or pathways. Among the most important strategies are exaptations, which represent pre-adaptation strategies. Many examples exist in biology, at both morphological and molecular levels, such as the one reported here that focuses on an unusual structural feature called the π-turn. It is found in the structure of the most ancestral nuclear receptors RXR and HNF4. The analyses trace back the complex evolutionary history of the π-turn to more than 500 million years ago, before the Cambrian explosion and show that this feature was essential for the heterodimerization capacity of RXR. Nuclear receptor lineages that emerged later in evolution lost the π-turn. We demonstrate here that this loss in nuclear receptors that heterodimerize with RXR was critical for the emergence of high affinity receptors, such as the vitamin D and the thyroid hormone receptors. On the other hand, the conserved π-turn in RXR allowed it to accommodate multiple heterodimer interfaces with numerous partners. This structural exaptation allowed for the remarkable diversification of nuclear receptors.
Collapse
|
5
|
Shao M, Lu L, Wang Q, Ma L, Tian X, Li C, Li C, Guo D, Wang Q, Wang W, Wang Y. The multi-faceted role of retinoid X receptor in cardiovascular diseases. Biomed Pharmacother 2021; 137:111264. [PMID: 33761589 DOI: 10.1016/j.biopha.2021.111264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 01/14/2023] Open
Abstract
Retinoid X receptors (RXRs) are members of ligand-dependent transcription factors whose effects on a diversity of cellular processes, including cellular proliferation, the immune response, and lipid and glucose metabolism. Knock out of RXRα causes a hypoplasia of the myocardium which is lethal during fetal life. In addition, the heart maintains a well-orchestrated balances in utilizing fatty acids (FAs) and other substrates to meet the high energy requirements. As the master transcriptional regulators of lipid metabolism, RXRs become particularly important for the energy needs of the heart. Accumulating evidence suggested that RXRs may exert direct beneficial effects in the heart both through heterodimerization with other nuclear receptors (NRs) and homodimerization, thus standing as suitable targets for treating in cardiovascular diseases. Although compounds that target RXRs are promising drugs, their use is limited by toxicity. A better understanding of the structural biology of RXRs in cardiovascular disease should enable the rational design of more selective nuclear receptor modulators to overcome these problems. Here, this review summarizes a brief overview of RXRs structure and versatility of RXR action in the control of cardiovascular diseases. And we also discussed the therapeutic potential of RXR ligand.
Collapse
Affiliation(s)
- Mingyan Shao
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Linghui Lu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Lin Ma
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xue Tian
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Changxiang Li
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chun Li
- Modern Research Center of Traditional Chinese Medicine, School of Traditional Chinese Material Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongqing Guo
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Qiyan Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wei Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Yong Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, 100029, China; College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
6
|
Huang F, Li Y, Chen J, Zhang XK, Zhou H. Rosiglitazone binds to RXRα to induce RXRα tetramerization and NB4 cell differentiation. Biochem Biophys Res Commun 2020; 530:160-166. [PMID: 32828280 DOI: 10.1016/j.bbrc.2020.06.134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/25/2020] [Indexed: 11/15/2022]
Abstract
Rosiglitazone is a ligand of peroxisome proliferation-activated receptor gamma (PPARγ). However, it exerts biological activities and therapeutic effects through both PPARγ-dependent and independent mechanisms. In this study, we defined that rosiglitazone was also a ligand of retinoid X receptor alpha (RXRα) and displayed RXRα-dependent activities. We found that rosiglitazone directly bound to the ligand binding domain (LBD) of RXRα and induced RXRα/LBD tetramerization. Rosiglitazone inhibited the agonist-induced transcriptional activity of RXRα homodimers and heterodimers likely through inhibiting RXRα homo- and hetero-dimerization. In acute promyelocytic leukemia (APL) NB4 cells, rosiglitazone inhibited cell proliferation and induced cell differentiation, resulting from inhibiting RXRα/PML-RARα complex formation and down-regulating PML-RARα. Together, our study identified RXRα as a novel target of rosiglitazone and RXRα mediating the anti-APL activity of rosiglitazone.
Collapse
Affiliation(s)
- Fengyu Huang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yihuan Li
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China
| | - Junjie Chen
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiao-Kun Zhang
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hu Zhou
- School of Pharmaceutical Sciences, Fujian Provincial Key Laboratory of Innovative Drug Target Research, Xiamen University, Xiamen, Fujian, 361102, China; High Throughput Drug Screening Platform, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
7
|
Paakinaho V, Johnson TA, Presman DM, Hager GL. Glucocorticoid receptor quaternary structure drives chromatin occupancy and transcriptional outcome. Genome Res 2019; 29:1223-1234. [PMID: 31337711 PMCID: PMC6673716 DOI: 10.1101/gr.244814.118] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/09/2019] [Indexed: 01/11/2023]
Abstract
Most transcription factors, including nuclear receptors, are widely modeled as binding regulatory elements as monomers, homodimers, or heterodimers. Recent findings in live cells show that the glucocorticoid receptor NR3C1 (also known as GR) forms tetramers on enhancers, owing to an allosteric alteration induced by DNA binding, and suggest that higher oligomerization states are important for the gene regulatory responses of GR. By using a variant (GRtetra) that mimics this allosteric transition, we performed genome-wide studies using a GR knockout cell line with reintroduced wild-type GR or reintroduced GRtetra. GRtetra acts as a super receptor by binding to response elements not accessible to the wild-type receptor and both induces and represses more genes than GRwt. These results argue that DNA binding induces a structural transition to the tetrameric state, forming a transient higher-order structure that drives both the activating and repressive actions of glucocorticoids.
Collapse
Affiliation(s)
- Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA.,Institute of Biomedicine, University of Eastern Finland, Kuopio, FI-70211 Kuopio, Finland
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA.,IFIBYNE, UBA-CONICET, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, C1428EGA, Argentina
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892-5055, USA
| |
Collapse
|
8
|
Krężel W, Rühl R, de Lera AR. Alternative retinoid X receptor (RXR) ligands. Mol Cell Endocrinol 2019; 491:110436. [PMID: 31026478 DOI: 10.1016/j.mce.2019.04.016] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/06/2019] [Accepted: 04/22/2019] [Indexed: 12/15/2022]
Abstract
Retinoid X receptors (RXRs) control a wide variety of functions by virtue of their dimerization with other nuclear hormone receptors (NRs), contributing thereby to activities of different signaling pathways. We review known RXR ligands as transcriptional modulators of specific RXR-dimers and the associated biological processes. We also discuss the physiological relevance of such ligands, which remains frequently a matter of debate and which at present is best met by member(s) of a novel family of retinoids, postulated as Vitamin A5. Through comparison with other natural, but also with synthetic ligands, we discuss high diversity in the modes of ligand binding to RXRs resulting in agonistic or antagonistic profiles and selectivity towards specific subtypes of permissive heterodimers. Despite such diversity, direct ligand binding to the ligand binding pocket resulting in agonistic activity was preferentially preserved in the course of animal evolution pointing to its functional relevance, and potential for existence of other, species-specific endogenous RXR ligands sharing the same mode of function.
Collapse
Affiliation(s)
- Wojciech Krężel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France; Centre National de la Recherche Scientifique, UMR 7104, Illkirch, France; Institut National de la Santé et de la Recherche Médicale, U 1258, Illkirch, France; Université de Strasbourg, Illkirch, France.
| | - Ralph Rühl
- Paprika Bioanalytics BT, Debrecen, Hungary
| | - Angel R de Lera
- Departamento de Química Orgánica, Facultade de Química, Lagoas-Marcosende, 36310, Vigo, Spain
| |
Collapse
|
9
|
Watanabe M, Kakuta H. Retinoid X Receptor Antagonists. Int J Mol Sci 2018; 19:ijms19082354. [PMID: 30103423 PMCID: PMC6121510 DOI: 10.3390/ijms19082354] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 12/18/2022] Open
Abstract
Retinoid X receptor (RXR) antagonists are not only useful as chemical tools for biological research, but are also candidate drugs for the treatment of various diseases, including diabetes and allergies, although no RXR antagonist has yet been approved for clinical use. In this review, we present a brief overview of RXR structure, function, and target genes, and describe currently available RXR antagonists, their structural classification, and their evaluation, focusing on the latest research.
Collapse
Affiliation(s)
- Masaki Watanabe
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| | - Hiroki Kakuta
- Division of Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 1-1-1, Tsushima-naka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
10
|
Broekema MF, Hollman DAA, Koppen A, van den Ham HJ, Melchers D, Pijnenburg D, Ruijtenbeek R, van Mil SWC, Houtman R, Kalkhoven E. Profiling of 3696 Nuclear Receptor-Coregulator Interactions: A Resource for Biological and Clinical Discovery. Endocrinology 2018; 159:2397-2407. [PMID: 29718163 DOI: 10.1210/en.2018-00149] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/24/2018] [Indexed: 12/13/2022]
Abstract
Nuclear receptors (NRs) are ligand-inducible transcription factors that play critical roles in metazoan development, reproduction, and physiology and therefore are implicated in a broad range of pathologies. The transcriptional activity of NRs critically depends on their interaction(s) with transcriptional coregulator proteins, including coactivators and corepressors. Short leucine-rich peptide motifs in these proteins (LxxLL in coactivators and LxxxIxxxL in corepressors) are essential and sufficient for NR binding. With 350 different coregulator proteins identified to date and with many coregulators containing multiple interaction motifs, an enormous combinatorial potential is present for selective NR-mediated gene regulation. However, NR-coregulator interactions have often been determined experimentally on a one-to-one basis across diverse experimental conditions. In addition, NR-coregulator interactions are difficult to predict because the molecular determinants that govern specificity are not well established. Therefore, many biologically and clinically relevant NR-coregulator interactions may remain to be discovered. Here, we present a comprehensive overview of 3696 NR-coregulator interactions by systematically characterizing the binding of 24 nuclear receptors with 154 coregulator peptides. We identified unique ligand-dependent NR-coregulator interaction profiles for each NR, confirming many well-established NR-coregulator interactions. Hierarchical clustering based on the NR-coregulator interaction profiles largely recapitulates the classification of NR subfamilies based on the primary amino acid sequences of the ligand-binding domains, indicating that amino acid sequence is an important, although not the only, molecular determinant in directing and fine-tuning NR-coregulator interactions. This NR-coregulator peptide interactome provides an open data resource for future biological and clinical discovery as well as NR-based drug design.
Collapse
Affiliation(s)
- Marjoleine F Broekema
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - Danielle A A Hollman
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - Arjen Koppen
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | | | - Diana Melchers
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Dirk Pijnenburg
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Rob Ruijtenbeek
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Saskia W C van Mil
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| | - René Houtman
- PamGene International B. V., BJ 's-Hertogenbosch, Netherlands
| | - Eric Kalkhoven
- Molecular Cancer Research and Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, CG Utrecht, Netherlands
| |
Collapse
|
11
|
Muccio DD, Atigadda VR, Brouillette WJ, Bland KI, Krontiras H, Grubbs CJ. Translation of a Tissue-Selective Rexinoid, UAB30, to the Clinic for Breast Cancer Prevention. Curr Top Med Chem 2017; 17:676-695. [PMID: 27320329 PMCID: PMC9904082 DOI: 10.2174/1568026616666160617093604] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 03/25/2016] [Accepted: 03/25/2016] [Indexed: 11/22/2022]
Abstract
This review focuses on our efforts to translate a low-toxicity retinoid X receptor-selective agonist, UAB30, to the clinic for the prevention of breast cancers. The review is divided into several sections. First, the current status of breast cancer prevention is discussed. Next, preclinical studies are presented that support translation of rexinoids to the clinic for cancer prevention. While current FDAapproved retinoids and rexinoids demonstrate profound effects in treating cancers, they lack sufficient safety for long term use in the high risk population that is otherwise disease free. The review stresses the need to identify cancer preventive drugs that are effective and safe in order to gain wide use in the clinic. Due to the heterogeneity of the disease, UAB30 is evaluated for the prevention of ER-positive and ER-negative mammary cancers. Since selective estrogen receptor modulators and aromatase inhibitors are used clinically to prevent and treat ER-positive breast cancers, preclinical studies also must demonstrate efficacy of UAB30 in combination with existing drugs under use in the clinic. To support an Investigational New Drug Application to the FDA, data on pharmacology and toxicity as well as mutagenicity is gathered prior to human trials. The review concludes with a discussion of the outcomes of human Phase 0/1 clinical trials that determine the safety and pharmacology of UAB30. These studies are essential before this agent is evaluated for efficacy in phase 2 trials. Success in phase 2 evaluation is critical before long-term and costly phase 3 trials are undertaken. The lack of surrogate biomarkers as endpoints for phase 2 evaluation of rexinoid preventive agents is discussed.
Collapse
Affiliation(s)
- Donald D. Muccio
- Department of Chemistry, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Venkatram R Atigadda
- Department of Chemistry, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Wayne J Brouillette
- Department of Chemistry, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Kirby I Bland
- Department of Surgery, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Helen Krontiras
- Department of Surgery, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| | - Clinton J Grubbs
- Department of Surgery, University of Alabama at Birmingham, Birmingham Alabama 35294 USA
| |
Collapse
|
12
|
Mengeling BJ, Murk AJ, Furlow JD. Trialkyltin Rexinoid-X Receptor Agonists Selectively Potentiate Thyroid Hormone Induced Programs of Xenopus laevis Metamorphosis. Endocrinology 2016; 157:2712-23. [PMID: 27167774 DOI: 10.1210/en.2016-1062] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The trialkyltins tributyltin (TBT) and triphenyltin (TPT) can function as rexinoid-X receptor (RXR) agonists. We recently showed that RXR agonists can alter thyroid hormone (TH) signaling in a mammalian pituitary TH-responsive reporter cell line, GH3.TRE-Luc. The prevalence of TBT and TPT in the environment prompted us to test whether they could also affect TH signaling. Both trialkyltins induced the integrated luciferase reporter alone and potentiated TH activation at low doses. Trimethyltin, which is not an RXR agonist, did not. We turned to a simple, robust, and specific in vivo model system of TH action: metamorphosis of Xenopus laevis, the African clawed frog. Using a precocious metamorphosis assay, we found that 1nM TBT and TPT, but not trimethyltin, greatly potentiated the effect of TH treatment on resorption phenotypes of the tail, which is lost at metamorphosis, and in the head, which undergoes extensive remodeling including gill loss. Consistent with these responses, TH-induced caspase-3 activation in the tail was enhanced by cotreatment with TBT. Induction of a transgenic reporter gene and endogenous collagenase 3 (mmp13) and fibroblast-activating protein-α (fap) genes were not induced by TBT alone, but TH induction was significantly potentiated by TBT. However, induction of other TH receptor target genes such as TRβ and deiodinase 3 by TH were not affected by TBT cotreatment. These data indicate that trialkyltins that can function as RXR agonists can selectively potentiate gene expression and resultant morphological programs directed by TH signaling in vivo.
Collapse
Affiliation(s)
- Brenda J Mengeling
- Department of Neurobiology, Physiology and Behavior (B.J.M., J.D.F.), University of California Davis, Davis, California 95695; and Marine Animal Ecology Group (A.J.M.), Wageningen University, 6700 AH Wageningen, The Netherlands
| | - Albertinka J Murk
- Department of Neurobiology, Physiology and Behavior (B.J.M., J.D.F.), University of California Davis, Davis, California 95695; and Marine Animal Ecology Group (A.J.M.), Wageningen University, 6700 AH Wageningen, The Netherlands
| | - J David Furlow
- Department of Neurobiology, Physiology and Behavior (B.J.M., J.D.F.), University of California Davis, Davis, California 95695; and Marine Animal Ecology Group (A.J.M.), Wageningen University, 6700 AH Wageningen, The Netherlands
| |
Collapse
|
13
|
Sun J, Narayanasamy S, Curley RW, Harrison EH. β-Apo-13-carotenone regulates retinoid X receptor transcriptional activity through tetramerization of the receptor. J Biol Chem 2014; 289:33118-24. [PMID: 25324544 DOI: 10.1074/jbc.m114.610501] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoid X receptor (RXRα) is activated by 9-cis-retinoic acid (9cRA) and regulates transcription as a homodimer or as a heterodimer with other nuclear receptors. We have previously demonstrated that β-apo-13-carotenone, an eccentric cleavage product of β-carotene, antagonizes the activation of RXRα by 9cRA in mammalian cells overexpressing this receptor. However, the molecular mechanism of β-apo-13-carotenone's modulation on the transcriptional activity of RXRα is not understood and is the subject of this report. We performed transactivation assays using full-length RXRα and reporter gene constructs (RXRE-Luc) transfected into COS-7 cells, and luciferase activity was examined. β-Apo-13-carotenone was compared with the RXRα antagonist UVI3003. The results showed that both β-apo-13-carotenone and UVI3003 shifted the dose-dependent RXRα activation by 9cRA. In contrast, the results of assays using a hybrid Gal4-DBD:RXRαLBD receptor reporter cell assay that detects 9cRA-induced coactivator binding to the ligand binding domain demonstrated that UVI3003 significantly inhibited 9cRA-induced coactivator binding to RXRαLBD, but β-apo-13-carotenone did not. However, both β-apo-13-carotenone and UVI3003 inhibited 9-cRA induction of caspase 9 gene expression in the mammary carcinoma cell line MCF-7. To resolve this apparent contradiction, we investigated the effect of β-apo-13-carotenone on the oligomeric state of purified recombinant RXRαLBD. β-Apo-13-carotenone induces tetramerization of the RXRαLBD, although UVI3003 had no effect on the oligomeric state. These observations suggest that β-apo-13-carotenone regulates RXRα transcriptional activity by inducing the formation of the "transcriptionally silent" RXRα tetramer.
Collapse
Affiliation(s)
- Jian Sun
- From the Department of Human Sciences and
| | - Sureshbabu Narayanasamy
- From the Department of Human Sciences and College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | - Robert W Curley
- College of Pharmacy, Ohio State University, Columbus, Ohio 43210
| | | |
Collapse
|
14
|
Sulindac-derived RXRα modulators inhibit cancer cell growth by binding to a novel site. ACTA ACUST UNITED AC 2014; 21:596-607. [PMID: 24704507 DOI: 10.1016/j.chembiol.2014.02.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/22/2014] [Accepted: 02/19/2014] [Indexed: 12/20/2022]
Abstract
Retinoid X receptor-alpha (RXRα), an intriguing and unique drug target, can serve as an intracellular target mediating the anticancer effects of certain nonsteroidal anti-inflammatory drugs (NSAIDs), including sulindac. We report the synthesis and characterization of two sulindac analogs, K-8008 and K-8012, which exert improved anticancer activities over sulindac in a RXRα-dependent manner. The analogs inhibit the interaction of the N-terminally truncated RXRα (tRXRα) with the p85α subunit of PI3K, leading to suppression of AKT activation and induction of apoptosis. Crystal structures of the RXRα ligand-binding domain (LBD) with K-8008 or K-8012 reveal that both compounds bind to tetrameric RXRα LBD at a site different from the classical ligand-binding pocket. Thus, these results identify K-8008 and K-8012 as tRXRα modulators and define a binding mechanism for regulating the nongenomic action of tRXRα.
Collapse
|
15
|
Homodimerization propensity of the intrinsically disordered N-terminal domain of Ultraspiracle from Aedes aegypti. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:1153-66. [PMID: 24704038 DOI: 10.1016/j.bbapap.2014.03.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/21/2014] [Accepted: 03/25/2014] [Indexed: 11/20/2022]
Abstract
The mosquito Aedes aegypti is the principal vector of dengue, one of the most devastating arthropod-borne viral infections in humans. The isoform specific A/B region, called the N-terminal domain (NTD), is hypervariable in sequence and length and is poorly conserved within the Ultraspiracle (Usp) family. The Usp protein together with ecdysteroid receptor (EcR) forms a heterodimeric complex. Up until now, there has been little data on the molecular properties of the isolated Usp-NTD. Here, we describe the biochemical and biophysical properties of the recombinant NTD of the Usp isoform B (aaUsp-NTD) from A. aegypti. These results, in combination with in silico bioinformatics approaches, indicate that aaUsp-NTD exhibits properties of an intrinsically disordered protein (IDP). We also present the first experimental evidence describing the dimerization propensity of the isolated NTD of Usp. These characteristics also appear for other members of the Usp family in different species, for example, in the Usp-NTD from Drosophila melanogaster and Bombyx mori. However, aaUsp-NTD exhibits the strongest homodimerization potential. We postulate that the unique dimerization of the NTD might be important for Usp function by providing an additional platform for interactions, in addition to the nuclear receptor superfamily dimerization via DNA binding domains and ligand binding domains that has already been extensively documented. Furthermore, the unique NTD-NTD interaction that was observed might contribute new insight into the dimerization propensities of nuclear receptors.
Collapse
|
16
|
Yang C, Li Q, Li Y. Targeting nuclear receptors with marine natural products. Mar Drugs 2014; 12:601-35. [PMID: 24473166 PMCID: PMC3944506 DOI: 10.3390/md12020601] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/20/2013] [Accepted: 01/07/2014] [Indexed: 02/07/2023] Open
Abstract
Nuclear receptors (NRs) are important pharmaceutical targets because they are key regulators of many metabolic and inflammatory diseases, including diabetes, dyslipidemia, cirrhosis, and fibrosis. As ligands play a pivotal role in modulating nuclear receptor activity, the discovery of novel ligands for nuclear receptors represents an interesting and promising therapeutic approach. The search for novel NR agonists and antagonists with enhanced selectivities prompted the exploration of the extraordinary chemical diversity associated with natural products. Recent studies involving nuclear receptors have disclosed a number of natural products as nuclear receptor ligands, serving to re-emphasize the translational possibilities of natural products in drug discovery. In this review, the natural ligands of nuclear receptors will be described with an emphasis on their mechanisms of action and their therapeutic potentials, as well as on strategies to determine potential marine natural products as nuclear receptor modulators.
Collapse
Affiliation(s)
- Chunyan Yang
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Qianrong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| | - Yong Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center of Cell Biology Research, School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
17
|
Vilar JMG, Saiz L. Systems biophysics of gene expression. Biophys J 2014; 104:2574-85. [PMID: 23790365 DOI: 10.1016/j.bpj.2013.04.032] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 04/08/2013] [Accepted: 04/12/2013] [Indexed: 01/16/2023] Open
Abstract
Gene expression is a process central to any form of life. It involves multiple temporal and functional scales that extend from specific protein-DNA interactions to the coordinated regulation of multiple genes in response to intracellular and extracellular changes. This diversity in scales poses fundamental challenges to the use of traditional approaches to fully understand even the simplest gene expression systems. Recent advances in computational systems biophysics have provided promising avenues to reliably integrate the molecular detail of biophysical process into the system behavior. Here, we review recent advances in the description of gene regulation as a system of biophysical processes that extend from specific protein-DNA interactions to the combinatorial assembly of nucleoprotein complexes. There is now basic mechanistic understanding on how promoters controlled by multiple, local and distal, DNA binding sites for transcription factors can actively control transcriptional noise, cell-to-cell variability, and other properties of gene regulation, including precision and flexibility of the transcriptional responses.
Collapse
Affiliation(s)
- Jose M G Vilar
- Biophysics Unit CSIC-UPV/EHU and Department of Biochemistry and Molecular Biology, University of the Basque Country, Bilbao, Spain.
| | | |
Collapse
|
18
|
Affiliation(s)
- Pengxiang Huang
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Vikas Chandra
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| | - Fraydoon Rastinejad
- Metabolic Signaling and Disease Program, Sanford-Burnham Medical Research Institute, Orlando, FL 32827, USA
| |
Collapse
|
19
|
Abstract
Retinoid X Receptors (RXR) were initially identified as nuclear receptors binding with stereo-selectivity the vitamin A derivative 9-cis retinoic acid, although the relevance of this molecule as endogenous activator of RXRs is still elusive. Importantly, within the nuclear receptor superfamily, RXRs occupy a peculiar place, as they are obligatory partners for a number of other nuclear receptors, thus integrating the corresponding signaling pathways. In this chapter, we describe the structural features allowing RXR to form homo- and heterodimers, and the functional consequences of this unique ability. Furthermore, we discuss the importance of studying RXR activity at a genome-wide level in order to comprehensively address the biological implications of their action that is fundamental to understand to what extent RXRs could be exploited as new therapeutic targets.
Collapse
Affiliation(s)
- Federica Gilardi
- Center for Integrative Genomics, University of Lausanne, Genopode Building, 1015, Lausanne, Switzerland,
| | | |
Collapse
|
20
|
Boerma LJ, Xia G, Qui C, Cox BD, Chalmers MJ, Smith CD, Lobo-Ruppert S, Griffin PR, Muccio DD, Renfrow MB. Defining the communication between agonist and coactivator binding in the retinoid X receptor α ligand binding domain. J Biol Chem 2013; 289:814-26. [PMID: 24187139 DOI: 10.1074/jbc.m113.476861] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoid X receptors (RXRs) are obligate partners for several other nuclear receptors, and they play a key role in several signaling processes. Despite being a promiscuous heterodimer partner, this nuclear receptor is a target of therapeutic intervention through activation using selective RXR agonists (rexinoids). Agonist binding to RXR initiates a large conformational change in the receptor that allows for coactivator recruitment to its surface and enhanced transcription. Here we reveal the structural and dynamical changes produced when a coactivator peptide binds to the human RXRα ligand binding domain containing two clinically relevant rexinoids, Targretin and 9-cis-UAB30. Our results show that the structural changes are very similar for each rexinoid and similar to those for the pan-agonist 9-cis-retinoic acid. The four structural changes involve key residues on helix 3, helix 4, and helix 11 that move from a solvent-exposed environment to one that interacts extensively with helix 12. Hydrogen-deuterium exchange mass spectrometry reveals that the dynamics of helices 3, 11, and 12 are significantly decreased when the two rexinoids are bound to the receptor. When the pan-agonist 9-cis-retinoic acid is bound to the receptor, only the dynamics of helices 3 and 11 are reduced. The four structural changes are conserved in all x-ray structures of the RXR ligand-binding domain in the presence of agonist and coactivator peptide. They serve as hallmarks for how RXR changes conformation and dynamics in the presence of agonist and coactivator to initiate signaling.
Collapse
|
21
|
Kiss M, Czimmerer Z, Nagy L. The role of lipid-activated nuclear receptors in shaping macrophage and dendritic cell function: From physiology to pathology. J Allergy Clin Immunol 2013; 132:264-86. [PMID: 23905916 DOI: 10.1016/j.jaci.2013.05.044] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/16/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
Abstract
Nuclear receptors are ligand-activated transcription factors linking lipid signaling to the expression of the genome. There is increasing appreciation of the involvement of this receptor network in the metabolic programming of macrophages and dendritic cells (DCs), essential members of the innate immune system. In this review we focus on the role of retinoid X receptor, retinoic acid receptor, peroxisome proliferator-associated receptor γ, liver X receptor, and vitamin D receptor in shaping the immune and metabolic functions of macrophages and DCs. We also provide an overview of the contribution of macrophage- and DC-expressed nuclear receptors to various immunopathologic conditions, such as rheumatoid arthritis, inflammatory bowel disease, systemic lupus erythematosus, asthma, and some others. We suggest that systematic analyses of the roles of these receptors and their activating lipid ligands in immunopathologies combined with complementary and focused translational and clinical research will be crucial for the development of new therapies using the many molecules available to target nuclear receptors.
Collapse
Affiliation(s)
- Mate Kiss
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Medical and Health Science Center, Debrecen, Hungary
| | | | | |
Collapse
|
22
|
Kurakula K, Hamers AAJ, de Waard V, de Vries CJM. Nuclear Receptors in atherosclerosis: a superfamily with many 'Goodfellas'. Mol Cell Endocrinol 2013; 368:71-84. [PMID: 22664910 DOI: 10.1016/j.mce.2012.05.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 05/23/2012] [Accepted: 05/25/2012] [Indexed: 01/07/2023]
Abstract
Nuclear Receptors form a superfamily of 48 transcription factors that exhibit a plethora of functions in steroid hormone signaling, regulation of metabolism, circadian rhythm and cellular differentiation. In this review, we describe our current knowledge on the role of Nuclear Receptors in atherosclerosis, which is a multifactorial disease of the vessel wall. Various cell types are involved in this chronic inflammatory pathology in which multiple cellular processes and numerous genes are dysregulated. Systemic risk factors for atherosclerosis are among others adverse blood lipid profiles, enhanced circulating cytokine levels, as well as increased blood pressure. Since many Nuclear Receptors modulate lipid profiles or regulate blood pressure they indirectly affect atherosclerosis. In the present review, we focus on the functional involvement of Nuclear Receptors within the atherosclerotic vessel wall, more specifically on their modulation of cellular functions in endothelial cells, smooth muscle cells and macrophages. Collectively, this overview shows that most of the Nuclear Receptors are athero-protective in atherosclerotic lesions.
Collapse
Affiliation(s)
- Kondababu Kurakula
- Department of Medical Biochemistry, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
23
|
Shaffer HA, Rood MK, Kashlan B, Chang EIL, Doyle DF, Azizi B. BAPJ69-4A: A yeast two-hybrid strain for both positive and negative genetic selection. J Microbiol Methods 2012; 91:22-9. [DOI: 10.1016/j.mimet.2012.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Revised: 07/01/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
24
|
Maeng S, Lee JH, Choi SC, Kim MA, Shin YK, Sohn YC. The retinoid X receptor in a marine invertebrate chordate: evolutionary insights from urochordates. Gen Comp Endocrinol 2012; 178:380-90. [PMID: 22732083 DOI: 10.1016/j.ygcen.2012.06.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 05/10/2012] [Accepted: 06/10/2012] [Indexed: 11/29/2022]
Abstract
Retinoid X receptors (RXRs) are highly conserved members of the nuclear hormone receptor family that mediate various physiological processes in vertebrates and invertebrates. We examined the expression patterns of RXR in the ascidian Halocynthia roretzi across a wide range of tissues and stages of embryo development, as well as the regulation of gene transcription by the ascidian RXR. H. roretzi RXR cDNA (HrRXR) was cloned from 64-cell stage embryos. The overall amino acid sequence of HrRXR showed high sequence identity with a urochordate Ciona intestinalis RXR (58%), but the ligand-binding domain of HrRXR was more similar to vertebrate orthologs than to those of invertebrate RXRs. Based on a phylogenetic analysis, HrRXR belongs to a group of urochordates that are separate from vertebrate RXRs, showing a clear evolutionary history. Real-time quantitative polymerase chain reaction and whole-mount in situ hybridization analyses revealed that the HrRXR mRNA is of maternal origin during embryogenesis, and in the examined adult tissues it is expressed in the muscles, gills, gonads, and the hepatopancreas. Immunofluorescence and immunohistochemical staining demonstrated that HrRXR is localized to the nucleus and highly expressed in the gills and hepatopancreas. Unlike human RXRα, HrRXR did not show 9-cis retinoic acid- and bexarotene (LGD1069)-dependent transactivation. While a synthetic ligand for farnesoid X receptor (FXR), GW4064, did not increase the transcriptional activation in HrRXR- or HrRXR/HrFXR-transfected HEK-293 cells, the ligand showed weak but significant activity for a single amino acid mutant of HrRXR ((Phe)231(Cys)) and HrFXR cotransfected cells. The present study suggests that the marine invertebrate chordate RXR may possess endogenous ligands that are different than vertebrate RXR ligands and which function during early embryonic stages.
Collapse
Affiliation(s)
- Sejung Maeng
- Department of Marine Molecular Biotechnology, College of Life Sciences, Gangneung-Wonju National University, Gangneung 210-702, Republic of Korea
| | | | | | | | | | | |
Collapse
|
25
|
Nagy L, Szanto A, Szatmari I, Széles L. Nuclear hormone receptors enable macrophages and dendritic cells to sense their lipid environment and shape their immune response. Physiol Rev 2012; 92:739-89. [PMID: 22535896 DOI: 10.1152/physrev.00004.2011] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A key issue in the immune system is to generate specific cell types, often with opposing activities. The mechanisms of differentiation and subtype specification of immune cells such as macrophages and dendritic cells are critical to understand the regulatory principles and logic of the immune system. In addition to cytokines and pathogens, it is increasingly appreciated that lipid signaling also has a key role in differentiation and subtype specification. In this review we explore how intracellular lipid signaling via a set of transcription factors regulates cellular differentiation, subtype specification, and immune as well as metabolic homeostasis. We introduce macrophages and dendritic cells and then we focus on a group of transcription factors, nuclear receptors, which regulate gene expression upon receiving lipid signals. The receptors we cover are the ones with a recognized physiological function in these cell types and ones which heterodimerize with the retinoid X receptor. These are as follows: the receptor for a metabolite of vitamin A, retinoic acid: retinoic acid receptor (RAR), the vitamin D receptor (VDR), the fatty acid receptor: peroxisome proliferator-activated receptor γ (PPARγ), the oxysterol receptor liver X receptor (LXR), and their obligate heterodimeric partner, the retinoid X receptor (RXR). We discuss how they can get activated and how ligand is generated and eliminated in these cell types. We also explore how activation of a particular target gene contributes to biological functions and how the regulation of individual target genes adds up to the coordination of gene networks. It appears that RXR heterodimeric nuclear receptors provide these cells with a coordinated and interrelated network of transcriptional regulators for interpreting the lipid milieu and the metabolic changes to bring about gene expression changes leading to subtype and functional specification. We also show that these networks are implicated in various immune diseases and are amenable to therapeutic exploitation.
Collapse
Affiliation(s)
- Laszlo Nagy
- Department of Biochemistry and Molecular Biology, University of Debrecen, Medical and Health Science Center, Egyetem tér 1, Debrecen, Hungary.
| | | | | | | |
Collapse
|
26
|
Déjardin J. How chromatin prevents genomic rearrangements: locus colocalization induced by transcription factor binding. Bioessays 2011; 34:90-3. [PMID: 22086436 DOI: 10.1002/bies.201100122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The loosening of chromatin structures gives rise to unrestricted access to DNA and thus transcription factors (TFs) can bind to their otherwise masked target sequences. Regions bound by the same set of TFs tend to be located in close proximity and this might increase the probability of activating illegitimate genomic rearrangements.
Collapse
Affiliation(s)
- Jérôme Déjardin
- INSERM AVENIR Team, Institute of Human Genetics, CNRS UPR 1142, Montpellier, France.
| |
Collapse
|
27
|
Abstract
Numerous transcription factors self-assemble into different order oligomeric species in a way that is actively regulated by the cell. Until now, no general functional role has been identified for this widespread process. Here, we capture the effects of modulated self-assembly in gene expression with a novel quantitative framework. We show that this mechanism provides precision and flexibility, two seemingly antagonistic properties, to the sensing of diverse cellular signals by systems that share common elements present in transcription factors like p53, NF-κB, STATs, Oct and RXR. Applied to the nuclear hormone receptor RXR, this framework accurately reproduces a broad range of classical, previously unexplained, sets of gene expression data and corroborates the existence of a precise functional regime with flexible properties that can be controlled both at a genome-wide scale and at the individual promoter level.
Collapse
Affiliation(s)
- Jose M G Vilar
- Biophysics Unit (CSIC-UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, P.O. Box 644, 48080 Bilbao, IKERBASQUE, Basque Foundation for Science, 48011 Bilbao, Spain
| | | |
Collapse
|
28
|
[The cloning, expression and the binding ability with TRβ1 of retinoid X receptor-α gene]. YI CHUAN = HEREDITAS 2011; 33:246-50. [PMID: 21402532 DOI: 10.3724/sp.j.1005.2011.00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Retinoid X receptor-α (RXR-α), a member of nuclear receptor family, is capable of mediating retinoid signaling pathways and plays a critical role in regulating target gene transcription. To further study the function of RXR-α, abundant of recombinant RXR-α protein in hand is necessary. In this study an intact RXR-α coding sequence was amplified by RT-PCR and subsequently inserted into expression plasmid vector pQE-30Xa to form the recombinant construct of pQE-30Xa/RXR-α. Thereafter, competent bacteria Escherichia coli M15 [PREP4] was transformed and the expression of RXR-α was induced by adding IPTG to the medium. Bacterially expressed recombinant RXR-α was purified by Ni-NTA affinity chromatography and verified by SDS-PAGE and Western blotting analyses. The results showed that a protein, with the molecular mass around 50 kDa, could be selectively recognized by anti-RXR-α antibody. Co-immunoprecipitation assay indicated that this recombinant RXR-α could effectively bind TRβ1 to form a heterodimer, which could specifically bind the target DNA fragment. This was confirmed by EMSA. In conclusion, the recombinant human retinoid X receptor-α was prepared successfully, which makes a basic for further study of its function.
Collapse
|
29
|
Zhang H, Zhou R, Li L, Chen J, Chen L, Li C, Ding H, Yu L, Hu L, Jiang H, Shen X. Danthron functions as a retinoic X receptor antagonist by stabilizing tetramers of the receptor. J Biol Chem 2011; 286:1868-75. [PMID: 21084305 PMCID: PMC3023482 DOI: 10.1074/jbc.m110.166215] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 11/05/2010] [Indexed: 12/11/2022] Open
Abstract
Retinoic X receptor (RXR) is a promising target for drug discovery against cancer and metabolic syndromes. Here, we identified a specific RXRα antagonist, danthron, from the traditional Chinese medicine rhubarb. Danthron repressed all tested RXRα-involved response element transcription, including the RXRE, PPRE, FXRE, and LXRE. Results from native PAGE and isothermal titration calorimetry (ITC)-based assays indicated that danthron bound to the tetrameric RXRα-LBD in a specific stoichimetric ratio, and such a binding could influence the corepressor SMRT affinity to the receptor. Additionally, a unique tetrameric structure of the apo-RXRα ligand-binding domain (LBD) was determined, which exhibited a larger tetramer interface and different ligand-binding pocket size compared with the one previously reported. Together with the biochemical and biophysical results, the determined crystal structure of danthron-soaked RXRα-LBD suggested a new mechanism for danthron antagonism to tetrameric RXRα. Moreover, the in vivo efficient improvement of insulin sensitivity by danthron was observed in diet-induced obese (DIO) mice. Thus, our findings were expected to supply new insights into the structural basis of RXRα antagonist for its further potential therapeutic application.
Collapse
Affiliation(s)
- Haitao Zhang
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Rong Zhou
- the East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, and
| | - Li Li
- the East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, and
| | - Jing Chen
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Lili Chen
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Chenjing Li
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Hong Ding
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Liang Yu
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Lihong Hu
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Hualiang Jiang
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
| | - Xu Shen
- From the State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203
- the East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, and
- the E-Institutes of Shanghai Municipal Education Commission, Shanghai Jiaotong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
30
|
Figueira ACM, Polikarpov I, Veprintsev D, Santos GM. Dissecting the Relation between a nuclear receptor and GATA: binding affinity studies of thyroid hormone receptor and GATA2 on TSHβ promoter. PLoS One 2010; 5:e12628. [PMID: 20838640 PMCID: PMC2935386 DOI: 10.1371/journal.pone.0012628] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Accepted: 08/16/2010] [Indexed: 01/08/2023] Open
Abstract
Background Much is known about how genes regulated by nuclear receptors (NRs) are switched on in the presence of a ligand. However, the molecular mechanism for gene down-regulation by liganded NRs remains a conundrum. The interaction between two zinc-finger transcription factors, Nuclear Receptor and GATA, was described almost a decade ago as a strategy adopted by the cell to up- or down-regulate gene expression. More recently, cell-based assays have shown that the Zn-finger region of GATA2 (GATA2-Zf) has an important role in down-regulation of the thyrotropin gene (TSHβ) by liganded thyroid hormone receptor (TR). Methodology/Principal Findings In an effort to better understand the mechanism that drives TSHβ down-regulation by a liganded TR and GATA2, we have carried out equilibrium binding assays using fluorescence anisotropy to study the interaction of recombinant TR and GATA2-Zf with regulatory elements present in the TSHβ promoter. Surprisingly, we observed that ligand (T3) weakens TR binding to a negative regulatory element (NRE) present in the TSHβ promoter. We also show that TR may interact with GATA2-Zf in the absence of ligand, but T3 is crucial for increasing the affinity of this complex for different GATA response elements (GATA-REs). Importantly, these results indicate that TR complex formation enhances DNA binding of the TR-GATA2 in a ligand-dependent manner. Conclusions Our findings extend previous results obtained in vivo, further improving our understanding of how liganded nuclear receptors down-regulate gene transcription, with the cooperative binding of transcription factors to DNA forming the core of this process.
Collapse
Affiliation(s)
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Dmitry Veprintsev
- Biomolecular Research Laboratory, Paul Scherrer Institut, Villigen PSI, Switzerland
| | | |
Collapse
|
31
|
Carter CJ, Farrar N, Carlone RL, Spencer GE. Developmental expression of a molluscan RXR and evidence for its novel, nongenomic role in growth cone guidance. Dev Biol 2010; 343:124-37. [PMID: 20381485 DOI: 10.1016/j.ydbio.2010.03.023] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Revised: 03/10/2010] [Accepted: 03/25/2010] [Indexed: 02/06/2023]
Abstract
It is well known that the vitamin A metabolite, retinoic acid, plays an important role in vertebrate development and regeneration. We have previously shown that the effects of RA in mediating neurite outgrowth, are conserved between vertebrates and invertebrates (Dmetrichuk et al., 2005, 2006) and that RA can induce growth cone turning in regenerating molluscan neurons (Farrar et al., 2009). In this study, we have cloned a retinoid receptor from the mollusc Lymnaea stagnalis (LymRXR) that shares about 80% amino acid identity with the vertebrate RXRalpha. We demonstrate using Western blot analysis that the LymRXR is present in the developing Lymnaea embryo and that treatment of embryos with the putative RXR ligand, 9-cis RA, or a RXR pan-agonist, PA024, significantly disrupts embryogenesis. We also demonstrate cytoplasmic localization of LymRXR in adult central neurons, with a strong localization in the neuritic (or axonal) domains. Using regenerating cultured motor neurons, we show that LymRXR is also present in the growth cones and that application of a RXR pan-agonist produces growth cone turning in isolated neurites (in the absence of the cell body and nucleus). These data support a role for RXR in growth cone guidance and are the first studies to suggest a nongenomic action for RXR in the nervous system.
Collapse
Affiliation(s)
- Christopher J Carter
- Dept. Biological Sciences, Brock University, 500 Glenridge Ave. St. Catharines, Ontario, Canada L2S 3A1
| | | | | | | |
Collapse
|
32
|
Yasmin R, Kannan-Thulasiraman P, Kagechika H, Dawson MI, Noy N. Inhibition of mammary carcinoma cell growth by RXR is mediated by the receptor's oligomeric switch. J Mol Biol 2010; 397:1121-31. [PMID: 20188110 DOI: 10.1016/j.jmb.2010.02.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 02/11/2010] [Accepted: 02/16/2010] [Indexed: 12/01/2022]
Abstract
Ligands that activate the nuclear receptor retinoid X receptor (RXR) display potent anticarcinogenic activities, but the mechanisms by which these compounds inhibit carcinoma cell growth are poorly understood. While RXR can regulate gene expression due to its intrinsic ligand-activated transcription function, this receptor can also regulate transcription by functioning as a ligand-controlled DNA architectural factor. It was thus reported that apo-RXR self-associates into tetramers and that each dimer within these tetramers can separately bind to an RXR response element. Hence, DNA binding by RXR tetramers may bring distant genomic regions into close physical proximity. As ligand binding induces the dissociation of RXR tetramers into dimers, it can alter gene expression by modulating the DNA architecture. Here, we show that inhibition of mammary carcinoma cell growth by RXR ligands stems from the ability of these compounds to regulate the oligomeric state of RXR and is independent of the direct intrinsic transcriptional activity of the receptor. The data suggest that compounds that trigger dissociation of RXR tetramers may comprise a novel class of anticarcinogenic agents.
Collapse
Affiliation(s)
- Rubina Yasmin
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH 44106-4965, USA
| | | | | | | | | |
Collapse
|
33
|
Roduit R, Escher P, Schorderet DF. Mutations in the DNA-binding domain of NR2E3 affect in vivo dimerization and interaction with CRX. PLoS One 2009; 4:e7379. [PMID: 19823680 PMCID: PMC2757917 DOI: 10.1371/journal.pone.0007379] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Accepted: 09/16/2009] [Indexed: 02/04/2023] Open
Abstract
Background NR2E3 (PNR) is an orphan nuclear receptor essential for proper photoreceptor determination and differentiation. In humans, mutations in NR2E3 have been associated with the recessively inherited enhanced short wavelength sensitive (S-) cone syndrome (ESCS) and, more recently, with autosomal dominant retinitis pigmentosa (adRP). NR2E3 acts as a suppressor of the cone generation program in late mitotic retinal progenitor cells. In adult rod photoreceptors, NR2E3 represses cone-specific gene expression and acts in concert with the transcription factors CRX and NRL to activate rod-specific genes. NR2E3 and CRX have been shown to physically interact in vitro through their respective DNA-binding domains (DBD). The DBD also contributes to homo- and heterodimerization of nuclear receptors. Methodology/Principal Findings We analyzed NR2E3 homodimerization and NR2E3/CRX complex formation in an in vivo situation by Bioluminescence Resonance Energy Transfer (BRET2). NR2E3 wild-type protein formed homodimers in transiently transfected HEK293T cells. NR2E3 homodimerization was impaired in presence of disease-causing mutations in the DBD, except for the p.R76Q and p.R104W mutant proteins. Strikingly, the adRP-linked p.G56R mutant protein interacted with CRX with a similar efficiency to that of NR2E3 wild-type and p.R311Q proteins. In contrast, all other NR2E3 DBD-mutant proteins did not interact with CRX. The p.G56R mutant protein was also more effective in abolishing the potentiation of rhodospin gene transactivation by the NR2E3 wild-type protein. In addition, the p.G56R mutant enhanced the transrepression of the M- and S-opsin promoter, while all other NR2E3 DBD-mutants did not. Conclusions/Significance These results suggest different disease mechanisms in adRP- and ESCS-patients carrying NR2E3 mutations. Titration of CRX by the p.G56R mutant protein acting as a repressor in trans may account for the severe clinical phenotype in adRP patients.
Collapse
Affiliation(s)
- Raphael Roduit
- IRO, Institute for Research in Ophthalmology, Sion, Switzerland.
| | | | | |
Collapse
|
34
|
de Oliveira Neto M, Ferreira JR, Colau D, Fischer H, Nascimento AS, Craievich AF, Dumoutier L, Renauld JC, Polikarpov I. Interleukin-22 forms dimers that are recognized by two interleukin-22R1 receptor chains. Biophys J 2008; 94:1754-65. [PMID: 18024507 PMCID: PMC2242740 DOI: 10.1529/biophysj.107.112664] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2007] [Accepted: 10/11/2007] [Indexed: 11/18/2022] Open
Abstract
Interleukin-22 (IL-22) is a class 2 cytokine whose primary structure is similar to that of interleukin 10 (IL-10) and interferon-gamma (IFN-gamma). IL-22 induction during acute phase immune response indicates its involvement in mechanisms of inflammation. Structurally different from IL-10 and a number of other members of IL-10 family, which form intertwined inseparable V-shaped dimers of two identical polypeptide chains, a single polypeptide chain of IL-22 folds on itself in a relatively globular structure. Here we present evidence, based on native gel electrophoresis, glutaraldehyde cross-linking, dynamic light scattering, and small angle x-ray scattering experiments, that human IL-22 forms dimers and tetramers in solution under protein concentrations assessable by these experiments. Unexpectedly, low-resolution molecular shape of IL-22 dimers is strikingly similar to that of IL-10 and other intertwined cytokine dimeric forms. Furthermore, we determine an ab initio molecular shape of the IL-22/IL-22R1 complex which reveals the V-shaped IL-22 dimer interacting with two cognate IL-22R1 molecules. Based on this collective evidence, we argue that dimerization might be a common mechanism of all class 2 cytokines for the molecular recognition with their respective membrane receptor. We also speculate that the IL-22 tetramer formation could represent a way to store the cytokine in nonactive form at high concentrations that could be readily converted into functionally active monomers and dimers upon interaction with the cognate cellular receptors.
Collapse
Affiliation(s)
| | | | - Didier Colau
- Ludwig Institute for Cancer Research, Brussels Branch and the Experimental Medicine Unit, Christian de Duve Institute of Cellular Pathology, Université de Louvain, Brussels, Belgium
| | - Hannes Fischer
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brasil
- Instituto de Física, Universidade de São Paulo, São Paulo, Brasil
| | | | | | - Laure Dumoutier
- Ludwig Institute for Cancer Research, Brussels Branch and the Experimental Medicine Unit, Christian de Duve Institute of Cellular Pathology, Université de Louvain, Brussels, Belgium
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch and the Experimental Medicine Unit, Christian de Duve Institute of Cellular Pathology, Université de Louvain, Brussels, Belgium
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, Brasil
| |
Collapse
|
35
|
Shinozaki Y, Sato Y, Koizumi S, Ohno Y, Nagao T, Inoue K. Retinoic acids acting through retinoid receptors protect hippocampal neurons from oxygen-glucose deprivation-mediated cell death by inhibition of c-jun-N-terminal kinase and p38 mitogen-activated protein kinase. Neuroscience 2007; 147:153-63. [PMID: 17521827 DOI: 10.1016/j.neuroscience.2007.04.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 04/16/2007] [Accepted: 04/17/2007] [Indexed: 01/25/2023]
Abstract
Retinoic acids (RAs), including all-trans retinoic acid (ATRA) and 9-cis retinoic acid (9-cis RA), play fundamental roles in a variety of physiological events in vertebrates, through their specific nuclear receptors: retinoic acid receptor (RAR) and retinoid X receptor (RXR). Despite the physiological importance of RA, their functional significance under pathological conditions is not well understood. We examined the effect of ATRA on oxygen/glucose-deprivation/reperfusion (OGD/Rep)-induced neuronal damage in cultured rat hippocampal slices, and found that ATRA significantly reduced neuronal death. The cytoprotective effect of ATRA was observed not only in cornu ammonis (CA) 1 but also in CA2 and dentate gyrus (DG), and was attenuated by selective antagonists for RAR or RXR. By contrast, in the CA3 region, no protective effects of ATRA were observed. The OGD/Rep also increased phosphorylated forms of c-jun-N-terminal kinase (P-JNK) and p38 (P-p38) in hippocampus, and specific inhibitors for these kinases protected neurons. ATRA prevented the increases in P-JNK and P-p38 after OGD/Rep, as well as the decrease in NeuN and its shrinkage, all of which were inhibited by antagonists for RAR or RXR. These findings suggest that the ATRA signaling via retinoid receptors results in the inhibition of JNK and p38 activation, leading to the protection of neurons against OGD/Rep-induced damage in the rat hippocampus.
Collapse
Affiliation(s)
- Y Shinozaki
- Division of Pharmacology, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya, Tokyo 158-8501, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Diallo EM, Wilhelm KG, Thompson DL, Koenig RJ. Variable RXR requirements for thyroid hormone responsiveness of endogenous genes. Mol Cell Endocrinol 2007; 264:149-56. [PMID: 17161906 PMCID: PMC1828278 DOI: 10.1016/j.mce.2006.11.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Revised: 10/31/2006] [Accepted: 11/07/2006] [Indexed: 11/30/2022]
Abstract
Thyroid hormone receptors heterodimerize with retinoid X receptors in vitro and it is widely assumed that these heterodimers mediate the T3 induction of target genes. However, the importance of RXR for the T3 induction of endogenous genes has not been assessed. We used cDNA microarrays to identify 54 genes induced by T3 in Neuro2a cells that express thyroid hormone receptor beta. RNA interference-mediated knock down of endogenous RXRs showed that these genes vary from being highly dependent on RXR for T3 induction to being independent of RXR. Thus, the availability of RXR may differentially regulate the T3 induction of subsets of genes within a cell. Furthermore, coregulatory proteins that preferentially interact with TR homodimers or RXR-TR heterodimers may further expand the range of T3 response for genes within the same cell.
Collapse
Affiliation(s)
| | | | | | - Ronald J. Koenig
- *Corresponding Author: Ronald J. Koenig, University of Michigan, 5560 MSRB-II, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0678, Telephone: 734-763-3056, Fax: 734-936-6684,
| |
Collapse
|
37
|
Abstract
Vitamin A signaling occurs through nuclear receptors recognizing diverse forms of retinoic acid (RA). The retinoic acid receptors (RARs) bind all-trans RA and its 9-cis isomer (9-cis RA). They convey most of the activity of RA, particularly during embryogenesis. The second subset of receptors, the rexinoid receptors (RXRs), binds 9-cis RA only. However, RXRs are obligatory DNA-binding partners for a number of nuclear receptors, broadening the spectrum of their biological activity to the corresponding nuclear receptor-signaling pathways. The present chapter more particularly focuses on RXR-containing transcriptional complexes for which RXR is not only a structural component necessary for DNA binding but also acts as a ligand-activated partner. After positioning RXR among the nuclear receptor superfamily in the first part, we will give an overview of three major signaling pathways involved in metabolism, which are sensitive to RXR activation: LXR:RXR, FXR:RXR, and PPAR:RXR. The third and last part is focused on RXR signaling and its potential role in metabolic regulation. Indeed, while the nature of the endogenous ligand for RXR is still in question, as we will discuss herein, a better understanding of RXR activities is necessary to envisage the potential therapeutic applications of synthetic RXR ligands.
Collapse
Affiliation(s)
- Béatrice Desvergne
- Center for Integrative Genomics, Building Génopode, University of Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
38
|
Sousa FJR, Lima LMTR, Pacheco ABF, Oliveira CLP, Torriani I, Almeida DF, Foguel D, Silva JL, Mohana-Borges R. Tetramerization of the LexA repressor in solution: implications for gene regulation of the E.coli SOS system at acidic pH. J Mol Biol 2006; 359:1059-74. [PMID: 16701697 DOI: 10.1016/j.jmb.2006.03.069] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2006] [Revised: 03/30/2006] [Accepted: 03/31/2006] [Indexed: 11/25/2022]
Abstract
Structural changes on LexA repressor promoted by acidic pH have been investigated. Intense protein aggregation occurred around pH 4.0 but was not detected at pH values lower than pH 3.5. The center of spectral mass of the Trp increased 400 cm(-1) at pH 2.5 relatively to pH 7.2, an indication that LexA has undergone structural reorganization but not denaturation. The Trp fluorescence polarization of LexA at pH 2.5 indicated that its hydrodynamic volume was larger than its dimer at pH 7.2. 4,4'-Dianilino-1,1'-binaphthyl-5,5'- disulfonic acid (bis-ANS) experiments suggested that the residues in the hydrophobic clefts already present at the LexA structure at neutral pH had higher affinity to it at pH 2.5. A 100 kDa band corresponding to a tetramer was obtained when LexA was subject to pore-limiting native polyacrylamide gel electrophoresis at this pH. The existence of this tetrameric state was also confirmed by small angle X-ray scattering (SAXS) analysis at pH 2.5. 1D 1H NMR experiments suggested that it was composed of a mixture of folded and unfolded regions. Although 14,000-fold less stable than the dimeric LexA, it showed a tetramer-monomer dissociation at pH 2.5 from the hydrostatic pressure and urea curves. Albeit with half of the affinity obtained at pH 7.2 (Kaff of 170 nM), tetrameric LexA remained capable of binding recA operator sequence at pH 2.5. Moreover, different from the absence of binding to the negative control polyGC at neutral pH, LexA bound to this sequence with a Kaff value of 1415 nM at pH 2.5. A binding stoichiometry experiment at both pH 7.2 and pH 2.5 showed a [monomeric LexA]/[recA operator] ratio of 2:1. These results are discussed in relation to the activation of the Escherichia coli SOS regulon in response to environmental conditions resulting in acidic intracellular pH. Furthermore, oligomerization of LexA is proposed to be a possible regulation mechanism of this regulon.
Collapse
Affiliation(s)
- Francisco J R Sousa
- Laboratório de Genômica Estrutural, Instituto de Biofisica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590, Rio de Janerio, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Lengqvist J, Mata de Urquiza A, Perlmann T, Sjövall J, Griffiths WJ. Specificity of receptor-ligand interactions and their effect on dimerisation as observed by electrospray mass spectrometry: bile acids form stable adducts to the RXRalpha. JOURNAL OF MASS SPECTROMETRY : JMS 2005; 40:1448-61. [PMID: 16258897 PMCID: PMC2315782 DOI: 10.1002/jms.925] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Electrospray (ES) mass spectrometry data is presented showing that agonist binding to the nuclear receptor (NR), retinoid X receptor alpha (RXRalpha), is competitive. The competitive nature of agonist binding can be used to discriminate between the specific and non-specific binding of small lipophilic molecules to NRs. Further, data is presented which show that high-affinity ligand binding to the RXRalpha ligand-binding domain (LBD) stabilises the domain homodimer. The results indicate that homodimerisation, a functional property of the receptor associated with the binding of agonist ligands, could be used to discriminate between specific and non-specific binding events. Additionally, we report on the remarkable stability of the gas-phase complex between the RXRalpha LBD protein and endogenous bile acids. Protein-bile acid interactions in the gas phase were found to be surprisingly strong, withstanding 'in-source' fragmentation in the ES interface, and, in the case of taurocholic acid (TCA) and lithocholic acid-3-sulphate (LCA-3-sulphate), collision-induced dissociation within the collision cell of a tandem mass spectrometer. Bile acids were found to be inactive towards RXRalpha in transfection assays, and have not been reported to be ligands for the RXRalpha, although lithocholic acid (LCA) has been found to be a competitor in the photoaffinity labelling of RXRbeta with 9-cis-retinoic acid (9-cis-RA). The observation of strong RXRalpha-bile acid non-covalent complexes in ES mass spectrometry highlight the danger of extrapolating gas-phase binding data to the solution phase and further to a possible biological activity, particularly when surface-active compounds such as bile acids are involved. The introduction of a competitive ligand-binding experiment can alleviate this problem and allow the differentiation between specific and non-specific binding.
Collapse
Affiliation(s)
- Johan Lengqvist
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
- Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, Stockholm SE-17177, Sweden
| | | | - Thomas Perlmann
- Ludwig Institute for Cancer Research, Stockholm Branch, Box 240, Stockholm SE-17177, Sweden
| | - Jan Sjövall
- Department of Medical Biochemistry & Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - William J. Griffiths
- Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK
- Correspondence to: William J. Griffiths, Department of Pharmaceutical and Biological Chemistry, The School of Pharmacy, University of London, 29-39 Brunswick Square, London WC1N 1AX, UK. Tel.: +44 (0)20 7753 5876, Fax.: +44 (0)20 7753 5964, E-mail:
| |
Collapse
|
40
|
Yasmin R, Williams RM, Xu M, Noy N. Nuclear import of the retinoid X receptor, the vitamin D receptor, and their mutual heterodimer. J Biol Chem 2005; 280:40152-60. [PMID: 16204233 DOI: 10.1074/jbc.m507708200] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nuclear receptor retinoid X receptor (RXR) can regulate transcription through homotetramers, homodimers, and heterodimers with other nuclear receptors such as the vitamin D receptor (VDR). The mechanisms that underlie the nuclear import of RXR, VDR, and RXR-VDR heterodimers were investigated. We show that RXR and VDR translocate into the nucleus by distinct pathways. RXR strongly bound to importinbeta and was predominantly nuclear in the absence of ligand. Importin binding and nuclear localization of RXR were modestly enhanced by its ligand, 9-cis-retinoic acid. On the other hand, VDR selectively associated with importinalpha. Importin association and correspondingly nuclear import of VDR were markedly augmented by 1,25(OH)2D3. RXR-VDR dimerization inhibited the ability of RXR to bind importinbeta and to mobilize into the nucleus using its own nuclear localization signal. In contrast, VDR recruited RXR-VDR heterodimers to importinalpha and mediated nuclear import of the heterodimers in response to 1,25(OH)2D3. Hence nuclear import of RXR-VDR heterodimers is mediated preferentially by VDR and is controlled by the VDR ligand. The observations reveal a novel mechanism by which an RXR heterodimerization partner dominates the activity of the heterodimers.
Collapse
Affiliation(s)
- Rubina Yasmin
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | | | | | | |
Collapse
|
41
|
Lengqvist J, Alvélius G, Jörnvall H, Sjövall J, Perlmann T, Griffiths WJ. Electrospray mass spectrometry for the direct accurate mass measurement of ligands in complex with the retinoid X receptor alpha ligand binding domain. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2005; 16:1631-40. [PMID: 16085421 DOI: 10.1016/j.jasms.2005.06.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Revised: 05/29/2005] [Accepted: 06/01/2005] [Indexed: 05/03/2023]
Abstract
Accurate mass measurements are often used in the structural determination of unknown compounds of low molecular mass (i.e., below approximately 500 Da). Recently, it has been shown that accurate mass measurements also can be made on small denatured proteins (i.e., M(r), approximately 17,000) to confirm their amino acid composition and identify the presence of isoforms. In the current report, we present nondenaturing electrospray (ES) mass spectrometry data on the direct accurate mass measurement of ligands in complex with the retinoid X receptor ligand binding domain (RXR LBD; M(r) 31,370.92). Average mass errors were below 0.198 Da, 6.3 ppm (standard deviation [SD], 0.146; n = 10) for low-affinity fatty acid agonists analyzed in complex with the RXR LBD. Protein consumption was less than 15 pmol, with fatty acid ligands present at concentrations corresponding to their median effective concentration value (low micromolar, determined in transfection assays). Although determination of fatty acid mass was only sufficiently accurate to give nominal mass values, measurements were of sufficient accuracy to assign fatty acid chain length, degree of unsaturation, or cyclization. Using 17beta-estradiol as a control, the ability to observe specific ligand binding is shown for both high- and low-affinity RXRalpha agonists. In addition, binding of a novel synthetic receptor agonist XCT0315908 to the RXRalpha LBD is reported. This compound showed a high degree of complex formation, and the receptor-ligand complex could be mass measured with an average mass error of -0.024 Da, 0.8 ppm (SD, 0.092; n = 9). Thus, specific binding of both nanomolar and micromolar affinity ligands to a nuclear receptor LBD can be directly observed using nondenaturing ES mass spectrometry and accurate mass measurements additionally can be made on intact complexes in the same experiment. This methodology also is applicable when ligands are present as components of mixtures.
Collapse
Affiliation(s)
- Johan Lengqvist
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
42
|
Gu P, Morgan DH, Sattar M, Xu X, Wagner R, Raviscioni M, Lichtarge O, Cooney AJ. Evolutionary trace-based peptides identify a novel asymmetric interaction that mediates oligomerization in nuclear receptors. J Biol Chem 2005; 280:31818-29. [PMID: 15994320 DOI: 10.1074/jbc.m501924200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Germ cell nuclear factor (GCNF) is an orphan nuclear receptor that plays important roles in development and reproduction, by repressing the expression of essential genes such as Oct4, GDF9, and BMP15, through binding to DR0 elements. Surprisingly, whereas recombinant GCNF binds to DR0 sequences as a homodimer, endogenous GCNF does not exist as a homodimer but rather as part of a large complex termed the transiently retinoid-induced factor (TRIF). Here, we use evolutionary trace (ET) analysis to design mutations and peptides that probe the molecular basis for the formation of this unusual complex. We find that GCNF homodimerization and TRIF complex formation are DNA-dependent, and ET suggests that dimerization involves key functional sites on both helix 3 and helix 11, which are located on opposing surfaces of the ligand binding domain. Targeted mutations in either helix of GCNF disrupt the formation of both the homodimer and the endogenous TRIF complex. Moreover, peptide mimetics of both of these ET-determined sites inhibit dimerization and TRIF complex formation. This suggests that a novel helix 3-helix 11 heterotypic interaction mediates GCNF interaction and would facilitate oligomerization. Indeed, it was determined that the endogenous TRIF complex is composed of a GCNF oligomer. These findings shed light on an evolutionarily selected mechanism that reveals the unusual DNA-binding, dimerization, and oligomerization properties of GCNF.
Collapse
MESH Headings
- Adaptor Proteins, Vesicular Transport/genetics
- Adaptor Proteins, Vesicular Transport/metabolism
- Adaptor Proteins, Vesicular Transport/physiology
- Amino Acid Sequence
- Cell Line
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- DNA-Binding Proteins/physiology
- Dimerization
- Evolution, Molecular
- Genes, Reporter
- Molecular Sequence Data
- Nuclear Receptor Subfamily 6, Group A, Member 1
- Peptides/genetics
- Peptides/metabolism
- Peptides/physiology
- Point Mutation
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Receptor Cross-Talk/physiology
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/physiology
- Receptors, Retinoic Acid/genetics
- Receptors, Retinoic Acid/metabolism
- Receptors, Retinoic Acid/physiology
- Response Elements
Collapse
Affiliation(s)
- Peili Gu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Lefebvre P, Martin PJ, Flajollet S, Dedieu S, Billaut X, Lefebvre B. Transcriptional activities of retinoic acid receptors. VITAMINS AND HORMONES 2005; 70:199-264. [PMID: 15727806 DOI: 10.1016/s0083-6729(05)70007-8] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Vitamin A derivatives plays a crucial role in embryonic development, as demonstrated by the teratogenic effect of either an excess or a deficiency in vitamin A. Retinoid effects extend however beyond embryonic development, and tissue homeostasis, lipid metabolism, cellular differentiation and proliferation are in part controlled through the retinoid signaling pathway. Retinoids are also therapeutically effective in the treatment of skin diseases (acne, psoriasis and photoaging) and of some cancers. Most of these effects are the consequences of retinoic acid receptors activation, which triggers transcriptional events leading either to transcriptional activation or repression of retinoid-controlled genes. Synthetic molecules are able to mimic part of the biological effects of the natural retinoic acid receptors, all-trans retinoic acid. Therefore, retinoic acid receptors are considered as highly valuable therapeutic targets and limiting unwanted secondary effects due to retinoid treatment requires a molecular knowledge of retinoic acid receptors biology. In this review, we will examine experimental evidence which provide a molecular basis for the pleiotropic effects of retinoids, and emphasize the crucial roles of coregulators of retinoic acid receptors, providing a conceptual framework to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Philippe Lefebvre
- INSERM U459 and Ligue Nationale Contre le Cancer, Faculté de Médecine de Lille, 59045 Lille cedex, France
| | | | | | | | | | | |
Collapse
|
44
|
Szanto A, Narkar V, Shen Q, Uray IP, Davies PJA, Nagy L. Retinoid X receptors: X-ploring their (patho)physiological functions. Cell Death Differ 2005; 11 Suppl 2:S126-43. [PMID: 15608692 DOI: 10.1038/sj.cdd.4401533] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Retinoid X receptor (RXR) belongs to a family of ligand-activated transcription factors that regulate many aspects of metazoan life. A class of nuclear receptors requires RXR as heterodimerization partner for their function. This places RXR in the crossroad of multiple distinct biological pathways. This and the fact that the debate on the endogenous ligand requirement for RXR is not yet settled make RXR still an enigmatic transcription factor. Here, we review some of the biology of RXR. We place RXR into the evolution of nuclear receptors, review structural details and ligands of the receptor. Then processes regulated by RXR are discussed focusing on the developmental roles deduced from studies on knockout animals and metabolic roles in diseases such as diabetes and atherosclerosis deduced from pharmacological studies. Finally, aspects of RXR's involvement in myeloid differentiation and apoptosis are summarized along with issues on RXR's suitability as a therapeutic target.
Collapse
Affiliation(s)
- A Szanto
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen H-4012, Hungary
| | | | | | | | | | | |
Collapse
|
45
|
Toresson G, Schuster GU, Steffensen KR, Bengtsson M, Ljunggren J, Dahlman-Wright K, Gustafsson JA. Purification of functional full-length liver X receptor beta produced in Escherichia coli. Protein Expr Purif 2005; 35:190-8. [PMID: 15135392 DOI: 10.1016/j.pep.2004.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 12/18/2003] [Indexed: 11/30/2022]
Abstract
Liver X receptor beta (LXRbeta) is a ligand dependent transcription factor that is a member of the nuclear receptor superfamily. LXRbeta and its isoform LXRalpha have recently been recognized as important regulators of lipid homeostasis in vertebrates. N-terminally hexahistidine-tagged rat LXRbeta was expressed in Escherichia coli as a full-length protein and purified in two chromatographic steps, immobilized metal affinity chromatography and gel filtration. From 10g of bacterial cells, 2.5mg of protein was recovered. The purified LXRbeta is functional with respect to ligand-, DNA-, and coactivator-binding. The synthetic ligand T0901317 bound to LXRbeta with high affinity yielding a K(d) of 2.7nM. Specific interaction with DR4 response elements, in the presence of RXR, was demonstrated with electrophoretic mobility shift assay. Furthermore, surface plasmon resonance analysis of LXRbeta binding to coactivator peptides revealed a ligand dependent interaction with the C-terminal nuclear receptor binding site of the coactivator RAP250. The purified LXRbeta constitutes an important tool for further functional and structural studies.
Collapse
Affiliation(s)
- Gudrun Toresson
- Department of Biosciences, Novum, Karolinska Institute, Huddinge SE-14157, Sweden.
| | | | | | | | | | | | | |
Collapse
|
46
|
Yasmin R, Yeung KT, Chung RH, Gaczynska ME, Osmulski PA, Noy N. DNA-looping by RXR Tetramers Permits Transcriptional Regulation “at a Distance”. J Mol Biol 2004; 343:327-38. [PMID: 15451664 DOI: 10.1016/j.jmb.2004.08.070] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 07/23/2004] [Accepted: 08/23/2004] [Indexed: 10/26/2022]
Abstract
RXR, a member of the superfamily of nuclear hormone receptors, regulates gene transcription in response to 9-cis-retinoic acid. We previously showed that, among nuclear receptors, RXR is unique in that it self-associates into homotetramers, and that these tetramers dissociate rapidly upon ligation. Here, we report that binding of RXR tetramers to DNA containing two RXR response elements results in a dramatic DNA-looping. RXR can thus juxtapose distant DNA sequences, enabling transcriptional regulation by far-upstream factors. We show that RXR functions as a DNA architectural factor and that, while this activity is regulated by 9-cis-retinoic acid, it is distinct from and independent of the receptor's intrinsic transcriptional activity. The data establish RXR as the first identified architectural factor whose activity is regulated by a small ligand, and demonstrate a novel mechanism of transcriptional regulation by retinoids.
Collapse
Affiliation(s)
- Rubina Yasmin
- Division of Nutritional Sciences, Savage Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
47
|
Lima LMTR, Silva JL. Positive contribution of hydration on DNA binding by E2c protein from papillomavirus. J Biol Chem 2004; 279:47968-74. [PMID: 15361525 DOI: 10.1074/jbc.m407696200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Protein-nucleic acid interactions are responsible for the regulation of key biological events such as genomic transcription and recombination and viral replication. However, the recognition mechanisms involved in these processes are not completely understood. Here, we investigate the dominant forces involved in protein-protein and protein-DNA interactions for the 80-amino-acid C-terminal domain of the E2 protein (E2c) from human papillomavirus (HPV-16). The E2c protein is a homodimer that specifically binds to double-stranded DNA containing the consensus sequence ACCG-N(4)-CGGT, where N is any nucleotide. DNA binding affinity is reduced by lowering water chemical potential, accompanied by an increase in cooperativity. Wyman linkage relations between affinity and water chemical potential indicate that 11 additional water molecules are bound in the formation of the complex between E2c and DNA. Salt dissociation isotherms showed that 10 counterions are released upon association, even at low water activity, indicating that this latter variable does not change the electrostatic component of the interaction. Further analysis demonstrates a strong dependence of cooperativity of binding on the protein concentration. Altogether, these results reveal a novel binding pathway in which the consolidated complex may achieve its final form via a monomer-DNA intermediate, which favors the binding of a second monomer. This molecular mechanism reveals the contributions of multiple conformers in a tight virus genome modulation that seems to be important in the cell infection scenario.
Collapse
Affiliation(s)
- Luis Maurício T R Lima
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, CCS, Bss34, Ilha do Fundão, 21941-590 Rio de Janeiro, Brazil.
| | | |
Collapse
|
48
|
Chen Y, Wei LN, Müller JD. Probing protein oligomerization in living cells with fluorescence fluctuation spectroscopy. Proc Natl Acad Sci U S A 2003; 100:15492-7. [PMID: 14673112 PMCID: PMC307595 DOI: 10.1073/pnas.2533045100] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Fluorescence fluctuation spectroscopy provides information about protein interactions in the intercellular environment from naturally occurring equilibrium fluctuations. We determine the molecular brightness of fluorescent proteins from the fluctuations by analyzing the photon counting histogram (PCH) or its moments and demonstrate the use of molecular brightness in probing the oligomerization state of proteins. We report fluorescence fluctuation measurements of enhanced GFP (EGFP) in cells up to concentrations of 10 microM by using an improved PCH theory. The molecular brightness of EGFP is constant in the concentration range studied. The brightness of a tandem EGFP construct, which carries two fluorophores, increases by a factor of two compared with EGFP alone, demonstrating the sensitivity of molecular brightness as a probe for protein complex formation. Oligomerization of nuclear receptors plays a crucial role in the regulation of gene expression. We probe the oligomerization state of the testicular receptor 4 and the ligand-binding domains of retinoid X receptor and retinoic acid receptor by observing molecular brightness changes as a function of protein concentration. The large concentration range accessible by experiment allows us to perform titration experiments on EGFP fusion proteins. An increase in the molecular brightness with protein concentration indicates the formation of homocomplexes. We observe the formation of homodimers of retinoid X receptor ligand binding domain upon addition of ligand. Resolving protein interactions in a cell is an important step in understanding cellular function on a molecular level. Brightness analysis promises to develop into an important tool for determining protein complex formation in cells.
Collapse
Affiliation(s)
- Yan Chen
- School of Physics and Astronomy, University of Minnesota, 116 Church Street Southeast, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
49
|
Vivat-Hannah V, Bourguet W, Gottardis M, Gronemeyer H. Separation of retinoid X receptor homo- and heterodimerization functions. Mol Cell Biol 2003; 23:7678-88. [PMID: 14560013 PMCID: PMC207639 DOI: 10.1128/mcb.23.21.7678-7688.2003] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
As a promiscuous dimerization partner the retinoid X receptor (RXR) can contribute to signaling by multiple nuclear receptors. However, the impact of RXR cosignaling and the possible existence of an RXR homodimer signaling pathway are largely unexplored. We report here on the separation of RXR homo- and heterodimerization as an essential step towards the elucidation of the roles of RXR homo- and heterodimers in retinoid-rexinoid signaling. RXR homodimerization was specifically disrupted by single mutations in the RXR dimerization interface. In contrast, even multiple mutations did not fully impair RXR heterodimerization with retinoic acid receptor (RAR). Importantly, the mutation of mouse RXRalpha (mRXRalpha) Tyr402 substantially weakened RAR heterodimerization while concomitantly increasing homodimerization. Not only did this lead to cooperatively enhanced RXR homodimer binding to DR1 or DR5 elements, but unexpectedly, the mutant acquired significant binding efficiency for noncognate DR3 or DR4 elements as well. The increased stability of RXR homodimers on DR1 correlated with increased transcriptional activity of mRXRalpha(Y402A) on DR1-based reporter genes. Weak, if any, heterodimerization was observed with thyroid, vitamin D(3), or peroxisome proliferator-activating receptors. A model accounting for the structural impact of the Tyr402 mutation on dimerization is discussed. These results provide the basis for a genetic replacement of wild-type RXRs by mutants like mRXRalpha(Y402A) to elucidate the physiological impact of RXR homo- and heterodimerization.
Collapse
Affiliation(s)
- Valerie Vivat-Hannah
- Pharmaceutical Research Institute, Bristol-Myers Squibb, Princeton, New Jersey 08543-4000, USA
| | | | | | | |
Collapse
|
50
|
Hewson QC, Lovat PE, Pearson ADJ, Redfern CPF. Retinoid signalling and gene expression in neuroblastoma cells: RXR agonist and antagonist effects on CRABP-II and RARbeta expression. J Cell Biochem 2003; 87:284-91. [PMID: 12397610 DOI: 10.1002/jcb.10310] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
9-cis Retinoic acid (RA) induces gene expression in neuroblastoma cells more effectively and with different kinetics than other RA isomers, and could be acting in part through Retinoid X Receptors (RXRs). The aim of this study was to characterise the effects of an RXR agonist and RXR homodimer antagonist on the induction of cellular RA binding protein II (CRABP-II) and RA receptor-beta (RARbeta) in neuroblastoma cells in response to different retinoids. The RXR agonist, LDG1069, was as effective as all-trans RA in inducing gene expression, but less effective than 9-cis RA. The RXR-homodimer antagonist, LG100754, inhibited the induction of CRABP-II mRNA in SH-SY5Y neuroblastoma cells by 9-cis RA or the RXR-specific agonist LGD1069, but had no effect when used with all-trans RA. Conversely, LG100754 did not inhibit induction of RARbeta mRNA by 9-cis or all-trans RA, or by LGD1069. RAR- and RXR-specific ligands used together induced CRABP-II and RARbeta as effectively as 9-cis RA. These results demonstrate the value of combining RXR- and RAR-specific ligands to regulate RA-inducible gene expression. The possibility that RXR-homodimers mediate, in part, the induction of CRABP-II by 9-cis RA and RXR-specific ligands is discussed.
Collapse
Affiliation(s)
- Quentin Campbell Hewson
- Department of Child Health, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom
| | | | | | | |
Collapse
|