1
|
Xia R, Peng HF, Zhang X, Zhang HS. Comprehensive review of amino acid transporters as therapeutic targets. Int J Biol Macromol 2024; 260:129646. [PMID: 38272411 DOI: 10.1016/j.ijbiomac.2024.129646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/27/2024]
Abstract
The solute carrier (SLC) family, with more than 400 membrane-bound proteins, facilitates the transport of a wide array of substrates such as nutrients, ions, metabolites, and drugs across biological membranes. Amino acid transporters (AATs) are membrane transport proteins that mediate transfer of amino acids into and out of cells or cellular organelles. AATs participate in many important physiological functions including nutrient supply, metabolic transformation, energy homeostasis, redox regulation, and neurological regulation. Several AATs have been found to significantly impact the progression of human malignancies, and dysregulation of AATs results in metabolic reprogramming affecting tumor growth and progression. However, current clinical therapies that directly target AATs have not been developed. The purpose of this review is to highlight the structural and functional diversity of AATs, the molecular mechanisms in human diseases such as tumors, kidney diseases, and emerging therapeutic strategies for targeting AATs.
Collapse
Affiliation(s)
- Ran Xia
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hai-Feng Peng
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Xing Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China
| | - Hong-Sheng Zhang
- College of Chemistry and Life Science, Beijing University of Technology, Pingleyuan 100(#), District of Chaoyang, Beijing 100124, China.
| |
Collapse
|
2
|
Bai P, Zhang W, Lai L, Huang H, Qin J, Duan B, Wang H, Chen Y, Jia Y, Xing J, Wang T, Chen B. Declaration: Novel SLC3A1 mutation in a cystinuria patient with xanthine stones: a case report. BMC Urol 2023; 23:130. [PMID: 37525149 PMCID: PMC10391995 DOI: 10.1186/s12894-023-01300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 07/21/2023] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Cystinuria and xanthinuria are both rare genetic diseases involving urinary calculi. However, cases combining these two disorders have not yet been reported. CASE PRESENTATION In this study, we report a case of cystinuria with xanthine stones and hyperuricemia. The 23-year-old male patient was diagnosed with kidney and ureteral stones, solitary functioning kidney and hyperuricemia after admission to the hospital. The stones were removed by surgery and found to be composed of xanthine. CONCLUSION Genetic testing by next-generation sequencing technology showed that the patient carried the homozygous nonsense mutation c.1113 C> A (p.Tyr371*) in the SLC3A1 gene, which was judged to be a functionally pathogenic variant. Sanger sequencing revealed that the patient's parents carried this heterozygous mutation, which is a pathogenic variant that can cause cystinuria. The 24-h urine metabolism analysis showed that the cystine content was 644 mg (<320 mg/24 h), indicating that the patient had cystinuria, consistent with the genetic test results. This case shows that cystinuria and xanthine stones can occur simultaneously, and provides evidence of a possible connection between the two conditions. Furthermore, our findings demonstrate the potential value of genetic testing using next-generation sequencing to effectively assist in the clinical diagnosis and treatment of patients with urinary calculi.
Collapse
Affiliation(s)
- Peide Bai
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - WenZhao Zhang
- Department of Pediatric Surgery, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Longhui Lai
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Haichao Huang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Jiaxuan Qin
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Bo Duan
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Huiqiang Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yuedong Chen
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Yuanyuan Jia
- GloriousMed Clinical Laboratory (Shanghai) Co., Ltd, Shanghai, China
| | - Jinchun Xing
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, China
| | - Tao Wang
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
- Department of Pediatric Surgery, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China.
| | - Bin Chen
- Department of Urology, The First Affiliated Hospital of Xiamen University, Xiamen, China.
| |
Collapse
|
3
|
Ellingsen S, Narawane S, Fjose A, Verri T, Rønnestad I. The zebrafish cationic amino acid transporter/glycoprotein-associated family: sequence and spatiotemporal distribution during development of the transport system b 0,+ (slc3a1/slc7a9). FISH PHYSIOLOGY AND BIOCHEMISTRY 2021; 47:1507-1525. [PMID: 34338990 PMCID: PMC8478756 DOI: 10.1007/s10695-021-00984-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 06/29/2021] [Indexed: 06/12/2023]
Abstract
System b0,+ absorbs lysine, arginine, ornithine, and cystine, as well as some (large) neutral amino acids in the mammalian kidney and intestine. It is a heteromeric amino acid transporter made of the heavy subunit SLC3A1/rBAT and the light subunit SLC7A9/b0,+AT. Mutations in these two genes can cause cystinuria in mammals. To extend information on this transport system to teleost fish, we focused on the slc3a1 and slc7a9 genes by performing comparative and phylogenetic sequence analysis, investigating gene conservation during evolution (synteny), and defining early expression patterns during zebrafish (Danio rerio) development. Notably, we found that slc3a1 and slc7a9 are non-duplicated in the zebrafish genome. Whole-mount in situ hybridization detected co-localized expression of slc3a1 and slc7a9 in pronephric ducts at 24 h post-fertilization and in the proximal convoluted tubule at 3 days post-fertilization (dpf). Notably, both the genes showed co-localized expression in epithelial cells in the gut primordium at 3 dpf and in the intestine at 5 dpf (onset of exogenous feeding). Taken together, these results highlight the value of slc3a1 and slc7a9 as markers of zebrafish kidney and intestine development and show promise for establishing new zebrafish tools that can aid in the rapid screening(s) of substrates. Importantly, such studies will help clarify the complex interplay between the absorption of dibasic amino acids, cystine, and (large) neutral amino acids and the effect(s) of such nutrients on organismal growth.
Collapse
Affiliation(s)
- Ståle Ellingsen
- Department of Molecular Biology, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Shailesh Narawane
- Department of Molecular Biology, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Anders Fjose
- Department of Molecular Biology, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway
| | - Tiziano Verri
- Department of Biological and Environmental Sciences and Technologies, University of Salento, via Prov.le Lecce-Monteroni, 73100, Lecce, Italy
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Postbox 7803, N-5020, Bergen, Norway.
| |
Collapse
|
4
|
Wu KC, Reisman SA, Klaassen CD. Tissue distribution, hormonal regulation, ontogeny, diurnal expression, and induction of mouse cystine transporters Slc3a1 and Slc7a9. Free Radic Res 2020; 54:525-534. [PMID: 32873097 DOI: 10.1080/10715762.2020.1812597] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Slc7a11 (xCT) and Slc3a1 (rBAT) are cystine uptake transporters that maintain intracellular concentrations of cysteine, the rate-limiting amino acid in glutathione synthesis. This study was conducted to first determine the tissue distribution of the two transporters in male and female mice. Because Slc3a1 was the primary cystine transporter in liver, its sex-divergent expression, ontogeny, diurnal rhythm and whether its mRNA expression is altered by transcription factors (AhR, CAR, PXR, PPARα, and Nrf2) was also investigated. Slc7a11 was expressed highest in brain and gonads. Slc3a1 was expressed highest in kidney and intestine, followed by liver. Duodenal and hepatic Slc3a1 was higher in females than males. Hepatic Slc3a1 was high during darkness and low during daytime. Hepatic Scl3a1 was lowest pre-birth, increased to near maximal levels at birth, decreased back to pre-birth levels between Days 3-10, and then returned to peak levels by Day 45. Except for CAR, activation of transcription factors did not increase hepatic mRNA expression of Slc3a1. Chemical activation of CAR significantly induced Slc3a1 1.4-fold in wild-type but not CAR-null mice. Slc3a1 mRNA was higher in livers of AhR- and Nrf2-null mice compared to wild-type mice. High doses of diquat but not acetaminophen induced Slc3a1, suggesting Slc3a1 may respond to oxidative stress but not necessarily to GSH depletion. Overall, Slc7a11 is mainly expressed in brain and gonads, whereas Slc3a1 is mainly expressed in kidney, small intestine and liver, and its hepatic expression is regulated by diurnal rhythm and certain xenobiotic treatments.
Collapse
Affiliation(s)
- Kai Connie Wu
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas, Kansas City, MO, USA
| | - Scott A Reisman
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas, Kansas City, MO, USA
| | - Curtis D Klaassen
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas, Kansas City, MO, USA
| |
Collapse
|
5
|
Yan R, Li Y, Shi Y, Zhou J, Lei J, Huang J, Zhou Q. Cryo-EM structure of the human heteromeric amino acid transporter b 0,+AT-rBAT. SCIENCE ADVANCES 2020; 6:eaay6379. [PMID: 32494597 PMCID: PMC7159911 DOI: 10.1126/sciadv.aay6379] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 01/22/2020] [Indexed: 05/16/2023]
Abstract
Heteromeric amino acid transporters (HATs) catalyze the transmembrane movement of amino acids, comprising two subunits, a heavy chain and a light chain, linked by a disulfide bridge. The b0,+AT (SLC7A9) is a representative light chain of HATs, forming heterodimer with rBAT, a heavy chain which mediates the membrane trafficking of b0,+AT. The b0,+AT-rBAT complex is an obligatory exchanger, which mediates the influx of cystine and cationic amino acids and the efflux of neutral amino acids in kidney and small intestine. Here, we report the cryo-EM structure of the human b0,+AT-rBAT complex alone and in complex with arginine substrate at resolution of 2.7 and 2.3 Å, respectively. The overall structure of b0,+AT-rBAT exists as a dimer of heterodimer consistent with the previous study. A ligand molecule is bound to the substrate binding pocket, near which an occluded pocket is identified, to which we found that it is important for substrate transport.
Collapse
Affiliation(s)
- Renhong Yan
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Yaning Li
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Shi
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jiayao Zhou
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianlin Lei
- Technology Center for Protein Sciences, Ministry of Education Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Huang
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Qiang Zhou
- Key Laboratory of Structural Biology of Zhejiang Province, Institute of Biology, Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
6
|
Yahyaoui R, Pérez-Frías J. Amino Acid Transport Defects in Human Inherited Metabolic Disorders. Int J Mol Sci 2019; 21:ijms21010119. [PMID: 31878022 PMCID: PMC6981491 DOI: 10.3390/ijms21010119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/12/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Amino acid transporters play very important roles in nutrient uptake, neurotransmitter recycling, protein synthesis, gene expression, cell redox balance, cell signaling, and regulation of cell volume. With regard to transporters that are closely connected to metabolism, amino acid transporter-associated diseases are linked to metabolic disorders, particularly when they involve different organs, cell types, or cell compartments. To date, 65 different human solute carrier (SLC) families and more than 400 transporter genes have been identified, including 11 that are known to include amino acid transporters. This review intends to summarize and update all the conditions in which a strong association has been found between an amino acid transporter and an inherited metabolic disorder. Many of these inherited disorders have been identified in recent years. In this work, the physiological functions of amino acid transporters will be described by the inherited diseases that arise from transporter impairment. The pathogenesis, clinical phenotype, laboratory findings, diagnosis, genetics, and treatment of these disorders are also briefly described. Appropriate clinical and diagnostic characterization of the underlying molecular defect may give patients the opportunity to avail themselves of appropriate therapeutic options in the future.
Collapse
Affiliation(s)
- Raquel Yahyaoui
- Laboratory of Metabolic Disorders and Newborn Screening Center of Eastern Andalusia, Málaga Regional University Hospital, 29011 Málaga, Spain
- Grupo Endocrinología y Nutrición, Diabetes y Obesidad, Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain
- Correspondence:
| | - Javier Pérez-Frías
- Grupo Multidisciplinar de Investigación Pediátrica, Instituto de Investigación Biomédica de Málaga-IBIMA, 29010 Málaga, Spain;
- Departamento de Farmacología y Pediatría, Facultad de Medicina, Universidad de Málaga, 29010 Málaga, Spain
| |
Collapse
|
7
|
Abstract
The small intestine mediates the absorption of amino acids after ingestion of protein and sustains the supply of amino acids to all tissues. The small intestine is an important contributor to plasma amino acid homeostasis, while amino acid transport in the large intestine is more relevant for bacterial metabolites and fluid secretion. A number of rare inherited disorders have contributed to the identification of amino acid transporters in epithelial cells of the small intestine, in particular cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, and dicarboxylic aminoaciduria. These are most readily detected by analysis of urine amino acids, but typically also affect intestinal transport. The genes underlying these disorders have all been identified. The remaining transporters were identified through molecular cloning techniques to the extent that a comprehensive portrait of functional cooperation among transporters of intestinal epithelial cells is now available for both the basolateral and apical membranes. Mouse models of most intestinal transporters illustrate their contribution to amino acid homeostasis and systemic physiology. Intestinal amino acid transport activities can vary between species, but these can now be explained as differences of amino acid transporter distribution along the intestine. © 2019 American Physiological Society. Compr Physiol 9:343-373, 2019.
Collapse
Affiliation(s)
- Stefan Bröer
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Stephen J Fairweather
- Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
8
|
In silico analysis of SLC3A1 and SLC7A9 mutations in Iranian patients with Cystinuria. Mol Biol Rep 2018; 45:1165-1173. [PMID: 30069816 DOI: 10.1007/s11033-018-4269-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 07/16/2018] [Indexed: 01/02/2023]
Abstract
Cystinuria is an autosomal recessive defect in reabsorptive transport of cystine and the dibasic amino acids ornithine, arginine, and lysine from renal tubule and small intestine. Mutations in two genes: SLC3A1, encoding the heavy chain rbAT of the renal cystine transport system and SLC7A9, the gene of its light chain b0, + AT have a crucial role in the diseases. In our previous studies from Iranian populations with Cystinuria totally six and eleven novel mutations respectively identified in SLC3A1 and SLC7A9 genes. In this study, we conducted an in silico functional analysis to explore the possible association between these genetic mutations and Cystinuria. MutationTaster, PolyPhen-2, PANTHER, FATHMM. PhDSNP and MutPred was applied to predict the degree of pathogenicity for the missense mutations. Furthermore, Residue Interaction Network (RIN) and Intron variant analyses was performed using Cytoscape and Human Slicing Finder softwares. These genetic variants can provide a better understanding of genotype-phenotype relationships in patients with Cystinuria. In the future, the findings may also facilitate the development of new molecular diagnostic markers for the diseases.
Collapse
|
9
|
Abstract
Cystinuria is an aminoaciduria caused by mutations in the genes that encode the two subunits of the amino acid transport system b0,+, responsible for the renal reabsorption of cystine and dibasic amino acids. The clinical symptoms of cystinuria relate to nephrolithiasis, due to the precipitation of cystine in urine. Mutations in SLC3A1, which codes for the heavy subunit rBAT, cause cystinuria type A, whereas mutations in SLC7A9, which encodes the light subunit b0,+AT, cause cystinuria type B. By crossing Slc3a1-/- with Slc7a9-/- mice we generated a type AB cystinuria mouse model to test digenic inheritance of cystinuria. The 9 genotypes obtained have been analyzed at early (2- and 5-months) and late stage (8-months) of the disease. Monitoring the lithiasic phenotype by X-ray, urine amino acid content analysis and protein expression studies have shown that double heterozygous mice (Slc7a9+/-Slc3a1+/-) present lower expression of system b0,+ and higher hyperexcretion of cystine than single heterozygotes (Slc7a9+/-Slc3a1+/+ and Slc7a9+/+Slc3a1+/-) and give rise to lithiasis in 4% of the mice, demonstrating that cystinuria has a digenic inheritance in this mouse model. Moreover in this study it has been demonstrated a genotype/phenotype correlation in type AB cystinuria mouse model providing new insights for further molecular and genetic studies of cystinuria patients.
Collapse
|
10
|
|
11
|
|
12
|
Palacín M, Fernaández E, Chillarón J, Zorzano A. The amino acid transport system bo,+and cystinuria. Mol Membr Biol 2009. [DOI: 10.1080/09687680010028771] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
13
|
Jungers P, Joly D, Blanchard A, Courbebaisse M, Knebelmann B, Daudon M. [Inherited monogenic kidney stone diseases: recent diagnostic and therapeutic advances]. Nephrol Ther 2008; 4:231-55. [PMID: 18499551 DOI: 10.1016/j.nephro.2007.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2007] [Accepted: 12/20/2007] [Indexed: 11/24/2022]
Abstract
Hereditary monogenic kidney stone diseases are rare diseases, since they account for nearly 2% of nephrolithiasis cases in adults and 10% in children. Most of them are severe, because they frequently are associated with nephrocalcinosis and lead to progressive impairment of renal function unless an early and appropriate etiologic treatment is instituted. Unfortunately, treatment is often lacking or started too late since they are often misdiagnosed or overlooked. The present review reports the genotypic and phenotypic characteristics of monogenic nephrolithiases, with special emphasis on the recent advances in the field of diagnosis and therapeutics. Monogenic stone diseases will be classified into three groups according to their mechanism: (1) inborn errors of the metabolism of oxalate (primary hyperoxalurias), uric acid (hereditary hyperuricemias) or other purines (2,8-dihydroxyadeninuria), which, in addition to stone formation, result in crystal deposition in the renal parenchyma; (2) congenital tubulopathies affecting the convoluted proximal tubule (such as Dent's disease, Lowe syndrome or hypophosphatemic rickets), the thick ascending limb of Henlé's loop (such as familial hypomagnesemia and Bartter's syndromes) or the distal past of the nephron (congenital distal tubular acidosis with or without hearing loss), which are frequently associated with nephrocalcinosis, phosphatic stones and extensive tubulointerstitial fibrosis; (3) cystinuria, an isolated defect in tubular reabsorption of cystine and dibasic aminoacids, which results only in the formation of stones but requires a cumbersome treatment. Analysis of stones appears of crucial value for the early diagnosis of these diseases, as in several of them the morphology and composition of stones is specific. In other cases, especially if nephrocalcinosis, phosphatic stones or proteinuria are present, the evaluation of blood and urine chemistry, especially with regard to calcium, phosphate and magnesium, is the key of diagnosis. Search for mutations is now increasingly performed in as much as genetic counselling is important for the detection of heterozygotes in autosomic recessive diseases and of carrier women in X-linked diseases. In conclusion, better awareness to the rare monogenic forms of nephrolithiasis and/or nephrocalcinosis should allow early diagnosis and treatment which are needed to prevent or substantially delay progression of end-stage renal disease. Analysis of every first stone both in children and in adults should never be neglected, in order to early detect unusual forms of nephrolithiasis requiring laboratory evaluation and deep etiologic treatment.
Collapse
Affiliation(s)
- Paul Jungers
- Service de Néphrologie, Hôpital Necker, AP-HP, Paris Cedex, France
| | | | | | | | | | | |
Collapse
|
14
|
Bergeron MJ, Simonin A, Bürzle M, Hediger MA. Inherited epithelial transporter disorders--an overview. J Inherit Metab Dis 2008; 31:178-87. [PMID: 18415698 DOI: 10.1007/s10545-008-0861-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2007] [Revised: 02/12/2008] [Accepted: 02/13/2008] [Indexed: 01/11/2023]
Abstract
In the late 1990s, the identification of transporters and transporter-associated genes progressed substantially due to the development of new cloning approaches such as expression cloning and, subsequently, to the implementation of the human genome project. Since then, the role of many transporter genes in human diseases has been elucidated. In this overview, we focus on inherited disorders of epithelial transporters. In particular, we review genetic defects of the genes encoding glucose transporters (SLC2 and SLC5 families) and amino acid transporters (SLC1, SLC3, SLC6 and SLC7 families).
Collapse
Affiliation(s)
- M J Bergeron
- Institute of Biochemistry and Molecular Medicine, University of Berne, Berne, Switzerland
| | | | | | | |
Collapse
|
15
|
Bröer S. Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 2008; 88:249-86. [PMID: 18195088 DOI: 10.1152/physrev.00018.2006] [Citation(s) in RCA: 652] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The transport of amino acids in kidney and intestine is critical for the supply of amino acids to all tissues and the homeostasis of plasma amino acid levels. This is illustrated by a number of inherited disorders affecting amino acid transport in epithelial cells, such as cystinuria, lysinuric protein intolerance, Hartnup disorder, iminoglycinuria, dicarboxylic aminoaciduria, and some other less well-described disturbances of amino acid transport. The identification of most epithelial amino acid transporters over the past 15 years allows the definition of these disorders at the molecular level and provides a clear picture of the functional cooperation between transporters in the apical and basolateral membranes of mammalian epithelial cells. Transport of amino acids across the apical membrane not only makes use of sodium-dependent symporters, but also uses the proton-motive force and the gradient of other amino acids to efficiently absorb amino acids from the lumen. In the basolateral membrane, antiporters cooperate with facilitators to release amino acids without depleting cells of valuable nutrients. With very few exceptions, individual amino acids are transported by more than one transporter, providing backup capacity for absorption in the case of mutational inactivation of a transport system.
Collapse
Affiliation(s)
- Stefan Bröer
- School of Biochemistry and Molecular Biology, Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
16
|
Font-Llitjós M, Feliubadaló L, Espino M, Clèries R, Mañas S, Frey IM, Puertas S, Colell G, Palomo S, Aranda J, Visa J, Palacín M, Nunes V. Slc7a9knockout mouse is a good cystinuria model for antilithiasic pharmacological studies. Am J Physiol Renal Physiol 2007; 293:F732-40. [PMID: 17596531 DOI: 10.1152/ajprenal.00121.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cystinuria is a hereditary disorder caused by a defect in the apical membrane transport system for cystine and dibasic amino acids in renal proximal tubules and intestine, resulting in recurrent urolithiasis. Mutations in SLC3A1 and SLC7A9 genes, that codify for rBAT/b0,+AT transporter subunits, cause type A and B cystinuria, respectively. In humans, cystinuria treatment is based on the prevention of calculi formation and its dissolution or breakage. Persistent calculi are treated with thiols [i.e., d-penicillamine (DP) and mercaptopropionylglycine (MPG)] for cystine solubilization. We have developed a new protocol with DP to validate our Slc7a9 knockout mouse model for the study of the therapeutic effect of drugs in the treatment of cystine lithiasis. We performed a 5-wk treatment of individually caged lithiasic mutant mice with a previously tested DP dose. To appraise the evolution of lithiasis throughout the treatment a noninvasive indirect method of calculi quantification was developed: calculi mass was quantified by densitometry of X-ray images from cystinuric mice before and after treatment. Urine was collected in metabolic cage experiments to quantify amino acids in DP-treated and nontreated, nonlithiasic mutant mice. We found significant differences between DP-treated and nontreated knockout mice in calculi size and in urinary cystine excretion. Histopathological analysis showed that globally nontreated mutant mice had more severe and diffuse urinary system damage than DP-treated mice. Our results validate the use of this mouse model for testing the efficacy of potential new drugs against cystinuria.
Collapse
Affiliation(s)
- Mariona Font-Llitjós
- Medical and Molecular Genetics Center, Institut d'Investigació Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Parvari R, Hershkovitz E. Chromosomal microdeletions and genes' functions: a cluster of chromosomal microdeletions and the deleted genes' functions. Eur J Hum Genet 2007; 15:997-8. [PMID: 17625506 DOI: 10.1038/sj.ejhg.5201894] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Ruti Parvari
- Department of Developmental Genetics and Virology and the National Institute of Biotechnology Negev, Ben Gurion University of the Negev, PO box 653, Beer Sheva 84105, Israel.
| | | |
Collapse
|
18
|
Yuen YP, Lam CW, Lai CK, Tong SF, Li PS, Tam S, Kwan EYW, Chan SY, Tsang WK, Chan KY, Mak WL, Cheng CW, Chan YW. Heterogeneous mutations in the SLC3A1 and SLC7A9 genes in Chinese patients with cystinuria. Kidney Int 2006; 69:123-8. [PMID: 16374432 DOI: 10.1038/sj.ki.5000003] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cystinuria is a recessively inherited aminoaciduria that leads to recurrent urolithiasis. It is caused by the defective transport of cystine and dibasic amino acids in the proximal renal tubules and intestinal epithelium. Two genes responsible for this, SLC3A1 and SLC7A9, are known. Patients with two SLC3A1 mutations are classified as type A cystinuria, whereas patients with two SLC7A9 mutations are classified as type B cystinuria. Few clinical and molecular data have been reported for Asian cystinuria patients. In this study, we determined the molecular basis of cystinuria in eight unrelated Chinese subjects. Coding exons and flanking introns of the SLC3A1 and SLC7A9 genes were directly sequenced after amplification by polymerase chain reaction. Five different SLC3A1 mutations were found. Two missense mutations, D210G and S547L, were novel. The other three SLC3A1 mutations (IVS6+2T>C, R181Q and R365W) have been described previously. In addition, four novel SLC7A9 mutations, C137R, c.730delG, IVS10+2_3delTG and IVS12+3insT, together with two previously reported mutations (A70V and G195R) were found. All patients except one carried compound heterozygous mutations. IVS12+3insT was detected in patients from two families. This is the first molecular genetic study on Chinese cystinuria patients. Three patients with type A cystinuria, two with type B cystinuria, and three carriers of type B cystinuria were identified. Our results suggest that the molecular basis of cystinuria is heterogeneous in our local population.
Collapse
Affiliation(s)
- Y-P Yuen
- Department of Pathology, Princess Margaret Hospital, Hong Kong, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
BACKGROUND Cystinuria is an inherited disorder of luminal reabsorptive transport for cystine and dibasic amino acids in the renal proximal tubule. Two cystinuria genes have been identified. Mutations of SLC7A9, which encodes the luminal transport channel itself, tend to be dominant and mutations of SLC3A1 (rBAT), which encodes a transporter subunit, are always recessive. Patients who inherit two recessive mutations or two dominant mutations have equally severe forms of cystinuria. Heterozygotes excrete cystine in the normal (type I), moderate (type III), or high stone-forming (type II) range. METHODS Infants with cystinuria were identified via the Quebec Newborn Urinary Screening Program. In a subgroup of these infants, cystinuria was severe in the first months of life, but partially resolved by 2 to 4 years postnatally. We assigned each patient a final cystinuria phenotype at 3 to 4 years. In addition, we characterized SLC3A1 gene expression in fetal and postnatal human kidney. RESULTS Most infants with transient neonatal cystinuria are eventually classified as type III heterozygotes. All infants with mutant cystinuria genes have exaggerated neonatal cystine excretion except those who inherit two SLC3A1 mutations (type I/I cystinuria); these children have persistent severe cystinuria, implying that wildtype SLC3A1 is required for the maturational effect. Expression of SLC3A1 mRNA was found to be tenfold higher in postnatal vs. fetal kidney; SLC3A1 expression is doubled by the proximal tubule transcription factor, PAX8. rBAT is expressed in the proximal convoluted and straight tubules in both fetal and adult kidney. CONCLUSION Maturation of SLC3A1 gene expression between midgestation and 4.5 years postnatal age may account for transient neonatal cystinuria.
Collapse
Affiliation(s)
- Marylise Boutros
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
20
|
Palacín M, Nunes V, Font-Llitjós M, Jiménez-Vidal M, Fort J, Gasol E, Pineda M, Feliubadaló L, Chillarón J, Zorzano A. The Genetics of Heteromeric Amino Acid Transporters. Physiology (Bethesda) 2005; 20:112-24. [PMID: 15772300 DOI: 10.1152/physiol.00051.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Heteromeric amino acid transporters (HATs) are composed of a heavy ( SLC3 family) and a light ( SLC7 family) subunit. Mutations in system b0,+(rBAT-b0,+AT) and in system y+L (4F2hc-y+LAT1) cause the primary inherited aminoacidurias (PIAs) cystinuria and lysinuric protein intolerance, respectively. Recent developments [including the identification of the first Hartnup disorder gene (B0AT1; SLC6A19)] and knockout mouse models have begun to reveal the basis of renal and intestinal reabsorption of amino acids in mammals.
Collapse
Affiliation(s)
- Manuel Palacín
- Department of Biochemistry and Molecular Biology, Faculty of Biology and Institut de Recerca Biomedica de Barcelona, Barcelona Science Park, University of Barcelona, Spain.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Harnevik L, Fjellstedt E, Molbaek A, Denneberg T, Söderkvist P. Mutation analysis of SLC7A9 in cystinuria patients in Sweden. GENETIC TESTING 2003; 7:13-20. [PMID: 12820697 DOI: 10.1089/109065703321560886] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cystinuria is an autosomal recessive disorder characterized by increased urinary excretion of cystine and dibasic amino acids, which cause recurrent stone formation in affected individuals. Three subtypes of cystinuria have been described (type I, II, and III): type I is caused by mutations in the SLC3A1 gene, whereas nontype I (II and III) has been associated with SLC7A9 mutations. Of the 53 patients reported in our previous work, patients that showed SLC7A9 mutations in single-strand conformation polymorphism (SSCP) screening and/or either lacked or showed heterozygosity for SLC3A1 mutations were included in the present study. The entire coding region and the exon/intron boundaries of the SLC7A9 gene were analyzed by means of both SSCP and DNA sequencing in 16 patients, all but one of which were clinically diagnosed as homozygous cystinurics. Three novel SLC7A9 mutations were identified in the patient group: two missense mutations (P261L and V330M), and one single base-pair deletion (1009 delA). We also detected the previously reported A182T and nine novel polymorphisms in the patients. Mutations V330M and 1009delA occurred on different alleles in one individual, and we suggest that these mutations cause cystinuria in this patient. One patient that was homozygously mutated in the SLC3A1 gene carried the third novel mutation (P261L). We conclude that SLC3A1 is still the major disease gene among Swedish cystinuria patients, with only a minor contribution of SLC7A9 mutations as the genetic basis of cystinuria. The absence of SLC3A1 and SLC7A9 mutations in a substantial proportion of the patients implies that mutations in parts of the genes that were not analyzed may be present, as well as large deletions that escape detection by the methods used. However, our results raise the question of whether other, as yet unknown genes, may also be involved in cystinuria.
Collapse
Affiliation(s)
- Lotta Harnevik
- Division of Cell Biology, Department of Biomedicine and Surgery, Faculty of Health Sciences, SE-581 85 Linköping, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Tsumura H, Suzuki N, Saito H, Kawano M, Otake S, Kozuka Y, Komada H, Tsurudome M, Ito Y. The targeted disruption of the CD98 gene results in embryonic lethality. Biochem Biophys Res Commun 2003; 308:847-51. [PMID: 12927796 DOI: 10.1016/s0006-291x(03)01473-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
CD98 is one of the important molecules for development, cell differentiation, cell proliferation, and regulation of cellular function. In this study, CD98 heavy chain (HC) knockout mice were produced and analyzed. Five targeted ES clones were obtained and colony frequency was about 2%. One (clone 113) of the five heterozygous ES cell clones had undergone aberrant recombination at the 5' side. The aberrant recombination happened at the site between second intron and 5' arm. All lines from correctly targeted clones could not transmit the mutated allele to spermatozoa. The mutated allele derived from the aberrant targeted clone was transmitted to the progeny. However, none of the F2 mice was homozygous for the CD98 mutation, indicating that the targeted disruption of the CD98 gene results in embryonic lethality. The point of embryonic lethality is considered to be between 3.5 and 9.5 dps. These findings indicate that CD98 molecules are essential for mouse embryogenesis.
Collapse
Affiliation(s)
- Hideki Tsumura
- Functional Genomics Institutes, Life Science Research Center, Mie University, 2-174, Edobashi, Tsu-Shi, Mie Prefecture 514-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Zaffanello M, Beghini R, Zamboni G, Fanos V. A sporadic case of cystinuria, respiratory chain and growth hormone deficiencies. Pediatr Nephrol 2003; 18:846-7. [PMID: 12750973 DOI: 10.1007/s00467-003-1189-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Palacín M, Kanai Y. The ancillary proteins of HATs: SLC3 family of amino acid transporters. Pflugers Arch 2003; 447:490-4. [PMID: 14770309 DOI: 10.1007/s00424-003-1062-7] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Accepted: 03/28/2003] [Indexed: 11/30/2022]
Abstract
The heteromeric amino acid transporters (HATs) are composed of a light and a heavy subunit linked by a disulfide bridge. The heavy subunits are the SLC3 members (rBAT and 4F2hc), whereas the light subunits are members of the SLC7 family of amino acid transporters. SLC3 proteins are type II membrane glycoproteins (i.e., one single transmembrane domain and the C-terminus located outside the cell) with a bulky extracellular domain that shows homology with alpha-glucosidases. rBAT heterodimerizes with b(0,+)AT (SLC7A9) constituting the amino acid transport b(0,+), the main system responsible for the apical reabsorption of cystine in kidney. The defect in this system causes cystinuria, the most common primary inherited aminoaciduria. 4F2hc subserves various amino acid transport systems by dimerization with different SLC7 proteins. The main role of SLC3 proteins is to help routing of the holotransporter to the plasma membrane. A working model for the biogenesis of HATs based on recent data on the rBAT/b(0,+)AT heterodimeric complex is presented. 4F2hc is a multifunctional protein, and in addition to its role in amino acid transport, it may be involved in other cellular functions. Studies on two SLC7 members (Asc-2 and AGT1) demonstrate heterodimerization with unknown heavy subunits.
Collapse
Affiliation(s)
- Manuel Palacín
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona and Parc Cientìfic de Barcelona, Avda. Diagonal 645, 08028, Barcelona, Spain.
| | | |
Collapse
|
25
|
Bauch C, Forster N, Loffing-Cueni D, Summa V, Verrey F. Functional cooperation of epithelial heteromeric amino acid transporters expressed in madin-darby canine kidney cells. J Biol Chem 2003; 278:1316-22. [PMID: 12417581 DOI: 10.1074/jbc.m210449200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The heteromeric amino acid transporters b(0,+)AT-rBAT (apical), y(+)LAT1-4F2hc, and possibly LAT2-4F2hc (basolateral) participate to the (re)absorption of cationic and neutral amino acids in the small intestine and kidney proximal tubule. We show now by immunofluorescence that their expression levels follow the same axial gradient along the kidney proximal tubule (S1>S2S3). We reconstituted their co-expression in MDCK cell epithelia and verified their polarized localization by immunofluorescence. Expression of b(0,+)AT-rBAT alone led to a net reabsorption of l-Arg (given together with l-Leu). Coexpression of basolateral y(+)LAT1-4F2hc increased l-Arg reabsorption and reversed l-Leu transport from (re)absorption to secretion. Similarly, l-cystine was (re)absorbed when b(0,+)AT-rBAT was expressed alone. This net transport was further increased by the coexpression of 4F2hc, due to the mobilization of LAT2 (exogenous and/or endogenous) to the basolateral membrane. In summary, apical b(0,+)AT-rBAT cooperates with y(+)LAT1-4F2hc or LAT2-4F2hc for the transepithelial reabsorption of cationic amino acids and cystine, respectively. The fact that the reabsorption of l-Arg led to the secretion of l-Leu demonstrates that the implicated heteromeric amino acid transporters function in epithelia as exchangers coupled in series and supports the notion that the parallel activity of unidirectional neutral amino acid transporters is required to drive net amino acid reabsorption.
Collapse
Affiliation(s)
- Christian Bauch
- Institute of Physiology and Institute of Anatomy, University of Zürich, Winterthurerstrasse 190, Switzerland
| | | | | | | | | |
Collapse
|
26
|
Abstract
Urinary stone disease is the only clinical presentation in patients with cystinuria. Two genes have been associated with type I (SLC3A1) and non-type I (SLC7A9) cystinuria and multiple mutations of these genes have been identified. The type I form is completely recessive while the non-type I form is incompletely recessive. Clinically, heterozygotes with type I mutations are silent while heterozygotes with non-type I (types II and III) present with a wide range of urinary cystine levels and some even have symptomatic urolithiasis. Although the exact molecular basis for these differences needs additional investigations, the future of medical management of cystinuria is based on molecular and gene therapy. Minimally invasive surgery using percutaneous and ureteroscopic techniques is the cornerstone of surgical management. Both cystine and struvite calculi can form staghorn configuration with propensity for rapid growth and frequent recurrences after surgical treatment. While urinary alkalinization for cystine calculi is an integral part of medical management, the effect of oral alkalinizing agents is limited because of the high pKa (8.3) of cystine. Chelating agents, therefore, are frequently used to decrease cystine solubility and stone recurrences. Similarly, urinary acidification for struvite calculi may dissolve existing stones and prevent recurrences. However, no effective oral agent is available today. A future challenge will be to introduce reliable oral agents for urinary acidification.
Collapse
Affiliation(s)
- Bijan Shekarriz
- Department of Urology, SUNY, Upstate Medical University, Syracuse, NY 13210, USA
| | | |
Collapse
|
27
|
Leclerc D, Boutros M, Suh D, Wu Q, Palacin M, Ellis JR, Goodyer P, Rozen R. SLC7A9 mutations in all three cystinuria subtypes. Kidney Int 2002; 62:1550-9. [PMID: 12371955 DOI: 10.1046/j.1523-1755.2002.00602.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cystinuria is an inherited disorder of cystine and dibasic amino acid transport in kidney. Subtypes are defined by the urinary cystine excretion patterns of the obligate heterozygous parents: Type I/N (fully recessive or silent); Type II/N (high excretor); Type III/N (moderate excretor). The first gene implicated in cystinuria (SLC3A1) is associated with the Type I urinary phenotype. A second cystinuria gene (SLC7A9) was recently isolated, and mutations of this gene were associated with dominant (non-Type I) cystinuria alleles. Here we report genotype-phenotype studies of SLC7A9 mutations in a cohort of well-characterized cystinuria probands and their family members. METHODS Individual exons of the SLC7A9 gene were screened by single strand conformation polymorphism (SSCP) analysis and sequencing of abnormally migrating fragments. RESULTS Seven mutations were identified. A single bp insertion (799insA) was present in four patients: on Type III alleles in two patients and on Type II alleles in two patients. These results suggest that Type II and Type III may be caused by the same mutation and, therefore, other factors must influence urinary cystine excretion. A 4bp deletion in intron 12 (IVS12+4delAGTA) and a missense mutation (1245G-->A, A354T) were identified on Type III alleles. A nonsense codon (1491G-->T, E436X) and a possible splicing mutation (IVS9-17G-->A) were seen in a Type I/III patient, but the mutations could not be assigned to particular alleles. Of additional interest were two missense mutations (316T-->C, I44T and 967C-->T, P261L) linked to Type I alleles. CONCLUSION Our results provide evidence that some SLC7A9 mutations may be associated with fully recessive (Type I) forms of cystinuria. We also demonstrate SLC7A9 mutations in dominant Types II and III cystinuria. The finding of SLC7A9 mutations in all three subtypes underscores the complex interactions between specific cystinuria genes and other factors influencing cystine excretion. A simpler phenotypic classification scheme (recessive and dominant) for cystinuria is warranted.
Collapse
Affiliation(s)
- Daniel Leclerc
- Department of Human Genetics, McGill University-Montreal Children's Hospital, Montreal, Quebec,Canada
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Dello Strologo L, Pras E, Pontesilli C, Beccia E, Ricci-Barbini V, de Sanctis L, Ponzone A, Gallucci M, Bisceglia L, Zelante L, Jimenez-Vidal M, Font M, Zorzano A, Rousaud F, Nunes V, Gasparini P, Palacín M, Rizzoni G. Comparison between SLC3A1 and SLC7A9 cystinuria patients and carriers: a need for a new classification. J Am Soc Nephrol 2002; 13:2547-53. [PMID: 12239244 DOI: 10.1097/01.asn.0000029586.17680.e5] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Recent developments in the genetics and physiology of cystinuria do not support the traditional classification, which is based on the excretion of cystine and dibasic amino acids in obligate heterozygotes. Mutations of only two genes (SLC3A1 and SLC7A9), identified by the International Cystinuria Consortium (ICC), have been found to be responsible for all three types of the disease. The ICC set up a multinational database and collected genetic and clinical data from 224 patients affected by cystinuria, 125 with full genotype definition. Amino acid urinary excretion patterns of 189 heterozygotes with genetic definition and of 83 healthy controls were also included. All SLC3A1 carriers and 14% of SLC7A9 carriers showed a normal amino acid urinary pattern (i.e., type I phenotype). The rest of the SLC7A9 carriers showed phenotype non-I (type III, 80.5%; type II, 5.5%). This makes the traditional classification imprecise. A new classification is needed: type A, due to two mutations of SLC3A1 (rBAT) on chromosome 2 (45.2% in our database); type B, due to two mutations of SLC7A9 on chromosome 19 (53.2% in this series); and a possible third type, AB (1.6%), with one mutation on each of the above-mentioned genes. Clinical data show that cystinuria is more severe in males than in females. The two types of cystinuria (A and B) had a similar outcome in this retrospective study, but the effect of the treatment could not be analyzed. Stone events do not correlate with amino acid urinary excretion. Renal function was clearly impaired in 17% of the patients.
Collapse
Affiliation(s)
- Luca Dello Strologo
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital and Research Institute, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Harnevik L, Fjellstedt E, Molbaek A, Tiselius HG, Denneberg T, Söderkvist P. Identification of 12 novel mutations in the SLC3A1 gene in Swedish cystinuria patients. Hum Mutat 2001; 18:516-25. [PMID: 11748844 DOI: 10.1002/humu.1228] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cystinuria is an autosomal recessive disorder that affects luminal transport of cystine and dibasic amino acids in the kidneys and the small intestine. Three subtypes of cystinuria can be defined biochemically, and the classical form (type I) has been associated with mutations in the amino acid transporter gene SLC3A1. The mutations detected in SLC3A1 tend to be population specific and have not been previously investigated in Sweden. We have screened the entire coding sequence and the intron/exon boundaries of the SLC3A1 gene in 53 cystinuria patients by means of single strand conformation polymorphism (SSCP) and DNA sequencing. We identified 12 novel mutations (a 2 bp deletion, one splice site mutation, and 10 missense mutations) and detected another three mutations that were previously reported. Five polymorphisms were also identified, four of which were formerly described. The most frequent mutation in this study was the previously reported M467T and it was also detected in the normal population with an allelic frequency of 0.5%. Thirty-seven patients were homozygous for mutations in the SLC3A1 gene and another seven were heterozygous which implies that other genes may be involved in cystinuria. Future investigation of the non-type I cystinuria gene SLC7A9 may complement our results but recent studies also suggest the presence of other potential disease genes.
Collapse
Affiliation(s)
- L Harnevik
- Division of Cell Biology, Department of Biomedicine and Surgery, Faculty of Health Sciences, Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
30
|
Chillarón J, Roca R, Valencia A, Zorzano A, Palacín M. Heteromeric amino acid transporters: biochemistry, genetics, and physiology. Am J Physiol Renal Physiol 2001; 281:F995-1018. [PMID: 11704550 DOI: 10.1152/ajprenal.2001.281.6.f995] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The heteromeric amino acid transporters (HATs) are composed of two polypeptides: a heavy subunit (HSHAT) and a light subunit (LSHAT) linked by a disulfide bridge. HSHATs are N-glycosylated type II membrane glycoproteins, whereas LSHATs are nonglycosylated polytopic membrane proteins. The HSHATs have been known since 1992, and the LSHATs have been described in the last three years. HATs represent several of the classic mammalian amino acid transport systems (e.g., L isoforms, y(+)L isoforms, asc, x(c)(-), and b(0,+)). Members of the HAT family are the molecular bases of inherited primary aminoacidurias cystinuria and lysinuric protein intolerance. In addition to the role in amino acid transport, one HSHAT [the heavy subunit of the cell-surface antigen 4F2 (also named CD98)] is involved in other cell functions that might be related to integrin activation. This review covers the biochemistry, human genetics, and cell physiology of HATs, including the multifunctional character of CD98.
Collapse
Affiliation(s)
- J Chillarón
- Departament de Bioquimica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona E-08028, Spain
| | | | | | | | | |
Collapse
|
31
|
Hennemann G, Docter R, Friesema EC, de Jong M, Krenning EP, Visser TJ. Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev 2001; 22:451-76. [PMID: 11493579 DOI: 10.1210/edrv.22.4.0435] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although it was originally believed that thyroid hormones enter target cells by passive diffusion, it is now clear that cellular uptake is effected by carrier-mediated processes. Two stereospecific binding sites for each T4 and T3 have been detected in cell membranes and on intact cells from humans and other species. The apparent Michaelis-Menten values of the high-affinity, low-capacity binding sites for T4 and T3 are in the nanomolar range, whereas the apparent Michaelis- Menten values of the low-affinity, high-capacity binding sites are usually in the lower micromolar range. Cellular uptake of T4 and T3 by the high-affinity sites is energy, temperature, and often Na+ dependent and represents the translocation of thyroid hormone over the plasma membrane. Uptake by the low-affinity sites is not dependent on energy, temperature, and Na+ and represents binding of thyroid hormone to proteins associated with the plasma membrane. In rat erythrocytes and hepatocytes, T3 plasma membrane carriers have been tentatively identified as proteins with apparent molecular masses of 52 and 55 kDa. In different cells, such as rat erythrocytes, pituitary cells, astrocytes, and mouse neuroblastoma cells, uptake of T4 and T3 appears to be mediated largely by system L or T amino acid transporters. Efflux of T3 from different cell types is saturable, but saturable efflux of T4 has not yet been demonstrated. Saturable uptake of T4 and T3 in the brain occurs both via the blood-brain barrier and the choroid plexus-cerebrospinal fluid barrier. Thyroid hormone uptake in the intact rat and human liver is ATP dependent and rate limiting for subsequent iodothyronine metabolism. In starvation and nonthyroidal illness in man, T4 uptake in the liver is decreased, resulting in lowered plasma T3 production. Inhibition of liver T4 uptake in these conditions is explained by liver ATP depletion and increased concentrations of circulating inhibitors, such as 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid, indoxyl sulfate, nonesterified fatty acids, and bilirubin. Recently, several organic anion transporters and L type amino acid transporters have been shown to facilitate plasma membrane transport of thyroid hormone. Future research should be directed to elucidate which of these and possible other transporters are of physiological significance, and how they are regulated at the molecular level.
Collapse
Affiliation(s)
- G Hennemann
- Department of Nuclear Medicine, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
32
|
Leclerc D, Wu Q, Ellis JR, Goodyer P, Rozen R. Is the SLC7A10 gene on chromosome 19 a candidate locus for cystinuria? Mol Genet Metab 2001; 73:333-9. [PMID: 11509015 DOI: 10.1006/mgme.2001.3209] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
One of the genes (SLC7A9) that causes cystinuria, an inborn error of amino acid transport, is localized to 19q13. Close examination of human genomic DNA sequences has identified a similar gene (SLC7A10) that also maps to the 19q13.1 region and is highly expressed in kidney. The homologies between SLC7A9 and SLC7A10 are likely the result of gene duplication. SLC7A10 is known to encode a protein with a function similar to that of the SLC7A9 gene product. To determine if mutations in the SLC7A10 gene could also cause cystinuria, we characterized the primary genomic structure and sequenced the 11 exons and surrounding sequences from 10 unrelated patients with cystinuria. We identified one missense mutation which may account for cystinuria in one family. We also observed one intronic change, as well as one silent mutation, that were seen only in cystinuria patients. We therefore suggest that the SLC7A10 gene warrants further investigation as another candidate gene for cystinuria.
Collapse
Affiliation(s)
- D Leclerc
- Department of Human Genetics, McGill University Health Centre, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
33
|
Mizoguchi K, Cha SH, Chairoungdua A, Kim DK, Shigeta Y, Matsuo H, Fukushima J, Awa Y, Akakura K, Goya T, Ito H, Endou H, Kanai Y. Human cystinuria-related transporter: localization and functional characterization. Kidney Int 2001; 59:1821-33. [PMID: 11318953 DOI: 10.1046/j.1523-1755.2001.0590051821.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Cystinuria has been proposed to be an inherited defect of apical membrane transport systems for cystine and basic amino acids in renal proximal tubules. Although the mutations of the recently identified transporter BAT1/b(0,+)AT have been related to nontype I cystinuria, the function and localization of human BAT1 (hBAT1)/b(0,+)AT have not been well characterized. METHODS The cDNA encoding hBAT1 was isolated from human kidney. Fluorescence in situ hybridization was performed to map the hBAT1 gene on human chromosomes. Tissue distribution and localization of expression were examined by Northern blot and immunohistochemical analyses. hBAT1 cDNA was transfected to COS-7 cells with rBAT cDNA, and the uptake and efflux of 14C-labeled amino acids were measured to determine the functional properties. The roles of protein kinase-dependent phosphorylation were investigated using inhibitors or activators of protein kinases. RESULTS The hBAT1 gene was mapped to 19q12-13.1 on the human chromosome, which is the locus of nontype I cystinuria. hBAT1 message was expressed predominantly in kidney. hBAT1 protein was localized in the apical membrane of proximal tubules in human kidney. When expressed in COS-7 cells with a type II membrane glycoprotein rBAT (related to b(0,+)-amino acid transporter), hBAT1 exhibited the transport activity with the properties of amino acid transport system b(0,+), which transported cystine as well as basic and neutral amino acids presumably via a substrate exchange mechanism. BAT1-mediated transport was reduced by the protein kinase A activator and enhanced by the tyrosine kinase inhibitor. CONCLUSIONS hBAT1 exhibited the properties expected for a transporter subserving the high-affinity cystine transport system in renal proximal tubules. The hBAT1 gene was mapped to the locus of nontype I cystinuria, confirming the involvement of hBAT1 in cystinuria.
Collapse
Affiliation(s)
- K Mizoguchi
- Department of Pharmacology and Toxicology, Kyorin University School of Medicine, Mitaka, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Font MA, Feliubadaló L, Estivill X, Nunes V, Golomb E, Kreiss Y, Pras E, Bisceglia L, d'Adamo AP, Zelante L, Gasparini P, Bassi MT, George AL, Manzoni M, Riboni M, Ballabio A, Borsani G, Reig N, Fernández E, Zorzano A, Bertran J, Palacín M. Functional analysis of mutations in SLC7A9, and genotype-phenotype correlation in non-Type I cystinuria. Hum Mol Genet 2001; 10:305-16. [PMID: 11157794 DOI: 10.1093/hmg/10.4.305] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Cystinuria (OMIM 220100) is a common recessive disorder of renal reabsorption of cystine and dibasic amino acids that results in nephrolithiasis of cystine. Mutations in SLC3A1, which encodes rBAT, cause Type I cystinuria, and mutations in SLC7A9, which encodes a putative subunit of rBAT (b(o,+)AT), cause non-Type I cystinuria. Here we describe the genomic structure of SLC7A9 (13 exons) and 28 new mutations in this gene that, together with the seven previously reported, explain 79% of the alleles in 61 non-Type I cystinuria patients. These data demonstrate that SLC7A9 is the main non-Type I cystinuria gene. Mutations G105R, V170M, A182T and R333W are the most frequent SLC7A9 missense mutations found. Among heterozygotes carrying these mutations, A182T heterozygotes showed the lowest urinary excretion values of cystine and dibasic amino acids. Functional analysis of mutation A182T after co-expression with rBAT in HeLa cells revealed significant residual transport activity. In contrast, mutations G105R, V170M and R333W are associated to a complete or almost complete loss of transport activity, leading to a more severe urinary phenotype in heterozygotes. SLC7A9 mutations located in the putative transmembrane domains of b(o,+)AT and affecting conserved amino acid residues with a small side chain generate a severe phenotype, while mutations in non-conserved residues give rise to a mild phenotype. These data provide the first genotype-phenotype correlation in non-Type I cystinuria, and show that a mild urinary phenotype in heterozygotes may associate with mutations with significant residual transport activity.
Collapse
Affiliation(s)
- M A Font
- Centre de Genètica Mèdica i Molecular (IRO), Hospital Duran i Reynals, Autovía de Castelldefels Km 2.7, L'Hospitalet de Llobregat, E-08907 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Palacín M, Bertran J, Zorzano A. Heteromeric amino acid transporters explain inherited aminoacidurias. Curr Opin Nephrol Hypertens 2000; 9:547-53. [PMID: 10990376 DOI: 10.1097/00041552-200009000-00015] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
In the past 5 years, the first genes responsible for aminoacidurias caused by defects in renal reabsorption transport mechanisms have been identified. These diseases are type I and non-type I cystinuria and lysinuric protein intolerance. This knowledge came from the molecular characterization of the first heteromeric amino acid transporters in mammals. In 1992, rBAT and 4F2hc (genes SLC3A1 and SLC3A2, respectively, in the nomenclature of the Human Genome Organization) were identified as putative heavy subunits of mammalian amino acid transporters. In 1994, it was demonstrated that mutations in SLC3A1 cause type I cystinuria. Very recently, several light subunits of the heteromeric amino acid transporters have been identified. In 1999, a putative light subunit of rBAT (the SLC7A9 gene; complementary DNA and protein termed amino acid transporter) and a light subunit of 4F2hc (the SLC7A7 gene; cDNA and protein termed y+LAT-1) were shown to be the non-type I cystinuria and lysinuric protein intolerance genes, respectively. In this review, the characteristics of these heteromeric amino acid transporters and their role in these inherited aminoacidurias is described.
Collapse
Affiliation(s)
- M Palacín
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Spain.
| | | | | |
Collapse
|
36
|
Purroy J, Bisceglia L, Jaeken J, Gasparini P, Palacín M, Nunes V. Detection of two novel large deletions in SLC3A1 by semi-quantitative fluorescent multiplex PCR. Hum Mutat 2000; 15:373-9. [PMID: 10737983 DOI: 10.1002/(sici)1098-1004(200004)15:4<373::aid-humu10>3.0.co;2-o] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cystinuria is an autosomal recessive aminoaciduria in which two clinical types have been described (type I and non-type I). Cystinuria type I is caused by mutations in SLC3A1, a gene located in 2p16 coding for an amino acid transporter named rBAT. Using multiplex semi-quantitative fluorescent PCR, we amplified the ten exons of SLC3A1 together with exon 5 of DSCR1 (located on chromosome 21) as a double-dose control gene. We detected two large novel deletions in a Belgian family, one comprising exons 2-10 and another one at exon 10. The method described here can be used to detect a range of deletions from single-base differences in size to entire missing exons, making it useful for scanning genes with a small to medium number of exons.
Collapse
Affiliation(s)
- J Purroy
- Centre de Genètica Mèdica i Molecular-IRO, L'Hospitalet de Llobregat, Spain
| | | | | | | | | | | |
Collapse
|
37
|
Abstract
A recent analysis of the McKusick's On-Line Mendelian Inheritance in Man (OMIM) database revealed over 30 genetic or putatively genetic conditions in which urolithiasis contributes to the disease pathology at least to some extent. There is wide clinical, biochemical, and genetic heterogeneity in many of these conditions.
Collapse
Affiliation(s)
- C J Danpure
- MRC Laboratory for Molecular Cell Biology, University College London, United Kingdom.
| |
Collapse
|
38
|
Egoshi KI, Akakura K, Kodama T, Ito H. Identification of five novel SLC3A1 (rBAT) gene mutations in Japanese cystinuria. Kidney Int 2000; 57:25-32. [PMID: 10620184 DOI: 10.1046/j.1523-1755.2000.00821.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
UNLABELLED Identification of five novel SLC3A1 (rBAT) gene mutations in Japanese cystinuria. BACKGROUND Cystinuria is an inheritable amino aciduria and has been classified into three subtypes: I, II, and III. One of the genes responsible for cystinuria has recently been identified as SLC3A1 or rBAT, but only type I cystinuria seems to be caused by genetic alterations in rBAT. To our knowledge, thus far 38 mutations in rBAT gene have been described. In this study, we investigated rBAT mutations in Japanese patients and compared the results with the previously reported mutations in other races. METHODS We investigated 36 Japanese cystinuria patients by mutational analysis of rBAT gene. To identify newly mutated alleles, genomic DNA was analyzed by polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP). When an abnormal migration was observed on SSCP, a nucleotide sequence determination was performed. RESULTS Five novel mutations were identified in five patients, three with missense mutations (L346P, I445T, C673R), one with a 1 bp deletion (1820delT), and one with a 2 bp insertion (1898insTA), and we detected three previously reported polymorphisms. Three of the mutations were homozygous, in whom parents had intermarried, and two were heterozygous for each mutations. Analysis of rBAT in family of the 1898insTA patient revealed that the patient had inherited the mutated allele from his parents. CONCLUSION Five novel mutations in the rBAT gene have been identified in Japanese patients with cystinuria. A racial difference was not apparent in the position and frequency of the mutations.
Collapse
Affiliation(s)
- K I Egoshi
- Department of Urology, Chiba University School of Medicine, Chiba, Japan
| | | | | | | |
Collapse
|
39
|
Feliubadaló L, Bisceglia L, Font M, Dello Strologo L, Beccia E, Arslan-Kirchner M, Steinmann B, Zelante L, Estivill X, Zorzano A, Palacín M, Gasparini P, Nunes V. Recombinant families locate the gene for non-type I cystinuria between markers C13 and D19S587 on chromosome 19q13.1. Genomics 1999; 60:362-5. [PMID: 10493835 DOI: 10.1006/geno.1999.5928] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cystinuria is an autosomal recessive aminoaciduria in which three urinary phenotypes have been described. The gene responsible for type I, SLC3A1, encodes the amino acid transporter rBAT. This gene is not responsible for types II or III. Recently the type III locus (CSNU3) was mapped by two groups to overlapping 6-Mb regions on chromosome 19q. In the present study, we restrict the critical region for non-type I cystinuria to 2.4 Mb by recombination analysis in Italian, German, and Spanish families. For this purpose, we have used the microsatellite markers described in the region plus new microsatellites that we have developed. Our results locate the non-type I cystinuria gene in an interval flanked by the markers C13 and D19S587, which are about 2.8 cM apart.
Collapse
Affiliation(s)
- L Feliubadaló
- Centre de Genètica Mèdica i Molecular-IRO, Hospital Duran i Reynals, Autovia de Castelldefels, Km 2.7, L'Hospitalet de Llobregat, Barcelona, E-08907, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Feliubadaló L, Font M, Purroy J, Rousaud F, Estivill X, Nunes V, Golomb E, Centola M, Aksentijevich I, Kreiss Y, Goldman B, Pras M, Kastner DL, Pras E, Gasparini P, Bisceglia L, Beccia E, Gallucci M, de Sanctis L, Ponzone A, Rizzoni GF, Zelante L, Bassi MT, George AL, Manzoni M, De Grandi A, Riboni M, Endsley JK, Ballabio A, Borsani G, Reig N, Fernández E, Estévez R, Pineda M, Torrents D, Camps M, Lloberas J, Zorzano A, Palacín M. Non-type I cystinuria caused by mutations in SLC7A9, encoding a subunit (bo,+AT) of rBAT. Nat Genet 1999; 23:52-7. [PMID: 10471498 DOI: 10.1038/12652] [Citation(s) in RCA: 213] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cystinuria (MIM 220100) is a common recessive disorder of renal reabsorption of cystine and dibasic amino acids. Mutations in SLC3A1, encoding rBAT, cause cystinuria type I (ref. 1), but not other types of cystinuria (ref. 2). A gene whose mutation causes non-type I cystinuria has been mapped by linkage analysis to 19q12-13.1 (Refs 3,4). We have identified a new transcript, encoding a protein (bo, +AT, for bo,+ amino acid transporter) belonging to a family of light subunits of amino acid transporters, expressed in kidney, liver, small intestine and placenta, and localized its gene (SLC7A9) to the non-type I cystinuria 19q locus. Co-transfection of bo,+AT and rBAT brings the latter to the plasma membrane, and results in the uptake of L-arginine in COS cells. We have found SLC7A9 mutations in Libyan-Jews, North American, Italian and Spanish non-type I cystinuria patients. The Libyan Jewish patients are homozygous for a founder missense mutation (V170M) that abolishes b o,+AT amino-acid uptake activity when co-transfected with rBAT in COS cells. We identified four missense mutations (G105R, A182T, G195R and G295R) and two frameshift (520insT and 596delTG) mutations in other patients. Our data establish that mutations in SLC7A9 cause non-type I cystinuria, and suggest that bo,+AT is the light subunit of rBAT.
Collapse
Affiliation(s)
- L Feliubadaló
- Centre de Genètica Mèdica i Molecular (IRO), Hospital Duran i Reynals, Autovía de Castelldefels Km 2.7, L'Hospitalet de Llobregat, Barcelona, E-08907, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Albers A, Lahme S, Wagner C, Kaiser P, Zerres K, Capasso G, Pica A, Palacin M, Lang F, Bichler KH, Eggermann T. Mutations in the SLC3A1 gene in cystinuric patients: frequencies and identification of a novel mutation. GENETIC TESTING 1999; 3:227-31. [PMID: 10464673 DOI: 10.1089/gte.1999.3.227] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cystinuria is a frequent autosomal recessive transport disorder characterized by defective renal resorption of cystine and other dibasic amino acids. Biochemically, three types of cystinuria can be defined. Here we present our results of screening for mutations in the SLC3A1 gene, which codes for a dibasic amino acid transporter protein and appears to be involved in the pathogenesis of cystinuria type I. Our study population consists of 5 Italian cystinuria type I patients and 10 cystinuric patients as yet unclassified as to clinical type. The latter were of different ethnic origin. In total, we found 13 point mutations and 8 genomic rearrangements in 15 cystinuric patients, i.e., our detection rate was 70% (23/30 chromosomes). Remarkably, in patients known to be suffering from cystinuria type I, the mutation detection rate was only 50%, whereas in patients unselected as to cystinuria type, we found 80% of mutations. Additionally, our results, as with those published in the literature, indicate a possible population specific distribution of mutations: Each of the 4 Greek patients analyzed here showed homozygosity for mutation T216M in exon 3. Analysis of a Yugoslavian patient showed homozygosity for a novel mutation, R365L, in exon 6 (nt1094G > T). Findings from molecular genetic studies, as well as physiological investigations, suggest that there are further genes that play a role in the etiology of cystinuria. Nevertheless, our results show that screening for mutations in the SLC3A1 gene can be a meaningful step toward molecular genetic diagnosis of cystinuria in patients without biochemical classification. As with cystic fibrosis, the finding of specific mutations in particular ethnic populations, suggest that the diagnostic approach should take into consideration a patient's ethnic origins.
Collapse
Affiliation(s)
- A Albers
- Division of Clinical Genetics, University of Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Cabello-Tomás ML, García-Gómez AM, Guillén-Domínguez ML. Pilot screening programme for cystinuria in the Valencian community. Eur J Epidemiol 1999; 15:681-4. [PMID: 10543360 DOI: 10.1023/a:1007522215041] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cystinuria is an autosomal recessive disorder of the kidneys and small intestine, affecting a luminal transport mechanism shared by cystine, ornithine, arginine and lysine. When cystine exceeds its solubility at low pH, the risk of stone formation increases. The data reported in the literature show a variation for the incidence of cystinuria, from 1 in 600 to 1 in 17,000, depending on the definition of cystinuria and the method used for screening the population. We set up a pilot screening programme to determine the incidence of cystinuria in the population of the Valencian Community. Urine filter paper samples submitted for the neonatal screening programme from 33,995 newborns (5-10 days old) were used for the study. Thin layer chromatography (TLC) was performed to screen cystinuric patients. To confirm positive filter paper samples, liquid samples were requested and TLC as well as the cyanide-nitroprusside test (CNT) were performed. Final diagnosis was achieved by quantifying cystine, lysine, ornithine and arginine using high-performance liquid chromatography (HPLC) in children's urine samples which remained positive for TLC and CNT for more than 1 year. We conclude that the incidence of subjects at risk for cystine stones in the Valencian Community is 1:1887. TLC is shown as a reliable method to perform newborn screening in large population to detect cystinuric subjects. Additional studies, including characterization of appropriate haplotypes, should be carried out for a more precise identification of the frequency of the different types of cystinuria in our population.
Collapse
Affiliation(s)
- M L Cabello-Tomás
- Departamento de Biopatología Clínica, Hospital Universitario La Fe, Valencia, Spain
| | | | | |
Collapse
|
43
|
Torrents D, Mykkänen J, Pineda M, Feliubadaló L, Estévez R, de Cid R, Sanjurjo P, Zorzano A, Nunes V, Huoponen K, Reinikainen A, Simell O, Savontaus ML, Aula P, Palacín M. Identification of SLC7A7, encoding y+LAT-1, as the lysinuric protein intolerance gene. Nat Genet 1999; 21:293-6. [PMID: 10080182 DOI: 10.1038/6809] [Citation(s) in RCA: 204] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lysinuric protein intolerance (LPI; OMIM 222700) is a rare, recessive disorder with a worldwide distribution, but with a high prevalence in the Finnish population; symptoms include failure to thrive, growth retardation, muscle hypotonia and hepatosplenomegaly. A defect in the plasma membrane transport of dibasic amino acids has been demonstrated at the baso-lateral membrane of epithelial cells in small intestine and in renal tubules and in plasma membrane of cultured skin fibroblasts from LPI patients. The gene causing LPI has been assigned by linkage analysis to 14q11-13. Here we report mutations in SLC7A7 cDNA (encoding y+L amino acid transporter-1, y+LAT-1), which expresses dibasic amino-acid transport activity and is located in the LPI region, in 31 Finnish LPI patients and 1 Spanish patient. The Finnish patients are homozygous for a founder missense mutation leading to a premature stop codon. The Spanish patient is a compound heterozygote with a missense mutation in one allele and a frameshift mutation in the other. The frameshift mutation generates a premature stop codon, eliminating the last one-third of the protein. The missense mutation abolishes y+LAT-1 amino-acid transport activity when co-expressed with the heavy chain of the cell-surface antigen 4F2 (4F2hc, also known as CD98) in Xenopus laevis oocytes. Our data establish that mutations in SLC7A7 cause LPI.
Collapse
Affiliation(s)
- D Torrents
- Departament de Bioquímica i Biologia Molecular, Universitat de Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Guillén M, Corella D, Cabello ML, García AM, Hernández-Yago J. Reference values of urinary excretion of cystine and dibasic aminoacids: classification of patients with cystinuria in the Valencian Community, Spain. Clin Biochem 1999; 32:25-30. [PMID: 10074888 DOI: 10.1016/s0009-9120(98)00087-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVE Cystinuria is an autosomal-recessive disorder of the kidneys and small intestine affecting a luminal transport mechanism shared by cystine, ornithine, arginine, and lysine. Three different types of cystinuria can be distinguished according to the excretion of these amino acids in urine samples. We propose cutoff values from our population as references and we present a classification of cystinuric patients using quantitative amino acid chromatography in first morning urine samples. DESIGN AND METHODS A random sample of forty healthy subjects belonging to general population of the Valencian Community were selected as control subjects. Cystine, lysine, arginine, and ornithine were quantified by reverse-phase HPLC. Seventy-two subjects, diagnosed previously as cystinuric by the cyanide-nitroprusside test were classified. Probands excreting more than 113.12 micromol cystine per mmol of creatinine (i.e., 1,000 micromol cystine per gram of creatinine) were classified as homozygotes. Parents of homozygotes in whom excretion of amino acids were normal were classified as heterozygotes type I. Those probands showing the excretion of at least one amino acid and the sum of urinary cystine plus the basic amino acids higher than the corresponding references ranges in our population were classified as heterozygotes type II or type III (heterozygotes non-type 1). RESULTS We identified 24 homozygotes, 39 non-type I heterozygotes and 3 type I heterozygotes. The remaining 6 probands could not be classified. Means for cystine, lysine, arginine ornithine and their sum in homozygotes and heterozygotes non-type I were significantly (p < 0.001) in excess of the respective reference ranges. Moreover, means values in homozygotes were statistically different (p < 0.001) from heterozygotes non-type I. CONCLUSION Urinary excretion of cystine per mmol creatinine allow us to distinguish heterozygotes from homozygotes. However, the best discriminator to distinguish non-type I heterozygotes from normal population might be the excretion of lysine per mmol creatinine. Additional studies including characterization of appropriate haplotypes should be carried out for a more precise identification of types of cystinuria.
Collapse
Affiliation(s)
- M Guillén
- Instituto de Investigaciones Citológicas. Fundación Valenciana de Investigaciones Biomédicas, Spain
| | | | | | | | | |
Collapse
|
45
|
Osborne CA, Sanderson SL, Lulich JP, Bartges JW, Ulrich LK, Koehler LA, Bird KA, Swanson LL. Canine cystine urolithiasis. Cause, detection, treatment, and prevention. Vet Clin North Am Small Anim Pract 1999; 29:193-211, xiii. [PMID: 10028158 DOI: 10.1016/s0195-5616(99)50011-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cystine uroliths are a sequela to cystinuria, an inherited renal tubular defect in reabsorption of cystine and some other amino acids. At the Minnesota Urolith Center, 67 breeds of dogs were identified, including English Bulldogs, Dachshunds, Mastiffs, and Newfoundlands. In some dogs, the severity of cystinuria may decline with advancing age. Current recommendations for dissolution of cystine uroliths include various combinations of diet modification, diuresis administration of 2-MPG, and alkalinization of urine.
Collapse
Affiliation(s)
- C A Osborne
- Minnesota Urolith Center, Department of Small Animal Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Deora AB, Ghosh RN, Tate SS. Progressive C-terminal deletions of the renal cystine transporter, NBAT, reveal a novel bimodal pattern of functional expression. J Biol Chem 1998; 273:32980-7. [PMID: 9830050 DOI: 10.1074/jbc.273.49.32980] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nearly identical proteins (denoted NAA-Tr, rBAT, D2, NBAT), cloned from mammalian kidneys, induce a largely sodium-independent high-affinity transport system for cystine, basic amino acids, and some neutral amino acids in Xenopus oocytes (system b0,+-like). Mutations in the human NBAT gene have been found in several type I cystinurics. In kidney, NBAT is associated with a second, smaller protein (approximately 45 kDa), and this heterodimer has been proposed to be the minimal functional unit of the renal cystine transporter (Wang, Y., and Tate, S. S. (1995) FEBS Lett. 368, 389-392). To delineate regions minimally required for functional expression in oocytes, we constructed a series of C-terminal truncated mutants of rat kidney NBAT (wild-type (WT), 683 amino acids). Expression of these mutants in oocytes yielded an unusual bimodal pattern for the induction of amino acid transport activity. Thus, initial C-terminal truncations aborted elicitation of transport activity. The next mutant in the series, Delta588-683, exhibited most of the transport-inducing potential inherent in the WT/NBAT. Further deletions again attenuated transport activity. Although both the WT/NBAT and the truncated mutant, Delta588-683, induce qualitatively similar transport systems, the two forms of the protein exhibit contrasting sensitivities toward a point mutation in which the cysteine residue at position 111 was mutated to serine. This mutation did not greatly affect induction of transport by the WT/NBAT; however, the Delta588-683 mutant was inactivated by this mutation. Our data further suggest that cysteine 111 is probably the site of disulfide linkage with an approximately 45-kDa oocyte protein producing a complex equivalent to that seen in kidney membranes.
Collapse
Affiliation(s)
- A B Deora
- Department of Biochemistry, Cornell University Medical College, New York, New York 10021, USA
| | | | | |
Collapse
|
47
|
Pras E, Kochba I, Lubetzky A, Pras M, Sidi Y, Kastner DL. Biochemical and clinical studies in Libyan Jewish cystinuria patients and their relatives. ACTA ACUST UNITED AC 1998. [DOI: 10.1002/(sici)1096-8628(19981102)80:2<173::aid-ajmg16>3.0.co;2-s] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
48
|
Palacín M, Estévez R, Bertran J, Zorzano A. Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 1998; 78:969-1054. [PMID: 9790568 DOI: 10.1152/physrev.1998.78.4.969] [Citation(s) in RCA: 593] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Molecular biology entered the field of mammalian amino acid transporters in 1990-1991 with the cloning of the first GABA and cationic amino acid transporters. Since then, cDNA have been isolated for more than 20 mammalian amino acid transporters. All of them belong to four protein families. Here we describe the tissue expression, transport characteristics, structure-function relationship, and the putative physiological roles of these transporters. Wherever possible, the ascription of these transporters to known amino acid transport systems is suggested. Significant contributions have been made to the molecular biology of amino acid transport in mammals in the last 3 years, such as the construction of knockouts for the CAT-1 cationic amino acid transporter and the EAAT2 and EAAT3 glutamate transporters, as well as a growing number of studies aimed to elucidate the structure-function relationship of the amino acid transporter. In addition, the first gene (rBAT) responsible for an inherited disease of amino acid transport (cystinuria) has been identified. Identifying the molecular structure of amino acid transport systems of high physiological relevance (e.g., system A, L, N, and x(c)- and of the genes responsible for other aminoacidurias as well as revealing the key molecular mechanisms of the amino acid transporters are the main challenges of the future in this field.
Collapse
Affiliation(s)
- M Palacín
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
49
|
Estévez R, Camps M, Rojas AM, Testar X, Devés R, Hediger MA, Zorzano A, Palacín M. The amino acid transport system y+L/4F2hc is a heteromultimeric complex. FASEB J 1998; 12:1319-29. [PMID: 9761775 DOI: 10.1096/fasebj.12.13.1319] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
4F2hc is an almost ubiquitous transmembrane protein in mammalian cells; upon expression in Xenopus laevis oocytes, it induces amino acid transport with characteristics of system y+L. Indirect evidence fostered speculation that function requires the association of 4F2hc with another protein endogenous to oocytes and native tissues. We show that expression of system y+L-like amino acid transport activity by 4F2hc in oocytes is limited by an endogenous factor and that direct covalent modification of external cysteine residue(s) of an oocyte membrane protein blocks system y+L/4F2hc transport activity, based on the following. 1) Induction of system y+L-like activity saturates at very low doses of human 4F2hc cRNA (0.1 ng/oocyte). This saturation occurs with very low expression of 4F2hc at the oocyte surface, and further increased expression of the protein at the cell surface does not result in higher induction of system y+L-like activity. 2) Human 4F2hc contains only two cysteine residues (C109 and C330). We mutated these residues, singly and in combination, to serine (C109S; CS1, C330S; CS2 and C109S-C330S, Cys-less). Mutation CS2 had no effect on the expressed system y+L-like transport activity, whereas C109S-containing mutants (CS1 and Cys-less) retained only partial y+L-like transport activity (30 to 50% of wild type). 3) Hg2+, the organic mercury compounds pCMB, and the membrane-impermeant pCMBS almost completely inactivated system y+L-like induced by human 4F2hc wild type and all the mutants studied. This was reversed by ss-mercaptoethanol, indicating that external cysteine residue(s) are the target of this inactivation. 4) Sensitivity to Hg2+ inactivation is increased by pretreatment of oocytes with ss-mercaptoethanol or in the C109S-containing mutants (CS1 and Cys-less). The increased Hg2+ reactivity of C109S-containing mutants supports the possibility that C109 may be linked by a disulfide bond to the Hg2+-targeted cysteine residue of the associated protein. These results indicate that 4F2hc is intimately associated with a membrane oocyte protein for the expression of system y+L amino acid transport activity. To our knowledge, this is the first direct evidence for a heteromultimeric protein structure of an organic solute carrier in mammals.
Collapse
Affiliation(s)
- R Estévez
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Barcelona, Barcelona-08028,
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Palacín M, Estévez R, Zorzano A. Cystinuria calls for heteromultimeric amino acid transporters. Curr Opin Cell Biol 1998; 10:455-61. [PMID: 9719865 DOI: 10.1016/s0955-0674(98)80058-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The proteins rBAT (related to bo,+ amino acid transporter) and 4F2hc (the heavy chain of the surface antigen 4F2) are homologous proteins that induce amino acid transport in Xenopus oocytes. The role of rBAT in amino acid transport is substantiated by the fact that mutations in the gene encoding it cause cystinuria, a heritable disease characterised by high concentrations of cystine in the urine. Structural and functional evidence supports the hypothesis that both rBAT and 4F2hc proteins form part of heterodimeric amino acid transporters. There is new evidence that the functional unit of system y+L amino acid transporter is a disulfide bridge-dependent complex of 4F2hc with a Xenopus oocyte plasma membrane protein.
Collapse
Affiliation(s)
- M Palacín
- Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Spain.
| | | | | |
Collapse
|